xref: /freebsd/sys/vm/vm_fault.c (revision 927358dd98cb902160093e0dc0bac002d6b43858)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/pctrie.h>
89 #include <sys/proc.h>
90 #include <sys/racct.h>
91 #include <sys/refcount.h>
92 #include <sys/resourcevar.h>
93 #include <sys/rwlock.h>
94 #include <sys/signalvar.h>
95 #include <sys/sysctl.h>
96 #include <sys/sysent.h>
97 #include <sys/vmmeter.h>
98 #include <sys/vnode.h>
99 #ifdef KTRACE
100 #include <sys/ktrace.h>
101 #endif
102 
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/vm_reserv.h>
114 
115 #define PFBAK 4
116 #define PFFOR 4
117 
118 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
119 
120 #define	VM_FAULT_DONTNEED_MIN	1048576
121 
122 struct faultstate {
123 	/* Fault parameters. */
124 	vm_offset_t	vaddr;
125 	vm_page_t	*m_hold;
126 	vm_prot_t	fault_type;
127 	vm_prot_t	prot;
128 	int		fault_flags;
129 	boolean_t	wired;
130 
131 	/* Control state. */
132 	struct timeval	oom_start_time;
133 	bool		oom_started;
134 	int		nera;
135 	bool		can_read_lock;
136 
137 	/* Page reference for cow. */
138 	vm_page_t m_cow;
139 
140 	/* Current object. */
141 	vm_object_t	object;
142 	vm_pindex_t	pindex;
143 	vm_page_t	m;
144 
145 	/* Top-level map object. */
146 	vm_object_t	first_object;
147 	vm_pindex_t	first_pindex;
148 	vm_page_t	first_m;
149 
150 	/* Map state. */
151 	vm_map_t	map;
152 	vm_map_entry_t	entry;
153 	int		map_generation;
154 	bool		lookup_still_valid;
155 
156 	/* Vnode if locked. */
157 	struct vnode	*vp;
158 };
159 
160 /*
161  * Return codes for internal fault routines.
162  */
163 enum fault_status {
164 	FAULT_SUCCESS = 1,	/* Return success to user. */
165 	FAULT_FAILURE,		/* Return failure to user. */
166 	FAULT_CONTINUE,		/* Continue faulting. */
167 	FAULT_RESTART,		/* Restart fault. */
168 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
169 	FAULT_HARD,		/* Performed I/O. */
170 	FAULT_SOFT,		/* Found valid page. */
171 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
172 };
173 
174 enum fault_next_status {
175 	FAULT_NEXT_GOTOBJ = 1,
176 	FAULT_NEXT_NOOBJ,
177 	FAULT_NEXT_RESTART,
178 };
179 
180 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
181 	    int ahead);
182 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
183 	    int backward, int forward, bool obj_locked);
184 
185 static int vm_pfault_oom_attempts = 3;
186 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
187     &vm_pfault_oom_attempts, 0,
188     "Number of page allocation attempts in page fault handler before it "
189     "triggers OOM handling");
190 
191 static int vm_pfault_oom_wait = 10;
192 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
193     &vm_pfault_oom_wait, 0,
194     "Number of seconds to wait for free pages before retrying "
195     "the page fault handler");
196 
197 static inline void
198 vm_fault_page_release(vm_page_t *mp)
199 {
200 	vm_page_t m;
201 
202 	m = *mp;
203 	if (m != NULL) {
204 		/*
205 		 * We are likely to loop around again and attempt to busy
206 		 * this page.  Deactivating it leaves it available for
207 		 * pageout while optimizing fault restarts.
208 		 */
209 		vm_page_deactivate(m);
210 		vm_page_xunbusy(m);
211 		*mp = NULL;
212 	}
213 }
214 
215 static inline void
216 vm_fault_page_free(vm_page_t *mp)
217 {
218 	vm_page_t m;
219 
220 	m = *mp;
221 	if (m != NULL) {
222 		VM_OBJECT_ASSERT_WLOCKED(m->object);
223 		if (!vm_page_wired(m))
224 			vm_page_free(m);
225 		else
226 			vm_page_xunbusy(m);
227 		*mp = NULL;
228 	}
229 }
230 
231 /*
232  * Return true if a vm_pager_get_pages() call is needed in order to check
233  * whether the pager might have a particular page, false if it can be determined
234  * immediately that the pager can not have a copy.  For swap objects, this can
235  * be checked quickly.
236  */
237 static inline bool
238 vm_fault_object_needs_getpages(vm_object_t object)
239 {
240 	VM_OBJECT_ASSERT_LOCKED(object);
241 
242 	return ((object->flags & OBJ_SWAP) == 0 ||
243 	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
244 }
245 
246 static inline void
247 vm_fault_unlock_map(struct faultstate *fs)
248 {
249 
250 	if (fs->lookup_still_valid) {
251 		vm_map_lookup_done(fs->map, fs->entry);
252 		fs->lookup_still_valid = false;
253 	}
254 }
255 
256 static void
257 vm_fault_unlock_vp(struct faultstate *fs)
258 {
259 
260 	if (fs->vp != NULL) {
261 		vput(fs->vp);
262 		fs->vp = NULL;
263 	}
264 }
265 
266 static void
267 vm_fault_deallocate(struct faultstate *fs)
268 {
269 
270 	vm_fault_page_release(&fs->m_cow);
271 	vm_fault_page_release(&fs->m);
272 	vm_object_pip_wakeup(fs->object);
273 	if (fs->object != fs->first_object) {
274 		VM_OBJECT_WLOCK(fs->first_object);
275 		vm_fault_page_free(&fs->first_m);
276 		VM_OBJECT_WUNLOCK(fs->first_object);
277 		vm_object_pip_wakeup(fs->first_object);
278 	}
279 	vm_object_deallocate(fs->first_object);
280 	vm_fault_unlock_map(fs);
281 	vm_fault_unlock_vp(fs);
282 }
283 
284 static void
285 vm_fault_unlock_and_deallocate(struct faultstate *fs)
286 {
287 
288 	VM_OBJECT_UNLOCK(fs->object);
289 	vm_fault_deallocate(fs);
290 }
291 
292 static void
293 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
294 {
295 	bool need_dirty;
296 
297 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
298 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
299 	    (m->oflags & VPO_UNMANAGED) != 0)
300 		return;
301 
302 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
303 
304 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
305 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
306 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
307 
308 	vm_object_set_writeable_dirty(m->object);
309 
310 	/*
311 	 * If the fault is a write, we know that this page is being
312 	 * written NOW so dirty it explicitly to save on
313 	 * pmap_is_modified() calls later.
314 	 *
315 	 * Also, since the page is now dirty, we can possibly tell
316 	 * the pager to release any swap backing the page.
317 	 */
318 	if (need_dirty && vm_page_set_dirty(m) == 0) {
319 		/*
320 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
321 		 * if the page is already dirty to prevent data written with
322 		 * the expectation of being synced from not being synced.
323 		 * Likewise if this entry does not request NOSYNC then make
324 		 * sure the page isn't marked NOSYNC.  Applications sharing
325 		 * data should use the same flags to avoid ping ponging.
326 		 */
327 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
328 			vm_page_aflag_set(m, PGA_NOSYNC);
329 		else
330 			vm_page_aflag_clear(m, PGA_NOSYNC);
331 	}
332 
333 }
334 
335 /*
336  * Unlocks fs.first_object and fs.map on success.
337  */
338 static enum fault_status
339 vm_fault_soft_fast(struct faultstate *fs)
340 {
341 	vm_page_t m, m_map;
342 #if VM_NRESERVLEVEL > 0
343 	vm_page_t m_super;
344 	int flags;
345 #endif
346 	int psind;
347 	vm_offset_t vaddr;
348 
349 	MPASS(fs->vp == NULL);
350 
351 	vaddr = fs->vaddr;
352 	vm_object_busy(fs->first_object);
353 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
354 	/* A busy page can be mapped for read|execute access. */
355 	if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
356 	    vm_page_busied(m)) || !vm_page_all_valid(m))
357 		goto fail;
358 	m_map = m;
359 	psind = 0;
360 #if VM_NRESERVLEVEL > 0
361 	if ((m->flags & PG_FICTITIOUS) == 0 &&
362 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
363 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
364 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
365 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
366 	    (pagesizes[m_super->psind] - 1)) && !fs->wired &&
367 	    pmap_ps_enabled(fs->map->pmap)) {
368 		flags = PS_ALL_VALID;
369 		if ((fs->prot & VM_PROT_WRITE) != 0) {
370 			/*
371 			 * Create a superpage mapping allowing write access
372 			 * only if none of the constituent pages are busy and
373 			 * all of them are already dirty (except possibly for
374 			 * the page that was faulted on).
