1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include "opt_ktrace.h" 75 #include "opt_vm.h" 76 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/lock.h> 80 #include <sys/mman.h> 81 #include <sys/mutex.h> 82 #include <sys/pctrie.h> 83 #include <sys/proc.h> 84 #include <sys/racct.h> 85 #include <sys/refcount.h> 86 #include <sys/resourcevar.h> 87 #include <sys/rwlock.h> 88 #include <sys/signalvar.h> 89 #include <sys/sysctl.h> 90 #include <sys/sysent.h> 91 #include <sys/vmmeter.h> 92 #include <sys/vnode.h> 93 #ifdef KTRACE 94 #include <sys/ktrace.h> 95 #endif 96 97 #include <vm/vm.h> 98 #include <vm/vm_param.h> 99 #include <vm/pmap.h> 100 #include <vm/vm_map.h> 101 #include <vm/vm_object.h> 102 #include <vm/vm_page.h> 103 #include <vm/vm_pageout.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_reserv.h> 109 110 #define PFBAK 4 111 #define PFFOR 4 112 113 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 114 115 #define VM_FAULT_DONTNEED_MIN 1048576 116 117 struct faultstate { 118 /* Fault parameters. */ 119 vm_offset_t vaddr; 120 vm_page_t *m_hold; 121 vm_prot_t fault_type; 122 vm_prot_t prot; 123 int fault_flags; 124 boolean_t wired; 125 126 /* Control state. */ 127 struct timeval oom_start_time; 128 bool oom_started; 129 int nera; 130 bool can_read_lock; 131 132 /* Page reference for cow. */ 133 vm_page_t m_cow; 134 135 /* Current object. */ 136 vm_object_t object; 137 vm_pindex_t pindex; 138 vm_page_t m; 139 140 /* Top-level map object. */ 141 vm_object_t first_object; 142 vm_pindex_t first_pindex; 143 vm_page_t first_m; 144 145 /* Map state. */ 146 vm_map_t map; 147 vm_map_entry_t entry; 148 int map_generation; 149 bool lookup_still_valid; 150 151 /* Vnode if locked. */ 152 struct vnode *vp; 153 }; 154 155 /* 156 * Return codes for internal fault routines. 157 */ 158 enum fault_status { 159 FAULT_SUCCESS = 10000, /* Return success to user. */ 160 FAULT_FAILURE, /* Return failure to user. */ 161 FAULT_CONTINUE, /* Continue faulting. */ 162 FAULT_RESTART, /* Restart fault. */ 163 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 164 FAULT_HARD, /* Performed I/O. */ 165 FAULT_SOFT, /* Found valid page. */ 166 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 167 }; 168 169 enum fault_next_status { 170 FAULT_NEXT_GOTOBJ = 1, 171 FAULT_NEXT_NOOBJ, 172 FAULT_NEXT_RESTART, 173 }; 174 175 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 176 int ahead); 177 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 178 int backward, int forward, bool obj_locked); 179 180 static int vm_pfault_oom_attempts = 3; 181 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 182 &vm_pfault_oom_attempts, 0, 183 "Number of page allocation attempts in page fault handler before it " 184 "triggers OOM handling"); 185 186 static int vm_pfault_oom_wait = 10; 187 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 188 &vm_pfault_oom_wait, 0, 189 "Number of seconds to wait for free pages before retrying " 190 "the page fault handler"); 191 192 static inline void 193 vm_fault_page_release(vm_page_t *mp) 194 { 195 vm_page_t m; 196 197 m = *mp; 198 if (m != NULL) { 199 /* 200 * We are likely to loop around again and attempt to busy 201 * this page. Deactivating it leaves it available for 202 * pageout while optimizing fault restarts. 203 */ 204 vm_page_deactivate(m); 205 if (vm_page_xbusied(m)) 206 vm_page_xunbusy(m); 207 else 208 vm_page_sunbusy(m); 209 *mp = NULL; 210 } 211 } 212 213 static inline void 214 vm_fault_page_free(vm_page_t *mp) 215 { 216 vm_page_t m; 217 218 m = *mp; 219 if (m != NULL) { 220 VM_OBJECT_ASSERT_WLOCKED(m->object); 221 if (!vm_page_wired(m)) 222 vm_page_free(m); 223 else 224 vm_page_xunbusy(m); 225 *mp = NULL; 226 } 227 } 228 229 /* 230 * Return true if a vm_pager_get_pages() call is needed in order to check 231 * whether the pager might have a particular page, false if it can be determined 232 * immediately that the pager can not have a copy. For swap objects, this can 233 * be checked quickly. 234 */ 235 static inline bool 236 vm_fault_object_needs_getpages(vm_object_t object) 237 { 238 VM_OBJECT_ASSERT_LOCKED(object); 239 240 return ((object->flags & OBJ_SWAP) == 0 || 241 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 242 } 243 244 static inline void 245 vm_fault_unlock_map(struct faultstate *fs) 246 { 247 248 if (fs->lookup_still_valid) { 249 vm_map_lookup_done(fs->map, fs->entry); 250 fs->lookup_still_valid = false; 251 } 252 } 253 254 static void 255 vm_fault_unlock_vp(struct faultstate *fs) 256 { 257 258 if (fs->vp != NULL) { 259 vput(fs->vp); 260 fs->vp = NULL; 261 } 262 } 263 264 static bool 265 vm_fault_might_be_cow(struct faultstate *fs) 266 { 267 return (fs->object != fs->first_object); 268 } 269 270 static void 271 vm_fault_deallocate(struct faultstate *fs) 272 { 273 274 vm_fault_page_release(&fs->m_cow); 275 vm_fault_page_release(&fs->m); 276 vm_object_pip_wakeup(fs->object); 277 if (vm_fault_might_be_cow(fs)) { 278 VM_OBJECT_WLOCK(fs->first_object); 279 vm_fault_page_free(&fs->first_m); 280 VM_OBJECT_WUNLOCK(fs->first_object); 281 vm_object_pip_wakeup(fs->first_object); 282 } 283 vm_object_deallocate(fs->first_object); 284 vm_fault_unlock_map(fs); 285 vm_fault_unlock_vp(fs); 286 } 287 288 static void 289 vm_fault_unlock_and_deallocate(struct faultstate *fs) 290 { 291 292 VM_OBJECT_UNLOCK(fs->object); 293 vm_fault_deallocate(fs); 294 } 295 296 static void 297 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 298 { 299 bool need_dirty; 300 301 if (((fs->prot & VM_PROT_WRITE) == 0 && 302 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 303 (m->oflags & VPO_UNMANAGED) != 0) 304 return; 305 306 VM_PAGE_OBJECT_BUSY_ASSERT(m); 307 308 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 309 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 310 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 311 312 vm_object_set_writeable_dirty(m->object); 313 314 /* 315 * If the fault is a write, we know that this page is being 316 * written NOW so dirty it explicitly to save on 317 * pmap_is_modified() calls later. 318 * 319 * Also, since the page is now dirty, we can possibly tell 320 * the pager to release any swap backing the page. 321 */ 322 if (need_dirty && vm_page_set_dirty(m) == 0) { 323 /* 324 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 325 * if the page is already dirty to prevent data written with 326 * the expectation of being synced from not being synced. 327 * Likewise if this entry does not request NOSYNC then make 328 * sure the page isn't marked NOSYNC. Applications sharing 329 * data should use the same flags to avoid ping ponging. 330 */ 331 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 332 vm_page_aflag_set(m, PGA_NOSYNC); 333 else 334 vm_page_aflag_clear(m, PGA_NOSYNC); 335 } 336 337 } 338 339 static bool 340 vm_fault_is_read(const struct faultstate *fs) 341 { 342 return ((fs->prot & VM_PROT_WRITE) == 0 && 343 (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0); 344 } 345 346 /* 347 * Unlocks fs.first_object and fs.map on success. 348 */ 349 static enum fault_status 350 vm_fault_soft_fast(struct faultstate *fs) 351 { 352 vm_page_t m, m_map; 353 #if VM_NRESERVLEVEL > 0 354 vm_page_t m_super; 355 int flags; 356 #endif 357 int psind; 358 vm_offset_t vaddr; 359 360 MPASS(fs->vp == NULL); 361 362 /* 363 * If we fail, vast majority of the time it is because the page is not 364 * there to begin with. Opportunistically perform the lookup and 365 * subsequent checks without the object lock, revalidate later. 366 * 367 * Note: a busy page can be mapped for read|execute access. 368 */ 369 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 370 if (m == NULL || !vm_page_all_valid(m) || 371 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 372 VM_OBJECT_WLOCK(fs->first_object); 373 return (FAULT_FAILURE); 374 } 375 376 vaddr = fs->vaddr; 377 378 VM_OBJECT_RLOCK(fs->first_object); 379 380 /* 381 * Now that we stabilized the state, revalidate the page is in the shape 382 * we encountered above. 383 */ 384 385 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 386 goto fail; 387 388 vm_object_busy(fs->first_object); 389 390 if (!vm_page_all_valid(m) || 391 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 392 goto fail_busy; 393 394 m_map = m; 395 psind = 0; 396 #if VM_NRESERVLEVEL > 0 397 if ((m->flags & PG_FICTITIOUS) == 0 && 398 (m_super = vm_reserv_to_superpage(m)) != NULL) { 399 psind = m_super->psind; 400 KASSERT(psind > 0, 401 ("psind %d of m_super %p < 1", psind, m_super)); 402 flags = PS_ALL_VALID; 403 if ((fs->prot & VM_PROT_WRITE) != 0) { 404 /* 405 * Create a superpage mapping allowing write access 406 * only if none of the constituent pages are busy and 407 * all of them are already dirty (except possibly for 408 * the page that was faulted on). 