xref: /freebsd/sys/vm/vm_fault.c (revision a220d00e74dd245b4fca59c5eca0c53963686325)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD$
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/proc.h>
82 #include <sys/resourcevar.h>
83 #include <sys/sysctl.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vnode_pager.h>
97 #include <vm/vm_extern.h>
98 
99 static int vm_fault_additional_pages __P((vm_page_t, int,
100 					  int, vm_page_t *, int *));
101 
102 #define VM_FAULT_READ_AHEAD 8
103 #define VM_FAULT_READ_BEHIND 7
104 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
105 
106 struct faultstate {
107 	vm_page_t m;
108 	vm_object_t object;
109 	vm_pindex_t pindex;
110 	vm_page_t first_m;
111 	vm_object_t	first_object;
112 	vm_pindex_t first_pindex;
113 	vm_map_t map;
114 	vm_map_entry_t entry;
115 	int lookup_still_valid;
116 	struct vnode *vp;
117 };
118 
119 static __inline void
120 release_page(struct faultstate *fs)
121 {
122 	vm_page_wakeup(fs->m);
123 	vm_page_deactivate(fs->m);
124 	fs->m = NULL;
125 }
126 
127 static __inline void
128 unlock_map(struct faultstate *fs)
129 {
130 	if (fs->lookup_still_valid) {
131 		vm_map_lookup_done(fs->map, fs->entry);
132 		fs->lookup_still_valid = FALSE;
133 	}
134 }
135 
136 static void
137 _unlock_things(struct faultstate *fs, int dealloc)
138 {
139 	GIANT_REQUIRED;
140 	vm_object_pip_wakeup(fs->object);
141 	if (fs->object != fs->first_object) {
142 		vm_page_free(fs->first_m);
143 		vm_object_pip_wakeup(fs->first_object);
144 		fs->first_m = NULL;
145 	}
146 	if (dealloc) {
147 		vm_object_deallocate(fs->first_object);
148 	}
149 	unlock_map(fs);
150 	if (fs->vp != NULL) {
151 		vput(fs->vp);
152 		fs->vp = NULL;
153 	}
154 }
155 
156 #define unlock_things(fs) _unlock_things(fs, 0)
157 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
158 
159 /*
160  * TRYPAGER - used by vm_fault to calculate whether the pager for the
161  *	      current object *might* contain the page.
162  *
163  *	      default objects are zero-fill, there is no real pager.
164  */
165 
166 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
167 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
168 
169 /*
170  *	vm_fault:
171  *
172  *	Handle a page fault occurring at the given address,
173  *	requiring the given permissions, in the map specified.
174  *	If successful, the page is inserted into the
175  *	associated physical map.
176  *
177  *	NOTE: the given address should be truncated to the
178  *	proper page address.
179  *
180  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
181  *	a standard error specifying why the fault is fatal is returned.
182  *
183  *
184  *	The map in question must be referenced, and remains so.
185  *	Caller may hold no locks.
186  */
187 static int vm_fault1 __P((vm_map_t, vm_offset_t, vm_prot_t, int));
188 
189 int
190 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
191 	 int fault_flags)
192 {
193 	int ret;
194 
195 	mtx_lock(&Giant);
196 	/* GIANT_REQUIRED */
197 
198 	ret = vm_fault1(map, vaddr, fault_type, fault_flags);
199 	mtx_unlock(&Giant);
200 	return (ret);
201 }
202 
203 static int
204 vm_fault1(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
205 	  int fault_flags)
206 {
207 	vm_prot_t prot;
208 	int result;
209 	boolean_t wired;
210 	int map_generation;
211 	vm_object_t next_object;
212 	vm_page_t marray[VM_FAULT_READ];
213 	int hardfault;
214 	int faultcount;
215 	struct faultstate fs;
216 
217 	GIANT_REQUIRED;
218 
219 	cnt.v_vm_faults++;
220 	hardfault = 0;
221 
222 RetryFault:;
223 
224 	/*
225 	 * Find the backing store object and offset into it to begin the
226 	 * search.
227 	 */
228 	fs.map = map;
229 	if ((result = vm_map_lookup(&fs.map, vaddr,
230 		fault_type, &fs.entry, &fs.first_object,
231 		&fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
232 		if ((result != KERN_PROTECTION_FAILURE) ||
233 			((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
234 			return result;
235 		}
236 
237 		/*
238    		 * If we are user-wiring a r/w segment, and it is COW, then
239    		 * we need to do the COW operation.  Note that we don't COW
240    		 * currently RO sections now, because it is NOT desirable
241    		 * to COW .text.  We simply keep .text from ever being COW'ed
242    		 * and take the heat that one cannot debug wired .text sections.
