1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/racct.h> 90 #include <sys/refcount.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/signalvar.h> 94 #include <sys/sysctl.h> 95 #include <sys/sysent.h> 96 #include <sys/vmmeter.h> 97 #include <sys/vnode.h> 98 #ifdef KTRACE 99 #include <sys/ktrace.h> 100 #endif 101 102 #include <vm/vm.h> 103 #include <vm/vm_param.h> 104 #include <vm/pmap.h> 105 #include <vm/vm_map.h> 106 #include <vm/vm_object.h> 107 #include <vm/vm_page.h> 108 #include <vm/vm_pageout.h> 109 #include <vm/vm_kern.h> 110 #include <vm/vm_pager.h> 111 #include <vm/vm_extern.h> 112 #include <vm/vm_reserv.h> 113 114 #define PFBAK 4 115 #define PFFOR 4 116 117 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 118 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 119 120 #define VM_FAULT_DONTNEED_MIN 1048576 121 122 struct faultstate { 123 vm_page_t m; 124 vm_page_t m_cow; 125 vm_object_t object; 126 vm_pindex_t pindex; 127 vm_page_t first_m; 128 vm_object_t first_object; 129 vm_pindex_t first_pindex; 130 vm_map_t map; 131 vm_map_entry_t entry; 132 int map_generation; 133 bool lookup_still_valid; 134 struct vnode *vp; 135 }; 136 137 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 138 int ahead); 139 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 140 int backward, int forward, bool obj_locked); 141 142 static int vm_pfault_oom_attempts = 3; 143 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 144 &vm_pfault_oom_attempts, 0, 145 "Number of page allocation attempts in page fault handler before it " 146 "triggers OOM handling"); 147 148 static int vm_pfault_oom_wait = 10; 149 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 150 &vm_pfault_oom_wait, 0, 151 "Number of seconds to wait for free pages before retrying " 152 "the page fault handler"); 153 154 static inline void 155 fault_page_release(vm_page_t *mp) 156 { 157 vm_page_t m; 158 159 m = *mp; 160 if (m != NULL) { 161 /* 162 * We are likely to loop around again and attempt to busy 163 * this page. Deactivating it leaves it available for 164 * pageout while optimizing fault restarts. 165 */ 166 vm_page_deactivate(m); 167 vm_page_xunbusy(m); 168 *mp = NULL; 169 } 170 } 171 172 static inline void 173 fault_page_free(vm_page_t *mp) 174 { 175 vm_page_t m; 176 177 m = *mp; 178 if (m != NULL) { 179 VM_OBJECT_ASSERT_WLOCKED(m->object); 180 if (!vm_page_wired(m)) 181 vm_page_free(m); 182 else 183 vm_page_xunbusy(m); 184 *mp = NULL; 185 } 186 } 187 188 static inline void 189 unlock_map(struct faultstate *fs) 190 { 191 192 if (fs->lookup_still_valid) { 193 vm_map_lookup_done(fs->map, fs->entry); 194 fs->lookup_still_valid = false; 195 } 196 } 197 198 static void 199 unlock_vp(struct faultstate *fs) 200 { 201 202 if (fs->vp != NULL) { 203 vput(fs->vp); 204 fs->vp = NULL; 205 } 206 } 207 208 static void 209 fault_deallocate(struct faultstate *fs) 210 { 211 212 fault_page_release(&fs->m_cow); 213 fault_page_release(&fs->m); 214 vm_object_pip_wakeup(fs->object); 215 if (fs->object != fs->first_object) { 216 VM_OBJECT_WLOCK(fs->first_object); 217 fault_page_free(&fs->first_m); 218 VM_OBJECT_WUNLOCK(fs->first_object); 219 vm_object_pip_wakeup(fs->first_object); 220 } 221 vm_object_deallocate(fs->first_object); 222 unlock_map(fs); 223 unlock_vp(fs); 224 } 225 226 static void 227 unlock_and_deallocate(struct faultstate *fs) 228 { 229 230 VM_OBJECT_WUNLOCK(fs->object); 231 fault_deallocate(fs); 232 } 233 234 static void 235 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 236 vm_prot_t fault_type, int fault_flags) 237 { 238 bool need_dirty; 239 240 if (((prot & VM_PROT_WRITE) == 0 && 241 (fault_flags & VM_FAULT_DIRTY) == 0) || 242 (m->oflags & VPO_UNMANAGED) != 0) 243 return; 244 245 VM_PAGE_OBJECT_BUSY_ASSERT(m); 246 247 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 248 (fault_flags & VM_FAULT_WIRE) == 0) || 249 (fault_flags & VM_FAULT_DIRTY) != 0; 250 251 vm_object_set_writeable_dirty(m->object); 252 253 /* 254 * If the fault is a write, we know that this page is being 255 * written NOW so dirty it explicitly to save on 256 * pmap_is_modified() calls later. 257 * 258 * Also, since the page is now dirty, we can possibly tell 259 * the pager to release any swap backing the page. 260 */ 261 if (need_dirty && vm_page_set_dirty(m) == 0) { 262 /* 263 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 264 * if the page is already dirty to prevent data written with 265 * the expectation of being synced from not being synced. 266 * Likewise if this entry does not request NOSYNC then make 267 * sure the page isn't marked NOSYNC. Applications sharing 268 * data should use the same flags to avoid ping ponging. 269 */ 270 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) 271 vm_page_aflag_set(m, PGA_NOSYNC); 272 else 273 vm_page_aflag_clear(m, PGA_NOSYNC); 274 } 275 276 } 277 278 /* 279 * Unlocks fs.first_object and fs.map on success. 280 */ 281 static int 282 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 283 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 284 { 285 vm_page_t m, m_map; 286 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 287 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 288 VM_NRESERVLEVEL > 0 289 vm_page_t m_super; 290 int flags; 291 #endif 292 int psind, rv; 293 294 MPASS(fs->vp == NULL); 295 vm_object_busy(fs->first_object); 296 m = vm_page_lookup(fs->first_object, fs->first_pindex); 297 /* A busy page can be mapped for read|execute access. */ 298 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 299 vm_page_busied(m)) || !vm_page_all_valid(m)) { 300 rv = KERN_FAILURE; 301 goto out; 302 } 303 m_map = m; 304 psind = 0; 305 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 306 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 307 VM_NRESERVLEVEL > 0 308 if ((m->flags & PG_FICTITIOUS) == 0 && 309 (m_super = vm_reserv_to_superpage(m)) != NULL && 310 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 311 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 312 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 313 (pagesizes[m_super->psind] - 1)) && !wired && 314 pmap_ps_enabled(fs->map->pmap)) { 315 flags = PS_ALL_VALID; 316 if ((prot & VM_PROT_WRITE) != 0) { 317 /* 318 * Create a superpage mapping allowing write access 319 * only if none of the constituent pages are busy and 320 * all of them are already dirty (except possibly for 321 * the page that was faulted on). 