375 			 */
376 			flags |= PS_NONE_BUSY;
377 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
378 				flags |= PS_ALL_DIRTY;
379 		}
380 		if (vm_page_ps_test(m_super, flags, m)) {
381 			m_map = m_super;
382 			psind = m_super->psind;
383 			vaddr = rounddown2(vaddr, pagesizes[psind]);
384 			/* Preset the modified bit for dirty superpages. */
385 			if ((flags & PS_ALL_DIRTY) != 0)
386 				fs->fault_type |= VM_PROT_WRITE;
387 		}
388 	}
389 #endif
390 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
391 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
392 	    KERN_SUCCESS)
393 		goto fail;
394 	if (fs->m_hold != NULL) {
395 		(*fs->m_hold) = m;
396 		vm_page_wire(m);
397 	}
398 	if (psind == 0 && !fs->wired)
399 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
400 	VM_OBJECT_RUNLOCK(fs->first_object);
401 	vm_fault_dirty(fs, m);
402 	vm_object_unbusy(fs->first_object);
403 	vm_map_lookup_done(fs->map, fs->entry);
404 	curthread->td_ru.ru_minflt++;
405 	return (FAULT_SUCCESS);
406 fail:
407 	vm_object_unbusy(fs->first_object);
408 	return (FAULT_FAILURE);
409 }
410 
411 static void
412 vm_fault_restore_map_lock(struct faultstate *fs)
413 {
414 
415 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
416 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
417 
418 	if (!vm_map_trylock_read(fs->map)) {
419 		VM_OBJECT_WUNLOCK(fs->first_object);
420 		vm_map_lock_read(fs->map);
421 		VM_OBJECT_WLOCK(fs->first_object);
422 	}
423 	fs->lookup_still_valid = true;
424 }
425 
426 static void
427 vm_fault_populate_check_page(vm_page_t m)
428 {
429 
430 	/*
431 	 * Check each page to ensure that the pager is obeying the
432 	 * interface: the page must be installed in the object, fully
433 	 * valid, and exclusively busied.
434 	 */
435 	MPASS(m != NULL);
436 	MPASS(vm_page_all_valid(m));
437 	MPASS(vm_page_xbusied(m));
438 }
439 
440 static void
441 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
442     vm_pindex_t last)
443 {
444 	vm_page_t m;
445 	vm_pindex_t pidx;
446 
447 	VM_OBJECT_ASSERT_WLOCKED(object);
448 	MPASS(first <= last);
449 	for (pidx = first, m = vm_page_lookup(object, pidx);
450 	    pidx <= last; pidx++, m = vm_page_next(m)) {
451 		vm_fault_populate_check_page(m);
452 		vm_page_deactivate(m);
453 		vm_page_xunbusy(m);
454 	}
455 }
456 
457 static enum fault_status
458 vm_fault_populate(struct faultstate *fs)
459 {
460 	vm_offset_t vaddr;
461 	vm_page_t m;
462 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
463 	int bdry_idx, i, npages, psind, rv;
464 	enum fault_status res;
465 
466 	MPASS(fs->object == fs->first_object);
467 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
468 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
469 	MPASS(fs->first_object->backing_object == NULL);
470 	MPASS(fs->lookup_still_valid);
471 
472 	pager_first = OFF_TO_IDX(fs->entry->offset);
473 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
474 	vm_fault_unlock_map(fs);
475 	vm_fault_unlock_vp(fs);
476 
477 	res = FAULT_SUCCESS;
478 
479 	/*
480 	 * Call the pager (driver) populate() method.
481 	 *
482 	 * There is no guarantee that the method will be called again
483 	 * if the current fault is for read, and a future fault is
484 	 * for write.  Report the entry's maximum allowed protection
485 	 * to the driver.
486 	 */
487 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
488 	    fs->fault_type, fs->entry->max_protection, &pager_first,
489 	    &pager_last);
490 
491 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
492 	if (rv == VM_PAGER_BAD) {
493 		/*
494 		 * VM_PAGER_BAD is the backdoor for a pager to request
495 		 * normal fault handling.
496 		 */
497 		vm_fault_restore_map_lock(fs);
498 		if (fs->map->timestamp != fs->map_generation)
499 			return (FAULT_RESTART);
500 		return (FAULT_CONTINUE);
501 	}
502 	if (rv != VM_PAGER_OK)
503 		return (FAULT_FAILURE); /* AKA SIGSEGV */
504 
505 	/* Ensure that the driver is obeying the interface. */
506 	MPASS(pager_first <= pager_last);
507 	MPASS(fs->first_pindex <= pager_last);
508 	MPASS(fs->first_pindex >= pager_first);
509 	MPASS(pager_last < fs->first_object->size);
510 
511 	vm_fault_restore_map_lock(fs);
512 	bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
513 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
514 	if (fs->map->timestamp != fs->map_generation) {
515 		if (bdry_idx == 0) {
516 			vm_fault_populate_cleanup(fs->first_object, pager_first,
517 			    pager_last);
518 		} else {
519 			m = vm_page_lookup(fs->first_object, pager_first);
520 			if (m != fs->m)
521 				vm_page_xunbusy(m);
522 		}
523 		return (FAULT_RESTART);
524 	}
525 
526 	/*
527 	 * The map is unchanged after our last unlock.  Process the fault.
528 	 *
529 	 * First, the special case of largepage mappings, where
530 	 * populate only busies the first page in superpage run.
531 	 */
532 	if (bdry_idx != 0) {
533 		KASSERT(PMAP_HAS_LARGEPAGES,
534 		    ("missing pmap support for large pages"));
535 		m = vm_page_lookup(fs->first_object, pager_first);
536 		vm_fault_populate_check_page(m);
537 		VM_OBJECT_WUNLOCK(fs->first_object);
538 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
539 		    fs->entry->offset;
540 		/* assert alignment for entry */
541 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
542     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
543 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
544 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
545 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
546 		    ("unaligned superpage m %p %#jx", m,
547 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
548 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
549 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
550 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
551 		VM_OBJECT_WLOCK(fs->first_object);
552 		vm_page_xunbusy(m);
553 		if (rv != KERN_SUCCESS) {
554 			res = FAULT_FAILURE;
555 			goto out;
556 		}
557 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
558 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
559 				vm_page_wire(m + i);
560 		}
561 		if (fs->m_hold != NULL) {
562 			*fs->m_hold = m + (fs->first_pindex - pager_first);
563 			vm_page_wire(*fs->m_hold);
564 		}
565 		goto out;
566 	}
567 
568 	/*
569 	 * The range [pager_first, pager_last] that is given to the
570 	 * pager is only a hint.  The pager may populate any range
571 	 * within the object that includes the requested page index.
572 	 * In case the pager expanded the range, clip it to fit into
573 	 * the map entry.
574 	 */
575 	map_first = OFF_TO_IDX(fs->entry->offset);
576 	if (map_first > pager_first) {
577 		vm_fault_populate_cleanup(fs->first_object, pager_first,
578 		    map_first - 1);
579 		pager_first = map_first;
580 	}
581 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
582 	if (map_last < pager_last) {
583 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
584 		    pager_last);
585 		pager_last = map_last;
586 	}
587 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
588 	    pidx <= pager_last;
589 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
590 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
591 
592 		psind = m->psind;
593 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
594 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
595 		    !pmap_ps_enabled(fs->map->pmap) || fs->wired))
596 			psind = 0;
597 
598 		npages = atop(pagesizes[psind]);
599 		for (i = 0; i < npages; i++) {
600 			vm_fault_populate_check_page(&m[i]);
601 			vm_fault_dirty(fs, &m[i]);
602 		}
603 		VM_OBJECT_WUNLOCK(fs->first_object);
604 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
605 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
606 
607 		/*
608 		 * pmap_enter() may fail for a superpage mapping if additional
609 		 * protection policies prevent the full mapping.
610 		 * For example, this will happen on amd64 if the entire
611 		 * address range does not share the same userspace protection
612 		 * key.  Revert to single-page mappings if this happens.
613 		 */
614 		MPASS(rv == KERN_SUCCESS ||
615 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
616 		if (__predict_false(psind > 0 &&
617 		    rv == KERN_PROTECTION_FAILURE)) {
618 			MPASS(!fs->wired);
619 			for (i = 0; i < npages; i++) {
620 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
621 				    &m[i], fs->prot, fs->fault_type, 0);
622 				MPASS(rv == KERN_SUCCESS);
623 			}
624 		}
625 
626 		VM_OBJECT_WLOCK(fs->first_object);
627 		for (i = 0; i < npages; i++) {
628 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
629 			    m[i].pindex == fs->first_pindex)
630 				vm_page_wire(&m[i]);
631 			else
632 				vm_page_activate(&m[i]);
633 			if (fs->m_hold != NULL &&
634 			    m[i].pindex == fs->first_pindex) {
635 				(*fs->m_hold) = &m[i];
636 				vm_page_wire(&m[i]);
637 			}
638 			vm_page_xunbusy(&m[i]);
639 		}
640 	}
641 out:
642 	curthread->td_ru.ru_majflt++;
643 	return (res);
644 }
645 
646 static int prot_fault_translation;
647 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
648     &prot_fault_translation, 0,
649     "Control signal to deliver on protection fault");
650 
651 /* compat definition to keep common code for signal translation */
652 #define	UCODE_PAGEFLT	12
653 #ifdef T_PAGEFLT
654 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
655 #endif
656 
657 /*
658  *	vm_fault_trap:
659  *
660  *	Handle a page fault occurring at the given address,
661  *	requiring the given permissions, in the map specified.
662  *	If successful, the page is inserted into the
663  *	associated physical map.