243    		 */
244 		result = vm_map_lookup(&fs.map, vaddr,
245 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
246 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
247 		if (result != KERN_SUCCESS) {
248 			return result;
249 		}
250 
251 		/*
252 		 * If we don't COW now, on a user wire, the user will never
253 		 * be able to write to the mapping.  If we don't make this
254 		 * restriction, the bookkeeping would be nearly impossible.
255 		 */
256 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
257 			fs.entry->max_protection &= ~VM_PROT_WRITE;
258 	}
259 
260 	map_generation = fs.map->timestamp;
261 
262 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
263 		panic("vm_fault: fault on nofault entry, addr: %lx",
264 		    (u_long)vaddr);
265 	}
266 
267 	/*
268 	 * Make a reference to this object to prevent its disposal while we
269 	 * are messing with it.  Once we have the reference, the map is free
270 	 * to be diddled.  Since objects reference their shadows (and copies),
271 	 * they will stay around as well.
272 	 *
273 	 * Bump the paging-in-progress count to prevent size changes (e.g.
274 	 * truncation operations) during I/O.  This must be done after
275 	 * obtaining the vnode lock in order to avoid possible deadlocks.
276 	 */
277 	vm_object_reference(fs.first_object);
278 	fs.vp = vnode_pager_lock(fs.first_object);
279 	vm_object_pip_add(fs.first_object, 1);
280 
281 	if ((fault_type & VM_PROT_WRITE) &&
282 		(fs.first_object->type == OBJT_VNODE)) {
283 		vm_freeze_copyopts(fs.first_object,
284 			fs.first_pindex, fs.first_pindex + 1);
285 	}
286 
287 	fs.lookup_still_valid = TRUE;
288 
289 	if (wired)
290 		fault_type = prot;
291 
292 	fs.first_m = NULL;
293 
294 	/*
295 	 * Search for the page at object/offset.
296 	 */
297 
298 	fs.object = fs.first_object;
299 	fs.pindex = fs.first_pindex;
300 
301 	while (TRUE) {
302 		/*
303 		 * If the object is dead, we stop here
304 		 */
305 
306 		if (fs.object->flags & OBJ_DEAD) {
307 			unlock_and_deallocate(&fs);
308 			return (KERN_PROTECTION_FAILURE);
309 		}
310 
311 		/*
312 		 * See if page is resident
313 		 */
314 
315 		fs.m = vm_page_lookup(fs.object, fs.pindex);
316 		if (fs.m != NULL) {
317 			int queue, s;
318 			/*
319 			 * Wait/Retry if the page is busy.  We have to do this
320 			 * if the page is busy via either PG_BUSY or
321 			 * vm_page_t->busy because the vm_pager may be using
322 			 * vm_page_t->busy for pageouts ( and even pageins if
323 			 * it is the vnode pager ), and we could end up trying
324 			 * to pagein and pageout the same page simultaneously.
325 			 *
326 			 * We can theoretically allow the busy case on a read
327 			 * fault if the page is marked valid, but since such
328 			 * pages are typically already pmap'd, putting that
329 			 * special case in might be more effort then it is
330 			 * worth.  We cannot under any circumstances mess
331 			 * around with a vm_page_t->busy page except, perhaps,
332 			 * to pmap it.
333 			 */
334 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
335 				unlock_things(&fs);
336 				(void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
337 				cnt.v_intrans++;
338 				vm_object_deallocate(fs.first_object);
339 				goto RetryFault;
340 			}
341 
342 			queue = fs.m->queue;
343 			s = splvm();
344 			vm_pageq_remove_nowakeup(fs.m);
345 			splx(s);
346 
347 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
348 				vm_page_activate(fs.m);
349 				unlock_and_deallocate(&fs);
350 				VM_WAIT;
351 				goto RetryFault;
352 			}
353 
354 			/*
355 			 * Mark page busy for other processes, and the
356 			 * pagedaemon.  If it still isn't completely valid
357 			 * (readable), jump to readrest, else break-out ( we
358 			 * found the page ).
359 			 */
360 
361 			vm_page_busy(fs.m);
362 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
363 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
364 				goto readrest;
365 			}
366 
367 			break;
368 		}
369 
370 		/*
371 		 * Page is not resident, If this is the search termination
372 		 * or the pager might contain the page, allocate a new page.
373 		 */
374 
375 		if (TRYPAGER || fs.object == fs.first_object) {
376 			if (fs.pindex >= fs.object->size) {
377 				unlock_and_deallocate(&fs);
378 				return (KERN_PROTECTION_FAILURE);
379 			}
380 
381 			/*
382 			 * Allocate a new page for this object/offset pair.
