1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 int lookup_still_valid; 126 struct vnode *vp; 127 }; 128 129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 130 int ahead); 131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 132 int backward, int forward); 133 134 static inline void 135 release_page(struct faultstate *fs) 136 { 137 138 vm_page_xunbusy(fs->m); 139 vm_page_lock(fs->m); 140 vm_page_deactivate(fs->m); 141 vm_page_unlock(fs->m); 142 fs->m = NULL; 143 } 144 145 static inline void 146 unlock_map(struct faultstate *fs) 147 { 148 149 if (fs->lookup_still_valid) { 150 vm_map_lookup_done(fs->map, fs->entry); 151 fs->lookup_still_valid = FALSE; 152 } 153 } 154 155 static void 156 unlock_and_deallocate(struct faultstate *fs) 157 { 158 159 vm_object_pip_wakeup(fs->object); 160 VM_OBJECT_WUNLOCK(fs->object); 161 if (fs->object != fs->first_object) { 162 VM_OBJECT_WLOCK(fs->first_object); 163 vm_page_lock(fs->first_m); 164 vm_page_free(fs->first_m); 165 vm_page_unlock(fs->first_m); 166 vm_object_pip_wakeup(fs->first_object); 167 VM_OBJECT_WUNLOCK(fs->first_object); 168 fs->first_m = NULL; 169 } 170 vm_object_deallocate(fs->first_object); 171 unlock_map(fs); 172 if (fs->vp != NULL) { 173 vput(fs->vp); 174 fs->vp = NULL; 175 } 176 } 177 178 static void 179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 180 vm_prot_t fault_type, int fault_flags, boolean_t set_wd) 181 { 182 boolean_t need_dirty; 183 184 if (((prot & VM_PROT_WRITE) == 0 && 185 (fault_flags & VM_FAULT_DIRTY) == 0) || 186 (m->oflags & VPO_UNMANAGED) != 0) 187 return; 188 189 VM_OBJECT_ASSERT_LOCKED(m->object); 190 191 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 192 (fault_flags & VM_FAULT_WIRE) == 0) || 193 (fault_flags & VM_FAULT_DIRTY) != 0; 194 195 if (set_wd) 196 vm_object_set_writeable_dirty(m->object); 197 else 198 /* 199 * If two callers of vm_fault_dirty() with set_wd == 200 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 201 * flag set, other with flag clear, race, it is 202 * possible for the no-NOSYNC thread to see m->dirty 203 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 204 * around manipulation of VPO_NOSYNC and 205 * vm_page_dirty() call, to avoid the race and keep 206 * m->oflags consistent. 207 */ 208 vm_page_lock(m); 209 210 /* 211 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 212 * if the page is already dirty to prevent data written with 213 * the expectation of being synced from not being synced. 214 * Likewise if this entry does not request NOSYNC then make 215 * sure the page isn't marked NOSYNC. Applications sharing 216 * data should use the same flags to avoid ping ponging. 217 */ 218 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 219 if (m->dirty == 0) { 220 m->oflags |= VPO_NOSYNC; 221 } 222 } else { 223 m->oflags &= ~VPO_NOSYNC; 224 } 225 226 /* 227 * If the fault is a write, we know that this page is being 228 * written NOW so dirty it explicitly to save on 229 * pmap_is_modified() calls later. 230 * 231 * Also tell the backing pager, if any, that it should remove 232 * any swap backing since the page is now dirty. 233 */ 234 if (need_dirty) 235 vm_page_dirty(m); 236 if (!set_wd) 237 vm_page_unlock(m); 238 if (need_dirty) 239 vm_pager_page_unswapped(m); 240 } 241 242 /* 243 * vm_fault: 244 * 245 * Handle a page fault occurring at the given address, 246 * requiring the given permissions, in the map specified. 247 * If successful, the page is inserted into the 248 * associated physical map. 249 * 250 * NOTE: the given address should be truncated to the 251 * proper page address. 252 * 253 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 254 * a standard error specifying why the fault is fatal is returned. 255 * 256 * The map in question must be referenced, and remains so. 257 * Caller may hold no locks. 258 */ 259 int 260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 261 int fault_flags) 262 { 263 struct thread *td; 264 int result; 265 266 td = curthread; 267 if ((td->td_pflags & TDP_NOFAULTING) != 0) 268 return (KERN_PROTECTION_FAILURE); 269 #ifdef KTRACE 270 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 271 ktrfault(vaddr, fault_type); 272 #endif 273 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 274 NULL); 275 #ifdef KTRACE 276 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 277 ktrfaultend(result); 278 #endif 279 return (result); 280 } 281 282 int 283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 284 int fault_flags, vm_page_t *m_hold) 285 { 286 vm_prot_t prot; 287 int alloc_req, era, faultcount, nera, result; 288 boolean_t growstack, is_first_object_locked, wired; 289 int map_generation; 290 vm_object_t next_object; 291 int hardfault; 292 struct faultstate fs; 293 struct vnode *vp; 294 vm_page_t m; 295 int ahead, behind, cluster_offset, error, locked; 296 297 hardfault = 0; 298 growstack = TRUE; 299 PCPU_INC(cnt.v_vm_faults); 300 fs.vp = NULL; 301 faultcount = 0; 302 303 RetryFault:; 304 305 /* 306 * Find the backing store object and offset into it to begin the 307 * search. 