1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 bool lookup_still_valid; 126 struct vnode *vp; 127 }; 128 129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 130 int ahead); 131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 132 int backward, int forward); 133 134 static inline void 135 release_page(struct faultstate *fs) 136 { 137 138 vm_page_xunbusy(fs->m); 139 vm_page_lock(fs->m); 140 vm_page_deactivate(fs->m); 141 vm_page_unlock(fs->m); 142 fs->m = NULL; 143 } 144 145 static inline void 146 unlock_map(struct faultstate *fs) 147 { 148 149 if (fs->lookup_still_valid) { 150 vm_map_lookup_done(fs->map, fs->entry); 151 fs->lookup_still_valid = false; 152 } 153 } 154 155 static void 156 unlock_vp(struct faultstate *fs) 157 { 158 159 if (fs->vp != NULL) { 160 vput(fs->vp); 161 fs->vp = NULL; 162 } 163 } 164 165 static void 166 unlock_and_deallocate(struct faultstate *fs) 167 { 168 169 vm_object_pip_wakeup(fs->object); 170 VM_OBJECT_WUNLOCK(fs->object); 171 if (fs->object != fs->first_object) { 172 VM_OBJECT_WLOCK(fs->first_object); 173 vm_page_lock(fs->first_m); 174 vm_page_free(fs->first_m); 175 vm_page_unlock(fs->first_m); 176 vm_object_pip_wakeup(fs->first_object); 177 VM_OBJECT_WUNLOCK(fs->first_object); 178 fs->first_m = NULL; 179 } 180 vm_object_deallocate(fs->first_object); 181 unlock_map(fs); 182 unlock_vp(fs); 183 } 184 185 static void 186 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 187 vm_prot_t fault_type, int fault_flags, bool set_wd) 188 { 189 bool need_dirty; 190 191 if (((prot & VM_PROT_WRITE) == 0 && 192 (fault_flags & VM_FAULT_DIRTY) == 0) || 193 (m->oflags & VPO_UNMANAGED) != 0) 194 return; 195 196 VM_OBJECT_ASSERT_LOCKED(m->object); 197 198 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 199 (fault_flags & VM_FAULT_WIRE) == 0) || 200 (fault_flags & VM_FAULT_DIRTY) != 0; 201 202 if (set_wd) 203 vm_object_set_writeable_dirty(m->object); 204 else 205 /* 206 * If two callers of vm_fault_dirty() with set_wd == 207 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 208 * flag set, other with flag clear, race, it is 209 * possible for the no-NOSYNC thread to see m->dirty 210 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 211 * around manipulation of VPO_NOSYNC and 212 * vm_page_dirty() call, to avoid the race and keep 213 * m->oflags consistent. 214 */ 215 vm_page_lock(m); 216 217 /* 218 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 219 * if the page is already dirty to prevent data written with 220 * the expectation of being synced from not being synced. 221 * Likewise if this entry does not request NOSYNC then make 222 * sure the page isn't marked NOSYNC. Applications sharing 223 * data should use the same flags to avoid ping ponging. 224 */ 225 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 226 if (m->dirty == 0) { 227 m->oflags |= VPO_NOSYNC; 228 } 229 } else { 230 m->oflags &= ~VPO_NOSYNC; 231 } 232 233 /* 234 * If the fault is a write, we know that this page is being 235 * written NOW so dirty it explicitly to save on 236 * pmap_is_modified() calls later. 237 * 238 * Also tell the backing pager, if any, that it should remove 239 * any swap backing since the page is now dirty. 240 */ 241 if (need_dirty) 242 vm_page_dirty(m); 243 if (!set_wd) 244 vm_page_unlock(m); 245 if (need_dirty) 246 vm_pager_page_unswapped(m); 247 } 248 249 /* 250 * vm_fault: 251 * 252 * Handle a page fault occurring at the given address, 253 * requiring the given permissions, in the map specified. 254 * If successful, the page is inserted into the 255 * associated physical map. 256 * 257 * NOTE: the given address should be truncated to the 258 * proper page address. 259 * 260 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 261 * a standard error specifying why the fault is fatal is returned. 262 * 263 * The map in question must be referenced, and remains so. 264 * Caller may hold no locks. 265 */ 266 int 267 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 268 int fault_flags) 269 { 270 struct thread *td; 271 int result; 272 273 td = curthread; 274 if ((td->td_pflags & TDP_NOFAULTING) != 0) 275 return (KERN_PROTECTION_FAILURE); 276 #ifdef KTRACE 277 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 278 ktrfault(vaddr, fault_type); 279 #endif 280 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 281 NULL); 282 #ifdef KTRACE 283 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 284 ktrfaultend(result); 285 #endif 286 return (result); 287 } 288 289 int 290 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 291 int fault_flags, vm_page_t *m_hold) 292 { 293 struct faultstate fs; 294 struct vnode *vp; 295 vm_object_t next_object, retry_object; 296 vm_offset_t e_end, e_start; 297 vm_page_t m; 298 vm_pindex_t retry_pindex; 299 vm_prot_t prot, retry_prot; 300 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 301 int locked, map_generation, nera, result, rv; 302 u_char behavior; 303 boolean_t wired; /* Passed by reference. */ 304 bool dead, growstack, hardfault, is_first_object_locked; 305 306 PCPU_INC(cnt.v_vm_faults); 307 fs.vp = NULL; 308 faultcount = 0; 309 nera = -1; 310 growstack = true; 311 hardfault = false; 312 313 RetryFault:; 314 315 /* 316 * Find the backing store object and offset into it to begin the 317 * search. 