383 			 */
384 			fs.m = NULL;
385 			if (!vm_page_count_severe()) {
386 				fs.m = vm_page_alloc(fs.object, fs.pindex,
387 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
388 			}
389 			if (fs.m == NULL) {
390 				unlock_and_deallocate(&fs);
391 				VM_WAIT;
392 				goto RetryFault;
393 			}
394 		}
395 
396 readrest:
397 		/*
398 		 * We have found a valid page or we have allocated a new page.
399 		 * The page thus may not be valid or may not be entirely
400 		 * valid.
401 		 *
402 		 * Attempt to fault-in the page if there is a chance that the
403 		 * pager has it, and potentially fault in additional pages
404 		 * at the same time.
405 		 */
406 
407 		if (TRYPAGER) {
408 			int rv;
409 			int reqpage;
410 			int ahead, behind;
411 			u_char behavior = vm_map_entry_behavior(fs.entry);
412 
413 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
414 				ahead = 0;
415 				behind = 0;
416 			} else {
417 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
418 				if (behind > VM_FAULT_READ_BEHIND)
419 					behind = VM_FAULT_READ_BEHIND;
420 
421 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
422 				if (ahead > VM_FAULT_READ_AHEAD)
423 					ahead = VM_FAULT_READ_AHEAD;
424 			}
425 
426 			if ((fs.first_object->type != OBJT_DEVICE) &&
427 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
428                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
429                                 fs.pindex >= fs.entry->lastr &&
430                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
431 			) {
432 				vm_pindex_t firstpindex, tmppindex;
433 
434 				if (fs.first_pindex < 2 * VM_FAULT_READ)
435 					firstpindex = 0;
436 				else
437 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
438 
439 				/*
440 				 * note: partially valid pages cannot be
441 				 * included in the lookahead - NFS piecemeal
442 				 * writes will barf on it badly.
443 				 */
444 
445 				for(tmppindex = fs.first_pindex - 1;
446 					tmppindex >= firstpindex;
447 					--tmppindex) {
448 					vm_page_t mt;
449 					mt = vm_page_lookup( fs.first_object, tmppindex);
450 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
451 						break;
452 					if (mt->busy ||
453 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
454 						mt->hold_count ||
455 						mt->wire_count)
456 						continue;
457 					if (mt->dirty == 0)
458 						vm_page_test_dirty(mt);
459 					if (mt->dirty) {
460 						vm_page_protect(mt, VM_PROT_NONE);
461 						vm_page_deactivate(mt);
462 					} else {
463 						vm_page_cache(mt);
464 					}
465 				}
466 
467 				ahead += behind;
468 				behind = 0;
469 			}
470 
471 			/*
472 			 * now we find out if any other pages should be paged
473 			 * in at this time this routine checks to see if the
474 			 * pages surrounding this fault reside in the same
475 			 * object as the page for this fault.  If they do,
476 			 * then they are faulted in also into the object.  The
477 			 * array "marray" returned contains an array of
478 			 * vm_page_t structs where one of them is the
479 			 * vm_page_t passed to the routine.  The reqpage
480 			 * return value is the index into the marray for the
481 			 * vm_page_t passed to the routine.
482 			 *
483 			 * fs.m plus the additional pages are PG_BUSY'd.
484 			 */
485 			faultcount = vm_fault_additional_pages(
486 			    fs.m, behind, ahead, marray, &reqpage);
487 
488 			/*
489 			 * update lastr imperfectly (we do not know how much
490 			 * getpages will actually read), but good enough.
491 			 */
492 			fs.entry->lastr = fs.pindex + faultcount - behind;
493 
494 			/*
495 			 * Call the pager to retrieve the data, if any, after
496 			 * releasing the lock on the map.  We hold a ref on
497 			 * fs.object and the pages are PG_BUSY'd.
498 			 */
499 			unlock_map(&fs);
500 
501 			rv = faultcount ?
502 			    vm_pager_get_pages(fs.object, marray, faultcount,
503 				reqpage) : VM_PAGER_FAIL;
504 
505 			if (rv == VM_PAGER_OK) {
506 				/*
507 				 * Found the page. Leave it busy while we play
508 				 * with it.
509 				 */
510 
511 				/*
512 				 * Relookup in case pager changed page. Pager
513 				 * is responsible for disposition of old page
514 				 * if moved.