308 */ 309 fs.map = map; 310 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 311 &fs.first_object, &fs.first_pindex, &prot, &wired); 312 if (result != KERN_SUCCESS) { 313 if (growstack && result == KERN_INVALID_ADDRESS && 314 map != kernel_map) { 315 result = vm_map_growstack(curproc, vaddr); 316 if (result != KERN_SUCCESS) 317 return (KERN_FAILURE); 318 growstack = FALSE; 319 goto RetryFault; 320 } 321 return (result); 322 } 323 324 map_generation = fs.map->timestamp; 325 326 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 327 panic("vm_fault: fault on nofault entry, addr: %lx", 328 (u_long)vaddr); 329 } 330 331 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 332 fs.entry->wiring_thread != curthread) { 333 vm_map_unlock_read(fs.map); 334 vm_map_lock(fs.map); 335 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 336 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 337 if (fs.vp != NULL) { 338 vput(fs.vp); 339 fs.vp = NULL; 340 } 341 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 342 vm_map_unlock_and_wait(fs.map, 0); 343 } else 344 vm_map_unlock(fs.map); 345 goto RetryFault; 346 } 347 348 if (wired) 349 fault_type = prot | (fault_type & VM_PROT_COPY); 350 else 351 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 352 ("!wired && VM_FAULT_WIRE")); 353 354 if (fs.vp == NULL /* avoid locked vnode leak */ && 355 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 356 /* avoid calling vm_object_set_writeable_dirty() */ 357 ((prot & VM_PROT_WRITE) == 0 || 358 (fs.first_object->type != OBJT_VNODE && 359 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 360 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 361 VM_OBJECT_RLOCK(fs.first_object); 362 if ((prot & VM_PROT_WRITE) != 0 && 363 (fs.first_object->type == OBJT_VNODE || 364 (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) && 365 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0) 366 goto fast_failed; 367 m = vm_page_lookup(fs.first_object, fs.first_pindex); 368 /* A busy page can be mapped for read|execute access. */ 369 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 370 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 371 goto fast_failed; 372 result = pmap_enter(fs.map->pmap, vaddr, m, prot, 373 fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 374 0), 0); 375 if (result != KERN_SUCCESS) 376 goto fast_failed; 377 if (m_hold != NULL) { 378 *m_hold = m; 379 vm_page_lock(m); 380 vm_page_hold(m); 381 vm_page_unlock(m); 382 } 383 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags, 384 FALSE); 385 VM_OBJECT_RUNLOCK(fs.first_object); 386 if (!wired) 387 vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR); 388 vm_map_lookup_done(fs.map, fs.entry); 389 curthread->td_ru.ru_minflt++; 390 return (KERN_SUCCESS); 391 fast_failed: 392 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 393 VM_OBJECT_RUNLOCK(fs.first_object); 394 VM_OBJECT_WLOCK(fs.first_object); 395 } 396 } else { 397 VM_OBJECT_WLOCK(fs.first_object); 398 } 399 400 /* 401 * Make a reference to this object to prevent its disposal while we 402 * are messing with it. Once we have the reference, the map is free 403 * to be diddled. Since objects reference their shadows (and copies), 404 * they will stay around as well. 405 * 406 * Bump the paging-in-progress count to prevent size changes (e.g. 407 * truncation operations) during I/O. This must be done after 408 * obtaining the vnode lock in order to avoid possible deadlocks. 409 */ 410 vm_object_reference_locked(fs.first_object); 411 vm_object_pip_add(fs.first_object, 1); 412 413 fs.lookup_still_valid = TRUE; 414 415 fs.first_m = NULL; 416 417 /* 418 * Search for the page at object/offset. 419 */ 420 fs.object = fs.first_object; 421 fs.pindex = fs.first_pindex; 422 while (TRUE) { 423 /* 424 * If the object is dead, we stop here 425 */ 426 if (fs.object->flags & OBJ_DEAD) { 427 unlock_and_deallocate(&fs); 428 return (KERN_PROTECTION_FAILURE); 429 } 430 431 /* 432 * See if page is resident 433 */ 434 fs.m = vm_page_lookup(fs.object, fs.pindex); 435 if (fs.m != NULL) { 436 /* 437 * Wait/Retry if the page is busy. We have to do this 438 * if the page is either exclusive or shared busy 439 * because the vm_pager may be using read busy for 440 * pageouts (and even pageins if it is the vnode 441 * pager), and we could end up trying to pagein and 442 * pageout the same page simultaneously. 