322 */ 323 flags |= PS_NONE_BUSY; 324 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 325 flags |= PS_ALL_DIRTY; 326 } 327 if (vm_page_ps_test(m_super, flags, m)) { 328 m_map = m_super; 329 psind = m_super->psind; 330 vaddr = rounddown2(vaddr, pagesizes[psind]); 331 /* Preset the modified bit for dirty superpages. */ 332 if ((flags & PS_ALL_DIRTY) != 0) 333 fault_type |= VM_PROT_WRITE; 334 } 335 } 336 #endif 337 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 338 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 339 if (rv != KERN_SUCCESS) 340 goto out; 341 if (m_hold != NULL) { 342 *m_hold = m; 343 vm_page_wire(m); 344 } 345 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags); 346 if (psind == 0 && !wired) 347 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 348 VM_OBJECT_RUNLOCK(fs->first_object); 349 vm_map_lookup_done(fs->map, fs->entry); 350 curthread->td_ru.ru_minflt++; 351 352 out: 353 vm_object_unbusy(fs->first_object); 354 return (rv); 355 } 356 357 static void 358 vm_fault_restore_map_lock(struct faultstate *fs) 359 { 360 361 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 362 MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); 363 364 if (!vm_map_trylock_read(fs->map)) { 365 VM_OBJECT_WUNLOCK(fs->first_object); 366 vm_map_lock_read(fs->map); 367 VM_OBJECT_WLOCK(fs->first_object); 368 } 369 fs->lookup_still_valid = true; 370 } 371 372 static void 373 vm_fault_populate_check_page(vm_page_t m) 374 { 375 376 /* 377 * Check each page to ensure that the pager is obeying the 378 * interface: the page must be installed in the object, fully 379 * valid, and exclusively busied. 380 */ 381 MPASS(m != NULL); 382 MPASS(vm_page_all_valid(m)); 383 MPASS(vm_page_xbusied(m)); 384 } 385 386 static void 387 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 388 vm_pindex_t last) 389 { 390 vm_page_t m; 391 vm_pindex_t pidx; 392 393 VM_OBJECT_ASSERT_WLOCKED(object); 394 MPASS(first <= last); 395 for (pidx = first, m = vm_page_lookup(object, pidx); 396 pidx <= last; pidx++, m = vm_page_next(m)) { 397 vm_fault_populate_check_page(m); 398 vm_page_deactivate(m); 399 vm_page_xunbusy(m); 400 } 401 } 402 403 static int 404 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type, 405 int fault_flags, boolean_t wired, vm_page_t *m_hold) 406 { 407 vm_offset_t vaddr; 408 vm_page_t m; 409 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 410 int i, npages, psind, rv; 411 412 MPASS(fs->object == fs->first_object); 413 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 414 MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); 415 MPASS(fs->first_object->backing_object == NULL); 416 MPASS(fs->lookup_still_valid); 417 418 pager_first = OFF_TO_IDX(fs->entry->offset); 419 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 420 unlock_map(fs); 421 unlock_vp(fs); 422 423 /* 424 * Call the pager (driver) populate() method. 425 * 426 * There is no guarantee that the method will be called again 427 * if the current fault is for read, and a future fault is 428 * for write. Report the entry's maximum allowed protection 429 * to the driver. 430 */ 431 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 432 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 433 434 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 435 if (rv == VM_PAGER_BAD) { 436 /* 437 * VM_PAGER_BAD is the backdoor for a pager to request 438 * normal fault handling. 439 */ 440 vm_fault_restore_map_lock(fs); 441 if (fs->map->timestamp != fs->map_generation) 442 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 443 return (KERN_NOT_RECEIVER); 444 } 445 if (rv != VM_PAGER_OK) 446 return (KERN_FAILURE); /* AKA SIGSEGV */ 447 448 /* Ensure that the driver is obeying the interface. */ 449 MPASS(pager_first <= pager_last); 450 MPASS(fs->first_pindex <= pager_last); 451 MPASS(fs->first_pindex >= pager_first); 452 MPASS(pager_last < fs->first_object->size); 453 454 vm_fault_restore_map_lock(fs); 455 if (fs->map->timestamp != fs->map_generation) { 456 vm_fault_populate_cleanup(fs->first_object, pager_first, 457 pager_last); 458 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 459 } 460 461 /* 462 * The map is unchanged after our last unlock. Process the fault. 463 * 464 * The range [pager_first, pager_last] that is given to the 465 * pager is only a hint. The pager may populate any range 466 * within the object that includes the requested page index. 467 * In case the pager expanded the range, clip it to fit into 468 * the map entry. 469 */ 470 map_first = OFF_TO_IDX(fs->entry->offset); 471 if (map_first > pager_first) { 472 vm_fault_populate_cleanup(fs->first_object, pager_first, 473 map_first - 1); 474 pager_first = map_first; 475 } 476 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 477 if (map_last < pager_last) { 478 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 479 pager_last); 480 pager_last = map_last; 481 } 482 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 483 pidx <= pager_last; 484 pidx += npages, m = vm_page_next(&m[npages - 1])) { 485 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 486 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 487 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) 488 psind = m->psind; 489 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 490 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 491 !pmap_ps_enabled(fs->map->pmap) || wired)) 492 psind = 0; 493 #else 494 psind = 0; 495 #endif 496 npages = atop(pagesizes[psind]); 497 for (i = 0; i < npages; i++) { 498 vm_fault_populate_check_page(&m[i]); 499 vm_fault_dirty(fs->entry, &m[i], prot, fault_type, 500 fault_flags); 501 } 502 VM_OBJECT_WUNLOCK(fs->first_object); 503 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | 504 (wired ? PMAP_ENTER_WIRED : 0), psind); 505 #if defined(__amd64__) 506 if (psind > 0 && rv == KERN_FAILURE) { 507 for (i = 0; i < npages; i++) { 508 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 509 &m[i], prot, fault_type | 510 (wired ? PMAP_ENTER_WIRED : 0), 0); 511 MPASS(rv == KERN_SUCCESS); 512 } 513 } 514 #else 515 MPASS(rv == KERN_SUCCESS); 516 #endif 517 VM_OBJECT_WLOCK(fs->first_object); 518 for (i = 0; i < npages; i++) { 519 if ((fault_flags & VM_FAULT_WIRE) != 0) 520 vm_page_wire(&m[i]); 521 else 522 vm_page_activate(&m[i]); 523 if (m_hold != NULL && m[i].pindex == fs->first_pindex) { 524 *m_hold = &m[i]; 525 vm_page_wire(&m[i]); 526 } 527 vm_page_xunbusy(&m[i]); 528 } 529 } 530 curthread->td_ru.ru_majflt++; 531 return (KERN_SUCCESS); 532 } 533 534 static int prot_fault_translation; 535 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 536 &prot_fault_translation, 0, 537 "Control signal to deliver on protection fault"); 538 539 /* compat definition to keep common code for signal translation */ 540 #define UCODE_PAGEFLT 12 541 #ifdef T_PAGEFLT 542 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 543 #endif 544 545 /* 546 * vm_fault_trap: 547 * 548 * Handle a page fault occurring at the given address, 549 * requiring the given permissions, in the map specified. 550 * If successful, the page is inserted into the 551 * associated physical map. 552 * 553 * NOTE: the given address should be truncated to the 554 * proper page address. 555 * 556 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 557 * a standard error specifying why the fault is fatal is returned. 558 * 559 * The map in question must be referenced, and remains so. 560 * Caller may hold no locks. 