515 				 */
516 				fs.m = vm_page_lookup(fs.object, fs.pindex);
517 				if(!fs.m) {
518 					unlock_and_deallocate(&fs);
519 					goto RetryFault;
520 				}
521 
522 				hardfault++;
523 				break; /* break to PAGE HAS BEEN FOUND */
524 			}
525 			/*
526 			 * Remove the bogus page (which does not exist at this
527 			 * object/offset); before doing so, we must get back
528 			 * our object lock to preserve our invariant.
529 			 *
530 			 * Also wake up any other process that may want to bring
531 			 * in this page.
532 			 *
533 			 * If this is the top-level object, we must leave the
534 			 * busy page to prevent another process from rushing
535 			 * past us, and inserting the page in that object at
536 			 * the same time that we are.
537 			 */
538 
539 			if (rv == VM_PAGER_ERROR)
540 				printf("vm_fault: pager read error, pid %d (%s)\n",
541 				    curproc->p_pid, curproc->p_comm);
542 			/*
543 			 * Data outside the range of the pager or an I/O error
544 			 */
545 			/*
546 			 * XXX - the check for kernel_map is a kludge to work
547 			 * around having the machine panic on a kernel space
548 			 * fault w/ I/O error.
549 			 */
550 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
551 				(rv == VM_PAGER_BAD)) {
552 				vm_page_free(fs.m);
553 				fs.m = NULL;
554 				unlock_and_deallocate(&fs);
555 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
556 			}
557 			if (fs.object != fs.first_object) {
558 				vm_page_free(fs.m);
559 				fs.m = NULL;
560 				/*
561 				 * XXX - we cannot just fall out at this
562 				 * point, m has been freed and is invalid!
563 				 */
564 			}
565 		}
566 
567 		/*
568 		 * We get here if the object has default pager (or unwiring)
569 		 * or the pager doesn't have the page.
570 		 */
571 		if (fs.object == fs.first_object)
572 			fs.first_m = fs.m;
573 
574 		/*
575 		 * Move on to the next object.  Lock the next object before
576 		 * unlocking the current one.
577 		 */
578 
579 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
580 		next_object = fs.object->backing_object;
581 		if (next_object == NULL) {
582 			/*
583 			 * If there's no object left, fill the page in the top
584 			 * object with zeros.
585 			 */
586 			if (fs.object != fs.first_object) {
587 				vm_object_pip_wakeup(fs.object);
588 
589 				fs.object = fs.first_object;
590 				fs.pindex = fs.first_pindex;
591 				fs.m = fs.first_m;
592 			}
593 			fs.first_m = NULL;
594 
595 			/*
596 			 * Zero the page if necessary and mark it valid.
597 			 */
598 			if ((fs.m->flags & PG_ZERO) == 0) {
599 				vm_page_zero_fill(fs.m);
600 			} else {
601 				cnt.v_ozfod++;
602 			}
603 			cnt.v_zfod++;
604 			fs.m->valid = VM_PAGE_BITS_ALL;
605 			break;	/* break to PAGE HAS BEEN FOUND */
606 		} else {
607 			if (fs.object != fs.first_object) {
608 				vm_object_pip_wakeup(fs.object);
609 			}
610 			KASSERT(fs.object != next_object, ("object loop %p", next_object));
611 			fs.object = next_object;
612 			vm_object_pip_add(fs.object, 1);
613 		}
614 	}
615 
616 	KASSERT((fs.m->flags & PG_BUSY) != 0,
617 	    ("vm_fault: not busy after main loop"));
618 
619 	/*
620 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
621 	 * is held.]
622 	 */
623 
624 	/*
625 	 * If the page is being written, but isn't already owned by the
626 	 * top-level object, we have to copy it into a new page owned by the
627 	 * top-level object.
628 	 */
629 
630 	if (fs.object != fs.first_object) {
631 		/*
632 		 * We only really need to copy if we want to write it.
633 		 */
634 
635 		if (fault_type & VM_PROT_WRITE) {
636 			/*
637 			 * This allows pages to be virtually copied from a
638 			 * backing_object into the first_object, where the
639 			 * backing object has no other refs to it, and cannot
640 			 * gain any more refs.  Instead of a bcopy, we just
641 			 * move the page from the backing object to the
642 			 * first object.  Note that we must mark the page
643 			 * dirty in the first object so that it will go out
644 			 * to swap when needed.
