xref: /freebsd/sys/vm/vm_fault.c (revision 9fd69f37d28cfd7438cac3eeb45fe9dd46b4d7dd)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100 
101 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
102 
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106 
107 static int prefault_pageorder[] = {
108 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
109 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
110 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
111 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113 
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116 
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120 
121 struct faultstate {
122 	vm_page_t m;
123 	vm_object_t object;
124 	vm_pindex_t pindex;
125 	vm_page_t first_m;
126 	vm_object_t	first_object;
127 	vm_pindex_t first_pindex;
128 	vm_map_t map;
129 	vm_map_entry_t entry;
130 	int lookup_still_valid;
131 	struct vnode *vp;
132 	int vfslocked;
133 };
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_wakeup(fs->m);
140 	vm_page_lock_queues();
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock_queues();
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = FALSE;
153 	}
154 }
155 
156 static void
157 unlock_and_deallocate(struct faultstate *fs)
158 {
159 
160 	vm_object_pip_wakeup(fs->object);
161 	VM_OBJECT_UNLOCK(fs->object);
162 	if (fs->object != fs->first_object) {
163 		VM_OBJECT_LOCK(fs->first_object);
164 		vm_page_lock_queues();
165 		vm_page_free(fs->first_m);
166 		vm_page_unlock_queues();
167 		vm_object_pip_wakeup(fs->first_object);
168 		VM_OBJECT_UNLOCK(fs->first_object);
169 		fs->first_m = NULL;
170 	}
171 	vm_object_deallocate(fs->first_object);
172 	unlock_map(fs);
173 	if (fs->vp != NULL) {
174 		vput(fs->vp);
175 		fs->vp = NULL;
176 	}
177 	VFS_UNLOCK_GIANT(fs->vfslocked);
178 	fs->vfslocked = 0;
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *	The map in question must be referenced, and remains so.
206  *	Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 	 int fault_flags)
211 {
212 	vm_prot_t prot;
213 	int is_first_object_locked, result;
214 	boolean_t are_queues_locked, growstack, wired;
215 	int map_generation;
216 	vm_object_t next_object;
217 	vm_page_t marray[VM_FAULT_READ];
218 	int hardfault;
219 	int faultcount, ahead, behind;
220 	struct faultstate fs;
221 	struct vnode *vp;
222 	int locked, error;
223 
224 	hardfault = 0;
225 	growstack = TRUE;
226 	PCPU_INC(cnt.v_vm_faults);
227 	fs.vp = NULL;
228 	fs.vfslocked = 0;
229 	faultcount = behind = 0;
230 
231 RetryFault:;
232 
233 	/*
234 	 * Find the backing store object and offset into it to begin the
235 	 * search.
236 	 */
237 	fs.map = map;
238 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
239 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
240 	if (result != KERN_SUCCESS) {
241 		if (growstack && result == KERN_INVALID_ADDRESS &&
242 		    map != kernel_map) {
243 			result = vm_map_growstack(curproc, vaddr);
244 			if (result != KERN_SUCCESS)
245 				return (KERN_FAILURE);
246 			growstack = FALSE;
247 			goto RetryFault;
248 		}
249 		return (result);
250 	}
251 
252 	map_generation = fs.map->timestamp;
253 
254 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
255 		panic("vm_fault: fault on nofault entry, addr: %lx",
256 		    (u_long)vaddr);
257 	}
258 
259 	/*
260 	 * Make a reference to this object to prevent its disposal while we
261 	 * are messing with it.  Once we have the reference, the map is free
262 	 * to be diddled.  Since objects reference their shadows (and copies),
263 	 * they will stay around as well.
264 	 *
265 	 * Bump the paging-in-progress count to prevent size changes (e.g.
266 	 * truncation operations) during I/O.  This must be done after
267 	 * obtaining the vnode lock in order to avoid possible deadlocks.
268 	 */
269 	VM_OBJECT_LOCK(fs.first_object);
270 	vm_object_reference_locked(fs.first_object);
271 	vm_object_pip_add(fs.first_object, 1);
272 
273 	fs.lookup_still_valid = TRUE;
274 
275 	if (wired)
276 		fault_type = prot | (fault_type & VM_PROT_COPY);
277 
278 	fs.first_m = NULL;
279 
280 	/*
281 	 * Search for the page at object/offset.
282 	 */
283 	fs.object = fs.first_object;
284 	fs.pindex = fs.first_pindex;
285 	while (TRUE) {
286 		/*
287 		 * If the object is dead, we stop here
288 		 */
289 		if (fs.object->flags & OBJ_DEAD) {
290 			unlock_and_deallocate(&fs);
291 			return (KERN_PROTECTION_FAILURE);
292 		}
293 
294 		/*
295 		 * See if page is resident
296 		 */
297 		fs.m = vm_page_lookup(fs.object, fs.pindex);
298 		if (fs.m != NULL) {
299 			/*
300 			 * check for page-based copy on write.
301 			 * We check fs.object == fs.first_object so
302 			 * as to ensure the legacy COW mechanism is
303 			 * used when the page in question is part of
304 			 * a shadow object.  Otherwise, vm_page_cowfault()
305 			 * removes the page from the backing object,
306 			 * which is not what we want.
