xref: /freebsd/sys/vm/vm_fault.c (revision 99429157e8615dc3b7f11afbe3ed92de7476a5db)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107 
108 #define PFBAK 4
109 #define PFFOR 4
110 
111 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113 
114 #define	VM_FAULT_DONTNEED_MIN	1048576
115 
116 struct faultstate {
117 	vm_page_t m;
118 	vm_object_t object;
119 	vm_pindex_t pindex;
120 	vm_page_t first_m;
121 	vm_object_t	first_object;
122 	vm_pindex_t first_pindex;
123 	vm_map_t map;
124 	vm_map_entry_t entry;
125 	int map_generation;
126 	bool lookup_still_valid;
127 	struct vnode *vp;
128 };
129 
130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
131 	    int ahead);
132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
133 	    int backward, int forward);
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_xunbusy(fs->m);
140 	vm_page_lock(fs->m);
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock(fs->m);
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = false;
153 	}
154 }
155 
156 static void
157 unlock_vp(struct faultstate *fs)
158 {
159 
160 	if (fs->vp != NULL) {
161 		vput(fs->vp);
162 		fs->vp = NULL;
163 	}
164 }
165 
166 static void
167 unlock_and_deallocate(struct faultstate *fs)
168 {
169 
170 	vm_object_pip_wakeup(fs->object);
171 	VM_OBJECT_WUNLOCK(fs->object);
172 	if (fs->object != fs->first_object) {
173 		VM_OBJECT_WLOCK(fs->first_object);
174 		vm_page_lock(fs->first_m);
175 		vm_page_free(fs->first_m);
176 		vm_page_unlock(fs->first_m);
177 		vm_object_pip_wakeup(fs->first_object);
178 		VM_OBJECT_WUNLOCK(fs->first_object);
179 		fs->first_m = NULL;
180 	}
181 	vm_object_deallocate(fs->first_object);
182 	unlock_map(fs);
183 	unlock_vp(fs);
184 }
185 
186 static void
187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
188     vm_prot_t fault_type, int fault_flags, bool set_wd)
189 {
190 	bool need_dirty;
191 
192 	if (((prot & VM_PROT_WRITE) == 0 &&
193 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
194 	    (m->oflags & VPO_UNMANAGED) != 0)
195 		return;
196 
197 	VM_OBJECT_ASSERT_LOCKED(m->object);
198 
199 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
200 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
201 	    (fault_flags & VM_FAULT_DIRTY) != 0;
202 
203 	if (set_wd)
204 		vm_object_set_writeable_dirty(m->object);
205 	else
206 		/*
207 		 * If two callers of vm_fault_dirty() with set_wd ==
208 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
209 		 * flag set, other with flag clear, race, it is
210 		 * possible for the no-NOSYNC thread to see m->dirty
211 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
212 		 * around manipulation of VPO_NOSYNC and
213 		 * vm_page_dirty() call, to avoid the race and keep
214 		 * m->oflags consistent.
215 		 */
216 		vm_page_lock(m);
217 
218 	/*
219 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
220 	 * if the page is already dirty to prevent data written with
221 	 * the expectation of being synced from not being synced.
222 	 * Likewise if this entry does not request NOSYNC then make
223 	 * sure the page isn't marked NOSYNC.  Applications sharing
224 	 * data should use the same flags to avoid ping ponging.
225 	 */
226 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
227 		if (m->dirty == 0) {
228 			m->oflags |= VPO_NOSYNC;
229 		}
230 	} else {
231 		m->oflags &= ~VPO_NOSYNC;
232 	}
233 
234 	/*
235 	 * If the fault is a write, we know that this page is being
236 	 * written NOW so dirty it explicitly to save on
237 	 * pmap_is_modified() calls later.
238 	 *
239 	 * Also tell the backing pager, if any, that it should remove
240 	 * any swap backing since the page is now dirty.
241 	 */
242 	if (need_dirty)
243 		vm_page_dirty(m);
244 	if (!set_wd)
245 		vm_page_unlock(m);
246 	if (need_dirty)
247 		vm_pager_page_unswapped(m);
248 }
249 
250 static void
251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
252 {
253 
254 	if (m_hold != NULL) {
255 		*m_hold = m;
256 		vm_page_lock(m);
257 		vm_page_hold(m);
258 		vm_page_unlock(m);
259 	}
260 }
261 
262 /*
263  * Unlocks fs.first_object and fs.map on success.
264  */
265 static int
266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
267     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
268 {
269 	vm_page_t m;
270 	int rv;
271 
272 	MPASS(fs->vp == NULL);
273 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
274 	/* A busy page can be mapped for read|execute access. */
275 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
276 	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
277 		return (KERN_FAILURE);
278 	rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
279 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0);
280 	if (rv != KERN_SUCCESS)
281 		return (rv);
282 	vm_fault_fill_hold(m_hold, m);
283 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
284 	VM_OBJECT_RUNLOCK(fs->first_object);
285 	if (!wired)
286 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR);
287 	vm_map_lookup_done(fs->map, fs->entry);
288 	curthread->td_ru.ru_minflt++;
289 	return (KERN_SUCCESS);
290 }
291 
292 static void
293 vm_fault_restore_map_lock(struct faultstate *fs)
294 {
295 
296 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
297 	MPASS(fs->first_object->paging_in_progress > 0);
298 
299 	if (!vm_map_trylock_read(fs->map)) {
300 		VM_OBJECT_WUNLOCK(fs->first_object);
301 		vm_map_lock_read(fs->map);
302 		VM_OBJECT_WLOCK(fs->first_object);
303 	}
304 	fs->lookup_still_valid = true;
305 }
306 
307 static void
308 vm_fault_populate_check_page(vm_page_t m)
309 {
310 
311 	/*
312 	 * Check each page to ensure that the pager is obeying the
313 	 * interface: the page must be installed in the object, fully
314 	 * valid, and exclusively busied.
315 	 */
316 	MPASS(m != NULL);
317 	MPASS(m->valid == VM_PAGE_BITS_ALL);
318 	MPASS(vm_page_xbusied(m));
319 }
320 
321 static void
322 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
323     vm_pindex_t last)
324 {
325 	vm_page_t m;
326 	vm_pindex_t pidx;
327 
328 	VM_OBJECT_ASSERT_WLOCKED(object);
329 	MPASS(first <= last);
330 	for (pidx = first, m = vm_page_lookup(object, pidx);
331 	    pidx <= last; pidx++, m = vm_page_next(m)) {
332 		vm_fault_populate_check_page(m);
333 		vm_page_lock(m);
334 		vm_page_deactivate(m);
335 		vm_page_unlock(m);
336 		vm_page_xunbusy(m);
337 	}
338 }
339 
340 static int
341 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
342     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
343 {
344 	vm_page_t m;
345 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
346 	int rv;
347 
348 	MPASS(fs->object == fs->first_object);
349 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
350 	MPASS(fs->first_object->paging_in_progress > 0);
351 	MPASS(fs->first_object->backing_object == NULL);
352 	MPASS(fs->lookup_still_valid);
353 
354 	pager_first = OFF_TO_IDX(fs->entry->offset);
355 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
356 	unlock_map(fs);
357 	unlock_vp(fs);
358 
359 	/*
360 	 * Call the pager (driver) populate() method.