645 			 */
646 			if (map_generation == fs.map->timestamp &&
647 				/*
648 				 * Only one shadow object
649 				 */
650 				(fs.object->shadow_count == 1) &&
651 				/*
652 				 * No COW refs, except us
653 				 */
654 				(fs.object->ref_count == 1) &&
655 				/*
656 				 * No one else can look this object up
657 				 */
658 				(fs.object->handle == NULL) &&
659 				/*
660 				 * No other ways to look the object up
661 				 */
662 				((fs.object->type == OBJT_DEFAULT) ||
663 				 (fs.object->type == OBJT_SWAP)) &&
664 				/*
665 				 * We don't chase down the shadow chain
666 				 */
667 				(fs.object == fs.first_object->backing_object) &&
668 
669 				/*
670 				 * grab the lock if we need to
671 				 */
672 				(fs.lookup_still_valid ||
673 				 lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curthread) == 0)
674 			    ) {
675 
676 				fs.lookup_still_valid = 1;
677 				/*
678 				 * get rid of the unnecessary page
679 				 */
680 				vm_page_protect(fs.first_m, VM_PROT_NONE);
681 				vm_page_free(fs.first_m);
682 				fs.first_m = NULL;
683 
684 				/*
685 				 * grab the page and put it into the
686 				 * process'es object.  The page is
687 				 * automatically made dirty.
688 				 */
689 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
690 				fs.first_m = fs.m;
691 				vm_page_busy(fs.first_m);
692 				fs.m = NULL;
693 				cnt.v_cow_optim++;
694 			} else {
695 				/*
696 				 * Oh, well, lets copy it.
697 				 */
698 				vm_page_copy(fs.m, fs.first_m);
699 			}
700 
701 			if (fs.m) {
702 				/*
703 				 * We no longer need the old page or object.
704 				 */
705 				release_page(&fs);
706 			}
707 
708 			/*
709 			 * fs.object != fs.first_object due to above
710 			 * conditional
711 			 */
712 
713 			vm_object_pip_wakeup(fs.object);
714 
715 			/*
716 			 * Only use the new page below...
717 			 */
718 
719 			cnt.v_cow_faults++;
720 			fs.m = fs.first_m;
721 			fs.object = fs.first_object;
722 			fs.pindex = fs.first_pindex;
723 
724 		} else {
725 			prot &= ~VM_PROT_WRITE;
726 		}
727 	}
728 
729 	/*
730 	 * We must verify that the maps have not changed since our last
731 	 * lookup.
732 	 */
733 
734 	if (!fs.lookup_still_valid &&
735 		(fs.map->timestamp != map_generation)) {
736 		vm_object_t retry_object;
737 		vm_pindex_t retry_pindex;
738 		vm_prot_t retry_prot;
739 
740 		/*
741 		 * Since map entries may be pageable, make sure we can take a
742 		 * page fault on them.
743 		 */
744 
745 		/*
746 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
747 		 * avoid a deadlock between the inode and exec_map that can
748 		 * occur due to locks being obtained in different orders.
749 		 */
750 
751 		if (fs.vp != NULL) {
752 			vput(fs.vp);
753 			fs.vp = NULL;
754 		}
755 
756 		if (fs.map->infork) {
757 			release_page(&fs);
758 			unlock_and_deallocate(&fs);
759 			goto RetryFault;
760 		}
761 
762 		/*
763 		 * To avoid trying to write_lock the map while another process
764 		 * has it read_locked (in vm_map_pageable), we do not try for
765 		 * write permission.  If the page is still writable, we will
766 		 * get write permission.  If it is not, or has been marked
767 		 * needs_copy, we enter the mapping without write permission,
768 		 * and will merely take another fault.
769 		 */
770 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
771 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
772 		map_generation = fs.map->timestamp;
773 
774 		/*
775 		 * If we don't need the page any longer, put it on the active
776 		 * list (the easiest thing to do here).  If no one needs it,
777 		 * pageout will grab it eventually.
778 		 */
779 
780 		if (result != KERN_SUCCESS) {
781 			release_page(&fs);
782 			unlock_and_deallocate(&fs);
783 			return (result);
784 		}
785 		fs.lookup_still_valid = TRUE;
786 
787 		if ((retry_object != fs.first_object) ||
788 		    (retry_pindex != fs.first_pindex)) {
789 			release_page(&fs);
790 			unlock_and_deallocate(&fs);
791 			goto RetryFault;
792 		}
793 		/*
794 		 * Check whether the protection has changed or the object has
795 		 * been copied while we left the map unlocked. Changing from
796 		 * read to write permission is OK - we leave the page
797 		 * write-protected, and catch the write fault. Changing from
798 		 * write to read permission means that we can't mark the page
799 		 * write-enabled after all.
800 		 */
801 		prot &= retry_prot;
802 	}
803 
804 	/*
805 	 * Put this page into the physical map. We had to do the unlock above
806 	 * because pmap_enter may cause other faults.   We don't put the page
807 	 * back on the active queue until later so that the page-out daemon
808 	 * won't find us (yet).