307 			 */
308 			vm_page_lock_queues();
309 			if ((fs.m->cow) &&
310 			    (fault_type & VM_PROT_WRITE) &&
311 			    (fs.object == fs.first_object)) {
312 				vm_page_cowfault(fs.m);
313 				vm_page_unlock_queues();
314 				unlock_and_deallocate(&fs);
315 				goto RetryFault;
316 			}
317 
318 			/*
319 			 * Wait/Retry if the page is busy.  We have to do this
320 			 * if the page is busy via either VPO_BUSY or
321 			 * vm_page_t->busy because the vm_pager may be using
322 			 * vm_page_t->busy for pageouts ( and even pageins if
323 			 * it is the vnode pager ), and we could end up trying
324 			 * to pagein and pageout the same page simultaneously.
325 			 *
326 			 * We can theoretically allow the busy case on a read
327 			 * fault if the page is marked valid, but since such
328 			 * pages are typically already pmap'd, putting that
329 			 * special case in might be more effort then it is
330 			 * worth.  We cannot under any circumstances mess
331 			 * around with a vm_page_t->busy page except, perhaps,
332 			 * to pmap it.
333 			 */
334 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
335 				vm_page_unlock_queues();
336 				VM_OBJECT_UNLOCK(fs.object);
337 				if (fs.object != fs.first_object) {
338 					VM_OBJECT_LOCK(fs.first_object);
339 					vm_page_lock_queues();
340 					vm_page_free(fs.first_m);
341 					vm_page_unlock_queues();
342 					vm_object_pip_wakeup(fs.first_object);
343 					VM_OBJECT_UNLOCK(fs.first_object);
344 					fs.first_m = NULL;
345 				}
346 				unlock_map(&fs);
347 				VM_OBJECT_LOCK(fs.object);
348 				if (fs.m == vm_page_lookup(fs.object,
349 				    fs.pindex)) {
350 					vm_page_sleep_if_busy(fs.m, TRUE,
351 					    "vmpfw");
352 				}
353 				vm_object_pip_wakeup(fs.object);
354 				VM_OBJECT_UNLOCK(fs.object);
355 				PCPU_INC(cnt.v_intrans);
356 				vm_object_deallocate(fs.first_object);
357 				goto RetryFault;
358 			}
359 			vm_pageq_remove(fs.m);
360 			vm_page_unlock_queues();
361 
362 			/*
363 			 * Mark page busy for other processes, and the
364 			 * pagedaemon.  If it still isn't completely valid
365 			 * (readable), jump to readrest, else break-out ( we
366 			 * found the page ).
367 			 */
368 			vm_page_busy(fs.m);
369 			if (fs.m->valid != VM_PAGE_BITS_ALL &&
370 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
371 				goto readrest;
372 			}
373 
374 			break;
375 		}
376 
377 		/*
378 		 * Page is not resident, If this is the search termination
379 		 * or the pager might contain the page, allocate a new page.
380 		 */
381 		if (TRYPAGER || fs.object == fs.first_object) {
382 			if (fs.pindex >= fs.object->size) {
383 				unlock_and_deallocate(&fs);
384 				return (KERN_PROTECTION_FAILURE);
385 			}
386 
387 			/*
388 			 * Allocate a new page for this object/offset pair.
389 			 */
390 			fs.m = NULL;
391 			if (!vm_page_count_severe()) {
392 #if VM_NRESERVLEVEL > 0
393 				if ((fs.object->flags & OBJ_COLORED) == 0) {
394 					fs.object->flags |= OBJ_COLORED;
395 					fs.object->pg_color = atop(vaddr) -
396 					    fs.pindex;
397 				}
398 #endif
399 				fs.m = vm_page_alloc(fs.object, fs.pindex,
400 				    (fs.object->type == OBJT_VNODE ||
401 				     fs.object->backing_object != NULL) ?
402 				    VM_ALLOC_NORMAL : VM_ALLOC_ZERO);
403 			}
404 			if (fs.m == NULL) {
405 				unlock_and_deallocate(&fs);
406 				VM_WAITPFAULT;
407 				goto RetryFault;
408 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
409 				break;
410 		}
411 
412 readrest:
413 		/*
414 		 * We have found a valid page or we have allocated a new page.
415 		 * The page thus may not be valid or may not be entirely
416 		 * valid.
417 		 *
418 		 * Attempt to fault-in the page if there is a chance that the
419 		 * pager has it, and potentially fault in additional pages
420 		 * at the same time.
421 		 */
422 		if (TRYPAGER) {
423 			int rv;
424 			int reqpage = 0;
425 			u_char behavior = vm_map_entry_behavior(fs.entry);
426 
427 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
428 				ahead = 0;
429 				behind = 0;
430 			} else {
431 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
432 				if (behind > VM_FAULT_READ_BEHIND)
433 					behind = VM_FAULT_READ_BEHIND;
434 
435 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
436 				if (ahead > VM_FAULT_READ_AHEAD)
437 					ahead = VM_FAULT_READ_AHEAD;
438 			}
439 			is_first_object_locked = FALSE;
440 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
441 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
442 			      fs.pindex >= fs.entry->lastr &&
443 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
444 			    (fs.first_object == fs.object ||
445 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
446 			    fs.first_object->type != OBJT_DEVICE &&
447 			    fs.first_object->type != OBJT_PHYS &&
448 			    fs.first_object->type != OBJT_SG) {
449 				vm_pindex_t firstpindex, tmppindex;
450 
451 				if (fs.first_pindex < 2 * VM_FAULT_READ)
452 					firstpindex = 0;
453 				else
454 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
455 
456 				are_queues_locked = FALSE;
457 				/*
458 				 * note: partially valid pages cannot be
459 				 * included in the lookahead - NFS piecemeal
460 				 * writes will barf on it badly.