361 	 *
362 	 * There is no guarantee that the method will be called again
363 	 * if the current fault is for read, and a future fault is
364 	 * for write.  Report the entry's maximum allowed protection
365 	 * to the driver.
366 	 */
367 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
368 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
369 
370 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
371 	if (rv == VM_PAGER_BAD) {
372 		/*
373 		 * VM_PAGER_BAD is the backdoor for a pager to request
374 		 * normal fault handling.
375 		 */
376 		vm_fault_restore_map_lock(fs);
377 		if (fs->map->timestamp != fs->map_generation)
378 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
379 		return (KERN_NOT_RECEIVER);
380 	}
381 	if (rv != VM_PAGER_OK)
382 		return (KERN_FAILURE); /* AKA SIGSEGV */
383 
384 	/* Ensure that the driver is obeying the interface. */
385 	MPASS(pager_first <= pager_last);
386 	MPASS(fs->first_pindex <= pager_last);
387 	MPASS(fs->first_pindex >= pager_first);
388 	MPASS(pager_last < fs->first_object->size);
389 
390 	vm_fault_restore_map_lock(fs);
391 	if (fs->map->timestamp != fs->map_generation) {
392 		vm_fault_populate_cleanup(fs->first_object, pager_first,
393 		    pager_last);
394 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
395 	}
396 
397 	/*
398 	 * The map is unchanged after our last unlock.  Process the fault.
399 	 *
400 	 * The range [pager_first, pager_last] that is given to the
401 	 * pager is only a hint.  The pager may populate any range
402 	 * within the object that includes the requested page index.
403 	 * In case the pager expanded the range, clip it to fit into
404 	 * the map entry.
405 	 */
406 	map_first = OFF_TO_IDX(fs->entry->offset);
407 	if (map_first > pager_first) {
408 		vm_fault_populate_cleanup(fs->first_object, pager_first,
409 		    map_first - 1);
410 		pager_first = map_first;
411 	}
412 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
413 	if (map_last < pager_last) {
414 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
415 		    pager_last);
416 		pager_last = map_last;
417 	}
418 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
419 	    pidx <= pager_last; pidx++, m = vm_page_next(m)) {
420 		vm_fault_populate_check_page(m);
421 		vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags,
422 		    true);
423 		VM_OBJECT_WUNLOCK(fs->first_object);
424 		pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) -
425 		    fs->entry->offset, m, prot, fault_type | (wired ?
426 		    PMAP_ENTER_WIRED : 0), 0);
427 		VM_OBJECT_WLOCK(fs->first_object);
428 		if (pidx == fs->first_pindex)
429 			vm_fault_fill_hold(m_hold, m);
430 		vm_page_lock(m);
431 		if ((fault_flags & VM_FAULT_WIRE) != 0) {
432 			KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
433 			vm_page_wire(m);
434 		} else {
435 			vm_page_activate(m);
436 		}
437 		vm_page_unlock(m);
438 		vm_page_xunbusy(m);
439 	}
440 	curthread->td_ru.ru_majflt++;
441 	return (KERN_SUCCESS);
442 }
443 
444 /*
445  *	vm_fault:
446  *
447  *	Handle a page fault occurring at the given address,
448  *	requiring the given permissions, in the map specified.
449  *	If successful, the page is inserted into the
450  *	associated physical map.
451  *
452  *	NOTE: the given address should be truncated to the
453  *	proper page address.
454  *
455  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
456  *	a standard error specifying why the fault is fatal is returned.
457  *
458  *	The map in question must be referenced, and remains so.
459  *	Caller may hold no locks.
460  */
461 int
462 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
463     int fault_flags)
464 {
465 	struct thread *td;
466 	int result;
467 
468 	td = curthread;
469 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
470 		return (KERN_PROTECTION_FAILURE);
471 #ifdef KTRACE
472 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
473 		ktrfault(vaddr, fault_type);
474 #endif
475 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
476 	    NULL);
477 #ifdef KTRACE
478 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
479 		ktrfaultend(result);
480 #endif
481 	return (result);
482 }
483 
484 int
485 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
486     int fault_flags, vm_page_t *m_hold)
487 {
488 	struct faultstate fs;
489 	struct vnode *vp;
490 	vm_object_t next_object, retry_object;
491 	vm_offset_t e_end, e_start;
492 	vm_pindex_t retry_pindex;
493 	vm_prot_t prot, retry_prot;
494 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
495 	int locked, nera, result, rv;
496 	u_char behavior;
497 	boolean_t wired;	/* Passed by reference. */
498 	bool dead, growstack, hardfault, is_first_object_locked;
499 
500 	VM_CNT_INC(v_vm_faults);
501 	fs.vp = NULL;
502 	faultcount = 0;
503 	nera = -1;
504 	growstack = true;
505 	hardfault = false;
506 
507 RetryFault:;
508 
509 	/*
510 	 * Find the backing store object and offset into it to begin the
511 	 * search.
512 	 */
513 	fs.map = map;
514 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
515 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
516 	if (result != KERN_SUCCESS) {
517 		if (growstack && result == KERN_INVALID_ADDRESS &&
518 		    map != kernel_map) {
519 			result = vm_map_growstack(curproc, vaddr);
520 			if (result != KERN_SUCCESS)
521 				return (KERN_FAILURE);
522 			growstack = false;
523 			goto RetryFault;
524 		}
525 		unlock_vp(&fs);
526 		return (result);
527 	}
528 
529 	fs.map_generation = fs.map->timestamp;
530 
531 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
532 		panic("%s: fault on nofault entry, addr: %#lx",
533 		    __func__, (u_long)vaddr);
534 	}
535 
536 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
537 	    fs.entry->wiring_thread != curthread) {
538 		vm_map_unlock_read(fs.map);
539 		vm_map_lock(fs.map);
540 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
541 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
542 			unlock_vp(&fs);
543 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
544 			vm_map_unlock_and_wait(fs.map, 0);
545 		} else
546 			vm_map_unlock(fs.map);
547 		goto RetryFault;
548 	}
549 
550 	if (wired)
551 		fault_type = prot | (fault_type & VM_PROT_COPY);
552 	else
553 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
554 		    ("!wired && VM_FAULT_WIRE"));
555 
556 	/*
557 	 * Try to avoid lock contention on the top-level object through
558 	 * special-case handling of some types of page faults, specifically,
559 	 * those that are both (1) mapping an existing page from the top-
560 	 * level object and (2) not having to mark that object as containing
561 	 * dirty pages.  Under these conditions, a read lock on the top-level
562 	 * object suffices, allowing multiple page faults of a similar type to
563 	 * run in parallel on the same top-level object.