409 */ 410 flags |= PS_NONE_BUSY; 411 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 412 flags |= PS_ALL_DIRTY; 413 } 414 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start || 415 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end || 416 (vaddr & (pagesizes[psind] - 1)) != 417 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) || 418 !vm_page_ps_test(m_super, psind, flags, m) || 419 !pmap_ps_enabled(fs->map->pmap)) { 420 psind--; 421 if (psind == 0) 422 break; 423 m_super += rounddown2(m - m_super, 424 atop(pagesizes[psind])); 425 KASSERT(m_super->psind >= psind, 426 ("psind %d of m_super %p < %d", m_super->psind, 427 m_super, psind)); 428 } 429 if (psind > 0) { 430 m_map = m_super; 431 vaddr = rounddown2(vaddr, pagesizes[psind]); 432 /* Preset the modified bit for dirty superpages. */ 433 if ((flags & PS_ALL_DIRTY) != 0) 434 fs->fault_type |= VM_PROT_WRITE; 435 } 436 } 437 #endif 438 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 439 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 440 KERN_SUCCESS) 441 goto fail_busy; 442 if (fs->m_hold != NULL) { 443 (*fs->m_hold) = m; 444 vm_page_wire(m); 445 } 446 if (psind == 0 && !fs->wired) 447 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 448 VM_OBJECT_RUNLOCK(fs->first_object); 449 vm_fault_dirty(fs, m); 450 vm_object_unbusy(fs->first_object); 451 vm_map_lookup_done(fs->map, fs->entry); 452 curthread->td_ru.ru_minflt++; 453 return (FAULT_SUCCESS); 454 fail_busy: 455 vm_object_unbusy(fs->first_object); 456 fail: 457 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 458 VM_OBJECT_RUNLOCK(fs->first_object); 459 VM_OBJECT_WLOCK(fs->first_object); 460 } 461 return (FAULT_FAILURE); 462 } 463 464 static void 465 vm_fault_restore_map_lock(struct faultstate *fs) 466 { 467 468 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 469 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 470 471 if (!vm_map_trylock_read(fs->map)) { 472 VM_OBJECT_WUNLOCK(fs->first_object); 473 vm_map_lock_read(fs->map); 474 VM_OBJECT_WLOCK(fs->first_object); 475 } 476 fs->lookup_still_valid = true; 477 } 478 479 static void 480 vm_fault_populate_check_page(vm_page_t m) 481 { 482 483 /* 484 * Check each page to ensure that the pager is obeying the 485 * interface: the page must be installed in the object, fully 486 * valid, and exclusively busied. 487 */ 488 MPASS(m != NULL); 489 MPASS(vm_page_all_valid(m)); 490 MPASS(vm_page_xbusied(m)); 491 } 492 493 static void 494 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 495 vm_pindex_t last) 496 { 497 struct pctrie_iter pages; 498 vm_page_t m; 499 500 VM_OBJECT_ASSERT_WLOCKED(object); 501 MPASS(first <= last); 502 vm_page_iter_limit_init(&pages, object, last + 1); 503 VM_RADIX_FORALL_FROM(m, &pages, first) { 504 vm_fault_populate_check_page(m); 505 vm_page_deactivate(m); 506 vm_page_xunbusy(m); 507 } 508 KASSERT(pages.index == last, ("%s: pindex mismatch", __func__)); 509 } 510 511 static enum fault_status 512 vm_fault_populate(struct faultstate *fs) 513 { 514 vm_offset_t vaddr; 515 vm_page_t m; 516 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 517 int bdry_idx, i, npages, psind, rv; 518 enum fault_status res; 519 520 MPASS(fs->object == fs->first_object); 521 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 522 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 523 MPASS(fs->first_object->backing_object == NULL); 524 MPASS(fs->lookup_still_valid); 525 526 pager_first = OFF_TO_IDX(fs->entry->offset); 527 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 528 vm_fault_unlock_map(fs); 529 vm_fault_unlock_vp(fs); 530 531 res = FAULT_SUCCESS; 532 533 /* 534 * Call the pager (driver) populate() method. 535 * 536 * There is no guarantee that the method will be called again 537 * if the current fault is for read, and a future fault is 538 * for write. Report the entry's maximum allowed protection 539 * to the driver. 540 */ 541 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 542 fs->fault_type, fs->entry->max_protection, &pager_first, 543 &pager_last); 544 545 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 546 if (rv == VM_PAGER_BAD) { 547 /* 548 * VM_PAGER_BAD is the backdoor for a pager to request 549 * normal fault handling. 550 */ 551 vm_fault_restore_map_lock(fs); 552 if (fs->map->timestamp != fs->map_generation) 553 return (FAULT_RESTART); 554 return (FAULT_CONTINUE); 555 } 556 if (rv != VM_PAGER_OK) 557 return (FAULT_FAILURE); /* AKA SIGSEGV */ 558 559 /* Ensure that the driver is obeying the interface. */ 560 MPASS(pager_first <= pager_last); 561 MPASS(fs->first_pindex <= pager_last); 562 MPASS(fs->first_pindex >= pager_first); 563 MPASS(pager_last < fs->first_object->size); 564 565 vm_fault_restore_map_lock(fs); 566 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 567 if (fs->map->timestamp != fs->map_generation) { 568 if (bdry_idx == 0) { 569 vm_fault_populate_cleanup(fs->first_object, pager_first, 570 pager_last); 571 } else { 572 m = vm_page_lookup(fs->first_object, pager_first); 573 if (m != fs->m) 574 vm_page_xunbusy(m); 575 } 576 return (FAULT_RESTART); 577 } 578 579 /* 580 * The map is unchanged after our last unlock. Process the fault. 581 * 582 * First, the special case of largepage mappings, where 583 * populate only busies the first page in superpage run. 584 */ 585 if (bdry_idx != 0) { 586 KASSERT(PMAP_HAS_LARGEPAGES, 587 ("missing pmap support for large pages")); 588 m = vm_page_lookup(fs->first_object, pager_first); 589 vm_fault_populate_check_page(m); 590 VM_OBJECT_WUNLOCK(fs->first_object); 591 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 592 fs->entry->offset; 593 /* assert alignment for entry */ 594 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 595 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 596 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 597 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 598 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 599 ("unaligned superpage m %p %#jx", m, 600 (uintmax_t)VM_PAGE_TO_PHYS(m))); 601 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 602 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 603 PMAP_ENTER_LARGEPAGE, bdry_idx); 604 VM_OBJECT_WLOCK(fs->first_object); 605 vm_page_xunbusy(m); 606 if (rv != KERN_SUCCESS) { 607 res = FAULT_FAILURE; 608 goto out; 609 } 610 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 611 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 612 vm_page_wire(m + i); 613 } 614 if (fs->m_hold != NULL) { 615 *fs->m_hold = m + (fs->first_pindex - pager_first); 616 vm_page_wire(*fs->m_hold); 617 } 618 goto out; 619 } 620 621 /* 622 * The range [pager_first, pager_last] that is given to the 623 * pager is only a hint. The pager may populate any range 624 * within the object that includes the requested page index. 625 * In case the pager expanded the range, clip it to fit into 626 * the map entry. 627 */ 628 map_first = OFF_TO_IDX(fs->entry->offset); 629 if (map_first > pager_first) { 630 vm_fault_populate_cleanup(fs->first_object, pager_first, 631 map_first - 1); 632 pager_first = map_first; 633 } 634 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 635 if (map_last < pager_last) { 636 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 637 pager_last); 638 pager_last = map_last; 639 } 640 for (pidx = pager_first; pidx <= pager_last; pidx += npages) { 641 m = vm_page_lookup(fs->first_object, pidx); 642 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 643 KASSERT(m != NULL && m->pindex == pidx, 644 ("%s: pindex mismatch", __func__)); 645 psind = m->psind; 646 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 647 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 648 !pmap_ps_enabled(fs->map->pmap))) 649 psind--; 650 651 npages = atop(pagesizes[psind]); 652 for (i = 0; i < npages; i++) { 653 vm_fault_populate_check_page(&m[i]); 654 vm_fault_dirty(fs, &m[i]); 655 } 656 VM_OBJECT_WUNLOCK(fs->first_object); 657 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 658 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 659 660 /* 661 * pmap_enter() may fail for a superpage mapping if additional 662 * protection policies prevent the full mapping. 663 * For example, this will happen on amd64 if the entire 664 * address range does not share the same userspace protection 665 * key. Revert to single-page mappings if this happens. 666 */ 667 MPASS(rv == KERN_SUCCESS || 668 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 669 if (__predict_false(psind > 0 && 670 rv == KERN_PROTECTION_FAILURE)) { 671 MPASS(!fs->wired); 672 for (i = 0; i < npages; i++) { 673 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 674 &m[i], fs->prot, fs->fault_type, 0); 675 MPASS(rv == KERN_SUCCESS); 676 } 677 } 678 679 VM_OBJECT_WLOCK(fs->first_object); 680 for (i = 0; i < npages; i++) { 681 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 682 m[i].pindex == fs->first_pindex) 683 vm_page_wire(&m[i]); 684 else 685 vm_page_activate(&m[i]); 686 if (fs->m_hold != NULL && 687 m[i].pindex == fs->first_pindex) { 688 (*fs->m_hold) = &m[i]; 689 vm_page_wire(&m[i]); 690 } 691 vm_page_xunbusy(&m[i]); 692 } 693 } 694 out: 695 curthread->td_ru.ru_majflt++; 696 return (res); 697 } 698 699 static int prot_fault_translation; 700 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 701 &prot_fault_translation, 0, 702 "Control signal to deliver on protection fault"); 703 704 /* compat definition to keep common code for signal translation */ 705 #define UCODE_PAGEFLT 12 706 #ifdef T_PAGEFLT 707 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 708 #endif 709 710 /* 711 * vm_fault_trap: 712 * 713 * Helper for the page fault trap handlers, wrapping vm_fault(). 