461 				 */
462 				for (tmppindex = fs.first_pindex - 1;
463 					tmppindex >= firstpindex;
464 					--tmppindex) {
465 					vm_page_t mt;
466 
467 					mt = vm_page_lookup(fs.first_object, tmppindex);
468 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
469 						break;
470 					if (mt->busy ||
471 					    (mt->oflags & VPO_BUSY))
472 						continue;
473 					if (!are_queues_locked) {
474 						are_queues_locked = TRUE;
475 						vm_page_lock_queues();
476 					}
477 					if (mt->hold_count ||
478 						mt->wire_count)
479 						continue;
480 					pmap_remove_all(mt);
481 					if (mt->dirty) {
482 						vm_page_deactivate(mt);
483 					} else {
484 						vm_page_cache(mt);
485 					}
486 				}
487 				if (are_queues_locked)
488 					vm_page_unlock_queues();
489 				ahead += behind;
490 				behind = 0;
491 			}
492 			if (is_first_object_locked)
493 				VM_OBJECT_UNLOCK(fs.first_object);
494 
495 			/*
496 			 * Call the pager to retrieve the data, if any, after
497 			 * releasing the lock on the map.  We hold a ref on
498 			 * fs.object and the pages are VPO_BUSY'd.
499 			 */
500 			unlock_map(&fs);
501 
502 vnode_lock:
503 			if (fs.object->type == OBJT_VNODE) {
504 				vp = fs.object->handle;
505 				if (vp == fs.vp)
506 					goto vnode_locked;
507 				else if (fs.vp != NULL) {
508 					vput(fs.vp);
509 					fs.vp = NULL;
510 				}
511 				locked = VOP_ISLOCKED(vp);
512 
513 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
514 					fs.vfslocked = 1;
515 					if (!mtx_trylock(&Giant)) {
516 						VM_OBJECT_UNLOCK(fs.object);
517 						mtx_lock(&Giant);
518 						VM_OBJECT_LOCK(fs.object);
519 						goto vnode_lock;
520 					}
521 				}
522 				if (locked != LK_EXCLUSIVE)
523 					locked = LK_SHARED;
524 				/* Do not sleep for vnode lock while fs.m is busy */
525 				error = vget(vp, locked | LK_CANRECURSE |
526 				    LK_NOWAIT, curthread);
527 				if (error != 0) {
528 					int vfslocked;
529 
530 					vfslocked = fs.vfslocked;
531 					fs.vfslocked = 0; /* Keep Giant */
532 					vhold(vp);
533 					release_page(&fs);
534 					unlock_and_deallocate(&fs);
535 					error = vget(vp, locked | LK_RETRY |
536 					    LK_CANRECURSE, curthread);
537 					vdrop(vp);
538 					fs.vp = vp;
539 					fs.vfslocked = vfslocked;
540 					KASSERT(error == 0,
541 					    ("vm_fault: vget failed"));
542 					goto RetryFault;
543 				}
544 				fs.vp = vp;
545 			}
546 vnode_locked:
547 			KASSERT(fs.vp == NULL || !fs.map->system_map,
548 			    ("vm_fault: vnode-backed object mapped by system map"));
549 
550 			/*
551 			 * now we find out if any other pages should be paged
552 			 * in at this time this routine checks to see if the
553 			 * pages surrounding this fault reside in the same
554 			 * object as the page for this fault.  If they do,
555 			 * then they are faulted in also into the object.  The
556 			 * array "marray" returned contains an array of
557 			 * vm_page_t structs where one of them is the
558 			 * vm_page_t passed to the routine.  The reqpage
559 			 * return value is the index into the marray for the
560 			 * vm_page_t passed to the routine.
561 			 *
562 			 * fs.m plus the additional pages are VPO_BUSY'd.
563 			 */
564 			faultcount = vm_fault_additional_pages(
565 			    fs.m, behind, ahead, marray, &reqpage);
566 
567 			rv = faultcount ?
568 			    vm_pager_get_pages(fs.object, marray, faultcount,
569 				reqpage) : VM_PAGER_FAIL;
570 
571 			if (rv == VM_PAGER_OK) {
572 				/*
573 				 * Found the page. Leave it busy while we play
574 				 * with it.
575 				 */
576 
577 				/*
578 				 * Relookup in case pager changed page. Pager
579 				 * is responsible for disposition of old page
580 				 * if moved.
581 				 */
582 				fs.m = vm_page_lookup(fs.object, fs.pindex);
583 				if (!fs.m) {
584 					unlock_and_deallocate(&fs);
585 					goto RetryFault;
586 				}
587 
588 				hardfault++;
589 				break; /* break to PAGE HAS BEEN FOUND */
590 			}
591 			/*
592 			 * Remove the bogus page (which does not exist at this
593 			 * object/offset); before doing so, we must get back
594 			 * our object lock to preserve our invariant.