809 	 */
810 
811 	if (prot & VM_PROT_WRITE) {
812 		vm_page_flag_set(fs.m, PG_WRITEABLE);
813 		vm_object_set_writeable_dirty(fs.m->object);
814 
815 		/*
816 		 * If the fault is a write, we know that this page is being
817 		 * written NOW so dirty it explicitly to save on
818 		 * pmap_is_modified() calls later.
819 		 *
820 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
821 		 * if the page is already dirty to prevent data written with
822 		 * the expectation of being synced from not being synced.
823 		 * Likewise if this entry does not request NOSYNC then make
824 		 * sure the page isn't marked NOSYNC.  Applications sharing
825 		 * data should use the same flags to avoid ping ponging.
826 		 *
827 		 * Also tell the backing pager, if any, that it should remove
828 		 * any swap backing since the page is now dirty.
829 		 */
830 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
831 			if (fs.m->dirty == 0)
832 				vm_page_flag_set(fs.m, PG_NOSYNC);
833 		} else {
834 			vm_page_flag_clear(fs.m, PG_NOSYNC);
835 		}
836 		if (fault_flags & VM_FAULT_DIRTY) {
837 			int s;
838 			vm_page_dirty(fs.m);
839 			s = splvm();
840 			vm_pager_page_unswapped(fs.m);
841 			splx(s);
842 		}
843 	}
844 
845 	/*
846 	 * Page had better still be busy
847 	 */
848 
849 	KASSERT(fs.m->flags & PG_BUSY,
850 		("vm_fault: page %p not busy!", fs.m));
851 
852 	unlock_things(&fs);
853 
854 	/*
855 	 * Sanity check: page must be completely valid or it is not fit to
856 	 * map into user space.  vm_pager_get_pages() ensures this.
857 	 */
858 
859 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
860 		vm_page_zero_invalid(fs.m, TRUE);
861 		printf("Warning: page %p partially invalid on fault\n", fs.m);
862 	}
863 
864 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
865 
866 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
867 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
868 	}
869 
870 	vm_page_flag_clear(fs.m, PG_ZERO);
871 	vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
872 	if (fault_flags & VM_FAULT_HOLD)
873 		vm_page_hold(fs.m);
874 
875 	/*
876 	 * If the page is not wired down, then put it where the pageout daemon
877 	 * can find it.
878 	 */
879 
880 	if (fault_flags & VM_FAULT_WIRE_MASK) {
881 		if (wired)
882 			vm_page_wire(fs.m);
883 		else
884 			vm_page_unwire(fs.m, 1);
885 	} else {
886 		vm_page_activate(fs.m);
887 	}
888 
889 	mtx_lock_spin(&sched_lock);
890 	if (curproc && (curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
891 		if (hardfault) {
892 			curproc->p_stats->p_ru.ru_majflt++;
893 		} else {
894 			curproc->p_stats->p_ru.ru_minflt++;
895 		}
896 	}
897 	mtx_unlock_spin(&sched_lock);
898 
899 	/*
900 	 * Unlock everything, and return
901 	 */
902 
903 	vm_page_wakeup(fs.m);
904 	vm_object_deallocate(fs.first_object);
905 
906 	return (KERN_SUCCESS);
907 
908 }
909 
910 /*
911  *	vm_fault_wire:
912  *
913  *	Wire down a range of virtual addresses in a map.
914  */
915 int
916 vm_fault_wire(map, start, end)
917 	vm_map_t map;
918 	vm_offset_t start, end;
919 {
920 
921 	vm_offset_t va;
922 	pmap_t pmap;
923 	int rv;
924 
925 	pmap = vm_map_pmap(map);
926 
927 	/*
928 	 * Inform the physical mapping system that the range of addresses may
929 	 * not fault, so that page tables and such can be locked down as well.
930 	 */
931 
932 	pmap_pageable(pmap, start, end, FALSE);
933 
934 	/*
935 	 * We simulate a fault to get the page and enter it in the physical
936 	 * map.
937 	 */
938 
939 	for (va = start; va < end; va += PAGE_SIZE) {
940 		rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
941 			VM_FAULT_CHANGE_WIRING);
942 		if (rv) {
943 			if (va != start)
944 				vm_fault_unwire(map, start, va);
945 			return (rv);
946 		}
947 	}
948 	return (KERN_SUCCESS);
949 }
950 
951 /*
952  *	vm_fault_user_wire:
953  *
954  *	Wire down a range of virtual addresses in a map.  This
955  *	is for user mode though, so we only ask for read access
956  *	on currently read only sections.