443 * 444 * We can theoretically allow the busy case on a read 445 * fault if the page is marked valid, but since such 446 * pages are typically already pmap'd, putting that 447 * special case in might be more effort then it is 448 * worth. We cannot under any circumstances mess 449 * around with a shared busied page except, perhaps, 450 * to pmap it. 451 */ 452 if (vm_page_busied(fs.m)) { 453 /* 454 * Reference the page before unlocking and 455 * sleeping so that the page daemon is less 456 * likely to reclaim it. 457 */ 458 vm_page_aflag_set(fs.m, PGA_REFERENCED); 459 if (fs.object != fs.first_object) { 460 if (!VM_OBJECT_TRYWLOCK( 461 fs.first_object)) { 462 VM_OBJECT_WUNLOCK(fs.object); 463 VM_OBJECT_WLOCK(fs.first_object); 464 VM_OBJECT_WLOCK(fs.object); 465 } 466 vm_page_lock(fs.first_m); 467 vm_page_free(fs.first_m); 468 vm_page_unlock(fs.first_m); 469 vm_object_pip_wakeup(fs.first_object); 470 VM_OBJECT_WUNLOCK(fs.first_object); 471 fs.first_m = NULL; 472 } 473 unlock_map(&fs); 474 if (fs.m == vm_page_lookup(fs.object, 475 fs.pindex)) { 476 vm_page_sleep_if_busy(fs.m, "vmpfw"); 477 } 478 vm_object_pip_wakeup(fs.object); 479 VM_OBJECT_WUNLOCK(fs.object); 480 PCPU_INC(cnt.v_intrans); 481 vm_object_deallocate(fs.first_object); 482 goto RetryFault; 483 } 484 vm_page_lock(fs.m); 485 vm_page_remque(fs.m); 486 vm_page_unlock(fs.m); 487 488 /* 489 * Mark page busy for other processes, and the 490 * pagedaemon. If it still isn't completely valid 491 * (readable), jump to readrest, else break-out ( we 492 * found the page ). 493 */ 494 vm_page_xbusy(fs.m); 495 if (fs.m->valid != VM_PAGE_BITS_ALL) 496 goto readrest; 497 break; 498 } 499 500 /* 501 * Page is not resident. If this is the search termination 502 * or the pager might contain the page, allocate a new page. 503 * Default objects are zero-fill, there is no real pager. 504 */ 505 if (fs.object->type != OBJT_DEFAULT || 506 fs.object == fs.first_object) { 507 if (fs.pindex >= fs.object->size) { 508 unlock_and_deallocate(&fs); 509 return (KERN_PROTECTION_FAILURE); 510 } 511 512 /* 513 * Allocate a new page for this object/offset pair. 514 * 515 * Unlocked read of the p_flag is harmless. At 516 * worst, the P_KILLED might be not observed 517 * there, and allocation can fail, causing 518 * restart and new reading of the p_flag. 519 */ 520 fs.m = NULL; 521 if (!vm_page_count_severe() || P_KILLED(curproc)) { 522 #if VM_NRESERVLEVEL > 0 523 vm_object_color(fs.object, atop(vaddr) - 524 fs.pindex); 525 #endif 526 alloc_req = P_KILLED(curproc) ? 527 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 528 if (fs.object->type != OBJT_VNODE && 529 fs.object->backing_object == NULL) 530 alloc_req |= VM_ALLOC_ZERO; 531 fs.m = vm_page_alloc(fs.object, fs.pindex, 532 alloc_req); 533 } 534 if (fs.m == NULL) { 535 unlock_and_deallocate(&fs); 536 VM_WAITPFAULT; 537 goto RetryFault; 538 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 539 break; 540 } 541 542 readrest: 543 /* 544 * We have found a valid page or we have allocated a new page. 545 * The page thus may not be valid or may not be entirely 546 * valid. 547 * 548 * Attempt to fault-in the page if there is a chance that the 549 * pager has it, and potentially fault in additional pages 550 * at the same time. For default objects simply provide 551 * zero-filled pages. 552 */ 553 if (fs.object->type != OBJT_DEFAULT) { 554 int rv; 555 u_char behavior = vm_map_entry_behavior(fs.entry); 556 557 era = fs.entry->read_ahead; 558 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 559 P_KILLED(curproc)) { 560 behind = 0; 561 nera = 0; 562 ahead = 0; 563 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 564 behind = 0; 565 nera = VM_FAULT_READ_AHEAD_MAX; 566 ahead = nera; 567 if (fs.pindex == fs.entry->next_read) 568 vm_fault_dontneed(&fs, vaddr, ahead); 569 } else if (fs.pindex == fs.entry->next_read) { 570 /* 571 * This is a sequential fault. Arithmetically 572 * increase the requested number of pages in 573 * the read-ahead window. The requested 574 * number of pages is "# of sequential faults 575 * x (read ahead min + 1) + read ahead min" 576 */ 577 behind = 0; 578 nera = VM_FAULT_READ_AHEAD_MIN; 579 if (era > 0) { 580 nera += era + 1; 581 if (nera > VM_FAULT_READ_AHEAD_MAX) 582 nera = VM_FAULT_READ_AHEAD_MAX; 583 } 584 ahead = nera; 585 if (era == VM_FAULT_READ_AHEAD_MAX) 586 vm_fault_dontneed(&fs, vaddr, ahead); 587 } else { 588 /* 589 * This is a non-sequential fault. Request a 590 * cluster of pages that is aligned to a 591 * VM_FAULT_READ_DEFAULT page offset boundary 592 * within the object. Alignment to a page 593 * offset boundary is more likely to coincide 594 * with the underlying file system block than 595 * alignment to a virtual address boundary. 596 */ 597 cluster_offset = fs.pindex % 598 VM_FAULT_READ_DEFAULT; 599 behind = ulmin(cluster_offset, 600 atop(vaddr - fs.entry->start)); 601 nera = 0; 602 ahead = VM_FAULT_READ_DEFAULT - 1 - 603 cluster_offset; 604 } 605 ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1); 606 if (era != nera) 607 fs.entry->read_ahead = nera; 608 609 /* 610 * Call the pager to retrieve the data, if any, after 611 * releasing the lock on the map. We hold a ref on 612 * fs.object and the pages are exclusive busied. 