595 			 *
596 			 * Also wake up any other process that may want to bring
597 			 * in this page.
598 			 *
599 			 * If this is the top-level object, we must leave the
600 			 * busy page to prevent another process from rushing
601 			 * past us, and inserting the page in that object at
602 			 * the same time that we are.
603 			 */
604 			if (rv == VM_PAGER_ERROR)
605 				printf("vm_fault: pager read error, pid %d (%s)\n",
606 				    curproc->p_pid, curproc->p_comm);
607 			/*
608 			 * Data outside the range of the pager or an I/O error
609 			 */
610 			/*
611 			 * XXX - the check for kernel_map is a kludge to work
612 			 * around having the machine panic on a kernel space
613 			 * fault w/ I/O error.
614 			 */
615 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
616 				(rv == VM_PAGER_BAD)) {
617 				vm_page_lock_queues();
618 				vm_page_free(fs.m);
619 				vm_page_unlock_queues();
620 				fs.m = NULL;
621 				unlock_and_deallocate(&fs);
622 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
623 			}
624 			if (fs.object != fs.first_object) {
625 				vm_page_lock_queues();
626 				vm_page_free(fs.m);
627 				vm_page_unlock_queues();
628 				fs.m = NULL;
629 				/*
630 				 * XXX - we cannot just fall out at this
631 				 * point, m has been freed and is invalid!
632 				 */
633 			}
634 		}
635 
636 		/*
637 		 * We get here if the object has default pager (or unwiring)
638 		 * or the pager doesn't have the page.
639 		 */
640 		if (fs.object == fs.first_object)
641 			fs.first_m = fs.m;
642 
643 		/*
644 		 * Move on to the next object.  Lock the next object before
645 		 * unlocking the current one.
646 		 */
647 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
648 		next_object = fs.object->backing_object;
649 		if (next_object == NULL) {
650 			/*
651 			 * If there's no object left, fill the page in the top
652 			 * object with zeros.
653 			 */
654 			if (fs.object != fs.first_object) {
655 				vm_object_pip_wakeup(fs.object);
656 				VM_OBJECT_UNLOCK(fs.object);
657 
658 				fs.object = fs.first_object;
659 				fs.pindex = fs.first_pindex;
660 				fs.m = fs.first_m;
661 				VM_OBJECT_LOCK(fs.object);
662 			}
663 			fs.first_m = NULL;
664 
665 			/*
666 			 * Zero the page if necessary and mark it valid.
667 			 */
668 			if ((fs.m->flags & PG_ZERO) == 0) {
669 				pmap_zero_page(fs.m);
670 			} else {
671 				PCPU_INC(cnt.v_ozfod);
672 			}
673 			PCPU_INC(cnt.v_zfod);
674 			fs.m->valid = VM_PAGE_BITS_ALL;
675 			break;	/* break to PAGE HAS BEEN FOUND */
676 		} else {
677 			KASSERT(fs.object != next_object,
678 			    ("object loop %p", next_object));
679 			VM_OBJECT_LOCK(next_object);
680 			vm_object_pip_add(next_object, 1);
681 			if (fs.object != fs.first_object)
682 				vm_object_pip_wakeup(fs.object);
683 			VM_OBJECT_UNLOCK(fs.object);
684 			fs.object = next_object;
685 		}
686 	}
687 
688 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
689 	    ("vm_fault: not busy after main loop"));
690 
691 	/*
692 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
693 	 * is held.]
694 	 */
695 
696 	/*
697 	 * If the page is being written, but isn't already owned by the
698 	 * top-level object, we have to copy it into a new page owned by the
699 	 * top-level object.
700 	 */
701 	if (fs.object != fs.first_object) {
702 		/*
703 		 * We only really need to copy if we want to write it.
704 		 */
705 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
706 			/*
707 			 * This allows pages to be virtually copied from a
708 			 * backing_object into the first_object, where the
709 			 * backing object has no other refs to it, and cannot
710 			 * gain any more refs.  Instead of a bcopy, we just
711 			 * move the page from the backing object to the
712 			 * first object.  Note that we must mark the page
713 			 * dirty in the first object so that it will go out
714 			 * to swap when needed.
715 			 */
716 			is_first_object_locked = FALSE;
717 			if (
718 				/*
719 				 * Only one shadow object
720 				 */
721 				(fs.object->shadow_count == 1) &&
722 				/*
723 				 * No COW refs, except us
724 				 */
725 				(fs.object->ref_count == 1) &&
726 				/*
727 				 * No one else can look this object up
728 				 */
729 				(fs.object->handle == NULL) &&
730 				/*
731 				 * No other ways to look the object up
732 				 */
733 				((fs.object->type == OBJT_DEFAULT) ||
734 				 (fs.object->type == OBJT_SWAP)) &&
735 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
736 				/*
737 				 * We don't chase down the shadow chain
738 				 */
739 			    fs.object == fs.first_object->backing_object) {
740 				vm_page_lock_queues();
741 				/*
742 				 * get rid of the unnecessary page
743 				 */
744 				vm_page_free(fs.first_m);
745 				/*
746 				 * grab the page and put it into the
747 				 * process'es object.  The page is
748 				 * automatically made dirty.