714 * Issues ktrace(2) tracepoints for the faults. 715 * 716 * If a fault cannot be handled successfully by satisfying the 717 * required mapping, and the faulted instruction cannot be restarted, 718 * the signal number and si_code values are returned for trapsignal() 719 * to deliver. 720 * 721 * Returns Mach error codes, but callers should only check for 722 * KERN_SUCCESS. 723 */ 724 int 725 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 726 int fault_flags, int *signo, int *ucode) 727 { 728 int result; 729 730 MPASS(signo == NULL || ucode != NULL); 731 #ifdef KTRACE 732 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 733 ktrfault(vaddr, fault_type); 734 #endif 735 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 736 NULL); 737 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 738 result == KERN_INVALID_ADDRESS || 739 result == KERN_RESOURCE_SHORTAGE || 740 result == KERN_PROTECTION_FAILURE || 741 result == KERN_OUT_OF_BOUNDS, 742 ("Unexpected Mach error %d from vm_fault()", result)); 743 #ifdef KTRACE 744 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 745 ktrfaultend(result); 746 #endif 747 if (result != KERN_SUCCESS && signo != NULL) { 748 switch (result) { 749 case KERN_FAILURE: 750 case KERN_INVALID_ADDRESS: 751 *signo = SIGSEGV; 752 *ucode = SEGV_MAPERR; 753 break; 754 case KERN_RESOURCE_SHORTAGE: 755 *signo = SIGBUS; 756 *ucode = BUS_OOMERR; 757 break; 758 case KERN_OUT_OF_BOUNDS: 759 *signo = SIGBUS; 760 *ucode = BUS_OBJERR; 761 break; 762 case KERN_PROTECTION_FAILURE: 763 if (prot_fault_translation == 0) { 764 /* 765 * Autodetect. This check also covers 766 * the images without the ABI-tag ELF 767 * note. 768 */ 769 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 770 curproc->p_osrel >= P_OSREL_SIGSEGV) { 771 *signo = SIGSEGV; 772 *ucode = SEGV_ACCERR; 773 } else { 774 *signo = SIGBUS; 775 *ucode = UCODE_PAGEFLT; 776 } 777 } else if (prot_fault_translation == 1) { 778 /* Always compat mode. */ 779 *signo = SIGBUS; 780 *ucode = UCODE_PAGEFLT; 781 } else { 782 /* Always SIGSEGV mode. */ 783 *signo = SIGSEGV; 784 *ucode = SEGV_ACCERR; 785 } 786 break; 787 default: 788 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 789 result)); 790 break; 791 } 792 } 793 return (result); 794 } 795 796 static bool 797 vm_fault_object_ensure_wlocked(struct faultstate *fs) 798 { 799 if (fs->object == fs->first_object) 800 VM_OBJECT_ASSERT_WLOCKED(fs->object); 801 802 if (!fs->can_read_lock) { 803 VM_OBJECT_ASSERT_WLOCKED(fs->object); 804 return (true); 805 } 806 807 if (VM_OBJECT_WOWNED(fs->object)) 808 return (true); 809 810 if (VM_OBJECT_TRYUPGRADE(fs->object)) 811 return (true); 812 813 return (false); 814 } 815 816 static enum fault_status 817 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 818 { 819 struct vnode *vp; 820 int error, locked; 821 822 if (fs->object->type != OBJT_VNODE) 823 return (FAULT_CONTINUE); 824 vp = fs->object->handle; 825 if (vp == fs->vp) { 826 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 827 return (FAULT_CONTINUE); 828 } 829 830 /* 831 * Perform an unlock in case the desired vnode changed while 832 * the map was unlocked during a retry. 833 */ 834 vm_fault_unlock_vp(fs); 835 836 locked = VOP_ISLOCKED(vp); 837 if (locked != LK_EXCLUSIVE) 838 locked = LK_SHARED; 839 840 /* 841 * We must not sleep acquiring the vnode lock while we have 842 * the page exclusive busied or the object's 843 * paging-in-progress count incremented. Otherwise, we could 844 * deadlock. 845 */ 846 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 847 if (error == 0) { 848 fs->vp = vp; 849 return (FAULT_CONTINUE); 850 } 851 852 vhold(vp); 853 if (objlocked) 854 vm_fault_unlock_and_deallocate(fs); 855 else 856 vm_fault_deallocate(fs); 857 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 858 vdrop(vp); 859 fs->vp = vp; 860 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 861 return (FAULT_RESTART); 862 } 863 864 /* 865 * Calculate the desired readahead. Handle drop-behind. 866 * 867 * Returns the number of readahead blocks to pass to the pager. 868 */ 869 static int 870 vm_fault_readahead(struct faultstate *fs) 871 { 872 int era, nera; 873 u_char behavior; 874 875 KASSERT(fs->lookup_still_valid, ("map unlocked")); 876 era = fs->entry->read_ahead; 877 behavior = vm_map_entry_behavior(fs->entry); 878 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 879 nera = 0; 880 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 881 nera = VM_FAULT_READ_AHEAD_MAX; 882 if (fs->vaddr == fs->entry->next_read) 883 vm_fault_dontneed(fs, fs->vaddr, nera); 884 } else if (fs->vaddr == fs->entry->next_read) { 885 /* 886 * This is a sequential fault. Arithmetically 887 * increase the requested number of pages in 888 * the read-ahead window. The requested 889 * number of pages is "# of sequential faults 890 * x (read ahead min + 1) + read ahead min" 891 */ 892 nera = VM_FAULT_READ_AHEAD_MIN; 893 if (era > 0) { 894 nera += era + 1; 895 if (nera > VM_FAULT_READ_AHEAD_MAX) 896 nera = VM_FAULT_READ_AHEAD_MAX; 897 } 898 if (era == VM_FAULT_READ_AHEAD_MAX) 899 vm_fault_dontneed(fs, fs->vaddr, nera); 900 } else { 901 /* 902 * This is a non-sequential fault. 903 */ 904 nera = 0; 905 } 906 if (era != nera) { 907 /* 908 * A read lock on the map suffices to update 909 * the read ahead count safely. 910 */ 911 fs->entry->read_ahead = nera; 912 } 913 914 return (nera); 915 } 916 917 static int 918 vm_fault_lookup(struct faultstate *fs) 919 { 920 int result; 921 922 KASSERT(!fs->lookup_still_valid, 923 ("vm_fault_lookup: Map already locked.")); 924 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 925 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 926 &fs->first_pindex, &fs->prot, &fs->wired); 927 if (result != KERN_SUCCESS) { 928 vm_fault_unlock_vp(fs); 929 return (result); 930 } 931 932 fs->map_generation = fs->map->timestamp; 933 934 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 935 panic("%s: fault on nofault entry, addr: %#lx", 936 __func__, (u_long)fs->vaddr); 937 } 938 939 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 940 fs->entry->wiring_thread != curthread) { 941 vm_map_unlock_read(fs->map); 942 vm_map_lock(fs->map); 943 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 944 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 945 vm_fault_unlock_vp(fs); 946 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 947 vm_map_unlock_and_wait(fs->map, 0); 948 } else 949 vm_map_unlock(fs->map); 950 return (KERN_RESOURCE_SHORTAGE); 951 } 952 953 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 954 955 if (fs->wired) 956 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 957 else 958 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 959 ("!fs->wired && VM_FAULT_WIRE")); 960 fs->lookup_still_valid = true; 961 962 return (KERN_SUCCESS); 963 } 964 965 static int 966 vm_fault_relookup(struct faultstate *fs) 967 { 968 vm_object_t retry_object; 969 vm_pindex_t retry_pindex; 970 vm_prot_t retry_prot; 971 int result; 972 973 if (!vm_map_trylock_read(fs->map)) 974 return (KERN_RESTART); 975 976 fs->lookup_still_valid = true; 977 if (fs->map->timestamp == fs->map_generation) 978 return (KERN_SUCCESS); 979 980 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 981 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 982 &fs->wired); 983 if (result != KERN_SUCCESS) { 984 /* 985 * If retry of map lookup would have blocked then 986 * retry fault from start. 987 */ 988 if (result == KERN_FAILURE) 989 return (KERN_RESTART); 990 return (result); 991 } 992 if (retry_object != fs->first_object || 993 retry_pindex != fs->first_pindex) 994 return (KERN_RESTART); 995 996 /* 997 * Check whether the protection has changed or the object has 998 * been copied while we left the map unlocked. Changing from 999 * read to write permission is OK - we leave the page 1000 * write-protected, and catch the write fault. Changing from 1001 * write to read permission means that we can't mark the page 1002 * write-enabled after all. 1003 */ 1004 fs->prot &= retry_prot; 1005 fs->fault_type &= retry_prot; 1006 if (fs->prot == 0) 1007 return (KERN_RESTART); 1008 1009 /* Reassert because wired may have changed. */ 1010 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 1011 ("!wired && VM_FAULT_WIRE")); 1012 1013 return (KERN_SUCCESS); 1014 } 1015 1016 static bool 1017 vm_fault_can_cow_rename(struct faultstate *fs) 1018 { 1019 return ( 1020 /* Only one shadow object and no other refs. */ 1021 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1022 /* No other ways to look the object up. */ 1023 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0); 1024 } 1025 1026 static void 1027 vm_fault_cow(struct faultstate *fs) 1028 { 1029 bool is_first_object_locked, rename_cow; 1030 1031 KASSERT(vm_fault_might_be_cow(fs), 1032 ("source and target COW objects are identical")); 1033 1034 /* 1035 * This allows pages to be virtually copied from a backing_object 1036 * into the first_object, where the backing object has no other 1037 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1038 * we just move the page from the backing object to the first 1039 * object. Note that we must mark the page dirty in the first 1040 * object so that it will go out to swap when needed. 