561 */ 562 int 563 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 564 int fault_flags, int *signo, int *ucode) 565 { 566 int result; 567 568 MPASS(signo == NULL || ucode != NULL); 569 #ifdef KTRACE 570 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 571 ktrfault(vaddr, fault_type); 572 #endif 573 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 574 NULL); 575 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 576 result == KERN_INVALID_ADDRESS || 577 result == KERN_RESOURCE_SHORTAGE || 578 result == KERN_PROTECTION_FAILURE || 579 result == KERN_OUT_OF_BOUNDS, 580 ("Unexpected Mach error %d from vm_fault()", result)); 581 #ifdef KTRACE 582 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 583 ktrfaultend(result); 584 #endif 585 if (result != KERN_SUCCESS && signo != NULL) { 586 switch (result) { 587 case KERN_FAILURE: 588 case KERN_INVALID_ADDRESS: 589 *signo = SIGSEGV; 590 *ucode = SEGV_MAPERR; 591 break; 592 case KERN_RESOURCE_SHORTAGE: 593 *signo = SIGBUS; 594 *ucode = BUS_OOMERR; 595 break; 596 case KERN_OUT_OF_BOUNDS: 597 *signo = SIGBUS; 598 *ucode = BUS_OBJERR; 599 break; 600 case KERN_PROTECTION_FAILURE: 601 if (prot_fault_translation == 0) { 602 /* 603 * Autodetect. This check also covers 604 * the images without the ABI-tag ELF 605 * note. 606 */ 607 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 608 curproc->p_osrel >= P_OSREL_SIGSEGV) { 609 *signo = SIGSEGV; 610 *ucode = SEGV_ACCERR; 611 } else { 612 *signo = SIGBUS; 613 *ucode = UCODE_PAGEFLT; 614 } 615 } else if (prot_fault_translation == 1) { 616 /* Always compat mode. */ 617 *signo = SIGBUS; 618 *ucode = UCODE_PAGEFLT; 619 } else { 620 /* Always SIGSEGV mode. */ 621 *signo = SIGSEGV; 622 *ucode = SEGV_ACCERR; 623 } 624 break; 625 default: 626 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 627 result)); 628 break; 629 } 630 } 631 return (result); 632 } 633 634 static int 635 vm_fault_lock_vnode(struct faultstate *fs) 636 { 637 struct vnode *vp; 638 int error, locked; 639 640 if (fs->object->type != OBJT_VNODE) 641 return (KERN_SUCCESS); 642 vp = fs->object->handle; 643 if (vp == fs->vp) { 644 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 645 return (KERN_SUCCESS); 646 } 647 648 /* 649 * Perform an unlock in case the desired vnode changed while 650 * the map was unlocked during a retry. 651 */ 652 unlock_vp(fs); 653 654 locked = VOP_ISLOCKED(vp); 655 if (locked != LK_EXCLUSIVE) 656 locked = LK_SHARED; 657 658 /* 659 * We must not sleep acquiring the vnode lock while we have 660 * the page exclusive busied or the object's 661 * paging-in-progress count incremented. Otherwise, we could 662 * deadlock. 663 */ 664 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT, curthread); 665 if (error == 0) { 666 fs->vp = vp; 667 return (KERN_SUCCESS); 668 } 669 670 vhold(vp); 671 unlock_and_deallocate(fs); 672 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE, curthread); 673 vdrop(vp); 674 fs->vp = vp; 675 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 676 return (KERN_RESOURCE_SHORTAGE); 677 } 678 679 /* 680 * Wait/Retry if the page is busy. We have to do this if the page is 681 * either exclusive or shared busy because the vm_pager may be using 682 * read busy for pageouts (and even pageins if it is the vnode pager), 683 * and we could end up trying to pagein and pageout the same page 684 * simultaneously. 685 * 686 * We can theoretically allow the busy case on a read fault if the page 687 * is marked valid, but since such pages are typically already pmap'd, 688 * putting that special case in might be more effort then it is worth. 689 * We cannot under any circumstances mess around with a shared busied 690 * page except, perhaps, to pmap it. 691 */ 692 static void 693 vm_fault_busy_sleep(struct faultstate *fs) 694 { 695 /* 696 * Reference the page before unlocking and 697 * sleeping so that the page daemon is less 698 * likely to reclaim it. 699 */ 700 vm_page_aflag_set(fs->m, PGA_REFERENCED); 701 if (fs->object != fs->first_object) { 702 fault_page_release(&fs->first_m); 703 vm_object_pip_wakeup(fs->first_object); 704 } 705 vm_object_pip_wakeup(fs->object); 706 unlock_map(fs); 707 if (fs->m == vm_page_lookup(fs->object, fs->pindex)) 708 vm_page_busy_sleep(fs->m, "vmpfw", false); 709 else 710 VM_OBJECT_WUNLOCK(fs->object); 711 VM_CNT_INC(v_intrans); 712 vm_object_deallocate(fs->first_object); 713 } 714 715 int 716 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 717 int fault_flags, vm_page_t *m_hold) 718 { 719 struct faultstate fs; 720 struct domainset *dset; 721 vm_object_t next_object, retry_object; 722 vm_offset_t e_end, e_start; 723 vm_pindex_t retry_pindex; 724 vm_prot_t prot, retry_prot; 725 int ahead, alloc_req, behind, cluster_offset, era, faultcount; 726 int nera, oom, result, rv; 727 u_char behavior; 728 boolean_t wired; /* Passed by reference. */ 729 bool dead, hardfault, is_first_object_locked; 730 731 VM_CNT_INC(v_vm_faults); 732 733 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 734 return (KERN_PROTECTION_FAILURE); 735 736 fs.vp = NULL; 737 faultcount = 0; 738 nera = -1; 739 hardfault = false; 740 741 RetryFault: 742 oom = 0; 743 RetryFault_oom: 744 745 /* 746 * Find the backing store object and offset into it to begin the 747 * search. 748 */ 749 fs.map = map; 750 result = vm_map_lookup(&fs.map, vaddr, fault_type | 751 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 752 &fs.first_pindex, &prot, &wired); 753 if (result != KERN_SUCCESS) { 754 unlock_vp(&fs); 755 return (result); 756 } 757 758 fs.map_generation = fs.map->timestamp; 759 760 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 761 panic("%s: fault on nofault entry, addr: %#lx", 762 __func__, (u_long)vaddr); 763 } 764 765 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 766 fs.entry->wiring_thread != curthread) { 767 vm_map_unlock_read(fs.map); 768 vm_map_lock(fs.map); 769 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 770 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 771 unlock_vp(&fs); 772 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 773 vm_map_unlock_and_wait(fs.map, 0); 774 } else 775 vm_map_unlock(fs.map); 776 goto RetryFault; 777 } 778 779 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 780 781 if (wired) 782 fault_type = prot | (fault_type & VM_PROT_COPY); 783 else 784 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 785 ("!wired && VM_FAULT_WIRE")); 786 787 /* 788 * Try to avoid lock contention on the top-level object through 789 * special-case handling of some types of page faults, specifically, 790 * those that are mapping an existing page from the top-level object. 791 * Under this condition, a read lock on the object suffices, allowing 792 * multiple page faults of a similar type to run in parallel. 