664  *
665  *	NOTE: the given address should be truncated to the
666  *	proper page address.
667  *
668  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
669  *	a standard error specifying why the fault is fatal is returned.
670  *
671  *	The map in question must be referenced, and remains so.
672  *	Caller may hold no locks.
673  */
674 int
675 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
676     int fault_flags, int *signo, int *ucode)
677 {
678 	int result;
679 
680 	MPASS(signo == NULL || ucode != NULL);
681 #ifdef KTRACE
682 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
683 		ktrfault(vaddr, fault_type);
684 #endif
685 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
686 	    NULL);
687 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
688 	    result == KERN_INVALID_ADDRESS ||
689 	    result == KERN_RESOURCE_SHORTAGE ||
690 	    result == KERN_PROTECTION_FAILURE ||
691 	    result == KERN_OUT_OF_BOUNDS,
692 	    ("Unexpected Mach error %d from vm_fault()", result));
693 #ifdef KTRACE
694 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
695 		ktrfaultend(result);
696 #endif
697 	if (result != KERN_SUCCESS && signo != NULL) {
698 		switch (result) {
699 		case KERN_FAILURE:
700 		case KERN_INVALID_ADDRESS:
701 			*signo = SIGSEGV;
702 			*ucode = SEGV_MAPERR;
703 			break;
704 		case KERN_RESOURCE_SHORTAGE:
705 			*signo = SIGBUS;
706 			*ucode = BUS_OOMERR;
707 			break;
708 		case KERN_OUT_OF_BOUNDS:
709 			*signo = SIGBUS;
710 			*ucode = BUS_OBJERR;
711 			break;
712 		case KERN_PROTECTION_FAILURE:
713 			if (prot_fault_translation == 0) {
714 				/*
715 				 * Autodetect.  This check also covers
716 				 * the images without the ABI-tag ELF
717 				 * note.
718 				 */
719 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
720 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
721 					*signo = SIGSEGV;
722 					*ucode = SEGV_ACCERR;
723 				} else {
724 					*signo = SIGBUS;
725 					*ucode = UCODE_PAGEFLT;
726 				}
727 			} else if (prot_fault_translation == 1) {
728 				/* Always compat mode. */
729 				*signo = SIGBUS;
730 				*ucode = UCODE_PAGEFLT;
731 			} else {
732 				/* Always SIGSEGV mode. */
733 				*signo = SIGSEGV;
734 				*ucode = SEGV_ACCERR;
735 			}
736 			break;
737 		default:
738 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
739 			    result));
740 			break;
741 		}
742 	}
743 	return (result);
744 }
745 
746 static bool
747 vm_fault_object_ensure_wlocked(struct faultstate *fs)
748 {
749 	if (fs->object == fs->first_object)
750 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
751 
752 	if (!fs->can_read_lock)  {
753 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
754 		return (true);
755 	}
756 
757 	if (VM_OBJECT_WOWNED(fs->object))
758 		return (true);
759 
760 	if (VM_OBJECT_TRYUPGRADE(fs->object))
761 		return (true);
762 
763 	return (false);
764 }
765 
766 static enum fault_status
767 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
768 {
769 	struct vnode *vp;
770 	int error, locked;
771 
772 	if (fs->object->type != OBJT_VNODE)
773 		return (FAULT_CONTINUE);
774 	vp = fs->object->handle;
775 	if (vp == fs->vp) {
776 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
777 		return (FAULT_CONTINUE);
778 	}
779 
780 	/*
781 	 * Perform an unlock in case the desired vnode changed while
782 	 * the map was unlocked during a retry.
783 	 */
784 	vm_fault_unlock_vp(fs);
785 
786 	locked = VOP_ISLOCKED(vp);
787 	if (locked != LK_EXCLUSIVE)
788 		locked = LK_SHARED;
789 
790 	/*
791 	 * We must not sleep acquiring the vnode lock while we have
792 	 * the page exclusive busied or the object's
793 	 * paging-in-progress count incremented.  Otherwise, we could
794 	 * deadlock.
795 	 */
796 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
797 	if (error == 0) {
798 		fs->vp = vp;
799 		return (FAULT_CONTINUE);
800 	}
801 
802 	vhold(vp);
803 	if (objlocked)
804 		vm_fault_unlock_and_deallocate(fs);
805 	else
806 		vm_fault_deallocate(fs);
807 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
808 	vdrop(vp);
809 	fs->vp = vp;
810 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
811 	return (FAULT_RESTART);
812 }
813 
814 /*
815  * Calculate the desired readahead.  Handle drop-behind.
816  *
817  * Returns the number of readahead blocks to pass to the pager.
818  */
819 static int
820 vm_fault_readahead(struct faultstate *fs)
821 {
822 	int era, nera;
823 	u_char behavior;
824 
825 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
826 	era = fs->entry->read_ahead;
827 	behavior = vm_map_entry_behavior(fs->entry);
828 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
829 		nera = 0;
830 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
831 		nera = VM_FAULT_READ_AHEAD_MAX;
832 		if (fs->vaddr == fs->entry->next_read)
833 			vm_fault_dontneed(fs, fs->vaddr, nera);
834 	} else if (fs->vaddr == fs->entry->next_read) {
835 		/*
836 		 * This is a sequential fault.  Arithmetically
837 		 * increase the requested number of pages in
838 		 * the read-ahead window.  The requested
839 		 * number of pages is "# of sequential faults
840 		 * x (read ahead min + 1) + read ahead min"
841 		 */
842 		nera = VM_FAULT_READ_AHEAD_MIN;
843 		if (era > 0) {
844 			nera += era + 1;
845 			if (nera > VM_FAULT_READ_AHEAD_MAX)
846 				nera = VM_FAULT_READ_AHEAD_MAX;
847 		}
848 		if (era == VM_FAULT_READ_AHEAD_MAX)
849 			vm_fault_dontneed(fs, fs->vaddr, nera);
850 	} else {
851 		/*
852 		 * This is a non-sequential fault.
853 		 */
854 		nera = 0;
855 	}
856 	if (era != nera) {
857 		/*
858 		 * A read lock on the map suffices to update
859 		 * the read ahead count safely.
860 		 */
861 		fs->entry->read_ahead = nera;
862 	}
863 
864 	return (nera);
865 }
866 
867 static int
868 vm_fault_lookup(struct faultstate *fs)
869 {
870 	int result;
871 
872 	KASSERT(!fs->lookup_still_valid,
873 	   ("vm_fault_lookup: Map already locked."));
874 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
875 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
876 	    &fs->first_pindex, &fs->prot, &fs->wired);
877 	if (result != KERN_SUCCESS) {
878 		vm_fault_unlock_vp(fs);
879 		return (result);
880 	}
881 
882 	fs->map_generation = fs->map->timestamp;
883 
884 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
885 		panic("%s: fault on nofault entry, addr: %#lx",
886 		    __func__, (u_long)fs->vaddr);
887 	}
888 
889 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
890 	    fs->entry->wiring_thread != curthread) {
891 		vm_map_unlock_read(fs->map);
892 		vm_map_lock(fs->map);
893 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
894 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
895 			vm_fault_unlock_vp(fs);
896 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
897 			vm_map_unlock_and_wait(fs->map, 0);
898 		} else
899 			vm_map_unlock(fs->map);
900 		return (KERN_RESOURCE_SHORTAGE);
901 	}
902 
903 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
904 
905 	if (fs->wired)
906 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
907 	else
908 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
909 		    ("!fs->wired && VM_FAULT_WIRE"));
910 	fs->lookup_still_valid = true;
911 
912 	return (KERN_SUCCESS);
913 }
914 
915 static int
916 vm_fault_relookup(struct faultstate *fs)
917 {
918 	vm_object_t retry_object;
919 	vm_pindex_t retry_pindex;
920 	vm_prot_t retry_prot;
921 	int result;
922 
923 	if (!vm_map_trylock_read(fs->map))
924 		return (KERN_RESTART);
925 
926 	fs->lookup_still_valid = true;
927 	if (fs->map->timestamp == fs->map_generation)
928 		return (KERN_SUCCESS);
929 
930 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
931 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
932 	    &fs->wired);
933 	if (result != KERN_SUCCESS) {
934 		/*
935 		 * If retry of map lookup would have blocked then
936 		 * retry fault from start.
937 		 */
938 		if (result == KERN_FAILURE)
939 			return (KERN_RESTART);
940 		return (result);
941 	}
942 	if (retry_object != fs->first_object ||
943 	    retry_pindex != fs->first_pindex)
944 		return (KERN_RESTART);
945 
946 	/*
947 	 * Check whether the protection has changed or the object has
948 	 * been copied while we left the map unlocked. Changing from
949 	 * read to write permission is OK - we leave the page
950 	 * write-protected, and catch the write fault. Changing from
951 	 * write to read permission means that we can't mark the page
952 	 * write-enabled after all.