1041 */ 1042 is_first_object_locked = false; 1043 rename_cow = false; 1044 1045 if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) { 1046 /* 1047 * Check that we don't chase down the shadow chain and 1048 * we can acquire locks. Recheck the conditions for 1049 * rename after the shadow chain is stable after the 1050 * object locking. 1051 */ 1052 is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object); 1053 if (is_first_object_locked && 1054 fs->object == fs->first_object->backing_object) { 1055 if (VM_OBJECT_TRYWLOCK(fs->object)) { 1056 rename_cow = vm_fault_can_cow_rename(fs); 1057 if (!rename_cow) 1058 VM_OBJECT_WUNLOCK(fs->object); 1059 } 1060 } 1061 } 1062 1063 if (rename_cow) { 1064 vm_page_assert_xbusied(fs->m); 1065 1066 /* 1067 * Remove but keep xbusy for replace. fs->m is moved into 1068 * fs->first_object and left busy while fs->first_m is 1069 * conditionally freed. 1070 */ 1071 vm_page_remove_xbusy(fs->m); 1072 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1073 fs->first_m); 1074 vm_page_dirty(fs->m); 1075 #if VM_NRESERVLEVEL > 0 1076 /* 1077 * Rename the reservation. 1078 */ 1079 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1080 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1081 #endif 1082 VM_OBJECT_WUNLOCK(fs->object); 1083 VM_OBJECT_WUNLOCK(fs->first_object); 1084 fs->first_m = fs->m; 1085 fs->m = NULL; 1086 VM_CNT_INC(v_cow_optim); 1087 } else { 1088 if (is_first_object_locked) 1089 VM_OBJECT_WUNLOCK(fs->first_object); 1090 /* 1091 * Oh, well, lets copy it. 1092 */ 1093 pmap_copy_page(fs->m, fs->first_m); 1094 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1095 vm_page_wire(fs->first_m); 1096 vm_page_unwire(fs->m, PQ_INACTIVE); 1097 } 1098 /* 1099 * Save the COW page to be released after pmap_enter is 1100 * complete. The new copy will be marked valid when we're ready 1101 * to map it. 1102 */ 1103 fs->m_cow = fs->m; 1104 fs->m = NULL; 1105 1106 /* 1107 * Typically, the shadow object is either private to this 1108 * address space (OBJ_ONEMAPPING) or its pages are read only. 1109 * In the highly unusual case where the pages of a shadow object 1110 * are read/write shared between this and other address spaces, 1111 * we need to ensure that any pmap-level mappings to the 1112 * original, copy-on-write page from the backing object are 1113 * removed from those other address spaces. 1114 * 1115 * The flag check is racy, but this is tolerable: if 1116 * OBJ_ONEMAPPING is cleared after the check, the busy state 1117 * ensures that new mappings of m_cow can't be created. 1118 * pmap_enter() will replace an existing mapping in the current 1119 * address space. If OBJ_ONEMAPPING is set after the check, 1120 * removing mappings will at worse trigger some unnecessary page 1121 * faults. 1122 * 1123 * In the fs->m shared busy case, the xbusy state of 1124 * fs->first_m prevents new mappings of fs->m from 1125 * being created because a parallel fault on this 1126 * shadow chain should wait for xbusy on fs->first_m. 1127 */ 1128 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1129 pmap_remove_all(fs->m_cow); 1130 } 1131 1132 vm_object_pip_wakeup(fs->object); 1133 1134 /* 1135 * Only use the new page below... 1136 */ 1137 fs->object = fs->first_object; 1138 fs->pindex = fs->first_pindex; 1139 fs->m = fs->first_m; 1140 VM_CNT_INC(v_cow_faults); 1141 curthread->td_cow++; 1142 } 1143 1144 static enum fault_next_status 1145 vm_fault_next(struct faultstate *fs) 1146 { 1147 vm_object_t next_object; 1148 1149 if (fs->object == fs->first_object || !fs->can_read_lock) 1150 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1151 else 1152 VM_OBJECT_ASSERT_LOCKED(fs->object); 1153 1154 /* 1155 * The requested page does not exist at this object/ 1156 * offset. Remove the invalid page from the object, 1157 * waking up anyone waiting for it, and continue on to 1158 * the next object. However, if this is the top-level 1159 * object, we must leave the busy page in place to 1160 * prevent another process from rushing past us, and 1161 * inserting the page in that object at the same time 1162 * that we are. 1163 */ 1164 if (fs->object == fs->first_object) { 1165 fs->first_m = fs->m; 1166 fs->m = NULL; 1167 } else if (fs->m != NULL) { 1168 if (!vm_fault_object_ensure_wlocked(fs)) { 1169 fs->can_read_lock = false; 1170 vm_fault_unlock_and_deallocate(fs); 1171 return (FAULT_NEXT_RESTART); 1172 } 1173 vm_fault_page_free(&fs->m); 1174 } 1175 1176 /* 1177 * Move on to the next object. Lock the next object before 1178 * unlocking the current one. 1179 */ 1180 next_object = fs->object->backing_object; 1181 if (next_object == NULL) 1182 return (FAULT_NEXT_NOOBJ); 1183 MPASS(fs->first_m != NULL); 1184 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1185 if (fs->can_read_lock) 1186 VM_OBJECT_RLOCK(next_object); 1187 else 1188 VM_OBJECT_WLOCK(next_object); 1189 vm_object_pip_add(next_object, 1); 1190 if (fs->object != fs->first_object) 1191 vm_object_pip_wakeup(fs->object); 1192 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1193 VM_OBJECT_UNLOCK(fs->object); 1194 fs->object = next_object; 1195 1196 return (FAULT_NEXT_GOTOBJ); 1197 } 1198 1199 static void 1200 vm_fault_zerofill(struct faultstate *fs) 1201 { 1202 1203 /* 1204 * If there's no object left, fill the page in the top 1205 * object with zeros. 1206 */ 1207 if (vm_fault_might_be_cow(fs)) { 1208 vm_object_pip_wakeup(fs->object); 1209 fs->object = fs->first_object; 1210 fs->pindex = fs->first_pindex; 1211 } 1212 MPASS(fs->first_m != NULL); 1213 MPASS(fs->m == NULL); 1214 fs->m = fs->first_m; 1215 fs->first_m = NULL; 1216 1217 /* 1218 * Zero the page if necessary and mark it valid. 1219 */ 1220 if ((fs->m->flags & PG_ZERO) == 0) { 1221 pmap_zero_page(fs->m); 1222 } else { 1223 VM_CNT_INC(v_ozfod); 1224 } 1225 VM_CNT_INC(v_zfod); 1226 vm_page_valid(fs->m); 1227 } 1228 1229 /* 1230 * Initiate page fault after timeout. Returns true if caller should 1231 * do vm_waitpfault() after the call. 1232 */ 1233 static bool 1234 vm_fault_allocate_oom(struct faultstate *fs) 1235 { 1236 struct timeval now; 1237 1238 vm_fault_unlock_and_deallocate(fs); 1239 if (vm_pfault_oom_attempts < 0) 1240 return (true); 1241 if (!fs->oom_started) { 1242 fs->oom_started = true; 1243 getmicrotime(&fs->oom_start_time); 1244 return (true); 1245 } 1246 1247 getmicrotime(&now); 1248 timevalsub(&now, &fs->oom_start_time); 1249 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1250 return (true); 1251 1252 if (bootverbose) 1253 printf( 1254 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1255 curproc->p_pid, curproc->p_comm); 1256 vm_pageout_oom(VM_OOM_MEM_PF); 1257 fs->oom_started = false; 1258 return (false); 1259 } 1260 1261 /* 1262 * Allocate a page directly or via the object populate method. 1263 */ 1264 static enum fault_status 1265 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages) 1266 { 1267 struct domainset *dset; 1268 enum fault_status res; 1269 1270 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1271 res = vm_fault_lock_vnode(fs, true); 1272 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1273 if (res == FAULT_RESTART) 1274 return (res); 1275 } 1276 1277 if (fs->pindex >= fs->object->size) { 1278 vm_fault_unlock_and_deallocate(fs); 1279 return (FAULT_OUT_OF_BOUNDS); 1280 } 1281 1282 if (fs->object == fs->first_object && 1283 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1284 fs->first_object->shadow_count == 0) { 1285 res = vm_fault_populate(fs); 1286 switch (res) { 1287 case FAULT_SUCCESS: 1288 case FAULT_FAILURE: 1289 case FAULT_RESTART: 1290 vm_fault_unlock_and_deallocate(fs); 1291 return (res); 1292 case FAULT_CONTINUE: 1293 pctrie_iter_reset(pages); 1294 /* 1295 * Pager's populate() method 1296 * returned VM_PAGER_BAD. 1297 */ 1298 break; 1299 default: 1300 panic("inconsistent return codes"); 1301 } 1302 } 1303 1304 /* 1305 * Allocate a new page for this object/offset pair. 1306 * 1307 * If the process has a fatal signal pending, prioritize the allocation 1308 * with the expectation that the process will exit shortly and free some 1309 * pages. In particular, the signal may have been posted by the page 1310 * daemon in an attempt to resolve an out-of-memory condition. 1311 * 1312 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1313 * might be not observed here, and allocation fails, causing a restart 1314 * and new reading of the p_flag. 1315 */ 1316 dset = fs->object->domain.dr_policy; 1317 if (dset == NULL) 1318 dset = curthread->td_domain.dr_policy; 1319 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1320 #if VM_NRESERVLEVEL > 0 1321 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1322 #endif 1323 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1324 vm_fault_unlock_and_deallocate(fs); 1325 return (FAULT_FAILURE); 1326 } 1327 fs->m = vm_page_alloc_iter(fs->object, fs->pindex, 1328 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages); 1329 } 1330 if (fs->m == NULL) { 1331 if (vm_fault_allocate_oom(fs)) 1332 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1333 return (FAULT_RESTART); 1334 } 1335 fs->oom_started = false; 1336 1337 return (FAULT_CONTINUE); 1338 } 1339 1340 /* 1341 * Call the pager to retrieve the page if there is a chance 1342 * that the pager has it, and potentially retrieve additional 1343 * pages at the same time. 1344 */ 1345 static enum fault_status 1346 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1347 { 1348 vm_offset_t e_end, e_start; 1349 int ahead, behind, cluster_offset, rv; 1350 enum fault_status status; 1351 u_char behavior; 1352 1353 /* 1354 * Prepare for unlocking the map. Save the map 1355 * entry's start and end addresses, which are used to 1356 * optimize the size of the pager operation below. 