793 */ 794 if (fs.vp == NULL /* avoid locked vnode leak */ && 795 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 796 VM_OBJECT_RLOCK(fs.first_object); 797 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 798 fault_flags, wired, m_hold); 799 if (rv == KERN_SUCCESS) 800 return (rv); 801 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 802 VM_OBJECT_RUNLOCK(fs.first_object); 803 VM_OBJECT_WLOCK(fs.first_object); 804 } 805 } else { 806 VM_OBJECT_WLOCK(fs.first_object); 807 } 808 809 /* 810 * Make a reference to this object to prevent its disposal while we 811 * are messing with it. Once we have the reference, the map is free 812 * to be diddled. Since objects reference their shadows (and copies), 813 * they will stay around as well. 814 * 815 * Bump the paging-in-progress count to prevent size changes (e.g. 816 * truncation operations) during I/O. 817 */ 818 vm_object_reference_locked(fs.first_object); 819 vm_object_pip_add(fs.first_object, 1); 820 821 fs.lookup_still_valid = true; 822 823 fs.m_cow = fs.m = fs.first_m = NULL; 824 825 /* 826 * Search for the page at object/offset. 827 */ 828 fs.object = fs.first_object; 829 fs.pindex = fs.first_pindex; 830 while (TRUE) { 831 KASSERT(fs.m == NULL, 832 ("page still set %p at loop start", fs.m)); 833 /* 834 * If the object is marked for imminent termination, 835 * we retry here, since the collapse pass has raced 836 * with us. Otherwise, if we see terminally dead 837 * object, return fail. 838 */ 839 if ((fs.object->flags & OBJ_DEAD) != 0) { 840 dead = fs.object->type == OBJT_DEAD; 841 unlock_and_deallocate(&fs); 842 if (dead) 843 return (KERN_PROTECTION_FAILURE); 844 pause("vmf_de", 1); 845 goto RetryFault; 846 } 847 848 /* 849 * See if page is resident 850 */ 851 fs.m = vm_page_lookup(fs.object, fs.pindex); 852 if (fs.m != NULL) { 853 if (vm_page_tryxbusy(fs.m) == 0) { 854 vm_fault_busy_sleep(&fs); 855 goto RetryFault; 856 } 857 858 /* 859 * The page is marked busy for other processes and the 860 * pagedaemon. If it still isn't completely valid 861 * (readable), jump to readrest, else break-out ( we 862 * found the page ). 863 */ 864 if (!vm_page_all_valid(fs.m)) 865 goto readrest; 866 break; /* break to PAGE HAS BEEN FOUND */ 867 } 868 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 869 870 /* 871 * Page is not resident. If the pager might contain the page 872 * or this is the beginning of the search, allocate a new 873 * page. (Default objects are zero-fill, so there is no real 874 * pager for them.) 875 */ 876 if (fs.object->type != OBJT_DEFAULT || 877 fs.object == fs.first_object) { 878 if ((fs.object->flags & OBJ_SIZEVNLOCK) != 0) { 879 rv = vm_fault_lock_vnode(&fs); 880 MPASS(rv == KERN_SUCCESS || 881 rv == KERN_RESOURCE_SHORTAGE); 882 if (rv == KERN_RESOURCE_SHORTAGE) 883 goto RetryFault; 884 } 885 if (fs.pindex >= fs.object->size) { 886 unlock_and_deallocate(&fs); 887 return (KERN_OUT_OF_BOUNDS); 888 } 889 890 if (fs.object == fs.first_object && 891 (fs.first_object->flags & OBJ_POPULATE) != 0 && 892 fs.first_object->shadow_count == 0) { 893 rv = vm_fault_populate(&fs, prot, fault_type, 894 fault_flags, wired, m_hold); 895 switch (rv) { 896 case KERN_SUCCESS: 897 case KERN_FAILURE: 898 unlock_and_deallocate(&fs); 899 return (rv); 900 case KERN_RESOURCE_SHORTAGE: 901 unlock_and_deallocate(&fs); 902 goto RetryFault; 903 case KERN_NOT_RECEIVER: 904 /* 905 * Pager's populate() method 906 * returned VM_PAGER_BAD. 907 */ 908 break; 909 default: 910 panic("inconsistent return codes"); 911 } 912 } 913 914 /* 915 * Allocate a new page for this object/offset pair. 916 * 917 * Unlocked read of the p_flag is harmless. At 918 * worst, the P_KILLED might be not observed 919 * there, and allocation can fail, causing 920 * restart and new reading of the p_flag. 921 */ 922 dset = fs.object->domain.dr_policy; 923 if (dset == NULL) 924 dset = curthread->td_domain.dr_policy; 925 if (!vm_page_count_severe_set(&dset->ds_mask) || 926 P_KILLED(curproc)) { 927 #if VM_NRESERVLEVEL > 0 928 vm_object_color(fs.object, atop(vaddr) - 929 fs.pindex); 930 #endif 931 alloc_req = P_KILLED(curproc) ? 932 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 933 if (fs.object->type != OBJT_VNODE && 934 fs.object->backing_object == NULL) 935 alloc_req |= VM_ALLOC_ZERO; 936 fs.m = vm_page_alloc(fs.object, fs.pindex, 937 alloc_req); 938 } 939 if (fs.m == NULL) { 940 unlock_and_deallocate(&fs); 941 if (vm_pfault_oom_attempts < 0 || 942 oom < vm_pfault_oom_attempts) { 943 oom++; 944 vm_waitpfault(dset, 945 vm_pfault_oom_wait * hz); 946 goto RetryFault_oom; 947 } 948 if (bootverbose) 949 printf( 950 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 951 curproc->p_pid, curproc->p_comm); 952 vm_pageout_oom(VM_OOM_MEM_PF); 953 goto RetryFault; 954 } 955 } 956 957 readrest: 958 /* 959 * At this point, we have either allocated a new page or found 960 * an existing page that is only partially valid. 961 * 962 * We hold a reference on the current object and the page is 963 * exclusive busied. 964 */ 965 966 /* 967 * If the pager for the current object might have the page, 968 * then determine the number of additional pages to read and 969 * potentially reprioritize previously read pages for earlier 970 * reclamation. These operations should only be performed 971 * once per page fault. Even if the current pager doesn't 972 * have the page, the number of additional pages to read will 973 * apply to subsequent objects in the shadow chain. 974 */ 975 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 976 !P_KILLED(curproc)) { 977 KASSERT(fs.lookup_still_valid, ("map unlocked")); 978 era = fs.entry->read_ahead; 979 behavior = vm_map_entry_behavior(fs.entry); 980 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 981 nera = 0; 982 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 983 nera = VM_FAULT_READ_AHEAD_MAX; 984 if (vaddr == fs.entry->next_read) 985 vm_fault_dontneed(&fs, vaddr, nera); 986 } else if (vaddr == fs.entry->next_read) { 987 /* 988 * This is a sequential fault. Arithmetically 989 * increase the requested number of pages in 990 * the read-ahead window. The requested 991 * number of pages is "# of sequential faults 992 * x (read ahead min + 1) + read ahead min" 993 */ 994 nera = VM_FAULT_READ_AHEAD_MIN; 995 if (era > 0) { 996 nera += era + 1; 997 if (nera > VM_FAULT_READ_AHEAD_MAX) 998 nera = VM_FAULT_READ_AHEAD_MAX; 999 } 1000 if (era == VM_FAULT_READ_AHEAD_MAX) 1001 vm_fault_dontneed(&fs, vaddr, nera); 1002 } else { 1003 /* 1004 * This is a non-sequential fault. 1005 */ 1006 nera = 0; 1007 } 1008 if (era != nera) { 1009 /* 1010 * A read lock on the map suffices to update 1011 * the read ahead count safely. 1012 */ 1013 fs.entry->read_ahead = nera; 1014 } 1015 1016 /* 1017 * Prepare for unlocking the map. Save the map 1018 * entry's start and end addresses, which are used to 1019 * optimize the size of the pager operation below. 