564 	 */
565 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
566 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
567 	    /* avoid calling vm_object_set_writeable_dirty() */
568 	    ((prot & VM_PROT_WRITE) == 0 ||
569 	    (fs.first_object->type != OBJT_VNODE &&
570 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
571 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
572 		VM_OBJECT_RLOCK(fs.first_object);
573 		if ((prot & VM_PROT_WRITE) == 0 ||
574 		    (fs.first_object->type != OBJT_VNODE &&
575 		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
576 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
577 			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
578 			    fault_flags, wired, m_hold);
579 			if (rv == KERN_SUCCESS)
580 				return (rv);
581 		}
582 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
583 			VM_OBJECT_RUNLOCK(fs.first_object);
584 			VM_OBJECT_WLOCK(fs.first_object);
585 		}
586 	} else {
587 		VM_OBJECT_WLOCK(fs.first_object);
588 	}
589 
590 	/*
591 	 * Make a reference to this object to prevent its disposal while we
592 	 * are messing with it.  Once we have the reference, the map is free
593 	 * to be diddled.  Since objects reference their shadows (and copies),
594 	 * they will stay around as well.
595 	 *
596 	 * Bump the paging-in-progress count to prevent size changes (e.g.
597 	 * truncation operations) during I/O.
598 	 */
599 	vm_object_reference_locked(fs.first_object);
600 	vm_object_pip_add(fs.first_object, 1);
601 
602 	fs.lookup_still_valid = true;
603 
604 	fs.first_m = NULL;
605 
606 	/*
607 	 * Search for the page at object/offset.
608 	 */
609 	fs.object = fs.first_object;
610 	fs.pindex = fs.first_pindex;
611 	while (TRUE) {
612 		/*
613 		 * If the object is marked for imminent termination,
614 		 * we retry here, since the collapse pass has raced
615 		 * with us.  Otherwise, if we see terminally dead
616 		 * object, return fail.
617 		 */
618 		if ((fs.object->flags & OBJ_DEAD) != 0) {
619 			dead = fs.object->type == OBJT_DEAD;
620 			unlock_and_deallocate(&fs);
621 			if (dead)
622 				return (KERN_PROTECTION_FAILURE);
623 			pause("vmf_de", 1);
624 			goto RetryFault;
625 		}
626 
627 		/*
628 		 * See if page is resident
629 		 */
630 		fs.m = vm_page_lookup(fs.object, fs.pindex);
631 		if (fs.m != NULL) {
632 			/*
633 			 * Wait/Retry if the page is busy.  We have to do this
634 			 * if the page is either exclusive or shared busy
635 			 * because the vm_pager may be using read busy for
636 			 * pageouts (and even pageins if it is the vnode
637 			 * pager), and we could end up trying to pagein and
638 			 * pageout the same page simultaneously.
639 			 *
640 			 * We can theoretically allow the busy case on a read
641 			 * fault if the page is marked valid, but since such
642 			 * pages are typically already pmap'd, putting that
643 			 * special case in might be more effort then it is
644 			 * worth.  We cannot under any circumstances mess
645 			 * around with a shared busied page except, perhaps,
646 			 * to pmap it.
647 			 */
648 			if (vm_page_busied(fs.m)) {
649 				/*
650 				 * Reference the page before unlocking and
651 				 * sleeping so that the page daemon is less
652 				 * likely to reclaim it.
653 				 */
654 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
655 				if (fs.object != fs.first_object) {
656 					if (!VM_OBJECT_TRYWLOCK(
657 					    fs.first_object)) {
658 						VM_OBJECT_WUNLOCK(fs.object);
659 						VM_OBJECT_WLOCK(fs.first_object);
660 						VM_OBJECT_WLOCK(fs.object);
661 					}
662 					vm_page_lock(fs.first_m);
663 					vm_page_free(fs.first_m);
664 					vm_page_unlock(fs.first_m);
665 					vm_object_pip_wakeup(fs.first_object);
666 					VM_OBJECT_WUNLOCK(fs.first_object);
667 					fs.first_m = NULL;
668 				}
669 				unlock_map(&fs);
670 				if (fs.m == vm_page_lookup(fs.object,
671 				    fs.pindex)) {
672 					vm_page_sleep_if_busy(fs.m, "vmpfw");
673 				}
674 				vm_object_pip_wakeup(fs.object);
675 				VM_OBJECT_WUNLOCK(fs.object);
676 				VM_CNT_INC(v_intrans);
677 				vm_object_deallocate(fs.first_object);
678 				goto RetryFault;
679 			}
680 			vm_page_lock(fs.m);
681 			vm_page_remque(fs.m);
682 			vm_page_unlock(fs.m);
683 
684 			/*
685 			 * Mark page busy for other processes, and the
686 			 * pagedaemon.  If it still isn't completely valid
687 			 * (readable), jump to readrest, else break-out ( we
688 			 * found the page ).
689 			 */
690 			vm_page_xbusy(fs.m);
691 			if (fs.m->valid != VM_PAGE_BITS_ALL)
692 				goto readrest;
693 			break;
694 		}
695 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
696 
697 		/*
698 		 * Page is not resident.  If the pager might contain the page
699 		 * or this is the beginning of the search, allocate a new
700 		 * page.  (Default objects are zero-fill, so there is no real
701 		 * pager for them.)
702 		 */
703 		if (fs.object->type != OBJT_DEFAULT ||
704 		    fs.object == fs.first_object) {
705 			if (fs.pindex >= fs.object->size) {
706 				unlock_and_deallocate(&fs);
707 				return (KERN_PROTECTION_FAILURE);
708 			}
709 
710 			if (fs.object == fs.first_object &&
711 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
712 			    fs.first_object->shadow_count == 0) {
713 				rv = vm_fault_populate(&fs, vaddr, prot,
714 				    fault_type, fault_flags, wired, m_hold);
715 				switch (rv) {
716 				case KERN_SUCCESS:
717 				case KERN_FAILURE:
718 					unlock_and_deallocate(&fs);
719 					return (rv);
720 				case KERN_RESOURCE_SHORTAGE:
721 					unlock_and_deallocate(&fs);
722 					goto RetryFault;
723 				case KERN_NOT_RECEIVER:
724 					/*
725 					 * Pager's populate() method
726 					 * returned VM_PAGER_BAD.
727 					 */
728 					break;
729 				default:
730 					panic("inconsistent return codes");
731 				}
732 			}
733 
734 			/*
735 			 * Allocate a new page for this object/offset pair.
736 			 *
737 			 * Unlocked read of the p_flag is harmless. At
738 			 * worst, the P_KILLED might be not observed
739 			 * there, and allocation can fail, causing
740 			 * restart and new reading of the p_flag.
741 			 */
742 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
743 #if VM_NRESERVLEVEL > 0
744 				vm_object_color(fs.object, atop(vaddr) -
745 				    fs.pindex);
746 #endif
747 				alloc_req = P_KILLED(curproc) ?