953 	 */
954 	fs->prot &= retry_prot;
955 	fs->fault_type &= retry_prot;
956 	if (fs->prot == 0)
957 		return (KERN_RESTART);
958 
959 	/* Reassert because wired may have changed. */
960 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
961 	    ("!wired && VM_FAULT_WIRE"));
962 
963 	return (KERN_SUCCESS);
964 }
965 
966 static void
967 vm_fault_cow(struct faultstate *fs)
968 {
969 	bool is_first_object_locked;
970 
971 	KASSERT(fs->object != fs->first_object,
972 	    ("source and target COW objects are identical"));
973 
974 	/*
975 	 * This allows pages to be virtually copied from a backing_object
976 	 * into the first_object, where the backing object has no other
977 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
978 	 * we just move the page from the backing object to the first
979 	 * object.  Note that we must mark the page dirty in the first
980 	 * object so that it will go out to swap when needed.
981 	 */
982 	is_first_object_locked = false;
983 	if (
984 	    /*
985 	     * Only one shadow object and no other refs.
986 	     */
987 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
988 	    /*
989 	     * No other ways to look the object up
990 	     */
991 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
992 	    /*
993 	     * We don't chase down the shadow chain and we can acquire locks.
994 	     */
995 	    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
996 	    fs->object == fs->first_object->backing_object &&
997 	    VM_OBJECT_TRYWLOCK(fs->object)) {
998 		/*
999 		 * Remove but keep xbusy for replace.  fs->m is moved into
1000 		 * fs->first_object and left busy while fs->first_m is
1001 		 * conditionally freed.
1002 		 */
1003 		vm_page_remove_xbusy(fs->m);
1004 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1005 		    fs->first_m);
1006 		vm_page_dirty(fs->m);
1007 #if VM_NRESERVLEVEL > 0
1008 		/*
1009 		 * Rename the reservation.
1010 		 */
1011 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
1012 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
1013 #endif
1014 		VM_OBJECT_WUNLOCK(fs->object);
1015 		VM_OBJECT_WUNLOCK(fs->first_object);
1016 		fs->first_m = fs->m;
1017 		fs->m = NULL;
1018 		VM_CNT_INC(v_cow_optim);
1019 	} else {
1020 		if (is_first_object_locked)
1021 			VM_OBJECT_WUNLOCK(fs->first_object);
1022 		/*
1023 		 * Oh, well, lets copy it.
1024 		 */
1025 		pmap_copy_page(fs->m, fs->first_m);
1026 		vm_page_valid(fs->first_m);
1027 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1028 			vm_page_wire(fs->first_m);
1029 			vm_page_unwire(fs->m, PQ_INACTIVE);
1030 		}
1031 		/*
1032 		 * Save the cow page to be released after
1033 		 * pmap_enter is complete.
1034 		 */
1035 		fs->m_cow = fs->m;
1036 		fs->m = NULL;
1037 
1038 		/*
1039 		 * Typically, the shadow object is either private to this
1040 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1041 		 * In the highly unusual case where the pages of a shadow object
1042 		 * are read/write shared between this and other address spaces,
1043 		 * we need to ensure that any pmap-level mappings to the
1044 		 * original, copy-on-write page from the backing object are
1045 		 * removed from those other address spaces.
1046 		 *
1047 		 * The flag check is racy, but this is tolerable: if
1048 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1049 		 * ensures that new mappings of m_cow can't be created.
1050 		 * pmap_enter() will replace an existing mapping in the current
1051 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1052 		 * removing mappings will at worse trigger some unnecessary page
1053 		 * faults.
1054 		 */
1055 		vm_page_assert_xbusied(fs->m_cow);
1056 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1057 			pmap_remove_all(fs->m_cow);
1058 	}
1059 
1060 	vm_object_pip_wakeup(fs->object);
1061 
1062 	/*
1063 	 * Only use the new page below...
1064 	 */
1065 	fs->object = fs->first_object;
1066 	fs->pindex = fs->first_pindex;
1067 	fs->m = fs->first_m;
1068 	VM_CNT_INC(v_cow_faults);
1069 	curthread->td_cow++;
1070 }
1071 
1072 static enum fault_next_status
1073 vm_fault_next(struct faultstate *fs)
1074 {
1075 	vm_object_t next_object;
1076 
1077 	if (fs->object == fs->first_object || !fs->can_read_lock)
1078 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1079 	else
1080 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1081 
1082 	/*
1083 	 * The requested page does not exist at this object/
1084 	 * offset.  Remove the invalid page from the object,
1085 	 * waking up anyone waiting for it, and continue on to
1086 	 * the next object.  However, if this is the top-level
1087 	 * object, we must leave the busy page in place to
1088 	 * prevent another process from rushing past us, and
1089 	 * inserting the page in that object at the same time
1090 	 * that we are.
1091 	 */
1092 	if (fs->object == fs->first_object) {
1093 		fs->first_m = fs->m;
1094 		fs->m = NULL;
1095 	} else if (fs->m != NULL) {
1096 		if (!vm_fault_object_ensure_wlocked(fs)) {
1097 			fs->can_read_lock = false;
1098 			vm_fault_unlock_and_deallocate(fs);
1099 			return (FAULT_NEXT_RESTART);
1100 		}
1101 		vm_fault_page_free(&fs->m);
1102 	}
1103 
1104 	/*
1105 	 * Move on to the next object.  Lock the next object before
1106 	 * unlocking the current one.
1107 	 */
1108 	next_object = fs->object->backing_object;
1109 	if (next_object == NULL)
1110 		return (FAULT_NEXT_NOOBJ);
1111 	MPASS(fs->first_m != NULL);
1112 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1113 	if (fs->can_read_lock)
1114 		VM_OBJECT_RLOCK(next_object);
1115 	else
1116 		VM_OBJECT_WLOCK(next_object);
1117 	vm_object_pip_add(next_object, 1);
1118 	if (fs->object != fs->first_object)
1119 		vm_object_pip_wakeup(fs->object);
1120 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1121 	VM_OBJECT_UNLOCK(fs->object);
1122 	fs->object = next_object;
1123 
1124 	return (FAULT_NEXT_GOTOBJ);
1125 }
1126 
1127 static void
1128 vm_fault_zerofill(struct faultstate *fs)
1129 {
1130 
1131 	/*
1132 	 * If there's no object left, fill the page in the top
1133 	 * object with zeros.
1134 	 */
1135 	if (fs->object != fs->first_object) {
1136 		vm_object_pip_wakeup(fs->object);
1137 		fs->object = fs->first_object;
1138 		fs->pindex = fs->first_pindex;
1139 	}
1140 	MPASS(fs->first_m != NULL);
1141 	MPASS(fs->m == NULL);
1142 	fs->m = fs->first_m;
1143 	fs->first_m = NULL;
1144 
1145 	/*
1146 	 * Zero the page if necessary and mark it valid.
1147 	 */
1148 	if ((fs->m->flags & PG_ZERO) == 0) {
1149 		pmap_zero_page(fs->m);
1150 	} else {
1151 		VM_CNT_INC(v_ozfod);
1152 	}
1153 	VM_CNT_INC(v_zfod);
1154 	vm_page_valid(fs->m);
1155 }
1156 
1157 /*
1158  * Initiate page fault after timeout.  Returns true if caller should
1159  * do vm_waitpfault() after the call.
1160  */
1161 static bool
1162 vm_fault_allocate_oom(struct faultstate *fs)
1163 {
1164 	struct timeval now;
1165 
1166 	vm_fault_unlock_and_deallocate(fs);
1167 	if (vm_pfault_oom_attempts < 0)
1168 		return (true);
1169 	if (!fs->oom_started) {
1170 		fs->oom_started = true;
1171 		getmicrotime(&fs->oom_start_time);
1172 		return (true);
1173 	}
1174 
1175 	getmicrotime(&now);
1176 	timevalsub(&now, &fs->oom_start_time);
1177 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1178 		return (true);
1179 
1180 	if (bootverbose)
1181 		printf(
1182 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1183 		    curproc->p_pid, curproc->p_comm);
1184 	vm_pageout_oom(VM_OOM_MEM_PF);
1185 	fs->oom_started = false;
1186 	return (false);
1187 }
1188 
1189 /*
1190  * Allocate a page directly or via the object populate method.
1191  */
1192 static enum fault_status
1193 vm_fault_allocate(struct faultstate *fs)
1194 {
1195 	struct domainset *dset;
1196 	enum fault_status res;
1197 
1198 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1199 		res = vm_fault_lock_vnode(fs, true);
1200 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1201 		if (res == FAULT_RESTART)
1202 			return (res);
1203 	}
1204 
1205 	if (fs->pindex >= fs->object->size) {
1206 		vm_fault_unlock_and_deallocate(fs);
1207 		return (FAULT_OUT_OF_BOUNDS);
1208 	}
1209 
1210 	if (fs->object == fs->first_object &&
1211 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1212 	    fs->first_object->shadow_count == 0) {
1213 		res = vm_fault_populate(fs);
1214 		switch (res) {
1215 		case FAULT_SUCCESS:
1216 		case FAULT_FAILURE:
1217 		case FAULT_RESTART:
1218 			vm_fault_unlock_and_deallocate(fs);
1219 			return (res);
1220 		case FAULT_CONTINUE:
1221 			/*
1222 			 * Pager's populate() method
1223 			 * returned VM_PAGER_BAD.
1224 			 */
1225 			break;
1226 		default:
1227 			panic("inconsistent return codes");
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * Allocate a new page for this object/offset pair.