1020 * Even if the map entry's addresses change after 1021 * unlocking the map, using the saved addresses is 1022 * safe. 1023 */ 1024 e_start = fs.entry->start; 1025 e_end = fs.entry->end; 1026 } 1027 1028 /* 1029 * Call the pager to retrieve the page if there is a chance 1030 * that the pager has it, and potentially retrieve additional 1031 * pages at the same time. 1032 */ 1033 if (fs.object->type != OBJT_DEFAULT) { 1034 /* 1035 * Release the map lock before locking the vnode or 1036 * sleeping in the pager. (If the current object has 1037 * a shadow, then an earlier iteration of this loop 1038 * may have already unlocked the map.) 1039 */ 1040 unlock_map(&fs); 1041 1042 rv = vm_fault_lock_vnode(&fs); 1043 MPASS(rv == KERN_SUCCESS || 1044 rv == KERN_RESOURCE_SHORTAGE); 1045 if (rv == KERN_RESOURCE_SHORTAGE) 1046 goto RetryFault; 1047 KASSERT(fs.vp == NULL || !fs.map->system_map, 1048 ("vm_fault: vnode-backed object mapped by system map")); 1049 1050 /* 1051 * Page in the requested page and hint the pager, 1052 * that it may bring up surrounding pages. 1053 */ 1054 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1055 P_KILLED(curproc)) { 1056 behind = 0; 1057 ahead = 0; 1058 } else { 1059 /* Is this a sequential fault? */ 1060 if (nera > 0) { 1061 behind = 0; 1062 ahead = nera; 1063 } else { 1064 /* 1065 * Request a cluster of pages that is 1066 * aligned to a VM_FAULT_READ_DEFAULT 1067 * page offset boundary within the 1068 * object. Alignment to a page offset 1069 * boundary is more likely to coincide 1070 * with the underlying file system 1071 * block than alignment to a virtual 1072 * address boundary. 1073 */ 1074 cluster_offset = fs.pindex % 1075 VM_FAULT_READ_DEFAULT; 1076 behind = ulmin(cluster_offset, 1077 atop(vaddr - e_start)); 1078 ahead = VM_FAULT_READ_DEFAULT - 1 - 1079 cluster_offset; 1080 } 1081 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 1082 } 1083 VM_OBJECT_WUNLOCK(fs.object); 1084 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 1085 &behind, &ahead); 1086 VM_OBJECT_WLOCK(fs.object); 1087 if (rv == VM_PAGER_OK) { 1088 faultcount = behind + 1 + ahead; 1089 hardfault = true; 1090 break; /* break to PAGE HAS BEEN FOUND */ 1091 } 1092 if (rv == VM_PAGER_ERROR) 1093 printf("vm_fault: pager read error, pid %d (%s)\n", 1094 curproc->p_pid, curproc->p_comm); 1095 1096 /* 1097 * If an I/O error occurred or the requested page was 1098 * outside the range of the pager, clean up and return 1099 * an error. 1100 */ 1101 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1102 fault_page_free(&fs.m); 1103 unlock_and_deallocate(&fs); 1104 return (KERN_OUT_OF_BOUNDS); 1105 } 1106 1107 } 1108 1109 /* 1110 * The requested page does not exist at this object/ 1111 * offset. Remove the invalid page from the object, 1112 * waking up anyone waiting for it, and continue on to 1113 * the next object. However, if this is the top-level 1114 * object, we must leave the busy page in place to 1115 * prevent another process from rushing past us, and 1116 * inserting the page in that object at the same time 1117 * that we are. 1118 */ 1119 if (fs.object == fs.first_object) { 1120 fs.first_m = fs.m; 1121 fs.m = NULL; 1122 } else 1123 fault_page_free(&fs.m); 1124 1125 /* 1126 * Move on to the next object. Lock the next object before 1127 * unlocking the current one. 1128 */ 1129 next_object = fs.object->backing_object; 1130 if (next_object == NULL) { 1131 /* 1132 * If there's no object left, fill the page in the top 1133 * object with zeros. 1134 */ 1135 if (fs.object != fs.first_object) { 1136 vm_object_pip_wakeup(fs.object); 1137 VM_OBJECT_WUNLOCK(fs.object); 1138 1139 fs.object = fs.first_object; 1140 fs.pindex = fs.first_pindex; 1141 VM_OBJECT_WLOCK(fs.object); 1142 } 1143 MPASS(fs.first_m != NULL); 1144 MPASS(fs.m == NULL); 1145 fs.m = fs.first_m; 1146 fs.first_m = NULL; 1147 1148 /* 1149 * Zero the page if necessary and mark it valid. 1150 */ 1151 if ((fs.m->flags & PG_ZERO) == 0) { 1152 pmap_zero_page(fs.m); 1153 } else { 1154 VM_CNT_INC(v_ozfod); 1155 } 1156 VM_CNT_INC(v_zfod); 1157 vm_page_valid(fs.m); 1158 /* Don't try to prefault neighboring pages. */ 1159 faultcount = 1; 1160 break; /* break to PAGE HAS BEEN FOUND */ 1161 } else { 1162 MPASS(fs.first_m != NULL); 1163 KASSERT(fs.object != next_object, 1164 ("object loop %p", next_object)); 1165 VM_OBJECT_WLOCK(next_object); 1166 vm_object_pip_add(next_object, 1); 1167 if (fs.object != fs.first_object) 1168 vm_object_pip_wakeup(fs.object); 1169 fs.pindex += 1170 OFF_TO_IDX(fs.object->backing_object_offset); 1171 VM_OBJECT_WUNLOCK(fs.object); 1172 fs.object = next_object; 1173 } 1174 } 1175 1176 vm_page_assert_xbusied(fs.m); 1177 1178 /* 1179 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1180 * is held.] 1181 */ 1182 1183 /* 1184 * If the page is being written, but isn't already owned by the 1185 * top-level object, we have to copy it into a new page owned by the 1186 * top-level object. 1187 */ 1188 if (fs.object != fs.first_object) { 1189 /* 1190 * We only really need to copy if we want to write it. 1191 */ 1192 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1193 /* 1194 * This allows pages to be virtually copied from a 1195 * backing_object into the first_object, where the 1196 * backing object has no other refs to it, and cannot 1197 * gain any more refs. Instead of a bcopy, we just 1198 * move the page from the backing object to the 1199 * first object. Note that we must mark the page 1200 * dirty in the first object so that it will go out 1201 * to swap when needed. 1202 */ 1203 is_first_object_locked = false; 1204 if ( 1205 /* 1206 * Only one shadow object 1207 */ 1208 (fs.object->shadow_count == 1) && 1209 /* 1210 * No COW refs, except us 1211 */ 1212 (fs.object->ref_count == 1) && 1213 /* 1214 * No one else can look this object up 1215 */ 1216 (fs.object->handle == NULL) && 1217 /* 1218 * No other ways to look the object up 1219 */ 1220 ((fs.object->flags & OBJ_ANON) != 0) && 1221 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1222 /* 1223 * We don't chase down the shadow chain 1224 */ 1225 fs.object == fs.first_object->backing_object) { 1226 1227 /* 1228 * Remove but keep xbusy for replace. fs.m is 1229 * moved into fs.first_object and left busy 1230 * while fs.first_m is conditionally freed. 1231 */ 1232 vm_page_remove_xbusy(fs.m); 1233 vm_page_replace(fs.m, fs.first_object, 1234 fs.first_pindex, fs.first_m); 1235 vm_page_dirty(fs.m); 1236 #if VM_NRESERVLEVEL > 0 1237 /* 1238 * Rename the reservation. 1239 */ 1240 vm_reserv_rename(fs.m, fs.first_object, 1241 fs.object, OFF_TO_IDX( 1242 fs.first_object->backing_object_offset)); 1243 #endif 1244 VM_OBJECT_WUNLOCK(fs.object); 1245 fs.first_m = fs.m; 1246 fs.m = NULL; 1247 VM_CNT_INC(v_cow_optim); 1248 } else { 1249 VM_OBJECT_WUNLOCK(fs.object); 1250 /* 1251 * Oh, well, lets copy it. 1252 */ 1253 pmap_copy_page(fs.m, fs.first_m); 1254 vm_page_valid(fs.first_m); 1255 if (wired && (fault_flags & 1256 VM_FAULT_WIRE) == 0) { 1257 vm_page_wire(fs.first_m); 1258 vm_page_unwire(fs.m, PQ_INACTIVE); 1259 } 1260 /* 1261 * Save the cow page to be released after 1262 * pmap_enter is complete. 