749 				 */
750 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
751 				vm_page_unlock_queues();
752 				vm_page_busy(fs.m);
753 				fs.first_m = fs.m;
754 				fs.m = NULL;
755 				PCPU_INC(cnt.v_cow_optim);
756 			} else {
757 				/*
758 				 * Oh, well, lets copy it.
759 				 */
760 				pmap_copy_page(fs.m, fs.first_m);
761 				fs.first_m->valid = VM_PAGE_BITS_ALL;
762 				if (wired && (fault_flags &
763 				    VM_FAULT_CHANGE_WIRING) == 0) {
764 					vm_page_lock_queues();
765 					vm_page_wire(fs.first_m);
766 					vm_page_unwire(fs.m, FALSE);
767 					vm_page_unlock_queues();
768 				}
769 				/*
770 				 * We no longer need the old page or object.
771 				 */
772 				release_page(&fs);
773 			}
774 			/*
775 			 * fs.object != fs.first_object due to above
776 			 * conditional
777 			 */
778 			vm_object_pip_wakeup(fs.object);
779 			VM_OBJECT_UNLOCK(fs.object);
780 			/*
781 			 * Only use the new page below...
782 			 */
783 			fs.object = fs.first_object;
784 			fs.pindex = fs.first_pindex;
785 			fs.m = fs.first_m;
786 			if (!is_first_object_locked)
787 				VM_OBJECT_LOCK(fs.object);
788 			PCPU_INC(cnt.v_cow_faults);
789 		} else {
790 			prot &= ~VM_PROT_WRITE;
791 		}
792 	}
793 
794 	/*
795 	 * We must verify that the maps have not changed since our last
796 	 * lookup.
797 	 */
798 	if (!fs.lookup_still_valid) {
799 		vm_object_t retry_object;
800 		vm_pindex_t retry_pindex;
801 		vm_prot_t retry_prot;
802 
803 		if (!vm_map_trylock_read(fs.map)) {
804 			release_page(&fs);
805 			unlock_and_deallocate(&fs);
806 			goto RetryFault;
807 		}
808 		fs.lookup_still_valid = TRUE;
809 		if (fs.map->timestamp != map_generation) {
810 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
811 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
812 
813 			/*
814 			 * If we don't need the page any longer, put it on the inactive
815 			 * list (the easiest thing to do here).  If no one needs it,
816 			 * pageout will grab it eventually.
817 			 */
818 			if (result != KERN_SUCCESS) {
819 				release_page(&fs);
820 				unlock_and_deallocate(&fs);
821 
822 				/*
823 				 * If retry of map lookup would have blocked then
824 				 * retry fault from start.
825 				 */
826 				if (result == KERN_FAILURE)
827 					goto RetryFault;
828 				return (result);
829 			}
830 			if ((retry_object != fs.first_object) ||
831 			    (retry_pindex != fs.first_pindex)) {
832 				release_page(&fs);
833 				unlock_and_deallocate(&fs);
834 				goto RetryFault;
835 			}
836 
837 			/*
838 			 * Check whether the protection has changed or the object has
839 			 * been copied while we left the map unlocked. Changing from
840 			 * read to write permission is OK - we leave the page
841 			 * write-protected, and catch the write fault. Changing from
842 			 * write to read permission means that we can't mark the page
843 			 * write-enabled after all.
844 			 */
845 			prot &= retry_prot;
846 		}
847 	}
848 	/*
849 	 * If the page was filled by a pager, update the map entry's
850 	 * last read offset.  Since the pager does not return the
851 	 * actual set of pages that it read, this update is based on
852 	 * the requested set.  Typically, the requested and actual
853 	 * sets are the same.
854 	 *
855 	 * XXX The following assignment modifies the map
856 	 * without holding a write lock on it.
857 	 */
858 	if (hardfault)
859 		fs.entry->lastr = fs.pindex + faultcount - behind;
860 
861 	if (prot & VM_PROT_WRITE) {
862 		vm_object_set_writeable_dirty(fs.object);
863 
864 		/*
865 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
866 		 * if the page is already dirty to prevent data written with
867 		 * the expectation of being synced from not being synced.
868 		 * Likewise if this entry does not request NOSYNC then make
869 		 * sure the page isn't marked NOSYNC.  Applications sharing
870 		 * data should use the same flags to avoid ping ponging.
871 		 */
872 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
873 			if (fs.m->dirty == 0)
874 				fs.m->oflags |= VPO_NOSYNC;
875 		} else {
876 			fs.m->oflags &= ~VPO_NOSYNC;
877 		}
878 
879 		/*
880 		 * If the fault is a write, we know that this page is being
881 		 * written NOW so dirty it explicitly to save on
882 		 * pmap_is_modified() calls later.
883 		 *
884 		 * Also tell the backing pager, if any, that it should remove
885 		 * any swap backing since the page is now dirty.