748 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
749 				if (fs.object->type != OBJT_VNODE &&
750 				    fs.object->backing_object == NULL)
751 					alloc_req |= VM_ALLOC_ZERO;
752 				fs.m = vm_page_alloc(fs.object, fs.pindex,
753 				    alloc_req);
754 			}
755 			if (fs.m == NULL) {
756 				unlock_and_deallocate(&fs);
757 				VM_WAITPFAULT;
758 				goto RetryFault;
759 			}
760 		}
761 
762 readrest:
763 		/*
764 		 * At this point, we have either allocated a new page or found
765 		 * an existing page that is only partially valid.
766 		 *
767 		 * We hold a reference on the current object and the page is
768 		 * exclusive busied.
769 		 */
770 
771 		/*
772 		 * If the pager for the current object might have the page,
773 		 * then determine the number of additional pages to read and
774 		 * potentially reprioritize previously read pages for earlier
775 		 * reclamation.  These operations should only be performed
776 		 * once per page fault.  Even if the current pager doesn't
777 		 * have the page, the number of additional pages to read will
778 		 * apply to subsequent objects in the shadow chain.
779 		 */
780 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
781 		    !P_KILLED(curproc)) {
782 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
783 			era = fs.entry->read_ahead;
784 			behavior = vm_map_entry_behavior(fs.entry);
785 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
786 				nera = 0;
787 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
788 				nera = VM_FAULT_READ_AHEAD_MAX;
789 				if (vaddr == fs.entry->next_read)
790 					vm_fault_dontneed(&fs, vaddr, nera);
791 			} else if (vaddr == fs.entry->next_read) {
792 				/*
793 				 * This is a sequential fault.  Arithmetically
794 				 * increase the requested number of pages in
795 				 * the read-ahead window.  The requested
796 				 * number of pages is "# of sequential faults
797 				 * x (read ahead min + 1) + read ahead min"
798 				 */
799 				nera = VM_FAULT_READ_AHEAD_MIN;
800 				if (era > 0) {
801 					nera += era + 1;
802 					if (nera > VM_FAULT_READ_AHEAD_MAX)
803 						nera = VM_FAULT_READ_AHEAD_MAX;
804 				}
805 				if (era == VM_FAULT_READ_AHEAD_MAX)
806 					vm_fault_dontneed(&fs, vaddr, nera);
807 			} else {
808 				/*
809 				 * This is a non-sequential fault.
810 				 */
811 				nera = 0;
812 			}
813 			if (era != nera) {
814 				/*
815 				 * A read lock on the map suffices to update
816 				 * the read ahead count safely.
817 				 */
818 				fs.entry->read_ahead = nera;
819 			}
820 
821 			/*
822 			 * Prepare for unlocking the map.  Save the map
823 			 * entry's start and end addresses, which are used to
824 			 * optimize the size of the pager operation below.
825 			 * Even if the map entry's addresses change after
826 			 * unlocking the map, using the saved addresses is
827 			 * safe.
828 			 */
829 			e_start = fs.entry->start;
830 			e_end = fs.entry->end;
831 		}
832 
833 		/*
834 		 * Call the pager to retrieve the page if there is a chance
835 		 * that the pager has it, and potentially retrieve additional
836 		 * pages at the same time.
837 		 */
838 		if (fs.object->type != OBJT_DEFAULT) {
839 			/*
840 			 * Release the map lock before locking the vnode or
841 			 * sleeping in the pager.  (If the current object has
842 			 * a shadow, then an earlier iteration of this loop
843 			 * may have already unlocked the map.)
844 			 */
845 			unlock_map(&fs);
846 
847 			if (fs.object->type == OBJT_VNODE &&
848 			    (vp = fs.object->handle) != fs.vp) {
849 				/*
850 				 * Perform an unlock in case the desired vnode
851 				 * changed while the map was unlocked during a
852 				 * retry.
853 				 */
854 				unlock_vp(&fs);
855 
856 				locked = VOP_ISLOCKED(vp);
857 				if (locked != LK_EXCLUSIVE)
858 					locked = LK_SHARED;
859 
860 				/*
861 				 * We must not sleep acquiring the vnode lock
862 				 * while we have the page exclusive busied or
863 				 * the object's paging-in-progress count
864 				 * incremented.  Otherwise, we could deadlock.
865 				 */
866 				error = vget(vp, locked | LK_CANRECURSE |
867 				    LK_NOWAIT, curthread);
868 				if (error != 0) {
869 					vhold(vp);
870 					release_page(&fs);
871 					unlock_and_deallocate(&fs);
872 					error = vget(vp, locked | LK_RETRY |
873 					    LK_CANRECURSE, curthread);
874 					vdrop(vp);
875 					fs.vp = vp;
876 					KASSERT(error == 0,
877 					    ("vm_fault: vget failed"));
878 					goto RetryFault;
879 				}
880 				fs.vp = vp;
881 			}
882 			KASSERT(fs.vp == NULL || !fs.map->system_map,
883 			    ("vm_fault: vnode-backed object mapped by system map"));
884 
885 			/*
886 			 * Page in the requested page and hint the pager,
887 			 * that it may bring up surrounding pages.
888 			 */
889 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
890 			    P_KILLED(curproc)) {
891 				behind = 0;
892 				ahead = 0;
893 			} else {
894 				/* Is this a sequential fault? */
895 				if (nera > 0) {
896 					behind = 0;
897 					ahead = nera;
898 				} else {
899 					/*
900 					 * Request a cluster of pages that is
901 					 * aligned to a VM_FAULT_READ_DEFAULT
902 					 * page offset boundary within the
903 					 * object.  Alignment to a page offset
904 					 * boundary is more likely to coincide
905 					 * with the underlying file system
906 					 * block than alignment to a virtual
907 					 * address boundary.
908 					 */
909 					cluster_offset = fs.pindex %
910 					    VM_FAULT_READ_DEFAULT;
911 					behind = ulmin(cluster_offset,
912 					    atop(vaddr - e_start));
913 					ahead = VM_FAULT_READ_DEFAULT - 1 -
914 					    cluster_offset;
915 				}
916 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
917 			}
918 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
919 			    &behind, &ahead);
920 			if (rv == VM_PAGER_OK) {
921 				faultcount = behind + 1 + ahead;
922 				hardfault = true;
923 				break; /* break to PAGE HAS BEEN FOUND */
924 			}
925 			if (rv == VM_PAGER_ERROR)
926 				printf("vm_fault: pager read error, pid %d (%s)\n",
927 				    curproc->p_pid, curproc->p_comm);
928 
929 			/*
930 			 * If an I/O error occurred or the requested page was
931 			 * outside the range of the pager, clean up and return
932 			 * an error.