613 */ 614 unlock_map(&fs); 615 616 if (fs.object->type == OBJT_VNODE) { 617 vp = fs.object->handle; 618 if (vp == fs.vp) 619 goto vnode_locked; 620 else if (fs.vp != NULL) { 621 vput(fs.vp); 622 fs.vp = NULL; 623 } 624 locked = VOP_ISLOCKED(vp); 625 626 if (locked != LK_EXCLUSIVE) 627 locked = LK_SHARED; 628 /* Do not sleep for vnode lock while fs.m is busy */ 629 error = vget(vp, locked | LK_CANRECURSE | 630 LK_NOWAIT, curthread); 631 if (error != 0) { 632 vhold(vp); 633 release_page(&fs); 634 unlock_and_deallocate(&fs); 635 error = vget(vp, locked | LK_RETRY | 636 LK_CANRECURSE, curthread); 637 vdrop(vp); 638 fs.vp = vp; 639 KASSERT(error == 0, 640 ("vm_fault: vget failed")); 641 goto RetryFault; 642 } 643 fs.vp = vp; 644 } 645 vnode_locked: 646 KASSERT(fs.vp == NULL || !fs.map->system_map, 647 ("vm_fault: vnode-backed object mapped by system map")); 648 649 /* 650 * Page in the requested page and hint the pager, 651 * that it may bring up surrounding pages. 652 */ 653 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 654 &behind, &ahead); 655 if (rv == VM_PAGER_OK) { 656 faultcount = behind + 1 + ahead; 657 hardfault++; 658 break; /* break to PAGE HAS BEEN FOUND */ 659 } 660 /* 661 * Remove the bogus page (which does not exist at this 662 * object/offset); before doing so, we must get back 663 * our object lock to preserve our invariant. 664 * 665 * Also wake up any other process that may want to bring 666 * in this page. 667 * 668 * If this is the top-level object, we must leave the 669 * busy page to prevent another process from rushing 670 * past us, and inserting the page in that object at 671 * the same time that we are. 672 */ 673 if (rv == VM_PAGER_ERROR) 674 printf("vm_fault: pager read error, pid %d (%s)\n", 675 curproc->p_pid, curproc->p_comm); 676 /* 677 * Data outside the range of the pager or an I/O error 678 */ 679 /* 680 * XXX - the check for kernel_map is a kludge to work 681 * around having the machine panic on a kernel space 682 * fault w/ I/O error. 683 */ 684 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 685 (rv == VM_PAGER_BAD)) { 686 vm_page_lock(fs.m); 687 vm_page_free(fs.m); 688 vm_page_unlock(fs.m); 689 fs.m = NULL; 690 unlock_and_deallocate(&fs); 691 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 692 } 693 if (fs.object != fs.first_object) { 694 vm_page_lock(fs.m); 695 vm_page_free(fs.m); 696 vm_page_unlock(fs.m); 697 fs.m = NULL; 698 /* 699 * XXX - we cannot just fall out at this 700 * point, m has been freed and is invalid! 701 */ 702 } 703 } 704 705 /* 706 * We get here if the object has default pager (or unwiring) 707 * or the pager doesn't have the page. 708 */ 709 if (fs.object == fs.first_object) 710 fs.first_m = fs.m; 711 712 /* 713 * Move on to the next object. Lock the next object before 714 * unlocking the current one. 715 */ 716 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 717 next_object = fs.object->backing_object; 718 if (next_object == NULL) { 719 /* 720 * If there's no object left, fill the page in the top 721 * object with zeros. 722 */ 723 if (fs.object != fs.first_object) { 724 vm_object_pip_wakeup(fs.object); 725 VM_OBJECT_WUNLOCK(fs.object); 726 727 fs.object = fs.first_object; 728 fs.pindex = fs.first_pindex; 729 fs.m = fs.first_m; 730 VM_OBJECT_WLOCK(fs.object); 731 } 732 fs.first_m = NULL; 733 734 /* 735 * Zero the page if necessary and mark it valid. 736 */ 737 if ((fs.m->flags & PG_ZERO) == 0) { 738 pmap_zero_page(fs.m); 739 } else { 740 PCPU_INC(cnt.v_ozfod); 741 } 742 PCPU_INC(cnt.v_zfod); 743 fs.m->valid = VM_PAGE_BITS_ALL; 744 /* Don't try to prefault neighboring pages. */ 745 faultcount = 1; 746 break; /* break to PAGE HAS BEEN FOUND */ 747 } else { 748 KASSERT(fs.object != next_object, 749 ("object loop %p", next_object)); 750 VM_OBJECT_WLOCK(next_object); 751 vm_object_pip_add(next_object, 1); 752 if (fs.object != fs.first_object) 753 vm_object_pip_wakeup(fs.object); 754 VM_OBJECT_WUNLOCK(fs.object); 755 fs.object = next_object; 756 } 757 } 758 759 vm_page_assert_xbusied(fs.m); 760 761 /* 762 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 763 * is held.] 764 */ 765 766 /* 767 * If the page is being written, but isn't already owned by the 768 * top-level object, we have to copy it into a new page owned by the 769 * top-level object. 770 */ 771 if (fs.object != fs.first_object) { 772 /* 773 * We only really need to copy if we want to write it. 774 */ 775 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 776 /* 777 * This allows pages to be virtually copied from a 778 * backing_object into the first_object, where the 779 * backing object has no other refs to it, and cannot 780 * gain any more refs. Instead of a bcopy, we just 781 * move the page from the backing object to the 782 * first object. Note that we must mark the page 783 * dirty in the first object so that it will go out 784 * to swap when needed. 785 */ 786 is_first_object_locked = FALSE; 787 if ( 788 /* 789 * Only one shadow object 790 */ 791 (fs.object->shadow_count == 1) && 792 /* 793 * No COW refs, except us 794 */ 795 (fs.object->ref_count == 1) && 796 /* 797 * No one else can look this object up 798 */ 799 (fs.object->handle == NULL) && 800 /* 801 * No other ways to look the object up 802 */ 803 ((fs.object->type == OBJT_DEFAULT) || 804 (fs.object->type == OBJT_SWAP)) && 805 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 806 /* 807 * We don't chase down the shadow chain 808 */ 809 fs.object == fs.first_object->backing_object) { 810 /* 811 * get rid of the unnecessary page 812 */ 813 vm_page_lock(fs.first_m); 814 vm_page_remove(fs.first_m); 815 vm_page_unlock(fs.first_m); 816 /* 817 * grab the page and put it into the 818 * process'es object. The page is 819 * automatically made dirty. 