1233 	 *
1234 	 * If the process has a fatal signal pending, prioritize the allocation
1235 	 * with the expectation that the process will exit shortly and free some
1236 	 * pages.  In particular, the signal may have been posted by the page
1237 	 * daemon in an attempt to resolve an out-of-memory condition.
1238 	 *
1239 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1240 	 * might be not observed here, and allocation fails, causing a restart
1241 	 * and new reading of the p_flag.
1242 	 */
1243 	dset = fs->object->domain.dr_policy;
1244 	if (dset == NULL)
1245 		dset = curthread->td_domain.dr_policy;
1246 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1247 #if VM_NRESERVLEVEL > 0
1248 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1249 #endif
1250 		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1251 			vm_fault_unlock_and_deallocate(fs);
1252 			return (FAULT_FAILURE);
1253 		}
1254 		fs->m = vm_page_alloc(fs->object, fs->pindex,
1255 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1256 	}
1257 	if (fs->m == NULL) {
1258 		if (vm_fault_allocate_oom(fs))
1259 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1260 		return (FAULT_RESTART);
1261 	}
1262 	fs->oom_started = false;
1263 
1264 	return (FAULT_CONTINUE);
1265 }
1266 
1267 /*
1268  * Call the pager to retrieve the page if there is a chance
1269  * that the pager has it, and potentially retrieve additional
1270  * pages at the same time.
1271  */
1272 static enum fault_status
1273 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1274 {
1275 	vm_offset_t e_end, e_start;
1276 	int ahead, behind, cluster_offset, rv;
1277 	enum fault_status status;
1278 	u_char behavior;
1279 
1280 	/*
1281 	 * Prepare for unlocking the map.  Save the map
1282 	 * entry's start and end addresses, which are used to
1283 	 * optimize the size of the pager operation below.
1284 	 * Even if the map entry's addresses change after
1285 	 * unlocking the map, using the saved addresses is
1286 	 * safe.
1287 	 */
1288 	e_start = fs->entry->start;
1289 	e_end = fs->entry->end;
1290 	behavior = vm_map_entry_behavior(fs->entry);
1291 
1292 	/*
1293 	 * If the pager for the current object might have
1294 	 * the page, then determine the number of additional
1295 	 * pages to read and potentially reprioritize
1296 	 * previously read pages for earlier reclamation.
1297 	 * These operations should only be performed once per
1298 	 * page fault.  Even if the current pager doesn't
1299 	 * have the page, the number of additional pages to
1300 	 * read will apply to subsequent objects in the
1301 	 * shadow chain.
1302 	 */
1303 	if (fs->nera == -1 && !P_KILLED(curproc))
1304 		fs->nera = vm_fault_readahead(fs);
1305 
1306 	/*
1307 	 * Release the map lock before locking the vnode or
1308 	 * sleeping in the pager.  (If the current object has
1309 	 * a shadow, then an earlier iteration of this loop
1310 	 * may have already unlocked the map.)
1311 	 */
1312 	vm_fault_unlock_map(fs);
1313 
1314 	status = vm_fault_lock_vnode(fs, false);
1315 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1316 	if (status == FAULT_RESTART)
1317 		return (status);
1318 	KASSERT(fs->vp == NULL || !fs->map->system_map,
1319 	    ("vm_fault: vnode-backed object mapped by system map"));
1320 
1321 	/*
1322 	 * Page in the requested page and hint the pager,
1323 	 * that it may bring up surrounding pages.
1324 	 */
1325 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1326 	    P_KILLED(curproc)) {
1327 		behind = 0;
1328 		ahead = 0;
1329 	} else {
1330 		/* Is this a sequential fault? */
1331 		if (fs->nera > 0) {
1332 			behind = 0;
1333 			ahead = fs->nera;
1334 		} else {
1335 			/*
1336 			 * Request a cluster of pages that is
1337 			 * aligned to a VM_FAULT_READ_DEFAULT
1338 			 * page offset boundary within the
1339 			 * object.  Alignment to a page offset
1340 			 * boundary is more likely to coincide
1341 			 * with the underlying file system
1342 			 * block than alignment to a virtual
1343 			 * address boundary.
1344 			 */
1345 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1346 			behind = ulmin(cluster_offset,
1347 			    atop(fs->vaddr - e_start));
1348 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1349 		}
1350 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1351 	}
1352 	*behindp = behind;
1353 	*aheadp = ahead;
1354 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1355 	if (rv == VM_PAGER_OK)
1356 		return (FAULT_HARD);
1357 	if (rv == VM_PAGER_ERROR)
1358 		printf("vm_fault: pager read error, pid %d (%s)\n",
1359 		    curproc->p_pid, curproc->p_comm);
1360 	/*
1361 	 * If an I/O error occurred or the requested page was
1362 	 * outside the range of the pager, clean up and return
1363 	 * an error.
1364 	 */
1365 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1366 		VM_OBJECT_WLOCK(fs->object);
1367 		vm_fault_page_free(&fs->m);
1368 		vm_fault_unlock_and_deallocate(fs);
1369 		return (FAULT_OUT_OF_BOUNDS);
1370 	}
1371 	KASSERT(rv == VM_PAGER_FAIL,
1372 	    ("%s: unexpected pager error %d", __func__, rv));
1373 	return (FAULT_CONTINUE);
1374 }
1375 
1376 /*
1377  * Wait/Retry if the page is busy.  We have to do this if the page is
1378  * either exclusive or shared busy because the vm_pager may be using
1379  * read busy for pageouts (and even pageins if it is the vnode pager),
1380  * and we could end up trying to pagein and pageout the same page
1381  * simultaneously.
1382  *
1383  * We can theoretically allow the busy case on a read fault if the page
1384  * is marked valid, but since such pages are typically already pmap'd,
1385  * putting that special case in might be more effort then it is worth.
1386  * We cannot under any circumstances mess around with a shared busied
1387  * page except, perhaps, to pmap it.
1388  */
1389 static void
1390 vm_fault_busy_sleep(struct faultstate *fs)
1391 {
1392 	/*
1393 	 * Reference the page before unlocking and
1394 	 * sleeping so that the page daemon is less
1395 	 * likely to reclaim it.
1396 	 */
1397 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1398 	if (fs->object != fs->first_object) {
1399 		vm_fault_page_release(&fs->first_m);
1400 		vm_object_pip_wakeup(fs->first_object);
1401 	}
1402 	vm_object_pip_wakeup(fs->object);
1403 	vm_fault_unlock_map(fs);
1404 	if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1405 	    !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1406 		VM_OBJECT_UNLOCK(fs->object);
1407 	VM_CNT_INC(v_intrans);
1408 	vm_object_deallocate(fs->first_object);
1409 }
1410 
1411 /*
1412  * Handle page lookup, populate, allocate, page-in for the current
1413  * object.
1414  *
1415  * The object is locked on entry and will remain locked with a return
1416  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1417  * Otherwise, the object will be unlocked upon return.
1418  */
1419 static enum fault_status
1420 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1421 {
1422 	enum fault_status res;
1423 	bool dead;
1424 
1425 	if (fs->object == fs->first_object || !fs->can_read_lock)
1426 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1427 	else
1428 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1429 
1430 	/*
1431 	 * If the object is marked for imminent termination, we retry
1432 	 * here, since the collapse pass has raced with us.  Otherwise,
1433 	 * if we see terminally dead object, return fail.
1434 	 */
1435 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1436 		dead = fs->object->type == OBJT_DEAD;
1437 		vm_fault_unlock_and_deallocate(fs);
1438 		if (dead)
1439 			return (FAULT_PROTECTION_FAILURE);
1440 		pause("vmf_de", 1);
1441 		return (FAULT_RESTART);
1442 	}
1443 
1444 	/*
1445 	 * See if the page is resident.
1446 	 */
1447 	fs->m = vm_page_lookup(fs->object, fs->pindex);
1448 	if (fs->m != NULL) {
1449 		if (!vm_page_tryxbusy(fs->m)) {
1450 			vm_fault_busy_sleep(fs);
1451 			return (FAULT_RESTART);
1452 		}
1453 
1454 		/*
1455 		 * The page is marked busy for other processes and the
1456 		 * pagedaemon.  If it is still completely valid we are
1457 		 * done.
1458 		 */
1459 		if (vm_page_all_valid(fs->m)) {
1460 			VM_OBJECT_UNLOCK(fs->object);
1461 			return (FAULT_SOFT);
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * Page is not resident.  If the pager might contain the page
1467 	 * or this is the beginning of the search, allocate a new
1468 	 * page.
1469 	 */
1470 	if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1471 	    fs->object == fs->first_object)) {
1472 		if (!vm_fault_object_ensure_wlocked(fs)) {
1473 			fs->can_read_lock = false;
1474 			vm_fault_unlock_and_deallocate(fs);
1475 			return (FAULT_RESTART);
1476 		}
1477 		res = vm_fault_allocate(fs);
1478 		if (res != FAULT_CONTINUE)
1479 			return (res);
1480 	}
1481 
1482 	/*
1483 	 * Check to see if the pager can possibly satisfy this fault.
1484 	 * If not, skip to the next object without dropping the lock to
1485 	 * preserve atomicity of shadow faults.