933 			 */
934 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
935 				vm_page_lock(fs.m);
936 				if (fs.m->wire_count == 0)
937 					vm_page_free(fs.m);
938 				else
939 					vm_page_xunbusy_maybelocked(fs.m);
940 				vm_page_unlock(fs.m);
941 				fs.m = NULL;
942 				unlock_and_deallocate(&fs);
943 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
944 				    KERN_PROTECTION_FAILURE);
945 			}
946 
947 			/*
948 			 * The requested page does not exist at this object/
949 			 * offset.  Remove the invalid page from the object,
950 			 * waking up anyone waiting for it, and continue on to
951 			 * the next object.  However, if this is the top-level
952 			 * object, we must leave the busy page in place to
953 			 * prevent another process from rushing past us, and
954 			 * inserting the page in that object at the same time
955 			 * that we are.
956 			 */
957 			if (fs.object != fs.first_object) {
958 				vm_page_lock(fs.m);
959 				if (fs.m->wire_count == 0)
960 					vm_page_free(fs.m);
961 				else
962 					vm_page_xunbusy_maybelocked(fs.m);
963 				vm_page_unlock(fs.m);
964 				fs.m = NULL;
965 			}
966 		}
967 
968 		/*
969 		 * We get here if the object has default pager (or unwiring)
970 		 * or the pager doesn't have the page.
971 		 */
972 		if (fs.object == fs.first_object)
973 			fs.first_m = fs.m;
974 
975 		/*
976 		 * Move on to the next object.  Lock the next object before
977 		 * unlocking the current one.
978 		 */
979 		next_object = fs.object->backing_object;
980 		if (next_object == NULL) {
981 			/*
982 			 * If there's no object left, fill the page in the top
983 			 * object with zeros.
984 			 */
985 			if (fs.object != fs.first_object) {
986 				vm_object_pip_wakeup(fs.object);
987 				VM_OBJECT_WUNLOCK(fs.object);
988 
989 				fs.object = fs.first_object;
990 				fs.pindex = fs.first_pindex;
991 				fs.m = fs.first_m;
992 				VM_OBJECT_WLOCK(fs.object);
993 			}
994 			fs.first_m = NULL;
995 
996 			/*
997 			 * Zero the page if necessary and mark it valid.
998 			 */
999 			if ((fs.m->flags & PG_ZERO) == 0) {
1000 				pmap_zero_page(fs.m);
1001 			} else {
1002 				VM_CNT_INC(v_ozfod);
1003 			}
1004 			VM_CNT_INC(v_zfod);
1005 			fs.m->valid = VM_PAGE_BITS_ALL;
1006 			/* Don't try to prefault neighboring pages. */
1007 			faultcount = 1;
1008 			break;	/* break to PAGE HAS BEEN FOUND */
1009 		} else {
1010 			KASSERT(fs.object != next_object,
1011 			    ("object loop %p", next_object));
1012 			VM_OBJECT_WLOCK(next_object);
1013 			vm_object_pip_add(next_object, 1);
1014 			if (fs.object != fs.first_object)
1015 				vm_object_pip_wakeup(fs.object);
1016 			fs.pindex +=
1017 			    OFF_TO_IDX(fs.object->backing_object_offset);
1018 			VM_OBJECT_WUNLOCK(fs.object);
1019 			fs.object = next_object;
1020 		}
1021 	}
1022 
1023 	vm_page_assert_xbusied(fs.m);
1024 
1025 	/*
1026 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1027 	 * is held.]
1028 	 */
1029 
1030 	/*
1031 	 * If the page is being written, but isn't already owned by the
1032 	 * top-level object, we have to copy it into a new page owned by the
1033 	 * top-level object.
1034 	 */
1035 	if (fs.object != fs.first_object) {
1036 		/*
1037 		 * We only really need to copy if we want to write it.
1038 		 */
1039 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1040 			/*
1041 			 * This allows pages to be virtually copied from a
1042 			 * backing_object into the first_object, where the
1043 			 * backing object has no other refs to it, and cannot
1044 			 * gain any more refs.  Instead of a bcopy, we just
1045 			 * move the page from the backing object to the
1046 			 * first object.  Note that we must mark the page
1047 			 * dirty in the first object so that it will go out
1048 			 * to swap when needed.
1049 			 */
1050 			is_first_object_locked = false;
1051 			if (
1052 				/*
1053 				 * Only one shadow object
1054 				 */
1055 				(fs.object->shadow_count == 1) &&
1056 				/*
1057 				 * No COW refs, except us
1058 				 */
1059 				(fs.object->ref_count == 1) &&
1060 				/*
1061 				 * No one else can look this object up
1062 				 */
1063 				(fs.object->handle == NULL) &&
1064 				/*
1065 				 * No other ways to look the object up
1066 				 */
1067 				((fs.object->type == OBJT_DEFAULT) ||
1068 				 (fs.object->type == OBJT_SWAP)) &&
1069 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1070 				/*
1071 				 * We don't chase down the shadow chain
1072 				 */
1073 			    fs.object == fs.first_object->backing_object) {
1074 				vm_page_lock(fs.m);
1075 				vm_page_remove(fs.m);
1076 				vm_page_unlock(fs.m);
1077 				vm_page_lock(fs.first_m);
1078 				vm_page_replace_checked(fs.m, fs.first_object,
1079 				    fs.first_pindex, fs.first_m);
1080 				vm_page_free(fs.first_m);
1081 				vm_page_unlock(fs.first_m);
1082 				vm_page_dirty(fs.m);
1083 #if VM_NRESERVLEVEL > 0
1084 				/*
1085 				 * Rename the reservation.
1086 				 */
1087 				vm_reserv_rename(fs.m, fs.first_object,
1088 				    fs.object, OFF_TO_IDX(
1089 				    fs.first_object->backing_object_offset));
1090 #endif
1091 				/*
1092 				 * Removing the page from the backing object
1093 				 * unbusied it.
1094 				 */
1095 				vm_page_xbusy(fs.m);
1096 				fs.first_m = fs.m;
1097 				fs.m = NULL;
1098 				VM_CNT_INC(v_cow_optim);
1099 			} else {
1100 				/*
1101 				 * Oh, well, lets copy it.
1102 				 */
1103 				pmap_copy_page(fs.m, fs.first_m);
1104 				fs.first_m->valid = VM_PAGE_BITS_ALL;
1105 				if (wired && (fault_flags &
1106 				    VM_FAULT_WIRE) == 0) {
1107 					vm_page_lock(fs.first_m);
1108 					vm_page_wire(fs.first_m);
1109 					vm_page_unlock(fs.first_m);
1110 
1111 					vm_page_lock(fs.m);
1112 					vm_page_unwire(fs.m, PQ_INACTIVE);
1113 					vm_page_unlock(fs.m);
1114 				}
1115 				/*
1116 				 * We no longer need the old page or object.
1117 				 */
1118 				release_page(&fs);
1119 			}
1120 			/*
1121 			 * fs.object != fs.first_object due to above
1122 			 * conditional
1123 			 */
1124 			vm_object_pip_wakeup(fs.object);
1125 			VM_OBJECT_WUNLOCK(fs.object);
1126 			/*
1127 			 * Only use the new page below...