318 */ 319 fs.map = map; 320 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 321 &fs.first_object, &fs.first_pindex, &prot, &wired); 322 if (result != KERN_SUCCESS) { 323 if (growstack && result == KERN_INVALID_ADDRESS && 324 map != kernel_map) { 325 result = vm_map_growstack(curproc, vaddr); 326 if (result != KERN_SUCCESS) 327 return (KERN_FAILURE); 328 growstack = false; 329 goto RetryFault; 330 } 331 unlock_vp(&fs); 332 return (result); 333 } 334 335 map_generation = fs.map->timestamp; 336 337 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 338 panic("vm_fault: fault on nofault entry, addr: %lx", 339 (u_long)vaddr); 340 } 341 342 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 343 fs.entry->wiring_thread != curthread) { 344 vm_map_unlock_read(fs.map); 345 vm_map_lock(fs.map); 346 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 347 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 348 unlock_vp(&fs); 349 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 350 vm_map_unlock_and_wait(fs.map, 0); 351 } else 352 vm_map_unlock(fs.map); 353 goto RetryFault; 354 } 355 356 if (wired) 357 fault_type = prot | (fault_type & VM_PROT_COPY); 358 else 359 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 360 ("!wired && VM_FAULT_WIRE")); 361 362 /* 363 * Try to avoid lock contention on the top-level object through 364 * special-case handling of some types of page faults, specifically, 365 * those that are both (1) mapping an existing page from the top- 366 * level object and (2) not having to mark that object as containing 367 * dirty pages. Under these conditions, a read lock on the top-level 368 * object suffices, allowing multiple page faults of a similar type to 369 * run in parallel on the same top-level object. 370 */ 371 if (fs.vp == NULL /* avoid locked vnode leak */ && 372 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 373 /* avoid calling vm_object_set_writeable_dirty() */ 374 ((prot & VM_PROT_WRITE) == 0 || 375 (fs.first_object->type != OBJT_VNODE && 376 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 377 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 378 VM_OBJECT_RLOCK(fs.first_object); 379 if ((prot & VM_PROT_WRITE) != 0 && 380 (fs.first_object->type == OBJT_VNODE || 381 (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) && 382 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0) 383 goto fast_failed; 384 m = vm_page_lookup(fs.first_object, fs.first_pindex); 385 /* A busy page can be mapped for read|execute access. */ 386 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 387 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 388 goto fast_failed; 389 result = pmap_enter(fs.map->pmap, vaddr, m, prot, 390 fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 391 0), 0); 392 if (result != KERN_SUCCESS) 393 goto fast_failed; 394 if (m_hold != NULL) { 395 *m_hold = m; 396 vm_page_lock(m); 397 vm_page_hold(m); 398 vm_page_unlock(m); 399 } 400 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags, 401 false); 402 VM_OBJECT_RUNLOCK(fs.first_object); 403 if (!wired) 404 vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR); 405 vm_map_lookup_done(fs.map, fs.entry); 406 curthread->td_ru.ru_minflt++; 407 return (KERN_SUCCESS); 408 fast_failed: 409 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 410 VM_OBJECT_RUNLOCK(fs.first_object); 411 VM_OBJECT_WLOCK(fs.first_object); 412 } 413 } else { 414 VM_OBJECT_WLOCK(fs.first_object); 415 } 416 417 /* 418 * Make a reference to this object to prevent its disposal while we 419 * are messing with it. Once we have the reference, the map is free 420 * to be diddled. Since objects reference their shadows (and copies), 421 * they will stay around as well. 422 * 423 * Bump the paging-in-progress count to prevent size changes (e.g. 424 * truncation operations) during I/O. 425 */ 426 vm_object_reference_locked(fs.first_object); 427 vm_object_pip_add(fs.first_object, 1); 428 429 fs.lookup_still_valid = true; 430 431 fs.first_m = NULL; 432 433 /* 434 * Search for the page at object/offset. 435 */ 436 fs.object = fs.first_object; 437 fs.pindex = fs.first_pindex; 438 while (TRUE) { 439 /* 440 * If the object is marked for imminent termination, 441 * we retry here, since the collapse pass has raced 442 * with us. Otherwise, if we see terminally dead 443 * object, return fail. 444 */ 445 if ((fs.object->flags & OBJ_DEAD) != 0) { 446 dead = fs.object->type == OBJT_DEAD; 447 unlock_and_deallocate(&fs); 448 if (dead) 449 return (KERN_PROTECTION_FAILURE); 450 pause("vmf_de", 1); 451 goto RetryFault; 452 } 453 454 /* 455 * See if page is resident 456 */ 457 fs.m = vm_page_lookup(fs.object, fs.pindex); 458 if (fs.m != NULL) { 459 /* 460 * Wait/Retry if the page is busy. We have to do this 461 * if the page is either exclusive or shared busy 462 * because the vm_pager may be using read busy for 463 * pageouts (and even pageins if it is the vnode 464 * pager), and we could end up trying to pagein and 465 * pageout the same page simultaneously. 