1263 */ 1264 fs.m_cow = fs.m; 1265 fs.m = NULL; 1266 } 1267 /* 1268 * fs.object != fs.first_object due to above 1269 * conditional 1270 */ 1271 vm_object_pip_wakeup(fs.object); 1272 1273 /* 1274 * We only try to prefault read-only mappings to the 1275 * neighboring pages when this copy-on-write fault is 1276 * a hard fault. In other cases, trying to prefault 1277 * is typically wasted effort. 1278 */ 1279 if (faultcount == 0) 1280 faultcount = 1; 1281 1282 /* 1283 * Only use the new page below... 1284 */ 1285 fs.object = fs.first_object; 1286 fs.pindex = fs.first_pindex; 1287 fs.m = fs.first_m; 1288 if (!is_first_object_locked) 1289 VM_OBJECT_WLOCK(fs.object); 1290 VM_CNT_INC(v_cow_faults); 1291 curthread->td_cow++; 1292 } else { 1293 prot &= ~VM_PROT_WRITE; 1294 } 1295 } 1296 1297 /* 1298 * We must verify that the maps have not changed since our last 1299 * lookup. 1300 */ 1301 if (!fs.lookup_still_valid) { 1302 if (!vm_map_trylock_read(fs.map)) { 1303 unlock_and_deallocate(&fs); 1304 goto RetryFault; 1305 } 1306 fs.lookup_still_valid = true; 1307 if (fs.map->timestamp != fs.map_generation) { 1308 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1309 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1310 1311 /* 1312 * If we don't need the page any longer, put it on the inactive 1313 * list (the easiest thing to do here). If no one needs it, 1314 * pageout will grab it eventually. 1315 */ 1316 if (result != KERN_SUCCESS) { 1317 unlock_and_deallocate(&fs); 1318 1319 /* 1320 * If retry of map lookup would have blocked then 1321 * retry fault from start. 1322 */ 1323 if (result == KERN_FAILURE) 1324 goto RetryFault; 1325 return (result); 1326 } 1327 if ((retry_object != fs.first_object) || 1328 (retry_pindex != fs.first_pindex)) { 1329 unlock_and_deallocate(&fs); 1330 goto RetryFault; 1331 } 1332 1333 /* 1334 * Check whether the protection has changed or the object has 1335 * been copied while we left the map unlocked. Changing from 1336 * read to write permission is OK - we leave the page 1337 * write-protected, and catch the write fault. Changing from 1338 * write to read permission means that we can't mark the page 1339 * write-enabled after all. 1340 */ 1341 prot &= retry_prot; 1342 fault_type &= retry_prot; 1343 if (prot == 0) { 1344 unlock_and_deallocate(&fs); 1345 goto RetryFault; 1346 } 1347 1348 /* Reassert because wired may have changed. */ 1349 KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0, 1350 ("!wired && VM_FAULT_WIRE")); 1351 } 1352 } 1353 1354 /* 1355 * If the page was filled by a pager, save the virtual address that 1356 * should be faulted on next under a sequential access pattern to the 1357 * map entry. A read lock on the map suffices to update this address 1358 * safely. 1359 */ 1360 if (hardfault) 1361 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1362 1363 vm_page_assert_xbusied(fs.m); 1364 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags); 1365 1366 /* 1367 * Page must be completely valid or it is not fit to 1368 * map into user space. vm_pager_get_pages() ensures this. 1369 */ 1370 KASSERT(vm_page_all_valid(fs.m), 1371 ("vm_fault: page %p partially invalid", fs.m)); 1372 VM_OBJECT_WUNLOCK(fs.object); 1373 1374 /* 1375 * Put this page into the physical map. We had to do the unlock above 1376 * because pmap_enter() may sleep. We don't put the page 1377 * back on the active queue until later so that the pageout daemon 1378 * won't find it (yet). 1379 */ 1380 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1381 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1382 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1383 wired == 0) 1384 vm_fault_prefault(&fs, vaddr, 1385 faultcount > 0 ? behind : PFBAK, 1386 faultcount > 0 ? ahead : PFFOR, false); 1387 1388 /* 1389 * If the page is not wired down, then put it where the pageout daemon 1390 * can find it. 1391 */ 1392 if ((fault_flags & VM_FAULT_WIRE) != 0) 1393 vm_page_wire(fs.m); 1394 else 1395 vm_page_activate(fs.m); 1396 if (m_hold != NULL) { 1397 *m_hold = fs.m; 1398 vm_page_wire(fs.m); 1399 } 1400 vm_page_xunbusy(fs.m); 1401 fs.m = NULL; 1402 1403 /* 1404 * Unlock everything, and return 1405 */ 1406 fault_deallocate(&fs); 1407 if (hardfault) { 1408 VM_CNT_INC(v_io_faults); 1409 curthread->td_ru.ru_majflt++; 1410 #ifdef RACCT 1411 if (racct_enable && fs.object->type == OBJT_VNODE) { 1412 PROC_LOCK(curproc); 1413 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1414 racct_add_force(curproc, RACCT_WRITEBPS, 1415 PAGE_SIZE + behind * PAGE_SIZE); 1416 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1417 } else { 1418 racct_add_force(curproc, RACCT_READBPS, 1419 PAGE_SIZE + ahead * PAGE_SIZE); 1420 racct_add_force(curproc, RACCT_READIOPS, 1); 1421 } 1422 PROC_UNLOCK(curproc); 1423 } 1424 #endif 1425 } else 1426 curthread->td_ru.ru_minflt++; 1427 1428 return (KERN_SUCCESS); 1429 } 1430 1431 /* 1432 * Speed up the reclamation of pages that precede the faulting pindex within 1433 * the first object of the shadow chain. Essentially, perform the equivalent 1434 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1435 * the faulting pindex by the cluster size when the pages read by vm_fault() 1436 * cross a cluster-size boundary. The cluster size is the greater of the 1437 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1438 * 1439 * When "fs->first_object" is a shadow object, the pages in the backing object 1440 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1441 * function must only be concerned with pages in the first object. 1442 */ 1443 static void 1444 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1445 { 1446 vm_map_entry_t entry; 1447 vm_object_t first_object, object; 1448 vm_offset_t end, start; 1449 vm_page_t m, m_next; 1450 vm_pindex_t pend, pstart; 1451 vm_size_t size; 1452 1453 object = fs->object; 1454 VM_OBJECT_ASSERT_WLOCKED(object); 1455 first_object = fs->first_object; 1456 if (first_object != object) { 1457 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1458 VM_OBJECT_WUNLOCK(object); 1459 VM_OBJECT_WLOCK(first_object); 1460 VM_OBJECT_WLOCK(object); 1461 } 1462 } 1463 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1464 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1465 size = VM_FAULT_DONTNEED_MIN; 1466 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1467 size = pagesizes[1]; 1468 end = rounddown2(vaddr, size); 1469 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1470 (entry = fs->entry)->start < end) { 1471 if (end - entry->start < size) 1472 start = entry->start; 1473 else 1474 start = end - size; 1475 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1476 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1477 entry->start); 1478 m_next = vm_page_find_least(first_object, pstart); 1479 pend = OFF_TO_IDX(entry->offset) + atop(end - 1480 entry->start); 1481 while ((m = m_next) != NULL && m->pindex < pend) { 1482 m_next = TAILQ_NEXT(m, listq); 1483 if (!vm_page_all_valid(m) || 1484 vm_page_busied(m)) 1485 continue; 1486 1487 /* 1488 * Don't clear PGA_REFERENCED, since it would 1489 * likely represent a reference by a different 1490 * process. 