886 		 */
887 		if ((fault_type & VM_PROT_WRITE) != 0 &&
888 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) {
889 			vm_page_dirty(fs.m);
890 			vm_pager_page_unswapped(fs.m);
891 		}
892 	}
893 
894 	/*
895 	 * Page had better still be busy
896 	 */
897 	KASSERT(fs.m->oflags & VPO_BUSY,
898 		("vm_fault: page %p not busy!", fs.m));
899 	/*
900 	 * Page must be completely valid or it is not fit to
901 	 * map into user space.  vm_pager_get_pages() ensures this.
902 	 */
903 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
904 	    ("vm_fault: page %p partially invalid", fs.m));
905 	VM_OBJECT_UNLOCK(fs.object);
906 
907 	/*
908 	 * Put this page into the physical map.  We had to do the unlock above
909 	 * because pmap_enter() may sleep.  We don't put the page
910 	 * back on the active queue until later so that the pageout daemon
911 	 * won't find it (yet).
912 	 */
913 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
914 	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
915 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
916 	VM_OBJECT_LOCK(fs.object);
917 	vm_page_lock_queues();
918 	vm_page_flag_set(fs.m, PG_REFERENCED);
919 
920 	/*
921 	 * If the page is not wired down, then put it where the pageout daemon
922 	 * can find it.
923 	 */
924 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
925 		if (wired)
926 			vm_page_wire(fs.m);
927 		else
928 			vm_page_unwire(fs.m, 1);
929 	} else {
930 		vm_page_activate(fs.m);
931 	}
932 	vm_page_unlock_queues();
933 	vm_page_wakeup(fs.m);
934 
935 	/*
936 	 * Unlock everything, and return
937 	 */
938 	unlock_and_deallocate(&fs);
939 	if (hardfault)
940 		curthread->td_ru.ru_majflt++;
941 	else
942 		curthread->td_ru.ru_minflt++;
943 
944 	return (KERN_SUCCESS);
945 }
946 
947 /*
948  * vm_fault_prefault provides a quick way of clustering
949  * pagefaults into a processes address space.  It is a "cousin"
950  * of vm_map_pmap_enter, except it runs at page fault time instead
951  * of mmap time.
952  */
953 static void
954 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
955 {
956 	int i;
957 	vm_offset_t addr, starta;
958 	vm_pindex_t pindex;
959 	vm_page_t m;
960 	vm_object_t object;
961 
962 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
963 		return;
964 
965 	object = entry->object.vm_object;
966 
967 	starta = addra - PFBAK * PAGE_SIZE;
968 	if (starta < entry->start) {
969 		starta = entry->start;
970 	} else if (starta > addra) {
971 		starta = 0;
972 	}
973 
974 	for (i = 0; i < PAGEORDER_SIZE; i++) {
975 		vm_object_t backing_object, lobject;
976 
977 		addr = addra + prefault_pageorder[i];
978 		if (addr > addra + (PFFOR * PAGE_SIZE))
979 			addr = 0;
980 
981 		if (addr < starta || addr >= entry->end)
982 			continue;
983 
984 		if (!pmap_is_prefaultable(pmap, addr))
985 			continue;
986 
987 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
988 		lobject = object;
989 		VM_OBJECT_LOCK(lobject);
990 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
991 		    lobject->type == OBJT_DEFAULT &&
992 		    (backing_object = lobject->backing_object) != NULL) {
993 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
994 			    0, ("vm_fault_prefault: unaligned object offset"));
995 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
996 			VM_OBJECT_LOCK(backing_object);
997 			VM_OBJECT_UNLOCK(lobject);
998 			lobject = backing_object;
999 		}
1000 		/*
1001 		 * give-up when a page is not in memory
1002 		 */
1003 		if (m == NULL) {
1004 			VM_OBJECT_UNLOCK(lobject);
1005 			break;
1006 		}
1007 		if (m->valid == VM_PAGE_BITS_ALL &&
1008 		    (m->flags & PG_FICTITIOUS) == 0) {
1009 			vm_page_lock_queues();
1010 			pmap_enter_quick(pmap, addr, m, entry->protection);
1011 			vm_page_unlock_queues();
1012 		}
1013 		VM_OBJECT_UNLOCK(lobject);
1014 	}
1015 }
1016 
1017 /*
1018  *	vm_fault_quick:
1019  *
1020  *	Ensure that the requested virtual address, which may be in userland,
1021  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1022  */
1023 int
1024 vm_fault_quick(caddr_t v, int prot)
1025 {
1026 	int r;
1027 
1028 	if (prot & VM_PROT_WRITE)
1029 		r = subyte(v, fubyte(v));
1030 	else
1031 		r = fubyte(v);
1032 	return(r);
1033 }
1034 
1035 /*
1036  *	vm_fault_wire:
1037  *
1038  *	Wire down a range of virtual addresses in a map.
1039  */
1040 int
1041 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1042     boolean_t fictitious)
1043 {
1044 	vm_offset_t va;
1045 	int rv;
1046 
1047 	/*
1048 	 * We simulate a fault to get the page and enter it in the physical
1049 	 * map.  For user wiring, we only ask for read access on currently
1050 	 * read-only sections.
1051 	 */
1052 	for (va = start; va < end; va += PAGE_SIZE) {
1053 		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1054 		if (rv) {
1055 			if (va != start)
1056 				vm_fault_unwire(map, start, va, fictitious);
1057 			return (rv);
1058 		}
1059 	}
1060 	return (KERN_SUCCESS);
1061 }
1062 
1063 /*
1064  *	vm_fault_unwire:
1065  *
1066  *	Unwire a range of virtual addresses in a map.