466 * 467 * We can theoretically allow the busy case on a read 468 * fault if the page is marked valid, but since such 469 * pages are typically already pmap'd, putting that 470 * special case in might be more effort then it is 471 * worth. We cannot under any circumstances mess 472 * around with a shared busied page except, perhaps, 473 * to pmap it. 474 */ 475 if (vm_page_busied(fs.m)) { 476 /* 477 * Reference the page before unlocking and 478 * sleeping so that the page daemon is less 479 * likely to reclaim it. 480 */ 481 vm_page_aflag_set(fs.m, PGA_REFERENCED); 482 if (fs.object != fs.first_object) { 483 if (!VM_OBJECT_TRYWLOCK( 484 fs.first_object)) { 485 VM_OBJECT_WUNLOCK(fs.object); 486 VM_OBJECT_WLOCK(fs.first_object); 487 VM_OBJECT_WLOCK(fs.object); 488 } 489 vm_page_lock(fs.first_m); 490 vm_page_free(fs.first_m); 491 vm_page_unlock(fs.first_m); 492 vm_object_pip_wakeup(fs.first_object); 493 VM_OBJECT_WUNLOCK(fs.first_object); 494 fs.first_m = NULL; 495 } 496 unlock_map(&fs); 497 if (fs.m == vm_page_lookup(fs.object, 498 fs.pindex)) { 499 vm_page_sleep_if_busy(fs.m, "vmpfw"); 500 } 501 vm_object_pip_wakeup(fs.object); 502 VM_OBJECT_WUNLOCK(fs.object); 503 PCPU_INC(cnt.v_intrans); 504 vm_object_deallocate(fs.first_object); 505 goto RetryFault; 506 } 507 vm_page_lock(fs.m); 508 vm_page_remque(fs.m); 509 vm_page_unlock(fs.m); 510 511 /* 512 * Mark page busy for other processes, and the 513 * pagedaemon. If it still isn't completely valid 514 * (readable), jump to readrest, else break-out ( we 515 * found the page ). 516 */ 517 vm_page_xbusy(fs.m); 518 if (fs.m->valid != VM_PAGE_BITS_ALL) 519 goto readrest; 520 break; 521 } 522 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 523 524 /* 525 * Page is not resident. If the pager might contain the page 526 * or this is the beginning of the search, allocate a new 527 * page. (Default objects are zero-fill, so there is no real 528 * pager for them.) 529 */ 530 if (fs.object->type != OBJT_DEFAULT || 531 fs.object == fs.first_object) { 532 if (fs.pindex >= fs.object->size) { 533 unlock_and_deallocate(&fs); 534 return (KERN_PROTECTION_FAILURE); 535 } 536 537 /* 538 * Allocate a new page for this object/offset pair. 539 * 540 * Unlocked read of the p_flag is harmless. At 541 * worst, the P_KILLED might be not observed 542 * there, and allocation can fail, causing 543 * restart and new reading of the p_flag. 544 */ 545 if (!vm_page_count_severe() || P_KILLED(curproc)) { 546 #if VM_NRESERVLEVEL > 0 547 vm_object_color(fs.object, atop(vaddr) - 548 fs.pindex); 549 #endif 550 alloc_req = P_KILLED(curproc) ? 551 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 552 if (fs.object->type != OBJT_VNODE && 553 fs.object->backing_object == NULL) 554 alloc_req |= VM_ALLOC_ZERO; 555 fs.m = vm_page_alloc(fs.object, fs.pindex, 556 alloc_req); 557 } 558 if (fs.m == NULL) { 559 unlock_and_deallocate(&fs); 560 VM_WAITPFAULT; 561 goto RetryFault; 562 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 563 break; 564 } 565 566 readrest: 567 /* 568 * At this point, we have either allocated a new page or found 569 * an existing page that is only partially valid. 570 * 571 * We hold a reference on the current object and the page is 572 * exclusive busied. 573 */ 574 575 /* 576 * If the pager for the current object might have the page, 577 * then determine the number of additional pages to read and 578 * potentially reprioritize previously read pages for earlier 579 * reclamation. These operations should only be performed 580 * once per page fault. Even if the current pager doesn't 581 * have the page, the number of additional pages to read will 582 * apply to subsequent objects in the shadow chain. 583 */ 584 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 585 !P_KILLED(curproc)) { 586 KASSERT(fs.lookup_still_valid, ("map unlocked")); 587 era = fs.entry->read_ahead; 588 behavior = vm_map_entry_behavior(fs.entry); 589 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 590 nera = 0; 591 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 592 nera = VM_FAULT_READ_AHEAD_MAX; 593 if (vaddr == fs.entry->next_read) 594 vm_fault_dontneed(&fs, vaddr, nera); 595 } else if (vaddr == fs.entry->next_read) { 596 /* 597 * This is a sequential fault. Arithmetically 598 * increase the requested number of pages in 599 * the read-ahead window. The requested 600 * number of pages is "# of sequential faults 601 * x (read ahead min + 1) + read ahead min" 602 */ 603 nera = VM_FAULT_READ_AHEAD_MIN; 604 if (era > 0) { 605 nera += era + 1; 606 if (nera > VM_FAULT_READ_AHEAD_MAX) 607 nera = VM_FAULT_READ_AHEAD_MAX; 608 } 609 if (era == VM_FAULT_READ_AHEAD_MAX) 610 vm_fault_dontneed(&fs, vaddr, nera); 611 } else { 612 /* 613 * This is a non-sequential fault. 614 */ 615 nera = 0; 616 } 617 if (era != nera) { 618 /* 619 * A read lock on the map suffices to update 620 * the read ahead count safely. 621 */ 622 fs.entry->read_ahead = nera; 623 } 624 625 /* 626 * Prepare for unlocking the map. Save the map 627 * entry's start and end addresses, which are used to 628 * optimize the size of the pager operation below. 629 * Even if the map entry's addresses change after 630 * unlocking the map, using the saved addresses is 631 * safe. 632 */ 633 e_start = fs.entry->start; 634 e_end = fs.entry->end; 635 } 636 637 /* 638 * Call the pager to retrieve the page if there is a chance 639 * that the pager has it, and potentially retrieve additional 640 * pages at the same time. 641 */ 642 if (fs.object->type != OBJT_DEFAULT) { 643 /* 644 * Release the map lock before locking the vnode or 645 * sleeping in the pager. (If the current object has 646 * a shadow, then an earlier iteration of this loop 647 * may have already unlocked the map.) 648 */ 649 unlock_map(&fs); 650 651 if (fs.object->type == OBJT_VNODE && 652 (vp = fs.object->handle) != fs.vp) { 653 /* 654 * Perform an unlock in case the desired vnode 655 * changed while the map was unlocked during a 656 * retry. 