1491 * 1492 * Typically, at this point, prefetched pages 1493 * are still in the inactive queue. Only 1494 * pages that triggered page faults are in the 1495 * active queue. The test for whether the page 1496 * is in the inactive queue is racy; in the 1497 * worst case we will requeue the page 1498 * unnecessarily. 1499 */ 1500 if (!vm_page_inactive(m)) 1501 vm_page_deactivate(m); 1502 } 1503 } 1504 } 1505 if (first_object != object) 1506 VM_OBJECT_WUNLOCK(first_object); 1507 } 1508 1509 /* 1510 * vm_fault_prefault provides a quick way of clustering 1511 * pagefaults into a processes address space. It is a "cousin" 1512 * of vm_map_pmap_enter, except it runs at page fault time instead 1513 * of mmap time. 1514 */ 1515 static void 1516 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1517 int backward, int forward, bool obj_locked) 1518 { 1519 pmap_t pmap; 1520 vm_map_entry_t entry; 1521 vm_object_t backing_object, lobject; 1522 vm_offset_t addr, starta; 1523 vm_pindex_t pindex; 1524 vm_page_t m; 1525 int i; 1526 1527 pmap = fs->map->pmap; 1528 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1529 return; 1530 1531 entry = fs->entry; 1532 1533 if (addra < backward * PAGE_SIZE) { 1534 starta = entry->start; 1535 } else { 1536 starta = addra - backward * PAGE_SIZE; 1537 if (starta < entry->start) 1538 starta = entry->start; 1539 } 1540 1541 /* 1542 * Generate the sequence of virtual addresses that are candidates for 1543 * prefaulting in an outward spiral from the faulting virtual address, 1544 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1545 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1546 * If the candidate address doesn't have a backing physical page, then 1547 * the loop immediately terminates. 1548 */ 1549 for (i = 0; i < 2 * imax(backward, forward); i++) { 1550 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1551 PAGE_SIZE); 1552 if (addr > addra + forward * PAGE_SIZE) 1553 addr = 0; 1554 1555 if (addr < starta || addr >= entry->end) 1556 continue; 1557 1558 if (!pmap_is_prefaultable(pmap, addr)) 1559 continue; 1560 1561 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1562 lobject = entry->object.vm_object; 1563 if (!obj_locked) 1564 VM_OBJECT_RLOCK(lobject); 1565 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1566 lobject->type == OBJT_DEFAULT && 1567 (backing_object = lobject->backing_object) != NULL) { 1568 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1569 0, ("vm_fault_prefault: unaligned object offset")); 1570 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1571 VM_OBJECT_RLOCK(backing_object); 1572 if (!obj_locked || lobject != entry->object.vm_object) 1573 VM_OBJECT_RUNLOCK(lobject); 1574 lobject = backing_object; 1575 } 1576 if (m == NULL) { 1577 if (!obj_locked || lobject != entry->object.vm_object) 1578 VM_OBJECT_RUNLOCK(lobject); 1579 break; 1580 } 1581 if (vm_page_all_valid(m) && 1582 (m->flags & PG_FICTITIOUS) == 0) 1583 pmap_enter_quick(pmap, addr, m, entry->protection); 1584 if (!obj_locked || lobject != entry->object.vm_object) 1585 VM_OBJECT_RUNLOCK(lobject); 1586 } 1587 } 1588 1589 /* 1590 * Hold each of the physical pages that are mapped by the specified range of 1591 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1592 * and allow the specified types of access, "prot". If all of the implied 1593 * pages are successfully held, then the number of held pages is returned 1594 * together with pointers to those pages in the array "ma". However, if any 1595 * of the pages cannot be held, -1 is returned. 1596 */ 1597 int 1598 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1599 vm_prot_t prot, vm_page_t *ma, int max_count) 1600 { 1601 vm_offset_t end, va; 1602 vm_page_t *mp; 1603 int count; 1604 boolean_t pmap_failed; 1605 1606 if (len == 0) 1607 return (0); 1608 end = round_page(addr + len); 1609 addr = trunc_page(addr); 1610 1611 /* 1612 * Check for illegal addresses. 1613 */ 1614 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1615 return (-1); 1616 1617 if (atop(end - addr) > max_count) 1618 panic("vm_fault_quick_hold_pages: count > max_count"); 1619 count = atop(end - addr); 1620 1621 /* 1622 * Most likely, the physical pages are resident in the pmap, so it is 1623 * faster to try pmap_extract_and_hold() first. 1624 */ 1625 pmap_failed = FALSE; 1626 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1627 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1628 if (*mp == NULL) 1629 pmap_failed = TRUE; 1630 else if ((prot & VM_PROT_WRITE) != 0 && 1631 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1632 /* 1633 * Explicitly dirty the physical page. Otherwise, the 1634 * caller's changes may go unnoticed because they are 1635 * performed through an unmanaged mapping or by a DMA 1636 * operation. 1637 * 1638 * The object lock is not held here. 1639 * See vm_page_clear_dirty_mask(). 1640 */ 1641 vm_page_dirty(*mp); 1642 } 1643 } 1644 if (pmap_failed) { 1645 /* 1646 * One or more pages could not be held by the pmap. Either no 1647 * page was mapped at the specified virtual address or that 1648 * mapping had insufficient permissions. Attempt to fault in 1649 * and hold these pages. 1650 * 1651 * If vm_fault_disable_pagefaults() was called, 1652 * i.e., TDP_NOFAULTING is set, we must not sleep nor 1653 * acquire MD VM locks, which means we must not call 1654 * vm_fault(). Some (out of tree) callers mark 1655 * too wide a code area with vm_fault_disable_pagefaults() 1656 * already, use the VM_PROT_QUICK_NOFAULT flag to request 1657 * the proper behaviour explicitly. 1658 */ 1659 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 1660 (curthread->td_pflags & TDP_NOFAULTING) != 0) 1661 goto error; 1662 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1663 if (*mp == NULL && vm_fault(map, va, prot, 1664 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1665 goto error; 1666 } 1667 return (count); 1668 error: 1669 for (mp = ma; mp < ma + count; mp++) 1670 if (*mp != NULL) 1671 vm_page_unwire(*mp, PQ_INACTIVE); 1672 return (-1); 1673 } 1674 1675 /* 1676 * Routine: 1677 * vm_fault_copy_entry 1678 * Function: 1679 * Create new shadow object backing dst_entry with private copy of 1680 * all underlying pages. When src_entry is equal to dst_entry, 1681 * function implements COW for wired-down map entry. Otherwise, 1682 * it forks wired entry into dst_map. 1683 * 1684 * In/out conditions: 1685 * The source and destination maps must be locked for write. 1686 * The source map entry must be wired down (or be a sharing map 1687 * entry corresponding to a main map entry that is wired down). 