1067  */
1068 void
1069 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1070     boolean_t fictitious)
1071 {
1072 	vm_paddr_t pa;
1073 	vm_offset_t va;
1074 	pmap_t pmap;
1075 
1076 	pmap = vm_map_pmap(map);
1077 
1078 	/*
1079 	 * Since the pages are wired down, we must be able to get their
1080 	 * mappings from the physical map system.
1081 	 */
1082 	for (va = start; va < end; va += PAGE_SIZE) {
1083 		pa = pmap_extract(pmap, va);
1084 		if (pa != 0) {
1085 			pmap_change_wiring(pmap, va, FALSE);
1086 			if (!fictitious) {
1087 				vm_page_lock_queues();
1088 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1089 				vm_page_unlock_queues();
1090 			}
1091 		}
1092 	}
1093 }
1094 
1095 /*
1096  *	Routine:
1097  *		vm_fault_copy_entry
1098  *	Function:
1099  *		Create new shadow object backing dst_entry with private copy of
1100  *		all underlying pages. When src_entry is equal to dst_entry,
1101  *		function implements COW for wired-down map entry. Otherwise,
1102  *		it forks wired entry into dst_map.
1103  *
1104  *	In/out conditions:
1105  *		The source and destination maps must be locked for write.
1106  *		The source map entry must be wired down (or be a sharing map
1107  *		entry corresponding to a main map entry that is wired down).
1108  */
1109 void
1110 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1111     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1112     vm_ooffset_t *fork_charge)
1113 {
1114 	vm_object_t backing_object, dst_object, object, src_object;
1115 	vm_pindex_t dst_pindex, pindex, src_pindex;
1116 	vm_prot_t access, prot;
1117 	vm_offset_t vaddr;
1118 	vm_page_t dst_m;
1119 	vm_page_t src_m;
1120 	boolean_t src_readonly, upgrade;
1121 
1122 #ifdef	lint
1123 	src_map++;
1124 #endif	/* lint */
1125 
1126 	upgrade = src_entry == dst_entry;
1127 
1128 	src_object = src_entry->object.vm_object;
1129 	src_pindex = OFF_TO_IDX(src_entry->offset);
1130 	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1131 
1132 	/*
1133 	 * Create the top-level object for the destination entry. (Doesn't
1134 	 * actually shadow anything - we copy the pages directly.)
1135 	 */
1136 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1137 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1138 #if VM_NRESERVLEVEL > 0
1139 	dst_object->flags |= OBJ_COLORED;
1140 	dst_object->pg_color = atop(dst_entry->start);
1141 #endif
1142 
1143 	VM_OBJECT_LOCK(dst_object);
1144 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1145 	    ("vm_fault_copy_entry: vm_object not NULL"));
1146 	dst_entry->object.vm_object = dst_object;
1147 	dst_entry->offset = 0;
1148 	dst_object->charge = dst_entry->end - dst_entry->start;
1149 	if (fork_charge != NULL) {
1150 		KASSERT(dst_entry->uip == NULL,
1151 		    ("vm_fault_copy_entry: leaked swp charge"));
1152 		dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1153 		uihold(dst_object->uip);
1154 		*fork_charge += dst_object->charge;
1155 	} else {
1156 		dst_object->uip = dst_entry->uip;
1157 		dst_entry->uip = NULL;
1158 	}
1159 	access = prot = dst_entry->protection;
1160 	/*
1161 	 * If not an upgrade, then enter the mappings in the pmap as
1162 	 * read and/or execute accesses.  Otherwise, enter them as
1163 	 * write accesses.
1164 	 *
1165 	 * A writeable large page mapping is only created if all of
1166 	 * the constituent small page mappings are modified. Marking
1167 	 * PTEs as modified on inception allows promotion to happen
1168 	 * without taking potentially large number of soft faults.
1169 	 */
1170 	if (!upgrade)
1171 		access &= ~VM_PROT_WRITE;
1172 
1173 	/*
1174 	 * Loop through all of the pages in the entry's range, copying each
1175 	 * one from the source object (it should be there) to the destination
1176 	 * object.
1177 	 */
1178 	for (vaddr = dst_entry->start, dst_pindex = 0;
1179 	    vaddr < dst_entry->end;
1180 	    vaddr += PAGE_SIZE, dst_pindex++) {
1181 
1182 		/*
1183 		 * Allocate a page in the destination object.
1184 		 */
1185 		do {
1186 			dst_m = vm_page_alloc(dst_object, dst_pindex,
1187 			    VM_ALLOC_NORMAL);
1188 			if (dst_m == NULL) {
1189 				VM_OBJECT_UNLOCK(dst_object);
1190 				VM_WAIT;
1191 				VM_OBJECT_LOCK(dst_object);
1192 			}
1193 		} while (dst_m == NULL);
1194 
1195 		/*
1196 		 * Find the page in the source object, and copy it in.
1197 		 * (Because the source is wired down, the page will be in
1198 		 * memory.)