957  */
958 int
959 vm_fault_user_wire(map, start, end)
960 	vm_map_t map;
961 	vm_offset_t start, end;
962 {
963 
964 	vm_offset_t va;
965 	pmap_t pmap;
966 	int rv;
967 
968 	GIANT_REQUIRED;
969 
970 	pmap = vm_map_pmap(map);
971 
972 	/*
973 	 * Inform the physical mapping system that the range of addresses may
974 	 * not fault, so that page tables and such can be locked down as well.
975 	 */
976 
977 	pmap_pageable(pmap, start, end, FALSE);
978 
979 	/*
980 	 * We simulate a fault to get the page and enter it in the physical
981 	 * map.
982 	 */
983 	for (va = start; va < end; va += PAGE_SIZE) {
984 		rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
985 		if (rv) {
986 			if (va != start)
987 				vm_fault_unwire(map, start, va);
988 			return (rv);
989 		}
990 	}
991 	return (KERN_SUCCESS);
992 }
993 
994 
995 /*
996  *	vm_fault_unwire:
997  *
998  *	Unwire a range of virtual addresses in a map.
999  */
1000 void
1001 vm_fault_unwire(map, start, end)
1002 	vm_map_t map;
1003 	vm_offset_t start, end;
1004 {
1005 
1006 	vm_offset_t va, pa;
1007 	pmap_t pmap;
1008 
1009 	pmap = vm_map_pmap(map);
1010 
1011 	/*
1012 	 * Since the pages are wired down, we must be able to get their
1013 	 * mappings from the physical map system.
1014 	 */
1015 
1016 	for (va = start; va < end; va += PAGE_SIZE) {
1017 		pa = pmap_extract(pmap, va);
1018 		if (pa != (vm_offset_t) 0) {
1019 			pmap_change_wiring(pmap, va, FALSE);
1020 			vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1021 		}
1022 	}
1023 
1024 	/*
1025 	 * Inform the physical mapping system that the range of addresses may
1026 	 * fault, so that page tables and such may be unwired themselves.
1027 	 */
1028 
1029 	pmap_pageable(pmap, start, end, TRUE);
1030 
1031 }
1032 
1033 /*
1034  *	Routine:
1035  *		vm_fault_copy_entry
1036  *	Function:
1037  *		Copy all of the pages from a wired-down map entry to another.
1038  *
1039  *	In/out conditions:
1040  *		The source and destination maps must be locked for write.
1041  *		The source map entry must be wired down (or be a sharing map
1042  *		entry corresponding to a main map entry that is wired down).
1043  */
1044 
1045 void
1046 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1047 	vm_map_t dst_map;
1048 	vm_map_t src_map;
1049 	vm_map_entry_t dst_entry;
1050 	vm_map_entry_t src_entry;
1051 {
1052 	vm_object_t dst_object;
1053 	vm_object_t src_object;
1054 	vm_ooffset_t dst_offset;
1055 	vm_ooffset_t src_offset;
1056 	vm_prot_t prot;
1057 	vm_offset_t vaddr;
1058 	vm_page_t dst_m;
1059 	vm_page_t src_m;
1060 
1061 #ifdef	lint
1062 	src_map++;
1063 #endif	/* lint */
1064 
1065 	src_object = src_entry->object.vm_object;
1066 	src_offset = src_entry->offset;
1067 
1068 	/*
1069 	 * Create the top-level object for the destination entry. (Doesn't
1070 	 * actually shadow anything - we copy the pages directly.)
1071 	 */
1072 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1073 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1074 
1075 	dst_entry->object.vm_object = dst_object;
1076 	dst_entry->offset = 0;
1077 
1078 	prot = dst_entry->max_protection;
1079 
1080 	/*
1081 	 * Loop through all of the pages in the entry's range, copying each
1082 	 * one from the source object (it should be there) to the destination
1083 	 * object.
1084 	 */
1085 	for (vaddr = dst_entry->start, dst_offset = 0;
1086 	    vaddr < dst_entry->end;
1087 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1088 
1089 		/*
1090 		 * Allocate a page in the destination object
1091 		 */
1092 		do {
1093 			dst_m = vm_page_alloc(dst_object,
1094 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1095 			if (dst_m == NULL) {
1096 				VM_WAIT;
1097 			}
1098 		} while (dst_m == NULL);
1099 
1100 		/*
1101 		 * Find the page in the source object, and copy it in.
1102 		 * (Because the source is wired down, the page will be in
1103 		 * memory.)