657 */ 658 unlock_vp(&fs); 659 660 locked = VOP_ISLOCKED(vp); 661 if (locked != LK_EXCLUSIVE) 662 locked = LK_SHARED; 663 664 /* 665 * We must not sleep acquiring the vnode lock 666 * while we have the page exclusive busied or 667 * the object's paging-in-progress count 668 * incremented. Otherwise, we could deadlock. 669 */ 670 error = vget(vp, locked | LK_CANRECURSE | 671 LK_NOWAIT, curthread); 672 if (error != 0) { 673 vhold(vp); 674 release_page(&fs); 675 unlock_and_deallocate(&fs); 676 error = vget(vp, locked | LK_RETRY | 677 LK_CANRECURSE, curthread); 678 vdrop(vp); 679 fs.vp = vp; 680 KASSERT(error == 0, 681 ("vm_fault: vget failed")); 682 goto RetryFault; 683 } 684 fs.vp = vp; 685 } 686 KASSERT(fs.vp == NULL || !fs.map->system_map, 687 ("vm_fault: vnode-backed object mapped by system map")); 688 689 /* 690 * Page in the requested page and hint the pager, 691 * that it may bring up surrounding pages. 692 */ 693 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 694 P_KILLED(curproc)) { 695 behind = 0; 696 ahead = 0; 697 } else { 698 /* Is this a sequential fault? */ 699 if (nera > 0) { 700 behind = 0; 701 ahead = nera; 702 } else { 703 /* 704 * Request a cluster of pages that is 705 * aligned to a VM_FAULT_READ_DEFAULT 706 * page offset boundary within the 707 * object. Alignment to a page offset 708 * boundary is more likely to coincide 709 * with the underlying file system 710 * block than alignment to a virtual 711 * address boundary. 712 */ 713 cluster_offset = fs.pindex % 714 VM_FAULT_READ_DEFAULT; 715 behind = ulmin(cluster_offset, 716 atop(vaddr - e_start)); 717 ahead = VM_FAULT_READ_DEFAULT - 1 - 718 cluster_offset; 719 } 720 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 721 } 722 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 723 &behind, &ahead); 724 if (rv == VM_PAGER_OK) { 725 faultcount = behind + 1 + ahead; 726 hardfault = true; 727 break; /* break to PAGE HAS BEEN FOUND */ 728 } 729 if (rv == VM_PAGER_ERROR) 730 printf("vm_fault: pager read error, pid %d (%s)\n", 731 curproc->p_pid, curproc->p_comm); 732 733 /* 734 * If an I/O error occurred or the requested page was 735 * outside the range of the pager, clean up and return 736 * an error. 737 */ 738 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 739 vm_page_lock(fs.m); 740 if (fs.m->wire_count == 0) 741 vm_page_free(fs.m); 742 else 743 vm_page_xunbusy_maybelocked(fs.m); 744 vm_page_unlock(fs.m); 745 fs.m = NULL; 746 unlock_and_deallocate(&fs); 747 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 748 KERN_PROTECTION_FAILURE); 749 } 750 751 /* 752 * The requested page does not exist at this object/ 753 * offset. Remove the invalid page from the object, 754 * waking up anyone waiting for it, and continue on to 755 * the next object. However, if this is the top-level 756 * object, we must leave the busy page in place to 757 * prevent another process from rushing past us, and 758 * inserting the page in that object at the same time 759 * that we are. 760 */ 761 if (fs.object != fs.first_object) { 762 vm_page_lock(fs.m); 763 if (fs.m->wire_count == 0) 764 vm_page_free(fs.m); 765 else 766 vm_page_xunbusy_maybelocked(fs.m); 767 vm_page_unlock(fs.m); 768 fs.m = NULL; 769 } 770 } 771 772 /* 773 * We get here if the object has default pager (or unwiring) 774 * or the pager doesn't have the page. 775 */ 776 if (fs.object == fs.first_object) 777 fs.first_m = fs.m; 778 779 /* 780 * Move on to the next object. Lock the next object before 781 * unlocking the current one. 782 */ 783 next_object = fs.object->backing_object; 784 if (next_object == NULL) { 785 /* 786 * If there's no object left, fill the page in the top 787 * object with zeros. 788 */ 789 if (fs.object != fs.first_object) { 790 vm_object_pip_wakeup(fs.object); 791 VM_OBJECT_WUNLOCK(fs.object); 792 793 fs.object = fs.first_object; 794 fs.pindex = fs.first_pindex; 795 fs.m = fs.first_m; 796 VM_OBJECT_WLOCK(fs.object); 797 } 798 fs.first_m = NULL; 799 800 /* 801 * Zero the page if necessary and mark it valid. 802 */ 803 if ((fs.m->flags & PG_ZERO) == 0) { 804 pmap_zero_page(fs.m); 805 } else { 806 PCPU_INC(cnt.v_ozfod); 807 } 808 PCPU_INC(cnt.v_zfod); 809 fs.m->valid = VM_PAGE_BITS_ALL; 810 /* Don't try to prefault neighboring pages. */ 811 faultcount = 1; 812 break; /* break to PAGE HAS BEEN FOUND */ 813 } else { 814 KASSERT(fs.object != next_object, 815 ("object loop %p", next_object)); 816 VM_OBJECT_WLOCK(next_object); 817 vm_object_pip_add(next_object, 1); 818 if (fs.object != fs.first_object) 819 vm_object_pip_wakeup(fs.object); 820 fs.pindex += 821 OFF_TO_IDX(fs.object->backing_object_offset); 822 VM_OBJECT_WUNLOCK(fs.object); 823 fs.object = next_object; 824 } 825 } 826 827 vm_page_assert_xbusied(fs.m); 828 829 /* 830 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 831 * is held.] 832 */ 833 834 /* 835 * If the page is being written, but isn't already owned by the 836 * top-level object, we have to copy it into a new page owned by the 837 * top-level object. 