1486 	 */
1487 	if (vm_fault_object_needs_getpages(fs->object)) {
1488 		/*
1489 		 * At this point, we have either allocated a new page
1490 		 * or found an existing page that is only partially
1491 		 * valid.
1492 		 *
1493 		 * We hold a reference on the current object and the
1494 		 * page is exclusive busied.  The exclusive busy
1495 		 * prevents simultaneous faults and collapses while
1496 		 * the object lock is dropped.
1497 		 */
1498 		VM_OBJECT_UNLOCK(fs->object);
1499 		res = vm_fault_getpages(fs, behindp, aheadp);
1500 		if (res == FAULT_CONTINUE)
1501 			VM_OBJECT_WLOCK(fs->object);
1502 	} else {
1503 		res = FAULT_CONTINUE;
1504 	}
1505 	return (res);
1506 }
1507 
1508 int
1509 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1510     int fault_flags, vm_page_t *m_hold)
1511 {
1512 	struct faultstate fs;
1513 	int ahead, behind, faultcount, rv;
1514 	enum fault_status res;
1515 	enum fault_next_status res_next;
1516 	bool hardfault;
1517 
1518 	VM_CNT_INC(v_vm_faults);
1519 
1520 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1521 		return (KERN_PROTECTION_FAILURE);
1522 
1523 	fs.vp = NULL;
1524 	fs.vaddr = vaddr;
1525 	fs.m_hold = m_hold;
1526 	fs.fault_flags = fault_flags;
1527 	fs.map = map;
1528 	fs.lookup_still_valid = false;
1529 	fs.oom_started = false;
1530 	fs.nera = -1;
1531 	fs.can_read_lock = true;
1532 	faultcount = 0;
1533 	hardfault = false;
1534 
1535 RetryFault:
1536 	fs.fault_type = fault_type;
1537 
1538 	/*
1539 	 * Find the backing store object and offset into it to begin the
1540 	 * search.
1541 	 */
1542 	rv = vm_fault_lookup(&fs);
1543 	if (rv != KERN_SUCCESS) {
1544 		if (rv == KERN_RESOURCE_SHORTAGE)
1545 			goto RetryFault;
1546 		return (rv);
1547 	}
1548 
1549 	/*
1550 	 * Try to avoid lock contention on the top-level object through
1551 	 * special-case handling of some types of page faults, specifically,
1552 	 * those that are mapping an existing page from the top-level object.
1553 	 * Under this condition, a read lock on the object suffices, allowing
1554 	 * multiple page faults of a similar type to run in parallel.
1555 	 */
1556 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1557 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1558 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1559 		VM_OBJECT_RLOCK(fs.first_object);
1560 		res = vm_fault_soft_fast(&fs);
1561 		if (res == FAULT_SUCCESS)
1562 			return (KERN_SUCCESS);
1563 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1564 			VM_OBJECT_RUNLOCK(fs.first_object);
1565 			VM_OBJECT_WLOCK(fs.first_object);
1566 		}
1567 	} else {
1568 		VM_OBJECT_WLOCK(fs.first_object);
1569 	}
1570 
1571 	/*
1572 	 * Make a reference to this object to prevent its disposal while we
1573 	 * are messing with it.  Once we have the reference, the map is free
1574 	 * to be diddled.  Since objects reference their shadows (and copies),
1575 	 * they will stay around as well.
1576 	 *
1577 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1578 	 * truncation operations) during I/O.
1579 	 */
1580 	vm_object_reference_locked(fs.first_object);
1581 	vm_object_pip_add(fs.first_object, 1);
1582 
1583 	fs.m_cow = fs.m = fs.first_m = NULL;
1584 
1585 	/*
1586 	 * Search for the page at object/offset.
1587 	 */
1588 	fs.object = fs.first_object;
1589 	fs.pindex = fs.first_pindex;
1590 
1591 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1592 		res = vm_fault_allocate(&fs);
1593 		switch (res) {
1594 		case FAULT_RESTART:
1595 			goto RetryFault;
1596 		case FAULT_SUCCESS:
1597 			return (KERN_SUCCESS);
1598 		case FAULT_FAILURE:
1599 			return (KERN_FAILURE);
1600 		case FAULT_OUT_OF_BOUNDS:
1601 			return (KERN_OUT_OF_BOUNDS);
1602 		case FAULT_CONTINUE:
1603 			break;
1604 		default:
1605 			panic("vm_fault: Unhandled status %d", res);
1606 		}
1607 	}
1608 
1609 	while (TRUE) {
1610 		KASSERT(fs.m == NULL,
1611 		    ("page still set %p at loop start", fs.m));
1612 
1613 		res = vm_fault_object(&fs, &behind, &ahead);
1614 		switch (res) {
1615 		case FAULT_SOFT:
1616 			goto found;
1617 		case FAULT_HARD:
1618 			faultcount = behind + 1 + ahead;
1619 			hardfault = true;
1620 			goto found;
1621 		case FAULT_RESTART:
1622 			goto RetryFault;
1623 		case FAULT_SUCCESS:
1624 			return (KERN_SUCCESS);
1625 		case FAULT_FAILURE:
1626 			return (KERN_FAILURE);
1627 		case FAULT_OUT_OF_BOUNDS:
1628 			return (KERN_OUT_OF_BOUNDS);
1629 		case FAULT_PROTECTION_FAILURE:
1630 			return (KERN_PROTECTION_FAILURE);
1631 		case FAULT_CONTINUE:
1632 			break;
1633 		default:
1634 			panic("vm_fault: Unhandled status %d", res);
1635 		}
1636 
1637 		/*
1638 		 * The page was not found in the current object.  Try to
1639 		 * traverse into a backing object or zero fill if none is
1640 		 * found.
1641 		 */
1642 		res_next = vm_fault_next(&fs);
1643 		if (res_next == FAULT_NEXT_RESTART)
1644 			goto RetryFault;
1645 		else if (res_next == FAULT_NEXT_GOTOBJ)
1646 			continue;
1647 		MPASS(res_next == FAULT_NEXT_NOOBJ);
1648 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1649 			if (fs.first_object == fs.object)
1650 				vm_fault_page_free(&fs.first_m);
1651 			vm_fault_unlock_and_deallocate(&fs);
1652 			return (KERN_OUT_OF_BOUNDS);
1653 		}
1654 		VM_OBJECT_UNLOCK(fs.object);
1655 		vm_fault_zerofill(&fs);
1656 		/* Don't try to prefault neighboring pages. */
1657 		faultcount = 1;
1658 		break;
1659 	}
1660 
1661 found:
1662 	/*
1663 	 * A valid page has been found and exclusively busied.  The
1664 	 * object lock must no longer be held.
1665 	 */
1666 	vm_page_assert_xbusied(fs.m);
1667 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1668 
1669 	/*
1670 	 * If the page is being written, but isn't already owned by the
1671 	 * top-level object, we have to copy it into a new page owned by the
1672 	 * top-level object.
1673 	 */
1674 	if (fs.object != fs.first_object) {
1675 		/*
1676 		 * We only really need to copy if we want to write it.
1677 		 */
1678 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1679 			vm_fault_cow(&fs);
1680 			/*
1681 			 * We only try to prefault read-only mappings to the
1682 			 * neighboring pages when this copy-on-write fault is
1683 			 * a hard fault.  In other cases, trying to prefault
1684 			 * is typically wasted effort.
1685 			 */
1686 			if (faultcount == 0)
1687 				faultcount = 1;
1688 
1689 		} else {
1690 			fs.prot &= ~VM_PROT_WRITE;
1691 		}
1692 	}
1693 
1694 	/*
1695 	 * We must verify that the maps have not changed since our last
1696 	 * lookup.
1697 	 */
1698 	if (!fs.lookup_still_valid) {
1699 		rv = vm_fault_relookup(&fs);
1700 		if (rv != KERN_SUCCESS) {
1701 			vm_fault_deallocate(&fs);
1702 			if (rv == KERN_RESTART)
1703 				goto RetryFault;
1704 			return (rv);
1705 		}
1706 	}
1707 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1708 
1709 	/*
1710 	 * If the page was filled by a pager, save the virtual address that
1711 	 * should be faulted on next under a sequential access pattern to the
1712 	 * map entry.  A read lock on the map suffices to update this address
1713 	 * safely.
1714 	 */
1715 	if (hardfault)
1716 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1717 
1718 	/*
1719 	 * Page must be completely valid or it is not fit to
1720 	 * map into user space.  vm_pager_get_pages() ensures this.
1721 	 */
1722 	vm_page_assert_xbusied(fs.m);
1723 	KASSERT(vm_page_all_valid(fs.m),
1724 	    ("vm_fault: page %p partially invalid", fs.m));
1725 
1726 	vm_fault_dirty(&fs, fs.m);
1727 
1728 	/*
1729 	 * Put this page into the physical map.  We had to do the unlock above
1730 	 * because pmap_enter() may sleep.  We don't put the page
1731 	 * back on the active queue until later so that the pageout daemon
1732 	 * won't find it (yet).
1733 	 */
1734 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1735 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1736 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1737 	    fs.wired == 0)
1738 		vm_fault_prefault(&fs, vaddr,
1739 		    faultcount > 0 ? behind : PFBAK,
1740 		    faultcount > 0 ? ahead : PFFOR, false);
1741 
1742 	/*
1743 	 * If the page is not wired down, then put it where the pageout daemon
1744 	 * can find it.