1199 		 */
1200 		VM_OBJECT_LOCK(src_object);
1201 		object = src_object;
1202 		pindex = src_pindex + dst_pindex;
1203 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1204 		    src_readonly &&
1205 		    (backing_object = object->backing_object) != NULL) {
1206 			/*
1207 			 * Allow fallback to backing objects if we are reading.
1208 			 */
1209 			VM_OBJECT_LOCK(backing_object);
1210 			pindex += OFF_TO_IDX(object->backing_object_offset);
1211 			VM_OBJECT_UNLOCK(object);
1212 			object = backing_object;
1213 		}
1214 		if (src_m == NULL)
1215 			panic("vm_fault_copy_wired: page missing");
1216 		pmap_copy_page(src_m, dst_m);
1217 		VM_OBJECT_UNLOCK(object);
1218 		dst_m->valid = VM_PAGE_BITS_ALL;
1219 		VM_OBJECT_UNLOCK(dst_object);
1220 
1221 		/*
1222 		 * Enter it in the pmap. If a wired, copy-on-write
1223 		 * mapping is being replaced by a write-enabled
1224 		 * mapping, then wire that new mapping.
1225 		 */
1226 		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1227 
1228 		/*
1229 		 * Mark it no longer busy, and put it on the active list.
1230 		 */
1231 		VM_OBJECT_LOCK(dst_object);
1232 		vm_page_lock_queues();
1233 		if (upgrade) {
1234 			vm_page_unwire(src_m, 0);
1235 			vm_page_wire(dst_m);
1236 		} else
1237 			vm_page_activate(dst_m);
1238 		vm_page_unlock_queues();
1239 		vm_page_wakeup(dst_m);
1240 	}
1241 	VM_OBJECT_UNLOCK(dst_object);
1242 	if (upgrade) {
1243 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1244 		vm_object_deallocate(src_object);
1245 	}
1246 }
1247 
1248 
1249 /*
1250  * This routine checks around the requested page for other pages that
1251  * might be able to be faulted in.  This routine brackets the viable
1252  * pages for the pages to be paged in.
1253  *
1254  * Inputs:
1255  *	m, rbehind, rahead
1256  *
1257  * Outputs:
1258  *  marray (array of vm_page_t), reqpage (index of requested page)
1259  *
1260  * Return value:
1261  *  number of pages in marray
1262  */
1263 static int
1264 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1265 	vm_page_t m;
1266 	int rbehind;
1267 	int rahead;
1268 	vm_page_t *marray;
1269 	int *reqpage;
1270 {
1271 	int i,j;
1272 	vm_object_t object;
1273 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1274 	vm_page_t rtm;
1275 	int cbehind, cahead;
1276 
1277 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1278 
1279 	object = m->object;
1280 	pindex = m->pindex;
1281 	cbehind = cahead = 0;
1282 
1283 	/*
1284 	 * if the requested page is not available, then give up now
1285 	 */
1286 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1287 		return 0;
1288 	}
1289 
1290 	if ((cbehind == 0) && (cahead == 0)) {
1291 		*reqpage = 0;
1292 		marray[0] = m;
1293 		return 1;
1294 	}
1295 
1296 	if (rahead > cahead) {
1297 		rahead = cahead;
1298 	}
1299 
1300 	if (rbehind > cbehind) {
1301 		rbehind = cbehind;
1302 	}
1303 
1304 	/*
1305 	 * scan backward for the read behind pages -- in memory
1306 	 */
1307 	if (pindex > 0) {
1308 		if (rbehind > pindex) {
1309 			rbehind = pindex;
1310 			startpindex = 0;
1311 		} else {
1312 			startpindex = pindex - rbehind;
1313 		}
1314 
1315 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1316 		    rtm->pindex >= startpindex)
1317 			startpindex = rtm->pindex + 1;
1318 
1319 		/* tpindex is unsigned; beware of numeric underflow. */
1320 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1321 		    tpindex < pindex; i++, tpindex--) {
1322 
1323 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1324 			    VM_ALLOC_IFNOTCACHED);
1325 			if (rtm == NULL) {
1326 				/*
1327 				 * Shift the allocated pages to the
1328 				 * beginning of the array.
1329 				 */
1330 				for (j = 0; j < i; j++) {
1331 					marray[j] = marray[j + tpindex + 1 -
1332 					    startpindex];
1333 				}
1334 				break;
1335 			}
1336 
1337 			marray[tpindex - startpindex] = rtm;
1338 		}
1339 	} else {
1340 		startpindex = 0;
1341 		i = 0;
1342 	}
1343 
1344 	marray[i] = m;
1345 	/* page offset of the required page */
1346 	*reqpage = i;
1347 
1348 	tpindex = pindex + 1;
1349 	i++;
1350 
1351 	/*
1352 	 * scan forward for the read ahead pages
1353 	 */
1354 	endpindex = tpindex + rahead;
1355 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1356 		endpindex = rtm->pindex;
1357 	if (endpindex > object->size)
1358 		endpindex = object->size;
1359 
1360 	for (; tpindex < endpindex; i++, tpindex++) {
1361 
1362 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1363 		    VM_ALLOC_IFNOTCACHED);
1364 		if (rtm == NULL) {
1365 			break;
1366 		}
1367 
1368 		marray[i] = rtm;
1369 	}
1370 
1371 	/* return number of pages */
1372 	return i;
1373 }
1374