820 */ 821 if (vm_page_rename(fs.m, fs.first_object, 822 fs.first_pindex)) { 823 VM_OBJECT_WUNLOCK(fs.first_object); 824 unlock_and_deallocate(&fs); 825 goto RetryFault; 826 } 827 vm_page_lock(fs.first_m); 828 vm_page_free(fs.first_m); 829 vm_page_unlock(fs.first_m); 830 #if VM_NRESERVLEVEL > 0 831 /* 832 * Rename the reservation. 833 */ 834 vm_reserv_rename(fs.m, fs.first_object, 835 fs.object, OFF_TO_IDX( 836 fs.first_object->backing_object_offset)); 837 #endif 838 vm_page_xbusy(fs.m); 839 fs.first_m = fs.m; 840 fs.m = NULL; 841 PCPU_INC(cnt.v_cow_optim); 842 } else { 843 /* 844 * Oh, well, lets copy it. 845 */ 846 pmap_copy_page(fs.m, fs.first_m); 847 fs.first_m->valid = VM_PAGE_BITS_ALL; 848 if (wired && (fault_flags & 849 VM_FAULT_WIRE) == 0) { 850 vm_page_lock(fs.first_m); 851 vm_page_wire(fs.first_m); 852 vm_page_unlock(fs.first_m); 853 854 vm_page_lock(fs.m); 855 vm_page_unwire(fs.m, PQ_INACTIVE); 856 vm_page_unlock(fs.m); 857 } 858 /* 859 * We no longer need the old page or object. 860 */ 861 release_page(&fs); 862 } 863 /* 864 * fs.object != fs.first_object due to above 865 * conditional 866 */ 867 vm_object_pip_wakeup(fs.object); 868 VM_OBJECT_WUNLOCK(fs.object); 869 /* 870 * Only use the new page below... 871 */ 872 fs.object = fs.first_object; 873 fs.pindex = fs.first_pindex; 874 fs.m = fs.first_m; 875 if (!is_first_object_locked) 876 VM_OBJECT_WLOCK(fs.object); 877 PCPU_INC(cnt.v_cow_faults); 878 curthread->td_cow++; 879 } else { 880 prot &= ~VM_PROT_WRITE; 881 } 882 } 883 884 /* 885 * We must verify that the maps have not changed since our last 886 * lookup. 887 */ 888 if (!fs.lookup_still_valid) { 889 vm_object_t retry_object; 890 vm_pindex_t retry_pindex; 891 vm_prot_t retry_prot; 892 893 if (!vm_map_trylock_read(fs.map)) { 894 release_page(&fs); 895 unlock_and_deallocate(&fs); 896 goto RetryFault; 897 } 898 fs.lookup_still_valid = TRUE; 899 if (fs.map->timestamp != map_generation) { 900 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 901 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 902 903 /* 904 * If we don't need the page any longer, put it on the inactive 905 * list (the easiest thing to do here). If no one needs it, 906 * pageout will grab it eventually. 907 */ 908 if (result != KERN_SUCCESS) { 909 release_page(&fs); 910 unlock_and_deallocate(&fs); 911 912 /* 913 * If retry of map lookup would have blocked then 914 * retry fault from start. 915 */ 916 if (result == KERN_FAILURE) 917 goto RetryFault; 918 return (result); 919 } 920 if ((retry_object != fs.first_object) || 921 (retry_pindex != fs.first_pindex)) { 922 release_page(&fs); 923 unlock_and_deallocate(&fs); 924 goto RetryFault; 925 } 926 927 /* 928 * Check whether the protection has changed or the object has 929 * been copied while we left the map unlocked. Changing from 930 * read to write permission is OK - we leave the page 931 * write-protected, and catch the write fault. Changing from 932 * write to read permission means that we can't mark the page 933 * write-enabled after all. 934 */ 935 prot &= retry_prot; 936 } 937 } 938 /* 939 * If the page was filled by a pager, update the map entry's 940 * last read offset. 941 * 942 * XXX The following assignment modifies the map 943 * without holding a write lock on it. 944 */ 945 if (hardfault) 946 fs.entry->next_read = fs.pindex + ahead + 1; 947 948 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE); 949 vm_page_assert_xbusied(fs.m); 950 951 /* 952 * Page must be completely valid or it is not fit to 953 * map into user space. vm_pager_get_pages() ensures this. 954 */ 955 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 956 ("vm_fault: page %p partially invalid", fs.m)); 957 VM_OBJECT_WUNLOCK(fs.object); 958 959 /* 960 * Put this page into the physical map. We had to do the unlock above 961 * because pmap_enter() may sleep. We don't put the page 962 * back on the active queue until later so that the pageout daemon 963 * won't find it (yet). 964 */ 965 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 966 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 967 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 968 wired == 0) 969 vm_fault_prefault(&fs, vaddr, 970 faultcount > 0 ? behind : PFBAK, 971 faultcount > 0 ? ahead : PFFOR); 972 VM_OBJECT_WLOCK(fs.object); 973 vm_page_lock(fs.m); 974 975 /* 976 * If the page is not wired down, then put it where the pageout daemon 977 * can find it. 978 */ 979 if ((fault_flags & VM_FAULT_WIRE) != 0) { 980 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 981 vm_page_wire(fs.m); 982 } else 983 vm_page_activate(fs.m); 984 if (m_hold != NULL) { 985 *m_hold = fs.m; 986 vm_page_hold(fs.m); 987 } 988 vm_page_unlock(fs.m); 989 vm_page_xunbusy(fs.m); 990 991 /* 992 * Unlock everything, and return 993 */ 994 unlock_and_deallocate(&fs); 995 if (hardfault) { 996 