1128 			 */
1129 			fs.object = fs.first_object;
1130 			fs.pindex = fs.first_pindex;
1131 			fs.m = fs.first_m;
1132 			if (!is_first_object_locked)
1133 				VM_OBJECT_WLOCK(fs.object);
1134 			VM_CNT_INC(v_cow_faults);
1135 			curthread->td_cow++;
1136 		} else {
1137 			prot &= ~VM_PROT_WRITE;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * We must verify that the maps have not changed since our last
1143 	 * lookup.
1144 	 */
1145 	if (!fs.lookup_still_valid) {
1146 		if (!vm_map_trylock_read(fs.map)) {
1147 			release_page(&fs);
1148 			unlock_and_deallocate(&fs);
1149 			goto RetryFault;
1150 		}
1151 		fs.lookup_still_valid = true;
1152 		if (fs.map->timestamp != fs.map_generation) {
1153 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1154 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1155 
1156 			/*
1157 			 * If we don't need the page any longer, put it on the inactive
1158 			 * list (the easiest thing to do here).  If no one needs it,
1159 			 * pageout will grab it eventually.
1160 			 */
1161 			if (result != KERN_SUCCESS) {
1162 				release_page(&fs);
1163 				unlock_and_deallocate(&fs);
1164 
1165 				/*
1166 				 * If retry of map lookup would have blocked then
1167 				 * retry fault from start.
1168 				 */
1169 				if (result == KERN_FAILURE)
1170 					goto RetryFault;
1171 				return (result);
1172 			}
1173 			if ((retry_object != fs.first_object) ||
1174 			    (retry_pindex != fs.first_pindex)) {
1175 				release_page(&fs);
1176 				unlock_and_deallocate(&fs);
1177 				goto RetryFault;
1178 			}
1179 
1180 			/*
1181 			 * Check whether the protection has changed or the object has
1182 			 * been copied while we left the map unlocked. Changing from
1183 			 * read to write permission is OK - we leave the page
1184 			 * write-protected, and catch the write fault. Changing from
1185 			 * write to read permission means that we can't mark the page
1186 			 * write-enabled after all.
1187 			 */
1188 			prot &= retry_prot;
1189 		}
1190 	}
1191 
1192 	/*
1193 	 * If the page was filled by a pager, save the virtual address that
1194 	 * should be faulted on next under a sequential access pattern to the
1195 	 * map entry.  A read lock on the map suffices to update this address
1196 	 * safely.
1197 	 */
1198 	if (hardfault)
1199 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1200 
1201 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1202 	vm_page_assert_xbusied(fs.m);
1203 
1204 	/*
1205 	 * Page must be completely valid or it is not fit to
1206 	 * map into user space.  vm_pager_get_pages() ensures this.
1207 	 */
1208 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1209 	    ("vm_fault: page %p partially invalid", fs.m));
1210 	VM_OBJECT_WUNLOCK(fs.object);
1211 
1212 	/*
1213 	 * Put this page into the physical map.  We had to do the unlock above
1214 	 * because pmap_enter() may sleep.  We don't put the page
1215 	 * back on the active queue until later so that the pageout daemon
1216 	 * won't find it (yet).
1217 	 */
1218 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1219 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1220 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1221 	    wired == 0)
1222 		vm_fault_prefault(&fs, vaddr,
1223 		    faultcount > 0 ? behind : PFBAK,
1224 		    faultcount > 0 ? ahead : PFFOR);
1225 	VM_OBJECT_WLOCK(fs.object);
1226 	vm_page_lock(fs.m);
1227 
1228 	/*
1229 	 * If the page is not wired down, then put it where the pageout daemon
1230 	 * can find it.
1231 	 */
1232 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1233 		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1234 		vm_page_wire(fs.m);
1235 	} else
1236 		vm_page_activate(fs.m);
1237 	if (m_hold != NULL) {
1238 		*m_hold = fs.m;
1239 		vm_page_hold(fs.m);
1240 	}
1241 	vm_page_unlock(fs.m);
1242 	vm_page_xunbusy(fs.m);
1243 
1244 	/*
1245 	 * Unlock everything, and return
1246 	 */
1247 	unlock_and_deallocate(&fs);
1248 	if (hardfault) {
1249 		VM_CNT_INC(v_io_faults);
1250 		curthread->td_ru.ru_majflt++;
1251 #ifdef RACCT
1252 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1253 			PROC_LOCK(curproc);
1254 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1255 				racct_add_force(curproc, RACCT_WRITEBPS,
1256 				    PAGE_SIZE + behind * PAGE_SIZE);
1257 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1258 			} else {
1259 				racct_add_force(curproc, RACCT_READBPS,
1260 				    PAGE_SIZE + ahead * PAGE_SIZE);
1261 				racct_add_force(curproc, RACCT_READIOPS, 1);
1262 			}
1263 			PROC_UNLOCK(curproc);
1264 		}
1265 #endif
1266 	} else
1267 		curthread->td_ru.ru_minflt++;
1268 
1269 	return (KERN_SUCCESS);
1270 }
1271 
1272 /*
1273  * Speed up the reclamation of pages that precede the faulting pindex within
1274  * the first object of the shadow chain.  Essentially, perform the equivalent
1275  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1276  * the faulting pindex by the cluster size when the pages read by vm_fault()
1277  * cross a cluster-size boundary.  The cluster size is the greater of the
1278  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1279  *
1280  * When "fs->first_object" is a shadow object, the pages in the backing object
1281  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1282  * function must only be concerned with pages in the first object.
1283  */
1284 static void
1285 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1286 {
1287 	vm_map_entry_t entry;
1288 	vm_object_t first_object, object;
1289 	vm_offset_t end, start;
1290 	vm_page_t m, m_next;
1291 	vm_pindex_t pend, pstart;
1292 	vm_size_t size;
1293 
1294 	object = fs->object;
1295 	VM_OBJECT_ASSERT_WLOCKED(object);
1296 	first_object = fs->first_object;
1297 	if (first_object != object) {
1298 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1299 			VM_OBJECT_WUNLOCK(object);
1300 			VM_OBJECT_WLOCK(first_object);
1301 			VM_OBJECT_WLOCK(object);
1302 		}
1303 	}
1304 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1305 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1306 		size = VM_FAULT_DONTNEED_MIN;
1307 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1308 			size = pagesizes[1];
1309 		end = rounddown2(vaddr, size);
1310 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1311 		    (entry = fs->entry)->start < end) {
1312 			if (end - entry->start < size)
1313 				start = entry->start;
1314 			else
1315 				start = end - size;
1316 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1317 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1318 			    entry->start);
1319 			m_next = vm_page_find_least(first_object, pstart);
1320 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1321 			    entry->start);
1322 			while ((m = m_next) != NULL && m->pindex < pend) {
1323 				m_next = TAILQ_NEXT(m, listq);
1324 				if (m->valid != VM_PAGE_BITS_ALL ||
1325 				    vm_page_busied(m))
1326 					continue;
1327 
1328 				/*
1329 				 * Don't clear PGA_REFERENCED, since it would
1330 				 * likely represent a reference by a different
1331 				 * process.