838 */ 839 if (fs.object != fs.first_object) { 840 /* 841 * We only really need to copy if we want to write it. 842 */ 843 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 844 /* 845 * This allows pages to be virtually copied from a 846 * backing_object into the first_object, where the 847 * backing object has no other refs to it, and cannot 848 * gain any more refs. Instead of a bcopy, we just 849 * move the page from the backing object to the 850 * first object. Note that we must mark the page 851 * dirty in the first object so that it will go out 852 * to swap when needed. 853 */ 854 is_first_object_locked = false; 855 if ( 856 /* 857 * Only one shadow object 858 */ 859 (fs.object->shadow_count == 1) && 860 /* 861 * No COW refs, except us 862 */ 863 (fs.object->ref_count == 1) && 864 /* 865 * No one else can look this object up 866 */ 867 (fs.object->handle == NULL) && 868 /* 869 * No other ways to look the object up 870 */ 871 ((fs.object->type == OBJT_DEFAULT) || 872 (fs.object->type == OBJT_SWAP)) && 873 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 874 /* 875 * We don't chase down the shadow chain 876 */ 877 fs.object == fs.first_object->backing_object) { 878 vm_page_lock(fs.m); 879 vm_page_remove(fs.m); 880 vm_page_unlock(fs.m); 881 vm_page_lock(fs.first_m); 882 vm_page_replace_checked(fs.m, fs.first_object, 883 fs.first_pindex, fs.first_m); 884 vm_page_free(fs.first_m); 885 vm_page_unlock(fs.first_m); 886 vm_page_dirty(fs.m); 887 #if VM_NRESERVLEVEL > 0 888 /* 889 * Rename the reservation. 890 */ 891 vm_reserv_rename(fs.m, fs.first_object, 892 fs.object, OFF_TO_IDX( 893 fs.first_object->backing_object_offset)); 894 #endif 895 /* 896 * Removing the page from the backing object 897 * unbusied it. 898 */ 899 vm_page_xbusy(fs.m); 900 fs.first_m = fs.m; 901 fs.m = NULL; 902 PCPU_INC(cnt.v_cow_optim); 903 } else { 904 /* 905 * Oh, well, lets copy it. 906 */ 907 pmap_copy_page(fs.m, fs.first_m); 908 fs.first_m->valid = VM_PAGE_BITS_ALL; 909 if (wired && (fault_flags & 910 VM_FAULT_WIRE) == 0) { 911 vm_page_lock(fs.first_m); 912 vm_page_wire(fs.first_m); 913 vm_page_unlock(fs.first_m); 914 915 vm_page_lock(fs.m); 916 vm_page_unwire(fs.m, PQ_INACTIVE); 917 vm_page_unlock(fs.m); 918 } 919 /* 920 * We no longer need the old page or object. 921 */ 922 release_page(&fs); 923 } 924 /* 925 * fs.object != fs.first_object due to above 926 * conditional 927 */ 928 vm_object_pip_wakeup(fs.object); 929 VM_OBJECT_WUNLOCK(fs.object); 930 /* 931 * Only use the new page below... 932 */ 933 fs.object = fs.first_object; 934 fs.pindex = fs.first_pindex; 935 fs.m = fs.first_m; 936 if (!is_first_object_locked) 937 VM_OBJECT_WLOCK(fs.object); 938 PCPU_INC(cnt.v_cow_faults); 939 curthread->td_cow++; 940 } else { 941 prot &= ~VM_PROT_WRITE; 942 } 943 } 944 945 /* 946 * We must verify that the maps have not changed since our last 947 * lookup. 948 */ 949 if (!fs.lookup_still_valid) { 950 if (!vm_map_trylock_read(fs.map)) { 951 release_page(&fs); 952 unlock_and_deallocate(&fs); 953 goto RetryFault; 954 } 955 fs.lookup_still_valid = true; 956 if (fs.map->timestamp != map_generation) { 957 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 958 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 959 960 /* 961 * If we don't need the page any longer, put it on the inactive 962 * list (the easiest thing to do here). If no one needs it, 963 * pageout will grab it eventually. 964 */ 965 if (result != KERN_SUCCESS) { 966 release_page(&fs); 967 unlock_and_deallocate(&fs); 968 969 /* 970 * If retry of map lookup would have blocked then 971 * retry fault from start. 972 */ 973 if (result == KERN_FAILURE) 974 goto RetryFault; 975 return (result); 976 } 977 if ((retry_object != fs.first_object) || 978 (retry_pindex != fs.first_pindex)) { 979 release_page(&fs); 980 unlock_and_deallocate(&fs); 981 goto RetryFault; 982 } 983 984 /* 985 * Check whether the protection has changed or the object has 986 * been copied while we left the map unlocked. Changing from 987 * read to write permission is OK - we leave the page 988 * write-protected, and catch the write fault. Changing from 989 * write to read permission means that we can't mark the page 990 * write-enabled after all. 991 */ 992 prot &= retry_prot; 993 } 994 } 995 996 /* 997 * If the page was filled by a pager, save the virtual address that 998 * should be faulted on next under a sequential access pattern to the 999 * map entry. A read lock on the map suffices to update this address 1000 * safely. 1001 */ 1002 if (hardfault) 1003 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1004 1005 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1006 vm_page_assert_xbusied(fs.m); 1007 1008 /* 1009 * Page must be completely valid or it is not fit to 1010 * map into user space. vm_pager_get_pages() ensures this. 1011 */ 1012 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1013 ("vm_fault: page %p partially invalid", fs.m)); 1014 VM_OBJECT_WUNLOCK(fs.object); 1015 1016 /* 1017 * Put this page into the physical map. We had to do the unlock above 1018 * because pmap_enter() may sleep. We don't put the page 1019 * back on the active queue until later so that the pageout daemon 1020 * won't find it (yet). 