1357 * Even if the map entry's addresses change after 1358 * unlocking the map, using the saved addresses is 1359 * safe. 1360 */ 1361 e_start = fs->entry->start; 1362 e_end = fs->entry->end; 1363 behavior = vm_map_entry_behavior(fs->entry); 1364 1365 /* 1366 * If the pager for the current object might have 1367 * the page, then determine the number of additional 1368 * pages to read and potentially reprioritize 1369 * previously read pages for earlier reclamation. 1370 * These operations should only be performed once per 1371 * page fault. Even if the current pager doesn't 1372 * have the page, the number of additional pages to 1373 * read will apply to subsequent objects in the 1374 * shadow chain. 1375 */ 1376 if (fs->nera == -1 && !P_KILLED(curproc)) 1377 fs->nera = vm_fault_readahead(fs); 1378 1379 /* 1380 * Release the map lock before locking the vnode or 1381 * sleeping in the pager. (If the current object has 1382 * a shadow, then an earlier iteration of this loop 1383 * may have already unlocked the map.) 1384 */ 1385 vm_fault_unlock_map(fs); 1386 1387 status = vm_fault_lock_vnode(fs, false); 1388 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1389 if (status == FAULT_RESTART) 1390 return (status); 1391 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map), 1392 ("vm_fault: vnode-backed object mapped by system map")); 1393 1394 /* 1395 * Page in the requested page and hint the pager, 1396 * that it may bring up surrounding pages. 1397 */ 1398 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1399 P_KILLED(curproc)) { 1400 behind = 0; 1401 ahead = 0; 1402 } else { 1403 /* Is this a sequential fault? */ 1404 if (fs->nera > 0) { 1405 behind = 0; 1406 ahead = fs->nera; 1407 } else { 1408 /* 1409 * Request a cluster of pages that is 1410 * aligned to a VM_FAULT_READ_DEFAULT 1411 * page offset boundary within the 1412 * object. Alignment to a page offset 1413 * boundary is more likely to coincide 1414 * with the underlying file system 1415 * block than alignment to a virtual 1416 * address boundary. 1417 */ 1418 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1419 behind = ulmin(cluster_offset, 1420 atop(fs->vaddr - e_start)); 1421 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1422 } 1423 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1424 } 1425 *behindp = behind; 1426 *aheadp = ahead; 1427 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1428 if (rv == VM_PAGER_OK) 1429 return (FAULT_HARD); 1430 if (rv == VM_PAGER_ERROR) 1431 printf("vm_fault: pager read error, pid %d (%s)\n", 1432 curproc->p_pid, curproc->p_comm); 1433 /* 1434 * If an I/O error occurred or the requested page was 1435 * outside the range of the pager, clean up and return 1436 * an error. 1437 */ 1438 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1439 VM_OBJECT_WLOCK(fs->object); 1440 vm_fault_page_free(&fs->m); 1441 vm_fault_unlock_and_deallocate(fs); 1442 return (FAULT_OUT_OF_BOUNDS); 1443 } 1444 KASSERT(rv == VM_PAGER_FAIL, 1445 ("%s: unexpected pager error %d", __func__, rv)); 1446 return (FAULT_CONTINUE); 1447 } 1448 1449 /* 1450 * Wait/Retry if the page is busy. We have to do this if the page is 1451 * either exclusive or shared busy because the vm_pager may be using 1452 * read busy for pageouts (and even pageins if it is the vnode pager), 1453 * and we could end up trying to pagein and pageout the same page 1454 * simultaneously. 1455 * 1456 * We allow the busy case on a read fault if the page is valid. We 1457 * cannot under any circumstances mess around with a shared busied 1458 * page except, perhaps, to pmap it. This is controlled by the 1459 * VM_ALLOC_SBUSY bit in the allocflags argument. 1460 */ 1461 static void 1462 vm_fault_busy_sleep(struct faultstate *fs, int allocflags) 1463 { 1464 /* 1465 * Reference the page before unlocking and 1466 * sleeping so that the page daemon is less 1467 * likely to reclaim it. 1468 */ 1469 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1470 if (vm_fault_might_be_cow(fs)) { 1471 vm_fault_page_release(&fs->first_m); 1472 vm_object_pip_wakeup(fs->first_object); 1473 } 1474 vm_object_pip_wakeup(fs->object); 1475 vm_fault_unlock_map(fs); 1476 if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags)) 1477 VM_OBJECT_UNLOCK(fs->object); 1478 VM_CNT_INC(v_intrans); 1479 vm_object_deallocate(fs->first_object); 1480 } 1481 1482 /* 1483 * Handle page lookup, populate, allocate, page-in for the current 1484 * object. 1485 * 1486 * The object is locked on entry and will remain locked with a return 1487 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1488 * Otherwise, the object will be unlocked upon return. 1489 */ 1490 static enum fault_status 1491 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1492 { 1493 struct pctrie_iter pages; 1494 enum fault_status res; 1495 bool dead; 1496 1497 if (fs->object == fs->first_object || !fs->can_read_lock) 1498 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1499 else 1500 VM_OBJECT_ASSERT_LOCKED(fs->object); 1501 1502 /* 1503 * If the object is marked for imminent termination, we retry 1504 * here, since the collapse pass has raced with us. Otherwise, 1505 * if we see terminally dead object, return fail. 1506 */ 1507 if ((fs->object->flags & OBJ_DEAD) != 0) { 1508 dead = fs->object->type == OBJT_DEAD; 1509 vm_fault_unlock_and_deallocate(fs); 1510 if (dead) 1511 return (FAULT_PROTECTION_FAILURE); 1512 pause("vmf_de", 1); 1513 return (FAULT_RESTART); 1514 } 1515 1516 /* 1517 * See if the page is resident. 1518 */ 1519 vm_page_iter_init(&pages, fs->object); 1520 fs->m = vm_radix_iter_lookup(&pages, fs->pindex); 1521 if (fs->m != NULL) { 1522 /* 1523 * If the found page is valid, will be either shadowed 1524 * or mapped read-only, and will not be renamed for 1525 * COW, then busy it in shared mode. This allows 1526 * other faults needing this page to proceed in 1527 * parallel. 1528 * 1529 * Unlocked check for validity, rechecked after busy 1530 * is obtained. 1531 */ 1532 if (vm_page_all_valid(fs->m) && 1533 /* 1534 * No write permissions for the new fs->m mapping, 1535 * or the first object has only one mapping, so 1536 * other writeable COW mappings of fs->m cannot 1537 * appear under us. 1538 */ 1539 (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) && 1540 /* 1541 * fs->m cannot be renamed from object to 1542 * first_object. These conditions will be 1543 * re-checked with proper synchronization in 1544 * vm_fault_cow(). 1545 */ 1546 (!vm_fault_can_cow_rename(fs) || 1547 fs->object != fs->first_object->backing_object)) { 1548 if (!vm_page_trysbusy(fs->m)) { 1549 vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY); 1550 return (FAULT_RESTART); 1551 } 1552 1553 /* 1554 * Now make sure that racily checked 1555 * conditions are still valid. 1556 */ 1557 if (__predict_true(vm_page_all_valid(fs->m) && 1558 (vm_fault_is_read(fs) || 1559 vm_fault_might_be_cow(fs)))) { 1560 VM_OBJECT_UNLOCK(fs->object); 1561 return (FAULT_SOFT); 1562 } 1563 1564 vm_page_sunbusy(fs->m); 1565 } 1566 1567 if (!vm_page_tryxbusy(fs->m)) { 1568 vm_fault_busy_sleep(fs, 0); 1569 return (FAULT_RESTART); 1570 } 1571 1572 /* 1573 * The page is marked busy for other processes and the 1574 * pagedaemon. If it is still completely valid we are 1575 * done. 1576 */ 1577 if (vm_page_all_valid(fs->m)) { 1578 VM_OBJECT_UNLOCK(fs->object); 1579 return (FAULT_SOFT); 1580 } 1581 } 1582 1583 /* 1584 * Page is not resident. If the pager might contain the page 1585 * or this is the beginning of the search, allocate a new 1586 * page. 1587 */ 1588 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1589 fs->object == fs->first_object)) { 1590 if (!vm_fault_object_ensure_wlocked(fs)) { 1591 fs->can_read_lock = false; 1592 vm_fault_unlock_and_deallocate(fs); 1593 return (FAULT_RESTART); 1594 } 1595 res = vm_fault_allocate(fs, &pages); 1596 if (res != FAULT_CONTINUE) 1597 return (res); 1598 } 1599 1600 /* 1601 * Check to see if the pager can possibly satisfy this fault. 1602 * If not, skip to the next object without dropping the lock to 1603 * preserve atomicity of shadow faults. 1604 */ 1605 if (vm_fault_object_needs_getpages(fs->object)) { 1606 /* 1607 * At this point, we have either allocated a new page 1608 * or found an existing page that is only partially 1609 * valid. 1610 * 1611 * We hold a reference on the current object and the 1612 * page is exclusive busied. The exclusive busy 1613 * prevents simultaneous faults and collapses while 1614 * the object lock is dropped. 