1332 				 *
1333 				 * Typically, at this point, prefetched pages
1334 				 * are still in the inactive queue.  Only
1335 				 * pages that triggered page faults are in the
1336 				 * active queue.
1337 				 */
1338 				vm_page_lock(m);
1339 				vm_page_deactivate(m);
1340 				vm_page_unlock(m);
1341 			}
1342 		}
1343 	}
1344 	if (first_object != object)
1345 		VM_OBJECT_WUNLOCK(first_object);
1346 }
1347 
1348 /*
1349  * vm_fault_prefault provides a quick way of clustering
1350  * pagefaults into a processes address space.  It is a "cousin"
1351  * of vm_map_pmap_enter, except it runs at page fault time instead
1352  * of mmap time.
1353  */
1354 static void
1355 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1356     int backward, int forward)
1357 {
1358 	pmap_t pmap;
1359 	vm_map_entry_t entry;
1360 	vm_object_t backing_object, lobject;
1361 	vm_offset_t addr, starta;
1362 	vm_pindex_t pindex;
1363 	vm_page_t m;
1364 	int i;
1365 
1366 	pmap = fs->map->pmap;
1367 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1368 		return;
1369 
1370 	entry = fs->entry;
1371 
1372 	if (addra < backward * PAGE_SIZE) {
1373 		starta = entry->start;
1374 	} else {
1375 		starta = addra - backward * PAGE_SIZE;
1376 		if (starta < entry->start)
1377 			starta = entry->start;
1378 	}
1379 
1380 	/*
1381 	 * Generate the sequence of virtual addresses that are candidates for
1382 	 * prefaulting in an outward spiral from the faulting virtual address,
1383 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1384 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1385 	 * If the candidate address doesn't have a backing physical page, then
1386 	 * the loop immediately terminates.
1387 	 */
1388 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1389 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1390 		    PAGE_SIZE);
1391 		if (addr > addra + forward * PAGE_SIZE)
1392 			addr = 0;
1393 
1394 		if (addr < starta || addr >= entry->end)
1395 			continue;
1396 
1397 		if (!pmap_is_prefaultable(pmap, addr))
1398 			continue;
1399 
1400 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1401 		lobject = entry->object.vm_object;
1402 		VM_OBJECT_RLOCK(lobject);
1403 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1404 		    lobject->type == OBJT_DEFAULT &&
1405 		    (backing_object = lobject->backing_object) != NULL) {
1406 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1407 			    0, ("vm_fault_prefault: unaligned object offset"));
1408 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1409 			VM_OBJECT_RLOCK(backing_object);
1410 			VM_OBJECT_RUNLOCK(lobject);
1411 			lobject = backing_object;
1412 		}
1413 		if (m == NULL) {
1414 			VM_OBJECT_RUNLOCK(lobject);
1415 			break;
1416 		}
1417 		if (m->valid == VM_PAGE_BITS_ALL &&
1418 		    (m->flags & PG_FICTITIOUS) == 0)
1419 			pmap_enter_quick(pmap, addr, m, entry->protection);
1420 		VM_OBJECT_RUNLOCK(lobject);
1421 	}
1422 }
1423 
1424 /*
1425  * Hold each of the physical pages that are mapped by the specified range of
1426  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1427  * and allow the specified types of access, "prot".  If all of the implied
1428  * pages are successfully held, then the number of held pages is returned
1429  * together with pointers to those pages in the array "ma".  However, if any
1430  * of the pages cannot be held, -1 is returned.
1431  */
1432 int
1433 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1434     vm_prot_t prot, vm_page_t *ma, int max_count)
1435 {
1436 	vm_offset_t end, va;
1437 	vm_page_t *mp;
1438 	int count;
1439 	boolean_t pmap_failed;
1440 
1441 	if (len == 0)
1442 		return (0);
1443 	end = round_page(addr + len);
1444 	addr = trunc_page(addr);
1445 
1446 	/*
1447 	 * Check for illegal addresses.
1448 	 */
1449 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1450 		return (-1);
1451 
1452 	if (atop(end - addr) > max_count)
1453 		panic("vm_fault_quick_hold_pages: count > max_count");
1454 	count = atop(end - addr);
1455 
1456 	/*
1457 	 * Most likely, the physical pages are resident in the pmap, so it is
1458 	 * faster to try pmap_extract_and_hold() first.
1459 	 */
1460 	pmap_failed = FALSE;
1461 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1462 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1463 		if (*mp == NULL)
1464 			pmap_failed = TRUE;
1465 		else if ((prot & VM_PROT_WRITE) != 0 &&
1466 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1467 			/*
1468 			 * Explicitly dirty the physical page.  Otherwise, the
1469 			 * caller's changes may go unnoticed because they are
1470 			 * performed through an unmanaged mapping or by a DMA
1471 			 * operation.
1472 			 *
1473 			 * The object lock is not held here.
1474 			 * See vm_page_clear_dirty_mask().
1475 			 */
1476 			vm_page_dirty(*mp);
1477 		}
1478 	}
1479 	if (pmap_failed) {
1480 		/*
1481 		 * One or more pages could not be held by the pmap.  Either no
1482 		 * page was mapped at the specified virtual address or that
1483 		 * mapping had insufficient permissions.  Attempt to fault in
1484 		 * and hold these pages.
1485 		 */
1486 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1487 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1488 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1489 				goto error;
1490 	}
1491 	return (count);
1492 error:
1493 	for (mp = ma; mp < ma + count; mp++)
1494 		if (*mp != NULL) {
1495 			vm_page_lock(*mp);
1496 			vm_page_unhold(*mp);
1497 			vm_page_unlock(*mp);
1498 		}
1499 	return (-1);
1500 }
1501 
1502 /*
1503  *	Routine:
1504  *		vm_fault_copy_entry
1505  *	Function:
1506  *		Create new shadow object backing dst_entry with private copy of
1507  *		all underlying pages. When src_entry is equal to dst_entry,
1508  *		function implements COW for wired-down map entry. Otherwise,
1509  *		it forks wired entry into dst_map.
1510  *
1511  *	In/out conditions:
1512  *		The source and destination maps must be locked for write.
1513  *		The source map entry must be wired down (or be a sharing map
1514  *		entry corresponding to a main map entry that is wired down).
1515  */
1516 void
1517 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1518     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1519     vm_ooffset_t *fork_charge)
1520 {
1521 	vm_object_t backing_object, dst_object, object, src_object;
1522 	vm_pindex_t dst_pindex, pindex, src_pindex;
1523 	vm_prot_t access, prot;
1524 	vm_offset_t vaddr;
1525 	vm_page_t dst_m;
1526 	vm_page_t src_m;
1527 	boolean_t upgrade;
1528 
1529 #ifdef	lint
1530 	src_map++;
1531 #endif	/* lint */
1532 
1533 	upgrade = src_entry == dst_entry;
1534 	access = prot = dst_entry->protection;
1535 
1536 	src_object = src_entry->object.vm_object;
1537 	src_pindex = OFF_TO_IDX(src_entry->offset);
1538 
1539 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1540 		dst_object = src_object;
1541 		vm_object_reference(dst_object);
1542 	} else {
1543 		/*
1544 		 * Create the top-level object for the destination entry. (Doesn't
1545 		 * actually shadow anything - we copy the pages directly.)