1021 */ 1022 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1023 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1024 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1025 wired == 0) 1026 vm_fault_prefault(&fs, vaddr, 1027 faultcount > 0 ? behind : PFBAK, 1028 faultcount > 0 ? ahead : PFFOR); 1029 VM_OBJECT_WLOCK(fs.object); 1030 vm_page_lock(fs.m); 1031 1032 /* 1033 * If the page is not wired down, then put it where the pageout daemon 1034 * can find it. 1035 */ 1036 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1037 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 1038 vm_page_wire(fs.m); 1039 } else 1040 vm_page_activate(fs.m); 1041 if (m_hold != NULL) { 1042 *m_hold = fs.m; 1043 vm_page_hold(fs.m); 1044 } 1045 vm_page_unlock(fs.m); 1046 vm_page_xunbusy(fs.m); 1047 1048 /* 1049 * Unlock everything, and return 1050 */ 1051 unlock_and_deallocate(&fs); 1052 if (hardfault) { 1053 PCPU_INC(cnt.v_io_faults); 1054 curthread->td_ru.ru_majflt++; 1055 #ifdef RACCT 1056 if (racct_enable && fs.object->type == OBJT_VNODE) { 1057 PROC_LOCK(curproc); 1058 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1059 racct_add_force(curproc, RACCT_WRITEBPS, 1060 PAGE_SIZE + behind * PAGE_SIZE); 1061 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1062 } else { 1063 racct_add_force(curproc, RACCT_READBPS, 1064 PAGE_SIZE + ahead * PAGE_SIZE); 1065 racct_add_force(curproc, RACCT_READIOPS, 1); 1066 } 1067 PROC_UNLOCK(curproc); 1068 } 1069 #endif 1070 } else 1071 curthread->td_ru.ru_minflt++; 1072 1073 return (KERN_SUCCESS); 1074 } 1075 1076 /* 1077 * Speed up the reclamation of pages that precede the faulting pindex within 1078 * the first object of the shadow chain. Essentially, perform the equivalent 1079 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1080 * the faulting pindex by the cluster size when the pages read by vm_fault() 1081 * cross a cluster-size boundary. The cluster size is the greater of the 1082 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1083 * 1084 * When "fs->first_object" is a shadow object, the pages in the backing object 1085 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1086 * function must only be concerned with pages in the first object. 1087 */ 1088 static void 1089 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1090 { 1091 vm_map_entry_t entry; 1092 vm_object_t first_object, object; 1093 vm_offset_t end, start; 1094 vm_page_t m, m_next; 1095 vm_pindex_t pend, pstart; 1096 vm_size_t size; 1097 1098 object = fs->object; 1099 VM_OBJECT_ASSERT_WLOCKED(object); 1100 first_object = fs->first_object; 1101 if (first_object != object) { 1102 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1103 VM_OBJECT_WUNLOCK(object); 1104 VM_OBJECT_WLOCK(first_object); 1105 VM_OBJECT_WLOCK(object); 1106 } 1107 } 1108 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1109 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1110 size = VM_FAULT_DONTNEED_MIN; 1111 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1112 size = pagesizes[1]; 1113 end = rounddown2(vaddr, size); 1114 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1115 (entry = fs->entry)->start < end) { 1116 if (end - entry->start < size) 1117 start = entry->start; 1118 else 1119 start = end - size; 1120 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1121 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1122 entry->start); 1123 m_next = vm_page_find_least(first_object, pstart); 1124 pend = OFF_TO_IDX(entry->offset) + atop(end - 1125 entry->start); 1126 while ((m = m_next) != NULL && m->pindex < pend) { 1127 m_next = TAILQ_NEXT(m, listq); 1128 if (m->valid != VM_PAGE_BITS_ALL || 1129 vm_page_busied(m)) 1130 continue; 1131 1132 /* 1133 * Don't clear PGA_REFERENCED, since it would 1134 * likely represent a reference by a different 1135 * process. 1136 * 1137 * Typically, at this point, prefetched pages 1138 * are still in the inactive queue. Only 1139 * pages that triggered page faults are in the 1140 * active queue. 1141 */ 1142 vm_page_lock(m); 1143 vm_page_deactivate(m); 1144 vm_page_unlock(m); 1145 } 1146 } 1147 } 1148 if (first_object != object) 1149 VM_OBJECT_WUNLOCK(first_object); 1150 } 1151 1152 /* 1153 * vm_fault_prefault provides a quick way of clustering 1154 * pagefaults into a processes address space. It is a "cousin" 1155 * of vm_map_pmap_enter, except it runs at page fault time instead 1156 * of mmap time. 1157 */ 1158 static void 1159 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1160 int backward, int forward) 1161 { 1162 pmap_t pmap; 1163 vm_map_entry_t entry; 1164 vm_object_t backing_object, lobject; 1165 vm_offset_t addr, starta; 1166 vm_pindex_t pindex; 1167 vm_page_t m; 1168 int i; 1169 1170 pmap = fs->map->pmap; 1171 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1172 return; 1173 1174 entry = fs->entry; 1175 1176 starta = addra - backward * PAGE_SIZE; 1177 if (starta < entry->start) { 1178 starta = entry->start; 1179 } else if (starta > addra) { 1180 starta = 0; 1181 } 1182 1183 /* 1184 * Generate the sequence of virtual addresses that are candidates for 1185 * prefaulting in an outward spiral from the faulting virtual address, 1186 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1187 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1188 * If the candidate address doesn't have a backing physical page, then 1189 * the loop immediately terminates. 