1615 */ 1616 VM_OBJECT_UNLOCK(fs->object); 1617 res = vm_fault_getpages(fs, behindp, aheadp); 1618 if (res == FAULT_CONTINUE) 1619 VM_OBJECT_WLOCK(fs->object); 1620 } else { 1621 res = FAULT_CONTINUE; 1622 } 1623 return (res); 1624 } 1625 1626 /* 1627 * vm_fault: 1628 * 1629 * Handle a page fault occurring at the given address, requiring the 1630 * given permissions, in the map specified. If successful, the page 1631 * is inserted into the associated physical map, and optionally 1632 * referenced and returned in *m_hold. 1633 * 1634 * The given address should be truncated to the proper page address. 1635 * 1636 * KERN_SUCCESS is returned if the page fault is handled; otherwise, a 1637 * Mach error specifying why the fault is fatal is returned. 1638 * 1639 * The map in question must be alive, either being the map for current 1640 * process, or the owner process hold count incremented to prevent 1641 * exit(). 1642 * 1643 * If the thread private TDP_NOFAULTING flag is set, any fault results 1644 * in immediate protection failure. Otherwise the fault is processed, 1645 * and caller may hold no locks. 1646 */ 1647 int 1648 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1649 int fault_flags, vm_page_t *m_hold) 1650 { 1651 struct pctrie_iter pages; 1652 struct faultstate fs; 1653 int ahead, behind, faultcount, rv; 1654 enum fault_status res; 1655 enum fault_next_status res_next; 1656 bool hardfault; 1657 1658 VM_CNT_INC(v_vm_faults); 1659 1660 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1661 return (KERN_PROTECTION_FAILURE); 1662 1663 fs.vp = NULL; 1664 fs.vaddr = vaddr; 1665 fs.m_hold = m_hold; 1666 fs.fault_flags = fault_flags; 1667 fs.map = map; 1668 fs.lookup_still_valid = false; 1669 fs.oom_started = false; 1670 fs.nera = -1; 1671 fs.can_read_lock = true; 1672 faultcount = 0; 1673 hardfault = false; 1674 1675 RetryFault: 1676 fs.fault_type = fault_type; 1677 1678 /* 1679 * Find the backing store object and offset into it to begin the 1680 * search. 1681 */ 1682 rv = vm_fault_lookup(&fs); 1683 if (rv != KERN_SUCCESS) { 1684 if (rv == KERN_RESOURCE_SHORTAGE) 1685 goto RetryFault; 1686 return (rv); 1687 } 1688 1689 /* 1690 * Try to avoid lock contention on the top-level object through 1691 * special-case handling of some types of page faults, specifically, 1692 * those that are mapping an existing page from the top-level object. 1693 * Under this condition, a read lock on the object suffices, allowing 1694 * multiple page faults of a similar type to run in parallel. 1695 */ 1696 if (fs.vp == NULL /* avoid locked vnode leak */ && 1697 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1698 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1699 res = vm_fault_soft_fast(&fs); 1700 if (res == FAULT_SUCCESS) { 1701 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1702 return (KERN_SUCCESS); 1703 } 1704 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1705 } else { 1706 vm_page_iter_init(&pages, fs.first_object); 1707 VM_OBJECT_WLOCK(fs.first_object); 1708 } 1709 1710 /* 1711 * Make a reference to this object to prevent its disposal while we 1712 * are messing with it. Once we have the reference, the map is free 1713 * to be diddled. Since objects reference their shadows (and copies), 1714 * they will stay around as well. 1715 * 1716 * Bump the paging-in-progress count to prevent size changes (e.g. 1717 * truncation operations) during I/O. 1718 */ 1719 vm_object_reference_locked(fs.first_object); 1720 vm_object_pip_add(fs.first_object, 1); 1721 1722 fs.m_cow = fs.m = fs.first_m = NULL; 1723 1724 /* 1725 * Search for the page at object/offset. 1726 */ 1727 fs.object = fs.first_object; 1728 fs.pindex = fs.first_pindex; 1729 1730 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1731 res = vm_fault_allocate(&fs, &pages); 1732 switch (res) { 1733 case FAULT_RESTART: 1734 goto RetryFault; 1735 case FAULT_SUCCESS: 1736 return (KERN_SUCCESS); 1737 case FAULT_FAILURE: 1738 return (KERN_FAILURE); 1739 case FAULT_OUT_OF_BOUNDS: 1740 return (KERN_OUT_OF_BOUNDS); 1741 case FAULT_CONTINUE: 1742 break; 1743 default: 1744 panic("vm_fault: Unhandled status %d", res); 1745 } 1746 } 1747 1748 while (TRUE) { 1749 KASSERT(fs.m == NULL, 1750 ("page still set %p at loop start", fs.m)); 1751 1752 res = vm_fault_object(&fs, &behind, &ahead); 1753 switch (res) { 1754 case FAULT_SOFT: 1755 goto found; 1756 case FAULT_HARD: 1757 faultcount = behind + 1 + ahead; 1758 hardfault = true; 1759 goto found; 1760 case FAULT_RESTART: 1761 goto RetryFault; 1762 case FAULT_SUCCESS: 1763 return (KERN_SUCCESS); 1764 case FAULT_FAILURE: 1765 return (KERN_FAILURE); 1766 case FAULT_OUT_OF_BOUNDS: 1767 return (KERN_OUT_OF_BOUNDS); 1768 case FAULT_PROTECTION_FAILURE: 1769 return (KERN_PROTECTION_FAILURE); 1770 case FAULT_CONTINUE: 1771 break; 1772 default: 1773 panic("vm_fault: Unhandled status %d", res); 1774 } 1775 1776 /* 1777 * The page was not found in the current object. Try to 1778 * traverse into a backing object or zero fill if none is 1779 * found. 1780 */ 1781 res_next = vm_fault_next(&fs); 1782 if (res_next == FAULT_NEXT_RESTART) 1783 goto RetryFault; 1784 else if (res_next == FAULT_NEXT_GOTOBJ) 1785 continue; 1786 MPASS(res_next == FAULT_NEXT_NOOBJ); 1787 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1788 if (fs.first_object == fs.object) 1789 vm_fault_page_free(&fs.first_m); 1790 vm_fault_unlock_and_deallocate(&fs); 1791 return (KERN_OUT_OF_BOUNDS); 1792 } 1793 VM_OBJECT_UNLOCK(fs.object); 1794 vm_fault_zerofill(&fs); 1795 /* Don't try to prefault neighboring pages. */ 1796 faultcount = 1; 1797 break; 1798 } 1799 1800 found: 1801 /* 1802 * A valid page has been found and busied. The object lock 1803 * must no longer be held if the page was busied. 1804 * 1805 * Regardless of the busy state of fs.m, fs.first_m is always 1806 * exclusively busied after the first iteration of the loop 1807 * calling vm_fault_object(). This is an ordering point for 1808 * the parallel faults occuring in on the same page. 1809 */ 1810 vm_page_assert_busied(fs.m); 1811 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1812 1813 /* 1814 * If the page is being written, but isn't already owned by the 1815 * top-level object, we have to copy it into a new page owned by the 1816 * top-level object. 1817 */ 1818 if (vm_fault_might_be_cow(&fs)) { 1819 /* 1820 * We only really need to copy if we want to write it. 1821 */ 1822 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1823 vm_fault_cow(&fs); 1824 /* 1825 * We only try to prefault read-only mappings to the 1826 * neighboring pages when this copy-on-write fault is 1827 * a hard fault. In other cases, trying to prefault 1828 * is typically wasted effort. 1829 */ 1830 if (faultcount == 0) 1831 faultcount = 1; 1832 1833 } else { 1834 fs.prot &= ~VM_PROT_WRITE; 1835 } 1836 } 1837 1838 /* 1839 * We must verify that the maps have not changed since our last 1840 * lookup. 1841 */ 1842 if (!fs.lookup_still_valid) { 1843 rv = vm_fault_relookup(&fs); 1844 if (rv != KERN_SUCCESS) { 1845 vm_fault_deallocate(&fs); 1846 if (rv == KERN_RESTART) 1847 goto RetryFault; 1848 return (rv); 1849 } 1850 } 1851 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1852 1853 /* 1854 * If the page was filled by a pager, save the virtual address that 1855 * should be faulted on next under a sequential access pattern to the 1856 * map entry. A read lock on the map suffices to update this address 1857 * safely. 1858 */ 1859 if (hardfault) 1860 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1861 1862 /* 1863 * If the page to be mapped was copied from a backing object, we defer 1864 * marking it valid until here, where the fault handler is guaranteed to 1865 * succeed. Otherwise we can end up with a shadowed, mapped page in the 1866 * backing object, which violates an invariant of vm_object_collapse() 1867 * that shadowed pages are not mapped. 1868 */ 1869 if (fs.m_cow != NULL) { 1870 KASSERT(vm_page_none_valid(fs.m), 1871 ("vm_fault: page %p is already valid", fs.m_cow)); 1872 vm_page_valid(fs.m); 1873 } 1874 1875 /* 1876 * Page must be completely valid or it is not fit to 1877 * map into user space. vm_pager_get_pages() ensures this. 1878 */ 1879 vm_page_assert_busied(fs.m); 1880 KASSERT(vm_page_all_valid(fs.m), 1881 ("vm_fault: page %p partially invalid", fs.m)); 1882 1883 vm_fault_dirty(&fs, fs.m); 1884 1885 /* 1886 * Put this page into the physical map. We had to do the unlock above 1887 * because pmap_enter() may sleep. We don't put the page 1888 * back on the active queue until later so that the pageout daemon 1889 * won't find it (yet). 