PCPU_INC(cnt.v_io_faults); 997 curthread->td_ru.ru_majflt++; 998 #ifdef RACCT 999 if (racct_enable && fs.object->type == OBJT_VNODE) { 1000 PROC_LOCK(curproc); 1001 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1002 racct_add_force(curproc, RACCT_WRITEBPS, 1003 PAGE_SIZE + behind * PAGE_SIZE); 1004 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1005 } else { 1006 racct_add_force(curproc, RACCT_READBPS, 1007 PAGE_SIZE + ahead * PAGE_SIZE); 1008 racct_add_force(curproc, RACCT_READIOPS, 1); 1009 } 1010 PROC_UNLOCK(curproc); 1011 } 1012 #endif 1013 } else 1014 curthread->td_ru.ru_minflt++; 1015 1016 return (KERN_SUCCESS); 1017 } 1018 1019 /* 1020 * Speed up the reclamation of pages that precede the faulting pindex within 1021 * the first object of the shadow chain. Essentially, perform the equivalent 1022 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1023 * the faulting pindex by the cluster size when the pages read by vm_fault() 1024 * cross a cluster-size boundary. The cluster size is the greater of the 1025 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1026 * 1027 * When "fs->first_object" is a shadow object, the pages in the backing object 1028 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1029 * function must only be concerned with pages in the first object. 1030 */ 1031 static void 1032 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1033 { 1034 vm_map_entry_t entry; 1035 vm_object_t first_object, object; 1036 vm_offset_t end, start; 1037 vm_page_t m, m_next; 1038 vm_pindex_t pend, pstart; 1039 vm_size_t size; 1040 1041 object = fs->object; 1042 VM_OBJECT_ASSERT_WLOCKED(object); 1043 first_object = fs->first_object; 1044 if (first_object != object) { 1045 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1046 VM_OBJECT_WUNLOCK(object); 1047 VM_OBJECT_WLOCK(first_object); 1048 VM_OBJECT_WLOCK(object); 1049 } 1050 } 1051 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1052 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1053 size = VM_FAULT_DONTNEED_MIN; 1054 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1055 size = pagesizes[1]; 1056 end = rounddown2(vaddr, size); 1057 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1058 (entry = fs->entry)->start < end) { 1059 if (end - entry->start < size) 1060 start = entry->start; 1061 else 1062 start = end - size; 1063 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1064 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1065 entry->start); 1066 m_next = vm_page_find_least(first_object, pstart); 1067 pend = OFF_TO_IDX(entry->offset) + atop(end - 1068 entry->start); 1069 while ((m = m_next) != NULL && m->pindex < pend) { 1070 m_next = TAILQ_NEXT(m, listq); 1071 if (m->valid != VM_PAGE_BITS_ALL || 1072 vm_page_busied(m)) 1073 continue; 1074 1075 /* 1076 * Don't clear PGA_REFERENCED, since it would 1077 * likely represent a reference by a different 1078 * process. 1079 * 1080 * Typically, at this point, prefetched pages 1081 * are still in the inactive queue. Only 1082 * pages that triggered page faults are in the 1083 * active queue. 1084 */ 1085 vm_page_lock(m); 1086 vm_page_deactivate(m); 1087 vm_page_unlock(m); 1088 } 1089 } 1090 } 1091 if (first_object != object) 1092 VM_OBJECT_WUNLOCK(first_object); 1093 } 1094 1095 /* 1096 * vm_fault_prefault provides a quick way of clustering 1097 * pagefaults into a processes address space. It is a "cousin" 1098 * of vm_map_pmap_enter, except it runs at page fault time instead 1099 * of mmap time. 1100 */ 1101 static void 1102 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1103 int backward, int forward) 1104 { 1105 pmap_t pmap; 1106 vm_map_entry_t entry; 1107 vm_object_t backing_object, lobject; 1108 vm_offset_t addr, starta; 1109 vm_pindex_t pindex; 1110 vm_page_t m; 1111 int i; 1112 1113 pmap = fs->map->pmap; 1114 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1115 return; 1116 1117 entry = fs->entry; 1118 1119 starta = addra - backward * PAGE_SIZE; 1120 if (starta < entry->start) { 1121 starta = entry->start; 1122 } else if (starta > addra) { 1123 starta = 0; 1124 } 1125 1126 /* 1127 * Generate the sequence of virtual addresses that are candidates for 1128 * prefaulting in an outward spiral from the faulting virtual address, 1129 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1130 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1131 * If the candidate address doesn't have a backing physical page, then 1132 * the loop immediately terminates. 