1745 	 */
1746 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1747 		vm_page_wire(fs.m);
1748 	else
1749 		vm_page_activate(fs.m);
1750 	if (fs.m_hold != NULL) {
1751 		(*fs.m_hold) = fs.m;
1752 		vm_page_wire(fs.m);
1753 	}
1754 	vm_page_xunbusy(fs.m);
1755 	fs.m = NULL;
1756 
1757 	/*
1758 	 * Unlock everything, and return
1759 	 */
1760 	vm_fault_deallocate(&fs);
1761 	if (hardfault) {
1762 		VM_CNT_INC(v_io_faults);
1763 		curthread->td_ru.ru_majflt++;
1764 #ifdef RACCT
1765 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1766 			PROC_LOCK(curproc);
1767 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1768 				racct_add_force(curproc, RACCT_WRITEBPS,
1769 				    PAGE_SIZE + behind * PAGE_SIZE);
1770 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1771 			} else {
1772 				racct_add_force(curproc, RACCT_READBPS,
1773 				    PAGE_SIZE + ahead * PAGE_SIZE);
1774 				racct_add_force(curproc, RACCT_READIOPS, 1);
1775 			}
1776 			PROC_UNLOCK(curproc);
1777 		}
1778 #endif
1779 	} else
1780 		curthread->td_ru.ru_minflt++;
1781 
1782 	return (KERN_SUCCESS);
1783 }
1784 
1785 /*
1786  * Speed up the reclamation of pages that precede the faulting pindex within
1787  * the first object of the shadow chain.  Essentially, perform the equivalent
1788  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1789  * the faulting pindex by the cluster size when the pages read by vm_fault()
1790  * cross a cluster-size boundary.  The cluster size is the greater of the
1791  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1792  *
1793  * When "fs->first_object" is a shadow object, the pages in the backing object
1794  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1795  * function must only be concerned with pages in the first object.
1796  */
1797 static void
1798 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1799 {
1800 	vm_map_entry_t entry;
1801 	vm_object_t first_object;
1802 	vm_offset_t end, start;
1803 	vm_page_t m, m_next;
1804 	vm_pindex_t pend, pstart;
1805 	vm_size_t size;
1806 
1807 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1808 	first_object = fs->first_object;
1809 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1810 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1811 		VM_OBJECT_RLOCK(first_object);
1812 		size = VM_FAULT_DONTNEED_MIN;
1813 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1814 			size = pagesizes[1];
1815 		end = rounddown2(vaddr, size);
1816 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1817 		    (entry = fs->entry)->start < end) {
1818 			if (end - entry->start < size)
1819 				start = entry->start;
1820 			else
1821 				start = end - size;
1822 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1823 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1824 			    entry->start);
1825 			m_next = vm_page_find_least(first_object, pstart);
1826 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1827 			    entry->start);
1828 			while ((m = m_next) != NULL && m->pindex < pend) {
1829 				m_next = TAILQ_NEXT(m, listq);
1830 				if (!vm_page_all_valid(m) ||
1831 				    vm_page_busied(m))
1832 					continue;
1833 
1834 				/*
1835 				 * Don't clear PGA_REFERENCED, since it would
1836 				 * likely represent a reference by a different
1837 				 * process.
1838 				 *
1839 				 * Typically, at this point, prefetched pages
1840 				 * are still in the inactive queue.  Only
1841 				 * pages that triggered page faults are in the
1842 				 * active queue.  The test for whether the page
1843 				 * is in the inactive queue is racy; in the
1844 				 * worst case we will requeue the page
1845 				 * unnecessarily.
1846 				 */
1847 				if (!vm_page_inactive(m))
1848 					vm_page_deactivate(m);
1849 			}
1850 		}
1851 		VM_OBJECT_RUNLOCK(first_object);
1852 	}
1853 }
1854 
1855 /*
1856  * vm_fault_prefault provides a quick way of clustering
1857  * pagefaults into a processes address space.  It is a "cousin"
1858  * of vm_map_pmap_enter, except it runs at page fault time instead
1859  * of mmap time.
1860  */
1861 static void
1862 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1863     int backward, int forward, bool obj_locked)
1864 {
1865 	pmap_t pmap;
1866 	vm_map_entry_t entry;
1867 	vm_object_t backing_object, lobject;
1868 	vm_offset_t addr, starta;
1869 	vm_pindex_t pindex;
1870 	vm_page_t m;
1871 	int i;
1872 
1873 	pmap = fs->map->pmap;
1874 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1875 		return;
1876 
1877 	entry = fs->entry;
1878 
1879 	if (addra < backward * PAGE_SIZE) {
1880 		starta = entry->start;
1881 	} else {
1882 		starta = addra - backward * PAGE_SIZE;
1883 		if (starta < entry->start)
1884 			starta = entry->start;
1885 	}
1886 
1887 	/*
1888 	 * Generate the sequence of virtual addresses that are candidates for
1889 	 * prefaulting in an outward spiral from the faulting virtual address,
1890 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1891 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1892 	 * If the candidate address doesn't have a backing physical page, then
1893 	 * the loop immediately terminates.
1894 	 */
1895 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1896 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1897 		    PAGE_SIZE);
1898 		if (addr > addra + forward * PAGE_SIZE)
1899 			addr = 0;
1900 
1901 		if (addr < starta || addr >= entry->end)
1902 			continue;
1903 
1904 		if (!pmap_is_prefaultable(pmap, addr))
1905 			continue;
1906 
1907 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1908 		lobject = entry->object.vm_object;
1909 		if (!obj_locked)
1910 			VM_OBJECT_RLOCK(lobject);
1911 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1912 		    !vm_fault_object_needs_getpages(lobject) &&
1913 		    (backing_object = lobject->backing_object) != NULL) {
1914 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1915 			    0, ("vm_fault_prefault: unaligned object offset"));
1916 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1917 			VM_OBJECT_RLOCK(backing_object);
1918 			if (!obj_locked || lobject != entry->object.vm_object)
1919 				VM_OBJECT_RUNLOCK(lobject);
1920 			lobject = backing_object;
1921 		}
1922 		if (m == NULL) {
1923 			if (!obj_locked || lobject != entry->object.vm_object)
1924 				VM_OBJECT_RUNLOCK(lobject);
1925 			break;
1926 		}
1927 		if (vm_page_all_valid(m) &&
1928 		    (m->flags & PG_FICTITIOUS) == 0)
1929 			pmap_enter_quick(pmap, addr, m, entry->protection);
1930 		if (!obj_locked || lobject != entry->object.vm_object)
1931 			VM_OBJECT_RUNLOCK(lobject);
1932 	}
1933 }
1934 
1935 /*
1936  * Hold each of the physical pages that are mapped by the specified range of
1937  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1938  * and allow the specified types of access, "prot".  If all of the implied
1939  * pages are successfully held, then the number of held pages is returned
1940  * together with pointers to those pages in the array "ma".  However, if any
1941  * of the pages cannot be held, -1 is returned.
1942  */
1943 int
1944 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1945     vm_prot_t prot, vm_page_t *ma, int max_count)
1946 {
1947 	vm_offset_t end, va;
1948 	vm_page_t *mp;
1949 	int count;
1950 	boolean_t pmap_failed;
1951 
1952 	if (len == 0)
1953 		return (0);
1954 	end = round_page(addr + len);
1955 	addr = trunc_page(addr);
1956 
1957 	if (!vm_map_range_valid(map, addr, end))
1958 		return (-1);
1959 
1960 	if (atop(end - addr) > max_count)
1961 		panic("vm_fault_quick_hold_pages: count > max_count");
1962 	count = atop(end - addr);
1963 
1964 	/*
1965 	 * Most likely, the physical pages are resident in the pmap, so it is
1966 	 * faster to try pmap_extract_and_hold() first.
1967 	 */
1968 	pmap_failed = FALSE;
1969 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1970 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1971 		if (*mp == NULL)
1972 			pmap_failed = TRUE;
1973 		else if ((prot & VM_PROT_WRITE) != 0 &&
1974 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1975 			/*
1976 			 * Explicitly dirty the physical page.  Otherwise, the
1977 			 * caller's changes may go unnoticed because they are
1978 			 * performed through an unmanaged mapping or by a DMA
1979 			 * operation.
1980 			 *
1981 			 * The object lock is not held here.
1982 			 * See vm_page_clear_dirty_mask().
1983 			 */
1984 			vm_page_dirty(*mp);
1985 		}
1986 	}
1987 	if (pmap_failed) {
1988 		/*
1989 		 * One or more pages could not be held by the pmap.  Either no
1990 		 * page was mapped at the specified virtual address or that
1991 		 * mapping had insufficient permissions.  Attempt to fault in
1992 		 * and hold these pages.
1993 		 *
1994 		 * If vm_fault_disable_pagefaults() was called,
1995 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1996 		 * acquire MD VM locks, which means we must not call
1997 		 * vm_fault().  Some (out of tree) callers mark
1998 		 * too wide a code area with vm_fault_disable_pagefaults()
1999 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2000 		 * the proper behaviour explicitly.