1546 		 */
1547 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1548 		    atop(dst_entry->end - dst_entry->start));
1549 #if VM_NRESERVLEVEL > 0
1550 		dst_object->flags |= OBJ_COLORED;
1551 		dst_object->pg_color = atop(dst_entry->start);
1552 #endif
1553 	}
1554 
1555 	VM_OBJECT_WLOCK(dst_object);
1556 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1557 	    ("vm_fault_copy_entry: vm_object not NULL"));
1558 	if (src_object != dst_object) {
1559 		dst_entry->object.vm_object = dst_object;
1560 		dst_entry->offset = 0;
1561 		dst_object->charge = dst_entry->end - dst_entry->start;
1562 	}
1563 	if (fork_charge != NULL) {
1564 		KASSERT(dst_entry->cred == NULL,
1565 		    ("vm_fault_copy_entry: leaked swp charge"));
1566 		dst_object->cred = curthread->td_ucred;
1567 		crhold(dst_object->cred);
1568 		*fork_charge += dst_object->charge;
1569 	} else if (dst_object->cred == NULL) {
1570 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1571 		    dst_entry));
1572 		dst_object->cred = dst_entry->cred;
1573 		dst_entry->cred = NULL;
1574 	}
1575 
1576 	/*
1577 	 * If not an upgrade, then enter the mappings in the pmap as
1578 	 * read and/or execute accesses.  Otherwise, enter them as
1579 	 * write accesses.
1580 	 *
1581 	 * A writeable large page mapping is only created if all of
1582 	 * the constituent small page mappings are modified. Marking
1583 	 * PTEs as modified on inception allows promotion to happen
1584 	 * without taking potentially large number of soft faults.
1585 	 */
1586 	if (!upgrade)
1587 		access &= ~VM_PROT_WRITE;
1588 
1589 	/*
1590 	 * Loop through all of the virtual pages within the entry's
1591 	 * range, copying each page from the source object to the
1592 	 * destination object.  Since the source is wired, those pages
1593 	 * must exist.  In contrast, the destination is pageable.
1594 	 * Since the destination object does share any backing storage
1595 	 * with the source object, all of its pages must be dirtied,
1596 	 * regardless of whether they can be written.
1597 	 */
1598 	for (vaddr = dst_entry->start, dst_pindex = 0;
1599 	    vaddr < dst_entry->end;
1600 	    vaddr += PAGE_SIZE, dst_pindex++) {
1601 again:
1602 		/*
1603 		 * Find the page in the source object, and copy it in.
1604 		 * Because the source is wired down, the page will be
1605 		 * in memory.
1606 		 */
1607 		if (src_object != dst_object)
1608 			VM_OBJECT_RLOCK(src_object);
1609 		object = src_object;
1610 		pindex = src_pindex + dst_pindex;
1611 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1612 		    (backing_object = object->backing_object) != NULL) {
1613 			/*
1614 			 * Unless the source mapping is read-only or
1615 			 * it is presently being upgraded from
1616 			 * read-only, the first object in the shadow
1617 			 * chain should provide all of the pages.  In
1618 			 * other words, this loop body should never be
1619 			 * executed when the source mapping is already
1620 			 * read/write.
1621 			 */
1622 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1623 			    upgrade,
1624 			    ("vm_fault_copy_entry: main object missing page"));
1625 
1626 			VM_OBJECT_RLOCK(backing_object);
1627 			pindex += OFF_TO_IDX(object->backing_object_offset);
1628 			if (object != dst_object)
1629 				VM_OBJECT_RUNLOCK(object);
1630 			object = backing_object;
1631 		}
1632 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1633 
1634 		if (object != dst_object) {
1635 			/*
1636 			 * Allocate a page in the destination object.
1637 			 */
1638 			dst_m = vm_page_alloc(dst_object, (src_object ==
1639 			    dst_object ? src_pindex : 0) + dst_pindex,
1640 			    VM_ALLOC_NORMAL);
1641 			if (dst_m == NULL) {
1642 				VM_OBJECT_WUNLOCK(dst_object);
1643 				VM_OBJECT_RUNLOCK(object);
1644 				VM_WAIT;
1645 				VM_OBJECT_WLOCK(dst_object);
1646 				goto again;
1647 			}
1648 			pmap_copy_page(src_m, dst_m);
1649 			VM_OBJECT_RUNLOCK(object);
1650 			dst_m->valid = VM_PAGE_BITS_ALL;
1651 			dst_m->dirty = VM_PAGE_BITS_ALL;
1652 		} else {
1653 			dst_m = src_m;
1654 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1655 				goto again;
1656 			vm_page_xbusy(dst_m);
1657 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1658 			    ("invalid dst page %p", dst_m));
1659 		}
1660 		VM_OBJECT_WUNLOCK(dst_object);
1661 
1662 		/*
1663 		 * Enter it in the pmap. If a wired, copy-on-write
1664 		 * mapping is being replaced by a write-enabled
1665 		 * mapping, then wire that new mapping.
1666 		 */
1667 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1668 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1669 
1670 		/*
1671 		 * Mark it no longer busy, and put it on the active list.
1672 		 */
1673 		VM_OBJECT_WLOCK(dst_object);
1674 
1675 		if (upgrade) {
1676 			if (src_m != dst_m) {
1677 				vm_page_lock(src_m);
1678 				vm_page_unwire(src_m, PQ_INACTIVE);
1679 				vm_page_unlock(src_m);
1680 				vm_page_lock(dst_m);
1681 				vm_page_wire(dst_m);
1682 				vm_page_unlock(dst_m);
1683 			} else {
1684 				KASSERT(dst_m->wire_count > 0,
1685 				    ("dst_m %p is not wired", dst_m));
1686 			}
1687 		} else {
1688 			vm_page_lock(dst_m);
1689 			vm_page_activate(dst_m);
1690 			vm_page_unlock(dst_m);
1691 		}
1692 		vm_page_xunbusy(dst_m);
1693 	}
1694 	VM_OBJECT_WUNLOCK(dst_object);
1695 	if (upgrade) {
1696 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1697 		vm_object_deallocate(src_object);
1698 	}
1699 }
1700 
1701 /*
1702  * Block entry into the machine-independent layer's page fault handler by
1703  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1704  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1705  * spurious page faults.
1706  */
1707 int
1708 vm_fault_disable_pagefaults(void)
1709 {
1710 
1711 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1712 }
1713 
1714 void
1715 vm_fault_enable_pagefaults(int save)
1716 {
1717 
1718 	curthread_pflags_restore(save);
1719 }
1720