1890 */ 1891 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1892 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1893 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1894 fs.wired == 0) 1895 vm_fault_prefault(&fs, vaddr, 1896 faultcount > 0 ? behind : PFBAK, 1897 faultcount > 0 ? ahead : PFFOR, false); 1898 1899 /* 1900 * If the page is not wired down, then put it where the pageout daemon 1901 * can find it. 1902 */ 1903 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1904 vm_page_wire(fs.m); 1905 else 1906 vm_page_activate(fs.m); 1907 if (fs.m_hold != NULL) { 1908 (*fs.m_hold) = fs.m; 1909 vm_page_wire(fs.m); 1910 } 1911 1912 KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m), 1913 ("first_m must be xbusy")); 1914 if (vm_page_xbusied(fs.m)) 1915 vm_page_xunbusy(fs.m); 1916 else 1917 vm_page_sunbusy(fs.m); 1918 fs.m = NULL; 1919 1920 /* 1921 * Unlock everything, and return 1922 */ 1923 vm_fault_deallocate(&fs); 1924 if (hardfault) { 1925 VM_CNT_INC(v_io_faults); 1926 curthread->td_ru.ru_majflt++; 1927 #ifdef RACCT 1928 if (racct_enable && fs.object->type == OBJT_VNODE) { 1929 PROC_LOCK(curproc); 1930 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1931 racct_add_force(curproc, RACCT_WRITEBPS, 1932 PAGE_SIZE + behind * PAGE_SIZE); 1933 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1934 } else { 1935 racct_add_force(curproc, RACCT_READBPS, 1936 PAGE_SIZE + ahead * PAGE_SIZE); 1937 racct_add_force(curproc, RACCT_READIOPS, 1); 1938 } 1939 PROC_UNLOCK(curproc); 1940 } 1941 #endif 1942 } else 1943 curthread->td_ru.ru_minflt++; 1944 1945 return (KERN_SUCCESS); 1946 } 1947 1948 /* 1949 * Speed up the reclamation of pages that precede the faulting pindex within 1950 * the first object of the shadow chain. Essentially, perform the equivalent 1951 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1952 * the faulting pindex by the cluster size when the pages read by vm_fault() 1953 * cross a cluster-size boundary. The cluster size is the greater of the 1954 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1955 * 1956 * When "fs->first_object" is a shadow object, the pages in the backing object 1957 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1958 * function must only be concerned with pages in the first object. 1959 */ 1960 static void 1961 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1962 { 1963 struct pctrie_iter pages; 1964 vm_map_entry_t entry; 1965 vm_object_t first_object; 1966 vm_offset_t end, start; 1967 vm_page_t m; 1968 vm_size_t size; 1969 1970 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1971 first_object = fs->first_object; 1972 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1973 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1974 VM_OBJECT_RLOCK(first_object); 1975 size = VM_FAULT_DONTNEED_MIN; 1976 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1977 size = pagesizes[1]; 1978 end = rounddown2(vaddr, size); 1979 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1980 (entry = fs->entry)->start < end) { 1981 if (end - entry->start < size) 1982 start = entry->start; 1983 else 1984 start = end - size; 1985 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1986 vm_page_iter_limit_init(&pages, first_object, 1987 OFF_TO_IDX(entry->offset) + 1988 atop(end - entry->start)); 1989 VM_RADIX_FOREACH_FROM(m, &pages, 1990 OFF_TO_IDX(entry->offset) + 1991 atop(start - entry->start)) { 1992 if (!vm_page_all_valid(m) || 1993 vm_page_busied(m)) 1994 continue; 1995 1996 /* 1997 * Don't clear PGA_REFERENCED, since it would 1998 * likely represent a reference by a different 1999 * process. 2000 * 2001 * Typically, at this point, prefetched pages 2002 * are still in the inactive queue. Only 2003 * pages that triggered page faults are in the 2004 * active queue. The test for whether the page 2005 * is in the inactive queue is racy; in the 2006 * worst case we will requeue the page 2007 * unnecessarily. 2008 */ 2009 if (!vm_page_inactive(m)) 2010 vm_page_deactivate(m); 2011 } 2012 } 2013 VM_OBJECT_RUNLOCK(first_object); 2014 } 2015 } 2016 2017 /* 2018 * vm_fault_prefault provides a quick way of clustering 2019 * pagefaults into a processes address space. It is a "cousin" 2020 * of vm_map_pmap_enter, except it runs at page fault time instead 2021 * of mmap time. 2022 */ 2023 static void 2024 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 2025 int backward, int forward, bool obj_locked) 2026 { 2027 pmap_t pmap; 2028 vm_map_entry_t entry; 2029 vm_object_t backing_object, lobject; 2030 vm_offset_t addr, starta; 2031 vm_pindex_t pindex; 2032 vm_page_t m; 2033 vm_prot_t prot; 2034 int i; 2035 2036 pmap = fs->map->pmap; 2037 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 2038 return; 2039 2040 entry = fs->entry; 2041 2042 if (addra < backward * PAGE_SIZE) { 2043 starta = entry->start; 2044 } else { 2045 starta = addra - backward * PAGE_SIZE; 2046 if (starta < entry->start) 2047 starta = entry->start; 2048 } 2049 prot = entry->protection; 2050 2051 /* 2052 * If pmap_enter() has enabled write access on a nearby mapping, then 2053 * don't attempt promotion, because it will fail. 2054 */ 2055 if ((fs->prot & VM_PROT_WRITE) != 0) 2056 prot |= VM_PROT_NO_PROMOTE; 2057 2058 /* 2059 * Generate the sequence of virtual addresses that are candidates for 2060 * prefaulting in an outward spiral from the faulting virtual address, 2061 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 2062 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 2063 * If the candidate address doesn't have a backing physical page, then 2064 * the loop immediately terminates. 2065 */ 2066 for (i = 0; i < 2 * imax(backward, forward); i++) { 2067 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 2068 PAGE_SIZE); 2069 if (addr > addra + forward * PAGE_SIZE) 2070 addr = 0; 2071 2072 if (addr < starta || addr >= entry->end) 2073 continue; 2074 2075 if (!pmap_is_prefaultable(pmap, addr)) 2076 continue; 2077 2078 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2079 lobject = entry->object.vm_object; 2080 if (!obj_locked) 2081 VM_OBJECT_RLOCK(lobject); 2082 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 2083 !vm_fault_object_needs_getpages(lobject) && 2084 (backing_object = lobject->backing_object) != NULL) { 2085 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 2086 0, ("vm_fault_prefault: unaligned object offset")); 2087 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2088 VM_OBJECT_RLOCK(backing_object); 2089 if (!obj_locked || lobject != entry->object.vm_object) 2090 VM_OBJECT_RUNLOCK(lobject); 2091 lobject = backing_object; 2092 } 2093 if (m == NULL) { 2094 if (!obj_locked || lobject != entry->object.vm_object) 2095 VM_OBJECT_RUNLOCK(lobject); 2096 break; 2097 } 2098 if (vm_page_all_valid(m) && 2099 (m->flags & PG_FICTITIOUS) == 0) 2100 pmap_enter_quick(pmap, addr, m, prot); 2101 if (!obj_locked || lobject != entry->object.vm_object) 2102 VM_OBJECT_RUNLOCK(lobject); 2103 } 2104 } 2105 2106 /* 2107 * Hold each of the physical pages that are mapped by the specified 2108 * range of virtual addresses, ["addr", "addr" + "len"), if those 2109 * mappings are valid and allow the specified types of access, "prot". 2110 * If all of the implied pages are successfully held, then the number 2111 * of held pages is assigned to *ppages_count, together with pointers 2112 * to those pages in the array "ma". The returned value is zero. 2113 * 2114 * However, if any of the pages cannot be held, an error is returned, 2115 * and no pages are held. 2116 * Error values: 2117 * ENOMEM - the range is not valid 2118 * EINVAL - the provided vm_page array is too small to hold all pages 2119 * EAGAIN - a page was not mapped, and the thread is in nofaulting mode 2120 * EFAULT - a page with requested permissions cannot be mapped 2121 * (more detailed result from vm_fault() is lost) 2122 */ 2123 int 2124 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2125 vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count) 2126 { 2127 vm_offset_t end, va; 2128 vm_page_t *mp; 2129 int count, error; 2130 boolean_t pmap_failed; 2131 2132 if (len == 0) { 2133 *ppages_count = 0; 2134 return (0); 2135 } 2136 end = round_page(addr + len); 2137 addr = trunc_page(addr); 2138 2139 if (!vm_map_range_valid(map, addr, end)) 2140 return (ENOMEM); 2141 2142 if (atop(end - addr) > max_count) 2143 return (EINVAL); 2144 count = atop(end - addr); 2145 2146 /* 2147 * Most likely, the physical pages are resident in the pmap, so it is 2148 * faster to try pmap_extract_and_hold() first. 2149 */ 2150 pmap_failed = FALSE; 2151 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2152 *mp = pmap_extract_and_hold(map->pmap, va, prot); 2153 if (*mp == NULL) 2154 pmap_failed = TRUE; 2155 else if ((prot & VM_PROT_WRITE) != 0 && 2156 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2157 /* 2158 * Explicitly dirty the physical page. Otherwise, the 2159 * caller's changes may go unnoticed because they are 2160 * performed through an unmanaged mapping or by a DMA 2161 * operation. 2162 * 2163 * The object lock is not held here. 2164 * See vm_page_clear_dirty_mask(). 2165 */ 2166 vm_page_dirty(*mp); 2167 } 2168 } 2169 if (pmap_failed) { 2170 /* 2171 * One or more pages could not be held by the pmap. Either no 2172 * page was mapped at the specified virtual address or that 2173 * mapping had insufficient permissions. Attempt to fault in 2174 * and hold these pages. 2175 * 2176 * If vm_fault_disable_pagefaults() was called, 2177 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2178 * acquire MD VM locks, which means we must not call 2179 * vm_fault(). Some (out of tree) callers mark 2180 * too wide a code area with vm_fault_disable_pagefaults() 2181 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2182 * the proper behaviour explicitly. 