2001 		 */
2002 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2003 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
2004 			goto error;
2005 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2006 			if (*mp == NULL && vm_fault(map, va, prot,
2007 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2008 				goto error;
2009 	}
2010 	return (count);
2011 error:
2012 	for (mp = ma; mp < ma + count; mp++)
2013 		if (*mp != NULL)
2014 			vm_page_unwire(*mp, PQ_INACTIVE);
2015 	return (-1);
2016 }
2017 
2018 /*
2019  *	Routine:
2020  *		vm_fault_copy_entry
2021  *	Function:
2022  *		Create new object backing dst_entry with private copy of all
2023  *		underlying pages. When src_entry is equal to dst_entry, function
2024  *		implements COW for wired-down map entry. Otherwise, it forks
2025  *		wired entry into dst_map.
2026  *
2027  *	In/out conditions:
2028  *		The source and destination maps must be locked for write.
2029  *		The source map entry must be wired down (or be a sharing map
2030  *		entry corresponding to a main map entry that is wired down).
2031  */
2032 void
2033 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2034     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2035     vm_ooffset_t *fork_charge)
2036 {
2037 	vm_object_t backing_object, dst_object, object, src_object;
2038 	vm_pindex_t dst_pindex, pindex, src_pindex;
2039 	vm_prot_t access, prot;
2040 	vm_offset_t vaddr;
2041 	vm_page_t dst_m;
2042 	vm_page_t src_m;
2043 	bool upgrade;
2044 
2045 	upgrade = src_entry == dst_entry;
2046 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2047 	    ("vm_fault_copy_entry: vm_object not NULL"));
2048 
2049 	/*
2050 	 * If not an upgrade, then enter the mappings in the pmap as
2051 	 * read and/or execute accesses.  Otherwise, enter them as
2052 	 * write accesses.
2053 	 *
2054 	 * A writeable large page mapping is only created if all of
2055 	 * the constituent small page mappings are modified. Marking
2056 	 * PTEs as modified on inception allows promotion to happen
2057 	 * without taking potentially large number of soft faults.
2058 	 */
2059 	access = prot = dst_entry->protection;
2060 	if (!upgrade)
2061 		access &= ~VM_PROT_WRITE;
2062 
2063 	src_object = src_entry->object.vm_object;
2064 	src_pindex = OFF_TO_IDX(src_entry->offset);
2065 
2066 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2067 		dst_object = src_object;
2068 		vm_object_reference(dst_object);
2069 	} else {
2070 		/*
2071 		 * Create the top-level object for the destination entry.
2072 		 * Doesn't actually shadow anything - we copy the pages
2073 		 * directly.
2074 		 */
2075 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2076 		    dst_entry->start), NULL, NULL, 0);
2077 #if VM_NRESERVLEVEL > 0
2078 		dst_object->flags |= OBJ_COLORED;
2079 		dst_object->pg_color = atop(dst_entry->start);
2080 #endif
2081 		dst_object->domain = src_object->domain;
2082 		dst_object->charge = dst_entry->end - dst_entry->start;
2083 
2084 		dst_entry->object.vm_object = dst_object;
2085 		dst_entry->offset = 0;
2086 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2087 	}
2088 
2089 	VM_OBJECT_WLOCK(dst_object);
2090 	if (fork_charge != NULL) {
2091 		KASSERT(dst_entry->cred == NULL,
2092 		    ("vm_fault_copy_entry: leaked swp charge"));
2093 		dst_object->cred = curthread->td_ucred;
2094 		crhold(dst_object->cred);
2095 		*fork_charge += dst_object->charge;
2096 	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2097 	    dst_object->cred == NULL) {
2098 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2099 		    dst_entry));
2100 		dst_object->cred = dst_entry->cred;
2101 		dst_entry->cred = NULL;
2102 	}
2103 
2104 	/*
2105 	 * Loop through all of the virtual pages within the entry's
2106 	 * range, copying each page from the source object to the
2107 	 * destination object.  Since the source is wired, those pages
2108 	 * must exist.  In contrast, the destination is pageable.
2109 	 * Since the destination object doesn't share any backing storage
2110 	 * with the source object, all of its pages must be dirtied,
2111 	 * regardless of whether they can be written.
2112 	 */
2113 	for (vaddr = dst_entry->start, dst_pindex = 0;
2114 	    vaddr < dst_entry->end;
2115 	    vaddr += PAGE_SIZE, dst_pindex++) {
2116 again:
2117 		/*
2118 		 * Find the page in the source object, and copy it in.
2119 		 * Because the source is wired down, the page will be
2120 		 * in memory.
2121 		 */
2122 		if (src_object != dst_object)
2123 			VM_OBJECT_RLOCK(src_object);
2124 		object = src_object;
2125 		pindex = src_pindex + dst_pindex;
2126 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2127 		    (backing_object = object->backing_object) != NULL) {
2128 			/*
2129 			 * Unless the source mapping is read-only or
2130 			 * it is presently being upgraded from
2131 			 * read-only, the first object in the shadow
2132 			 * chain should provide all of the pages.  In
2133 			 * other words, this loop body should never be
2134 			 * executed when the source mapping is already
2135 			 * read/write.
2136 			 */
2137 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2138 			    upgrade,
2139 			    ("vm_fault_copy_entry: main object missing page"));
2140 
2141 			VM_OBJECT_RLOCK(backing_object);
2142 			pindex += OFF_TO_IDX(object->backing_object_offset);
2143 			if (object != dst_object)
2144 				VM_OBJECT_RUNLOCK(object);
2145 			object = backing_object;
2146 		}
2147 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2148 
2149 		if (object != dst_object) {
2150 			/*
2151 			 * Allocate a page in the destination object.
2152 			 */
2153 			dst_m = vm_page_alloc(dst_object, (src_object ==
2154 			    dst_object ? src_pindex : 0) + dst_pindex,
2155 			    VM_ALLOC_NORMAL);
2156 			if (dst_m == NULL) {
2157 				VM_OBJECT_WUNLOCK(dst_object);
2158 				VM_OBJECT_RUNLOCK(object);
2159 				vm_wait(dst_object);
2160 				VM_OBJECT_WLOCK(dst_object);
2161 				goto again;
2162 			}
2163 
2164 			/*
2165 			 * See the comment in vm_fault_cow().
2166 			 */
2167 			if (src_object == dst_object &&
2168 			    (object->flags & OBJ_ONEMAPPING) == 0)
2169 				pmap_remove_all(src_m);
2170 			pmap_copy_page(src_m, dst_m);
2171 
2172 			/*
2173 			 * The object lock does not guarantee that "src_m" will
2174 			 * transition from invalid to valid, but it does ensure
2175 			 * that "src_m" will not transition from valid to
2176 			 * invalid.
2177 			 */
2178 			dst_m->dirty = dst_m->valid = src_m->valid;
2179 			VM_OBJECT_RUNLOCK(object);
2180 		} else {
2181 			dst_m = src_m;
2182 			if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2183 				goto again;
2184 			if (dst_m->pindex >= dst_object->size) {
2185 				/*
2186 				 * We are upgrading.  Index can occur
2187 				 * out of bounds if the object type is
2188 				 * vnode and the file was truncated.
2189 				 */
2190 				vm_page_xunbusy(dst_m);
2191 				break;
2192 			}
2193 		}
2194 
2195 		/*
2196 		 * Enter it in the pmap. If a wired, copy-on-write
2197 		 * mapping is being replaced by a write-enabled
2198 		 * mapping, then wire that new mapping.
2199 		 *
2200 		 * The page can be invalid if the user called
2201 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2202 		 * or shared memory object.  In this case, do not
2203 		 * insert it into pmap, but still do the copy so that
2204 		 * all copies of the wired map entry have similar
2205 		 * backing pages.
2206 		 */
2207 		if (vm_page_all_valid(dst_m)) {
2208 			VM_OBJECT_WUNLOCK(dst_object);
2209 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2210 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2211 			VM_OBJECT_WLOCK(dst_object);
2212 		}
2213 
2214 		/*
2215 		 * Mark it no longer busy, and put it on the active list.
2216 		 */
2217 		if (upgrade) {
2218 			if (src_m != dst_m) {
2219 				vm_page_unwire(src_m, PQ_INACTIVE);
2220 				vm_page_wire(dst_m);
2221 			} else {
2222 				KASSERT(vm_page_wired(dst_m),
2223 				    ("dst_m %p is not wired", dst_m));
2224 			}
2225 		} else {
2226 			vm_page_activate(dst_m);
2227 		}
2228 		vm_page_xunbusy(dst_m);
2229 	}
2230 	VM_OBJECT_WUNLOCK(dst_object);
2231 	if (upgrade) {
2232 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2233 		vm_object_deallocate(src_object);
2234 	}
2235 }
2236 
2237 /*
2238  * Block entry into the machine-independent layer's page fault handler by
2239  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2240  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2241  * spurious page faults.
2242  */
2243 int
2244 vm_fault_disable_pagefaults(void)
2245 {
2246 
2247 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2248 }
2249 
2250 void
2251 vm_fault_enable_pagefaults(int save)
2252 {
2253 
2254 	curthread_pflags_restore(save);
2255 }
2256