1190 */ 1191 for (i = 0; i < 2 * imax(backward, forward); i++) { 1192 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1193 PAGE_SIZE); 1194 if (addr > addra + forward * PAGE_SIZE) 1195 addr = 0; 1196 1197 if (addr < starta || addr >= entry->end) 1198 continue; 1199 1200 if (!pmap_is_prefaultable(pmap, addr)) 1201 continue; 1202 1203 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1204 lobject = entry->object.vm_object; 1205 VM_OBJECT_RLOCK(lobject); 1206 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1207 lobject->type == OBJT_DEFAULT && 1208 (backing_object = lobject->backing_object) != NULL) { 1209 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1210 0, ("vm_fault_prefault: unaligned object offset")); 1211 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1212 VM_OBJECT_RLOCK(backing_object); 1213 VM_OBJECT_RUNLOCK(lobject); 1214 lobject = backing_object; 1215 } 1216 if (m == NULL) { 1217 VM_OBJECT_RUNLOCK(lobject); 1218 break; 1219 } 1220 if (m->valid == VM_PAGE_BITS_ALL && 1221 (m->flags & PG_FICTITIOUS) == 0) 1222 pmap_enter_quick(pmap, addr, m, entry->protection); 1223 VM_OBJECT_RUNLOCK(lobject); 1224 } 1225 } 1226 1227 /* 1228 * Hold each of the physical pages that are mapped by the specified range of 1229 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1230 * and allow the specified types of access, "prot". If all of the implied 1231 * pages are successfully held, then the number of held pages is returned 1232 * together with pointers to those pages in the array "ma". However, if any 1233 * of the pages cannot be held, -1 is returned. 1234 */ 1235 int 1236 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1237 vm_prot_t prot, vm_page_t *ma, int max_count) 1238 { 1239 vm_offset_t end, va; 1240 vm_page_t *mp; 1241 int count; 1242 boolean_t pmap_failed; 1243 1244 if (len == 0) 1245 return (0); 1246 end = round_page(addr + len); 1247 addr = trunc_page(addr); 1248 1249 /* 1250 * Check for illegal addresses. 1251 */ 1252 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1253 return (-1); 1254 1255 if (atop(end - addr) > max_count) 1256 panic("vm_fault_quick_hold_pages: count > max_count"); 1257 count = atop(end - addr); 1258 1259 /* 1260 * Most likely, the physical pages are resident in the pmap, so it is 1261 * faster to try pmap_extract_and_hold() first. 1262 */ 1263 pmap_failed = FALSE; 1264 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1265 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1266 if (*mp == NULL) 1267 pmap_failed = TRUE; 1268 else if ((prot & VM_PROT_WRITE) != 0 && 1269 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1270 /* 1271 * Explicitly dirty the physical page. Otherwise, the 1272 * caller's changes may go unnoticed because they are 1273 * performed through an unmanaged mapping or by a DMA 1274 * operation. 1275 * 1276 * The object lock is not held here. 1277 * See vm_page_clear_dirty_mask(). 1278 */ 1279 vm_page_dirty(*mp); 1280 } 1281 } 1282 if (pmap_failed) { 1283 /* 1284 * One or more pages could not be held by the pmap. Either no 1285 * page was mapped at the specified virtual address or that 1286 * mapping had insufficient permissions. Attempt to fault in 1287 * and hold these pages. 1288 */ 1289 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1290 if (*mp == NULL && vm_fault_hold(map, va, prot, 1291 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1292 goto error; 1293 } 1294 return (count); 1295 error: 1296 for (mp = ma; mp < ma + count; mp++) 1297 if (*mp != NULL) { 1298 vm_page_lock(*mp); 1299 vm_page_unhold(*mp); 1300 vm_page_unlock(*mp); 1301 } 1302 return (-1); 1303 } 1304 1305 /* 1306 * Routine: 1307 * vm_fault_copy_entry 1308 * Function: 1309 * Create new shadow object backing dst_entry with private copy of 1310 * all underlying pages. When src_entry is equal to dst_entry, 1311 * function implements COW for wired-down map entry. Otherwise, 1312 * it forks wired entry into dst_map. 1313 * 1314 * In/out conditions: 1315 * The source and destination maps must be locked for write. 1316 * The source map entry must be wired down (or be a sharing map 1317 * entry corresponding to a main map entry that is wired down). 1318 */ 1319 void 1320 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1321 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1322 vm_ooffset_t *fork_charge) 1323 { 1324 vm_object_t backing_object, dst_object, object, src_object; 1325 vm_pindex_t dst_pindex, pindex, src_pindex; 1326 vm_prot_t access, prot; 1327 vm_offset_t vaddr; 1328 vm_page_t dst_m; 1329 vm_page_t src_m; 1330 boolean_t upgrade; 1331 1332 #ifdef lint 1333 src_map++; 1334 #endif /* lint */ 1335 1336 upgrade = src_entry == dst_entry; 1337 access = prot = dst_entry->protection; 1338 1339 src_object = src_entry->object.vm_object; 1340 src_pindex = OFF_TO_IDX(src_entry->offset); 1341 1342 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1343 dst_object = src_object; 1344 vm_object_reference(dst_object); 1345 } else { 1346 /* 1347 * Create the top-level object for the destination entry. (Doesn't 1348 * actually shadow anything - we copy the pages directly.) 