1104 		 */
1105 		src_m = vm_page_lookup(src_object,
1106 			OFF_TO_IDX(dst_offset + src_offset));
1107 		if (src_m == NULL)
1108 			panic("vm_fault_copy_wired: page missing");
1109 
1110 		vm_page_copy(src_m, dst_m);
1111 
1112 		/*
1113 		 * Enter it in the pmap...
1114 		 */
1115 
1116 		vm_page_flag_clear(dst_m, PG_ZERO);
1117 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1118 		vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1119 
1120 		/*
1121 		 * Mark it no longer busy, and put it on the active list.
1122 		 */
1123 		vm_page_activate(dst_m);
1124 		vm_page_wakeup(dst_m);
1125 	}
1126 }
1127 
1128 
1129 /*
1130  * This routine checks around the requested page for other pages that
1131  * might be able to be faulted in.  This routine brackets the viable
1132  * pages for the pages to be paged in.
1133  *
1134  * Inputs:
1135  *	m, rbehind, rahead
1136  *
1137  * Outputs:
1138  *  marray (array of vm_page_t), reqpage (index of requested page)
1139  *
1140  * Return value:
1141  *  number of pages in marray
1142  *
1143  * This routine can't block.
1144  */
1145 static int
1146 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1147 	vm_page_t m;
1148 	int rbehind;
1149 	int rahead;
1150 	vm_page_t *marray;
1151 	int *reqpage;
1152 {
1153 	int i,j;
1154 	vm_object_t object;
1155 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1156 	vm_page_t rtm;
1157 	int cbehind, cahead;
1158 
1159 	GIANT_REQUIRED;
1160 
1161 	object = m->object;
1162 	pindex = m->pindex;
1163 
1164 	/*
1165 	 * we don't fault-ahead for device pager
1166 	 */
1167 	if (object->type == OBJT_DEVICE) {
1168 		*reqpage = 0;
1169 		marray[0] = m;
1170 		return 1;
1171 	}
1172 
1173 	/*
1174 	 * if the requested page is not available, then give up now
1175 	 */
1176 
1177 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1178 		return 0;
1179 	}
1180 
1181 	if ((cbehind == 0) && (cahead == 0)) {
1182 		*reqpage = 0;
1183 		marray[0] = m;
1184 		return 1;
1185 	}
1186 
1187 	if (rahead > cahead) {
1188 		rahead = cahead;
1189 	}
1190 
1191 	if (rbehind > cbehind) {
1192 		rbehind = cbehind;
1193 	}
1194 
1195 	/*
1196 	 * try to do any readahead that we might have free pages for.
1197 	 */
1198 	if ((rahead + rbehind) >
1199 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1200 		pagedaemon_wakeup();
1201 		marray[0] = m;
1202 		*reqpage = 0;
1203 		return 1;
1204 	}
1205 
1206 	/*
1207 	 * scan backward for the read behind pages -- in memory
1208 	 */
1209 	if (pindex > 0) {
1210 		if (rbehind > pindex) {
1211 			rbehind = pindex;
1212 			startpindex = 0;
1213 		} else {
1214 			startpindex = pindex - rbehind;
1215 		}
1216 
1217 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1218 			if (vm_page_lookup( object, tpindex)) {
1219 				startpindex = tpindex + 1;
1220 				break;
1221 			}
1222 			if (tpindex == 0)
1223 				break;
1224 		}
1225 
1226 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1227 
1228 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1229 			if (rtm == NULL) {
1230 				for (j = 0; j < i; j++) {
1231 					vm_page_free(marray[j]);
1232 				}
1233 				marray[0] = m;
1234 				*reqpage = 0;
1235 				return 1;
1236 			}
1237 
1238 			marray[i] = rtm;
1239 		}
1240 	} else {
1241 		startpindex = 0;
1242 		i = 0;
1243 	}
1244 
1245 	marray[i] = m;
1246 	/* page offset of the required page */
1247 	*reqpage = i;
1248 
1249 	tpindex = pindex + 1;
1250 	i++;
1251 
1252 	/*
1253 	 * scan forward for the read ahead pages
1254 	 */
1255 	endpindex = tpindex + rahead;
1256 	if (endpindex > object->size)
1257 		endpindex = object->size;
1258 
1259 	for( ; tpindex < endpindex; i++, tpindex++) {
1260 
1261 		if (vm_page_lookup(object, tpindex)) {
1262 			break;
1263 		}
1264 
1265 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1266 		if (rtm == NULL) {
1267 			break;
1268 		}
1269 
1270 		marray[i] = rtm;
1271 	}
1272 
1273 	/* return number of bytes of pages */
1274 	return i;
1275 }
1276