1133 */ 1134 for (i = 0; i < 2 * imax(backward, forward); i++) { 1135 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1136 PAGE_SIZE); 1137 if (addr > addra + forward * PAGE_SIZE) 1138 addr = 0; 1139 1140 if (addr < starta || addr >= entry->end) 1141 continue; 1142 1143 if (!pmap_is_prefaultable(pmap, addr)) 1144 continue; 1145 1146 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1147 lobject = entry->object.vm_object; 1148 VM_OBJECT_RLOCK(lobject); 1149 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1150 lobject->type == OBJT_DEFAULT && 1151 (backing_object = lobject->backing_object) != NULL) { 1152 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1153 0, ("vm_fault_prefault: unaligned object offset")); 1154 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1155 VM_OBJECT_RLOCK(backing_object); 1156 VM_OBJECT_RUNLOCK(lobject); 1157 lobject = backing_object; 1158 } 1159 if (m == NULL) { 1160 VM_OBJECT_RUNLOCK(lobject); 1161 break; 1162 } 1163 if (m->valid == VM_PAGE_BITS_ALL && 1164 (m->flags & PG_FICTITIOUS) == 0) 1165 pmap_enter_quick(pmap, addr, m, entry->protection); 1166 VM_OBJECT_RUNLOCK(lobject); 1167 } 1168 } 1169 1170 /* 1171 * Hold each of the physical pages that are mapped by the specified range of 1172 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1173 * and allow the specified types of access, "prot". If all of the implied 1174 * pages are successfully held, then the number of held pages is returned 1175 * together with pointers to those pages in the array "ma". However, if any 1176 * of the pages cannot be held, -1 is returned. 1177 */ 1178 int 1179 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1180 vm_prot_t prot, vm_page_t *ma, int max_count) 1181 { 1182 vm_offset_t end, va; 1183 vm_page_t *mp; 1184 int count; 1185 boolean_t pmap_failed; 1186 1187 if (len == 0) 1188 return (0); 1189 end = round_page(addr + len); 1190 addr = trunc_page(addr); 1191 1192 /* 1193 * Check for illegal addresses. 1194 */ 1195 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1196 return (-1); 1197 1198 if (atop(end - addr) > max_count) 1199 panic("vm_fault_quick_hold_pages: count > max_count"); 1200 count = atop(end - addr); 1201 1202 /* 1203 * Most likely, the physical pages are resident in the pmap, so it is 1204 * faster to try pmap_extract_and_hold() first. 1205 */ 1206 pmap_failed = FALSE; 1207 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1208 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1209 if (*mp == NULL) 1210 pmap_failed = TRUE; 1211 else if ((prot & VM_PROT_WRITE) != 0 && 1212 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1213 /* 1214 * Explicitly dirty the physical page. Otherwise, the 1215 * caller's changes may go unnoticed because they are 1216 * performed through an unmanaged mapping or by a DMA 1217 * operation. 1218 * 1219 * The object lock is not held here. 1220 * See vm_page_clear_dirty_mask(). 1221 */ 1222 vm_page_dirty(*mp); 1223 } 1224 } 1225 if (pmap_failed) { 1226 /* 1227 * One or more pages could not be held by the pmap. Either no 1228 * page was mapped at the specified virtual address or that 1229 * mapping had insufficient permissions. Attempt to fault in 1230 * and hold these pages. 1231 */ 1232 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1233 if (*mp == NULL && vm_fault_hold(map, va, prot, 1234 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1235 goto error; 1236 } 1237 return (count); 1238 error: 1239 for (mp = ma; mp < ma + count; mp++) 1240 if (*mp != NULL) { 1241 vm_page_lock(*mp); 1242 vm_page_unhold(*mp); 1243 vm_page_unlock(*mp); 1244 } 1245 return (-1); 1246 } 1247 1248 /* 1249 * Routine: 1250 * vm_fault_copy_entry 1251 * Function: 1252 * Create new shadow object backing dst_entry with private copy of 1253 * all underlying pages. When src_entry is equal to dst_entry, 1254 * function implements COW for wired-down map entry. Otherwise, 1255 * it forks wired entry into dst_map. 1256 * 1257 * In/out conditions: 1258 * The source and destination maps must be locked for write. 1259 * The source map entry must be wired down (or be a sharing map 1260 * entry corresponding to a main map entry that is wired down). 1261 */ 1262 void 1263 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1264 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1265 vm_ooffset_t *fork_charge) 1266 { 1267 vm_object_t backing_object, dst_object, object, src_object; 1268 vm_pindex_t dst_pindex, pindex, src_pindex; 1269 vm_prot_t access, prot; 1270 vm_offset_t vaddr; 1271 vm_page_t dst_m; 1272 vm_page_t src_m; 1273 boolean_t upgrade; 1274 1275 #ifdef lint 1276 src_map++; 1277 #endif /* lint */ 1278 1279 upgrade = src_entry == dst_entry; 1280 access = prot = dst_entry->protection; 1281 1282 src_object = src_entry->object.vm_object; 1283 src_pindex = OFF_TO_IDX(src_entry->offset); 1284 1285 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1286 dst_object = src_object; 1287 vm_object_reference(dst_object); 1288 } else { 1289 /* 1290 * Create the top-level object for the destination entry. (Doesn't 1291 * actually shadow anything - we copy the pages directly.) 