2183 */ 2184 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2185 (curthread->td_pflags & TDP_NOFAULTING) != 0) { 2186 error = EAGAIN; 2187 goto fail; 2188 } 2189 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2190 if (*mp == NULL && vm_fault(map, va, prot, 2191 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) { 2192 error = EFAULT; 2193 goto fail; 2194 } 2195 } 2196 } 2197 *ppages_count = count; 2198 return (0); 2199 fail: 2200 for (mp = ma; mp < ma + count; mp++) 2201 if (*mp != NULL) 2202 vm_page_unwire(*mp, PQ_INACTIVE); 2203 return (error); 2204 } 2205 2206 /* 2207 * Hold each of the physical pages that are mapped by the specified range of 2208 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 2209 * and allow the specified types of access, "prot". If all of the implied 2210 * pages are successfully held, then the number of held pages is returned 2211 * together with pointers to those pages in the array "ma". However, if any 2212 * of the pages cannot be held, -1 is returned. 2213 */ 2214 int 2215 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2216 vm_prot_t prot, vm_page_t *ma, int max_count) 2217 { 2218 int error, pages_count; 2219 2220 error = vm_fault_hold_pages(map, addr, len, prot, ma, 2221 max_count, &pages_count); 2222 if (error != 0) { 2223 if (error == EINVAL) 2224 panic("vm_fault_quick_hold_pages: count > max_count"); 2225 return (-1); 2226 } 2227 return (pages_count); 2228 } 2229 2230 /* 2231 * Routine: 2232 * vm_fault_copy_entry 2233 * Function: 2234 * Create new object backing dst_entry with private copy of all 2235 * underlying pages. When src_entry is equal to dst_entry, function 2236 * implements COW for wired-down map entry. Otherwise, it forks 2237 * wired entry into dst_map. 2238 * 2239 * In/out conditions: 2240 * The source and destination maps must be locked for write. 2241 * The source map entry must be wired down (or be a sharing map 2242 * entry corresponding to a main map entry that is wired down). 2243 */ 2244 void 2245 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2246 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2247 vm_ooffset_t *fork_charge) 2248 { 2249 struct pctrie_iter pages; 2250 vm_object_t backing_object, dst_object, object, src_object; 2251 vm_pindex_t dst_pindex, pindex, src_pindex; 2252 vm_prot_t access, prot; 2253 vm_offset_t vaddr; 2254 vm_page_t dst_m; 2255 vm_page_t src_m; 2256 bool upgrade; 2257 2258 upgrade = src_entry == dst_entry; 2259 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2260 ("vm_fault_copy_entry: vm_object not NULL")); 2261 2262 /* 2263 * If not an upgrade, then enter the mappings in the pmap as 2264 * read and/or execute accesses. Otherwise, enter them as 2265 * write accesses. 2266 * 2267 * A writeable large page mapping is only created if all of 2268 * the constituent small page mappings are modified. Marking 2269 * PTEs as modified on inception allows promotion to happen 2270 * without taking potentially large number of soft faults. 2271 */ 2272 access = prot = dst_entry->protection; 2273 if (!upgrade) 2274 access &= ~VM_PROT_WRITE; 2275 2276 src_object = src_entry->object.vm_object; 2277 src_pindex = OFF_TO_IDX(src_entry->offset); 2278 2279 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2280 dst_object = src_object; 2281 vm_object_reference(dst_object); 2282 } else { 2283 /* 2284 * Create the top-level object for the destination entry. 2285 * Doesn't actually shadow anything - we copy the pages 2286 * directly. 2287 */ 2288 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2289 dst_entry->start), NULL, NULL, 0); 2290 #if VM_NRESERVLEVEL > 0 2291 dst_object->flags |= OBJ_COLORED; 2292 dst_object->pg_color = atop(dst_entry->start); 2293 #endif 2294 dst_object->domain = src_object->domain; 2295 dst_object->charge = dst_entry->end - dst_entry->start; 2296 2297 dst_entry->object.vm_object = dst_object; 2298 dst_entry->offset = 0; 2299 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2300 } 2301 2302 VM_OBJECT_WLOCK(dst_object); 2303 if (fork_charge != NULL) { 2304 KASSERT(dst_entry->cred == NULL, 2305 ("vm_fault_copy_entry: leaked swp charge")); 2306 dst_object->cred = curthread->td_ucred; 2307 crhold(dst_object->cred); 2308 *fork_charge += dst_object->charge; 2309 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2310 dst_object->cred == NULL) { 2311 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2312 dst_entry)); 2313 dst_object->cred = dst_entry->cred; 2314 dst_entry->cred = NULL; 2315 } 2316 2317 /* 2318 * Loop through all of the virtual pages within the entry's 2319 * range, copying each page from the source object to the 2320 * destination object. Since the source is wired, those pages 2321 * must exist. In contrast, the destination is pageable. 2322 * Since the destination object doesn't share any backing storage 2323 * with the source object, all of its pages must be dirtied, 2324 * regardless of whether they can be written. 2325 */ 2326 vm_page_iter_init(&pages, dst_object); 2327 for (vaddr = dst_entry->start, dst_pindex = 0; 2328 vaddr < dst_entry->end; 2329 vaddr += PAGE_SIZE, dst_pindex++) { 2330 again: 2331 /* 2332 * Find the page in the source object, and copy it in. 2333 * Because the source is wired down, the page will be 2334 * in memory. 2335 */ 2336 if (src_object != dst_object) 2337 VM_OBJECT_RLOCK(src_object); 2338 object = src_object; 2339 pindex = src_pindex + dst_pindex; 2340 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2341 (backing_object = object->backing_object) != NULL) { 2342 /* 2343 * Unless the source mapping is read-only or 2344 * it is presently being upgraded from 2345 * read-only, the first object in the shadow 2346 * chain should provide all of the pages. In 2347 * other words, this loop body should never be 2348 * executed when the source mapping is already 2349 * read/write. 2350 */ 2351 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2352 upgrade, 2353 ("vm_fault_copy_entry: main object missing page")); 2354 2355 VM_OBJECT_RLOCK(backing_object); 2356 pindex += OFF_TO_IDX(object->backing_object_offset); 2357 if (object != dst_object) 2358 VM_OBJECT_RUNLOCK(object); 2359 object = backing_object; 2360 } 2361 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2362 2363 if (object != dst_object) { 2364 /* 2365 * Allocate a page in the destination object. 2366 */ 2367 pindex = (src_object == dst_object ? src_pindex : 0) + 2368 dst_pindex; 2369 dst_m = vm_page_alloc_iter(dst_object, pindex, 2370 VM_ALLOC_NORMAL, &pages); 2371 if (dst_m == NULL) { 2372 VM_OBJECT_WUNLOCK(dst_object); 2373 VM_OBJECT_RUNLOCK(object); 2374 vm_wait(dst_object); 2375 VM_OBJECT_WLOCK(dst_object); 2376 pctrie_iter_reset(&pages); 2377 goto again; 2378 } 2379 2380 /* 2381 * See the comment in vm_fault_cow(). 2382 */ 2383 if (src_object == dst_object && 2384 (object->flags & OBJ_ONEMAPPING) == 0) 2385 pmap_remove_all(src_m); 2386 pmap_copy_page(src_m, dst_m); 2387 2388 /* 2389 * The object lock does not guarantee that "src_m" will 2390 * transition from invalid to valid, but it does ensure 2391 * that "src_m" will not transition from valid to 2392 * invalid. 2393 */ 2394 dst_m->dirty = dst_m->valid = src_m->valid; 2395 VM_OBJECT_RUNLOCK(object); 2396 } else { 2397 dst_m = src_m; 2398 if (vm_page_busy_acquire( 2399 dst_m, VM_ALLOC_WAITFAIL) == 0) { 2400 pctrie_iter_reset(&pages); 2401 goto again; 2402 } 2403 if (dst_m->pindex >= dst_object->size) { 2404 /* 2405 * We are upgrading. Index can occur 2406 * out of bounds if the object type is 2407 * vnode and the file was truncated. 2408 */ 2409 vm_page_xunbusy(dst_m); 2410 break; 2411 } 2412 } 2413 2414 /* 2415 * Enter it in the pmap. If a wired, copy-on-write 2416 * mapping is being replaced by a write-enabled 2417 * mapping, then wire that new mapping. 2418 * 2419 * The page can be invalid if the user called 2420 * msync(MS_INVALIDATE) or truncated the backing vnode 2421 * or shared memory object. In this case, do not 2422 * insert it into pmap, but still do the copy so that 2423 * all copies of the wired map entry have similar 2424 * backing pages. 2425 */ 2426 if (vm_page_all_valid(dst_m)) { 2427 VM_OBJECT_WUNLOCK(dst_object); 2428 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2429 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2430 VM_OBJECT_WLOCK(dst_object); 2431 } 2432 2433 /* 2434 * Mark it no longer busy, and put it on the active list. 2435 */ 2436 if (upgrade) { 2437 if (src_m != dst_m) { 2438 vm_page_unwire(src_m, PQ_INACTIVE); 2439 vm_page_wire(dst_m); 2440 } else { 2441 KASSERT(vm_page_wired(dst_m), 2442 ("dst_m %p is not wired", dst_m)); 2443 } 2444 } else { 2445 vm_page_activate(dst_m); 2446 } 2447 vm_page_xunbusy(dst_m); 2448 } 2449 VM_OBJECT_WUNLOCK(dst_object); 2450 if (upgrade) { 2451 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2452 vm_object_deallocate(src_object); 2453 } 2454 } 2455 2456 /* 2457 * Block entry into the machine-independent layer's page fault handler by 2458 * the calling thread. Subsequent calls to vm_fault() by that thread will 2459 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2460 * spurious page faults. 2461 */ 2462 int 2463 vm_fault_disable_pagefaults(void) 2464 { 2465 2466 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2467 } 2468 2469 void 2470 vm_fault_enable_pagefaults(int save) 2471 { 2472 2473 curthread_pflags_restore(save); 2474 } 2475