1688 */ 1689 void 1690 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1691 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1692 vm_ooffset_t *fork_charge) 1693 { 1694 vm_object_t backing_object, dst_object, object, src_object; 1695 vm_pindex_t dst_pindex, pindex, src_pindex; 1696 vm_prot_t access, prot; 1697 vm_offset_t vaddr; 1698 vm_page_t dst_m; 1699 vm_page_t src_m; 1700 boolean_t upgrade; 1701 1702 #ifdef lint 1703 src_map++; 1704 #endif /* lint */ 1705 1706 upgrade = src_entry == dst_entry; 1707 access = prot = dst_entry->protection; 1708 1709 src_object = src_entry->object.vm_object; 1710 src_pindex = OFF_TO_IDX(src_entry->offset); 1711 1712 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1713 dst_object = src_object; 1714 vm_object_reference(dst_object); 1715 } else { 1716 /* 1717 * Create the top-level object for the destination entry. 1718 * Doesn't actually shadow anything - we copy the pages 1719 * directly. 1720 */ 1721 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 1722 dst_entry->start), NULL, NULL, 0); 1723 #if VM_NRESERVLEVEL > 0 1724 dst_object->flags |= OBJ_COLORED; 1725 dst_object->pg_color = atop(dst_entry->start); 1726 #endif 1727 dst_object->domain = src_object->domain; 1728 dst_object->charge = dst_entry->end - dst_entry->start; 1729 } 1730 1731 VM_OBJECT_WLOCK(dst_object); 1732 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1733 ("vm_fault_copy_entry: vm_object not NULL")); 1734 if (src_object != dst_object) { 1735 dst_entry->object.vm_object = dst_object; 1736 dst_entry->offset = 0; 1737 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 1738 } 1739 if (fork_charge != NULL) { 1740 KASSERT(dst_entry->cred == NULL, 1741 ("vm_fault_copy_entry: leaked swp charge")); 1742 dst_object->cred = curthread->td_ucred; 1743 crhold(dst_object->cred); 1744 *fork_charge += dst_object->charge; 1745 } else if ((dst_object->type == OBJT_DEFAULT || 1746 dst_object->type == OBJT_SWAP) && 1747 dst_object->cred == NULL) { 1748 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1749 dst_entry)); 1750 dst_object->cred = dst_entry->cred; 1751 dst_entry->cred = NULL; 1752 } 1753 1754 /* 1755 * If not an upgrade, then enter the mappings in the pmap as 1756 * read and/or execute accesses. Otherwise, enter them as 1757 * write accesses. 1758 * 1759 * A writeable large page mapping is only created if all of 1760 * the constituent small page mappings are modified. Marking 1761 * PTEs as modified on inception allows promotion to happen 1762 * without taking potentially large number of soft faults. 1763 */ 1764 if (!upgrade) 1765 access &= ~VM_PROT_WRITE; 1766 1767 /* 1768 * Loop through all of the virtual pages within the entry's 1769 * range, copying each page from the source object to the 1770 * destination object. Since the source is wired, those pages 1771 * must exist. In contrast, the destination is pageable. 1772 * Since the destination object doesn't share any backing storage 1773 * with the source object, all of its pages must be dirtied, 1774 * regardless of whether they can be written. 1775 */ 1776 for (vaddr = dst_entry->start, dst_pindex = 0; 1777 vaddr < dst_entry->end; 1778 vaddr += PAGE_SIZE, dst_pindex++) { 1779 again: 1780 /* 1781 * Find the page in the source object, and copy it in. 1782 * Because the source is wired down, the page will be 1783 * in memory. 1784 */ 1785 if (src_object != dst_object) 1786 VM_OBJECT_RLOCK(src_object); 1787 object = src_object; 1788 pindex = src_pindex + dst_pindex; 1789 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1790 (backing_object = object->backing_object) != NULL) { 1791 /* 1792 * Unless the source mapping is read-only or 1793 * it is presently being upgraded from 1794 * read-only, the first object in the shadow 1795 * chain should provide all of the pages. In 1796 * other words, this loop body should never be 1797 * executed when the source mapping is already 1798 * read/write. 1799 */ 1800 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1801 upgrade, 1802 ("vm_fault_copy_entry: main object missing page")); 1803 1804 VM_OBJECT_RLOCK(backing_object); 1805 pindex += OFF_TO_IDX(object->backing_object_offset); 1806 if (object != dst_object) 1807 VM_OBJECT_RUNLOCK(object); 1808 object = backing_object; 1809 } 1810 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1811 1812 if (object != dst_object) { 1813 /* 1814 * Allocate a page in the destination object. 1815 */ 1816 dst_m = vm_page_alloc(dst_object, (src_object == 1817 dst_object ? src_pindex : 0) + dst_pindex, 1818 VM_ALLOC_NORMAL); 1819 if (dst_m == NULL) { 1820 VM_OBJECT_WUNLOCK(dst_object); 1821 VM_OBJECT_RUNLOCK(object); 1822 vm_wait(dst_object); 1823 VM_OBJECT_WLOCK(dst_object); 1824 goto again; 1825 } 1826 pmap_copy_page(src_m, dst_m); 1827 VM_OBJECT_RUNLOCK(object); 1828 dst_m->dirty = dst_m->valid = src_m->valid; 1829 } else { 1830 dst_m = src_m; 1831 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) 1832 goto again; 1833 if (dst_m->pindex >= dst_object->size) { 1834 /* 1835 * We are upgrading. Index can occur 1836 * out of bounds if the object type is 1837 * vnode and the file was truncated. 1838 */ 1839 vm_page_xunbusy(dst_m); 1840 break; 1841 } 1842 } 1843 VM_OBJECT_WUNLOCK(dst_object); 1844 1845 /* 1846 * Enter it in the pmap. If a wired, copy-on-write 1847 * mapping is being replaced by a write-enabled 1848 * mapping, then wire that new mapping. 1849 * 1850 * The page can be invalid if the user called 1851 * msync(MS_INVALIDATE) or truncated the backing vnode 1852 * or shared memory object. In this case, do not 1853 * insert it into pmap, but still do the copy so that 1854 * all copies of the wired map entry have similar 1855 * backing pages. 1856 */ 1857 if (vm_page_all_valid(dst_m)) { 1858 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1859 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1860 } 1861 1862 /* 1863 * Mark it no longer busy, and put it on the active list. 1864 */ 1865 VM_OBJECT_WLOCK(dst_object); 1866 1867 if (upgrade) { 1868 if (src_m != dst_m) { 1869 vm_page_unwire(src_m, PQ_INACTIVE); 1870 vm_page_wire(dst_m); 1871 } else { 1872 KASSERT(vm_page_wired(dst_m), 1873 ("dst_m %p is not wired", dst_m)); 1874 } 1875 } else { 1876 vm_page_activate(dst_m); 1877 } 1878 vm_page_xunbusy(dst_m); 1879 } 1880 VM_OBJECT_WUNLOCK(dst_object); 1881 if (upgrade) { 1882 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1883 vm_object_deallocate(src_object); 1884 } 1885 } 1886 1887 /* 1888 * Block entry into the machine-independent layer's page fault handler by 1889 * the calling thread. Subsequent calls to vm_fault() by that thread will 1890 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1891 * spurious page faults. 1892 */ 1893 int 1894 vm_fault_disable_pagefaults(void) 1895 { 1896 1897 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1898 } 1899 1900 void 1901 vm_fault_enable_pagefaults(int save) 1902 { 1903 1904 curthread_pflags_restore(save); 1905 } 1906