1292 */ 1293 dst_object = vm_object_allocate(OBJT_DEFAULT, 1294 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1295 #if VM_NRESERVLEVEL > 0 1296 dst_object->flags |= OBJ_COLORED; 1297 dst_object->pg_color = atop(dst_entry->start); 1298 #endif 1299 } 1300 1301 VM_OBJECT_WLOCK(dst_object); 1302 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1303 ("vm_fault_copy_entry: vm_object not NULL")); 1304 if (src_object != dst_object) { 1305 dst_entry->object.vm_object = dst_object; 1306 dst_entry->offset = 0; 1307 dst_object->charge = dst_entry->end - dst_entry->start; 1308 } 1309 if (fork_charge != NULL) { 1310 KASSERT(dst_entry->cred == NULL, 1311 ("vm_fault_copy_entry: leaked swp charge")); 1312 dst_object->cred = curthread->td_ucred; 1313 crhold(dst_object->cred); 1314 *fork_charge += dst_object->charge; 1315 } else if (dst_object->cred == NULL) { 1316 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1317 dst_entry)); 1318 dst_object->cred = dst_entry->cred; 1319 dst_entry->cred = NULL; 1320 } 1321 1322 /* 1323 * If not an upgrade, then enter the mappings in the pmap as 1324 * read and/or execute accesses. Otherwise, enter them as 1325 * write accesses. 1326 * 1327 * A writeable large page mapping is only created if all of 1328 * the constituent small page mappings are modified. Marking 1329 * PTEs as modified on inception allows promotion to happen 1330 * without taking potentially large number of soft faults. 1331 */ 1332 if (!upgrade) 1333 access &= ~VM_PROT_WRITE; 1334 1335 /* 1336 * Loop through all of the virtual pages within the entry's 1337 * range, copying each page from the source object to the 1338 * destination object. Since the source is wired, those pages 1339 * must exist. In contrast, the destination is pageable. 1340 * Since the destination object does share any backing storage 1341 * with the source object, all of its pages must be dirtied, 1342 * regardless of whether they can be written. 1343 */ 1344 for (vaddr = dst_entry->start, dst_pindex = 0; 1345 vaddr < dst_entry->end; 1346 vaddr += PAGE_SIZE, dst_pindex++) { 1347 again: 1348 /* 1349 * Find the page in the source object, and copy it in. 1350 * Because the source is wired down, the page will be 1351 * in memory. 1352 */ 1353 if (src_object != dst_object) 1354 VM_OBJECT_RLOCK(src_object); 1355 object = src_object; 1356 pindex = src_pindex + dst_pindex; 1357 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1358 (backing_object = object->backing_object) != NULL) { 1359 /* 1360 * Unless the source mapping is read-only or 1361 * it is presently being upgraded from 1362 * read-only, the first object in the shadow 1363 * chain should provide all of the pages. In 1364 * other words, this loop body should never be 1365 * executed when the source mapping is already 1366 * read/write. 1367 */ 1368 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1369 upgrade, 1370 ("vm_fault_copy_entry: main object missing page")); 1371 1372 VM_OBJECT_RLOCK(backing_object); 1373 pindex += OFF_TO_IDX(object->backing_object_offset); 1374 if (object != dst_object) 1375 VM_OBJECT_RUNLOCK(object); 1376 object = backing_object; 1377 } 1378 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1379 1380 if (object != dst_object) { 1381 /* 1382 * Allocate a page in the destination object. 1383 */ 1384 dst_m = vm_page_alloc(dst_object, (src_object == 1385 dst_object ? src_pindex : 0) + dst_pindex, 1386 VM_ALLOC_NORMAL); 1387 if (dst_m == NULL) { 1388 VM_OBJECT_WUNLOCK(dst_object); 1389 VM_OBJECT_RUNLOCK(object); 1390 VM_WAIT; 1391 VM_OBJECT_WLOCK(dst_object); 1392 goto again; 1393 } 1394 pmap_copy_page(src_m, dst_m); 1395 VM_OBJECT_RUNLOCK(object); 1396 dst_m->valid = VM_PAGE_BITS_ALL; 1397 dst_m->dirty = VM_PAGE_BITS_ALL; 1398 } else { 1399 dst_m = src_m; 1400 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1401 goto again; 1402 vm_page_xbusy(dst_m); 1403 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1404 ("invalid dst page %p", dst_m)); 1405 } 1406 VM_OBJECT_WUNLOCK(dst_object); 1407 1408 /* 1409 * Enter it in the pmap. If a wired, copy-on-write 1410 * mapping is being replaced by a write-enabled 1411 * mapping, then wire that new mapping. 1412 */ 1413 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1414 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1415 1416 /* 1417 * Mark it no longer busy, and put it on the active list. 1418 */ 1419 VM_OBJECT_WLOCK(dst_object); 1420 1421 if (upgrade) { 1422 if (src_m != dst_m) { 1423 vm_page_lock(src_m); 1424 vm_page_unwire(src_m, PQ_INACTIVE); 1425 vm_page_unlock(src_m); 1426 vm_page_lock(dst_m); 1427 vm_page_wire(dst_m); 1428 vm_page_unlock(dst_m); 1429 } else { 1430 KASSERT(dst_m->wire_count > 0, 1431 ("dst_m %p is not wired", dst_m)); 1432 } 1433 } else { 1434 vm_page_lock(dst_m); 1435 vm_page_activate(dst_m); 1436 vm_page_unlock(dst_m); 1437 } 1438 vm_page_xunbusy(dst_m); 1439 } 1440 VM_OBJECT_WUNLOCK(dst_object); 1441 if (upgrade) { 1442 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1443 vm_object_deallocate(src_object); 1444 } 1445 } 1446 1447 /* 1448 * Block entry into the machine-independent layer's page fault handler by 1449 * the calling thread. Subsequent calls to vm_fault() by that thread will 1450 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1451 * spurious page faults. 1452 */ 1453 int 1454 vm_fault_disable_pagefaults(void) 1455 { 1456 1457 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1458 } 1459 1460 void 1461 vm_fault_enable_pagefaults(int save) 1462 { 1463 1464 curthread_pflags_restore(save); 1465 } 1466