1349 */ 1350 dst_object = vm_object_allocate(OBJT_DEFAULT, 1351 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1352 #if VM_NRESERVLEVEL > 0 1353 dst_object->flags |= OBJ_COLORED; 1354 dst_object->pg_color = atop(dst_entry->start); 1355 #endif 1356 } 1357 1358 VM_OBJECT_WLOCK(dst_object); 1359 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1360 ("vm_fault_copy_entry: vm_object not NULL")); 1361 if (src_object != dst_object) { 1362 dst_entry->object.vm_object = dst_object; 1363 dst_entry->offset = 0; 1364 dst_object->charge = dst_entry->end - dst_entry->start; 1365 } 1366 if (fork_charge != NULL) { 1367 KASSERT(dst_entry->cred == NULL, 1368 ("vm_fault_copy_entry: leaked swp charge")); 1369 dst_object->cred = curthread->td_ucred; 1370 crhold(dst_object->cred); 1371 *fork_charge += dst_object->charge; 1372 } else if (dst_object->cred == NULL) { 1373 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1374 dst_entry)); 1375 dst_object->cred = dst_entry->cred; 1376 dst_entry->cred = NULL; 1377 } 1378 1379 /* 1380 * If not an upgrade, then enter the mappings in the pmap as 1381 * read and/or execute accesses. Otherwise, enter them as 1382 * write accesses. 1383 * 1384 * A writeable large page mapping is only created if all of 1385 * the constituent small page mappings are modified. Marking 1386 * PTEs as modified on inception allows promotion to happen 1387 * without taking potentially large number of soft faults. 1388 */ 1389 if (!upgrade) 1390 access &= ~VM_PROT_WRITE; 1391 1392 /* 1393 * Loop through all of the virtual pages within the entry's 1394 * range, copying each page from the source object to the 1395 * destination object. Since the source is wired, those pages 1396 * must exist. In contrast, the destination is pageable. 1397 * Since the destination object does share any backing storage 1398 * with the source object, all of its pages must be dirtied, 1399 * regardless of whether they can be written. 1400 */ 1401 for (vaddr = dst_entry->start, dst_pindex = 0; 1402 vaddr < dst_entry->end; 1403 vaddr += PAGE_SIZE, dst_pindex++) { 1404 again: 1405 /* 1406 * Find the page in the source object, and copy it in. 1407 * Because the source is wired down, the page will be 1408 * in memory. 1409 */ 1410 if (src_object != dst_object) 1411 VM_OBJECT_RLOCK(src_object); 1412 object = src_object; 1413 pindex = src_pindex + dst_pindex; 1414 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1415 (backing_object = object->backing_object) != NULL) { 1416 /* 1417 * Unless the source mapping is read-only or 1418 * it is presently being upgraded from 1419 * read-only, the first object in the shadow 1420 * chain should provide all of the pages. In 1421 * other words, this loop body should never be 1422 * executed when the source mapping is already 1423 * read/write. 1424 */ 1425 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1426 upgrade, 1427 ("vm_fault_copy_entry: main object missing page")); 1428 1429 VM_OBJECT_RLOCK(backing_object); 1430 pindex += OFF_TO_IDX(object->backing_object_offset); 1431 if (object != dst_object) 1432 VM_OBJECT_RUNLOCK(object); 1433 object = backing_object; 1434 } 1435 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1436 1437 if (object != dst_object) { 1438 /* 1439 * Allocate a page in the destination object. 1440 */ 1441 dst_m = vm_page_alloc(dst_object, (src_object == 1442 dst_object ? src_pindex : 0) + dst_pindex, 1443 VM_ALLOC_NORMAL); 1444 if (dst_m == NULL) { 1445 VM_OBJECT_WUNLOCK(dst_object); 1446 VM_OBJECT_RUNLOCK(object); 1447 VM_WAIT; 1448 VM_OBJECT_WLOCK(dst_object); 1449 goto again; 1450 } 1451 pmap_copy_page(src_m, dst_m); 1452 VM_OBJECT_RUNLOCK(object); 1453 dst_m->valid = VM_PAGE_BITS_ALL; 1454 dst_m->dirty = VM_PAGE_BITS_ALL; 1455 } else { 1456 dst_m = src_m; 1457 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1458 goto again; 1459 vm_page_xbusy(dst_m); 1460 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1461 ("invalid dst page %p", dst_m)); 1462 } 1463 VM_OBJECT_WUNLOCK(dst_object); 1464 1465 /* 1466 * Enter it in the pmap. If a wired, copy-on-write 1467 * mapping is being replaced by a write-enabled 1468 * mapping, then wire that new mapping. 1469 */ 1470 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1471 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1472 1473 /* 1474 * Mark it no longer busy, and put it on the active list. 1475 */ 1476 VM_OBJECT_WLOCK(dst_object); 1477 1478 if (upgrade) { 1479 if (src_m != dst_m) { 1480 vm_page_lock(src_m); 1481 vm_page_unwire(src_m, PQ_INACTIVE); 1482 vm_page_unlock(src_m); 1483 vm_page_lock(dst_m); 1484 vm_page_wire(dst_m); 1485 vm_page_unlock(dst_m); 1486 } else { 1487 KASSERT(dst_m->wire_count > 0, 1488 ("dst_m %p is not wired", dst_m)); 1489 } 1490 } else { 1491 vm_page_lock(dst_m); 1492 vm_page_activate(dst_m); 1493 vm_page_unlock(dst_m); 1494 } 1495 vm_page_xunbusy(dst_m); 1496 } 1497 VM_OBJECT_WUNLOCK(dst_object); 1498 if (upgrade) { 1499 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1500 vm_object_deallocate(src_object); 1501 } 1502 } 1503 1504 /* 1505 * Block entry into the machine-independent layer's page fault handler by 1506 * the calling thread. Subsequent calls to vm_fault() by that thread will 1507 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1508 * spurious page faults. 1509 */ 1510 int 1511 vm_fault_disable_pagefaults(void) 1512 { 1513 1514 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1515 } 1516 1517 void 1518 vm_fault_enable_pagefaults(int save) 1519 { 1520 1521 curthread_pflags_restore(save); 1522 } 1523