xref: /freebsd/sys/vm/vm_fault.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100 
101 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
102 
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106 
107 static int prefault_pageorder[] = {
108 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
109 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
110 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
111 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113 
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116 
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120 
121 struct faultstate {
122 	vm_page_t m;
123 	vm_object_t object;
124 	vm_pindex_t pindex;
125 	vm_page_t first_m;
126 	vm_object_t	first_object;
127 	vm_pindex_t first_pindex;
128 	vm_map_t map;
129 	vm_map_entry_t entry;
130 	int lookup_still_valid;
131 	struct vnode *vp;
132 	int vfslocked;
133 };
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_wakeup(fs->m);
140 	vm_page_lock(fs->m);
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock(fs->m);
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = FALSE;
153 	}
154 }
155 
156 static void
157 unlock_and_deallocate(struct faultstate *fs)
158 {
159 
160 	vm_object_pip_wakeup(fs->object);
161 	VM_OBJECT_UNLOCK(fs->object);
162 	if (fs->object != fs->first_object) {
163 		VM_OBJECT_LOCK(fs->first_object);
164 		vm_page_lock(fs->first_m);
165 		vm_page_free(fs->first_m);
166 		vm_page_unlock(fs->first_m);
167 		vm_object_pip_wakeup(fs->first_object);
168 		VM_OBJECT_UNLOCK(fs->first_object);
169 		fs->first_m = NULL;
170 	}
171 	vm_object_deallocate(fs->first_object);
172 	unlock_map(fs);
173 	if (fs->vp != NULL) {
174 		vput(fs->vp);
175 		fs->vp = NULL;
176 	}
177 	VFS_UNLOCK_GIANT(fs->vfslocked);
178 	fs->vfslocked = 0;
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *	The map in question must be referenced, and remains so.
205  *	Caller may hold no locks.
206  */
207 int
208 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
209     int fault_flags)
210 {
211 
212 	return (vm_fault_hold(map, vaddr, fault_type, fault_flags, NULL));
213 }
214 
215 int
216 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
217     int fault_flags, vm_page_t *m_hold)
218 {
219 	vm_prot_t prot;
220 	int is_first_object_locked, result;
221 	boolean_t growstack, wired;
222 	int map_generation;
223 	vm_object_t next_object;
224 	vm_page_t marray[VM_FAULT_READ], mt, mt_prev;
225 	int hardfault;
226 	int faultcount, ahead, behind, alloc_req;
227 	struct faultstate fs;
228 	struct vnode *vp;
229 	int locked, error;
230 
231 	hardfault = 0;
232 	growstack = TRUE;
233 	PCPU_INC(cnt.v_vm_faults);
234 	fs.vp = NULL;
235 	fs.vfslocked = 0;
236 	faultcount = behind = 0;
237 
238 RetryFault:;
239 
240 	/*
241 	 * Find the backing store object and offset into it to begin the
242 	 * search.
243 	 */
244 	fs.map = map;
245 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
246 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
247 	if (result != KERN_SUCCESS) {
248 		if (growstack && result == KERN_INVALID_ADDRESS &&
249 		    map != kernel_map) {
250 			result = vm_map_growstack(curproc, vaddr);
251 			if (result != KERN_SUCCESS)
252 				return (KERN_FAILURE);
253 			growstack = FALSE;
254 			goto RetryFault;
255 		}
256 		return (result);
257 	}
258 
259 	map_generation = fs.map->timestamp;
260 
261 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
262 		panic("vm_fault: fault on nofault entry, addr: %lx",
263 		    (u_long)vaddr);
264 	}
265 
266 	/*
267 	 * Make a reference to this object to prevent its disposal while we
268 	 * are messing with it.  Once we have the reference, the map is free
269 	 * to be diddled.  Since objects reference their shadows (and copies),
270 	 * they will stay around as well.
271 	 *
272 	 * Bump the paging-in-progress count to prevent size changes (e.g.
273 	 * truncation operations) during I/O.  This must be done after
274 	 * obtaining the vnode lock in order to avoid possible deadlocks.
275 	 */
276 	VM_OBJECT_LOCK(fs.first_object);
277 	vm_object_reference_locked(fs.first_object);
278 	vm_object_pip_add(fs.first_object, 1);
279 
280 	fs.lookup_still_valid = TRUE;
281 
282 	if (wired)
283 		fault_type = prot | (fault_type & VM_PROT_COPY);
284 
285 	fs.first_m = NULL;
286 
287 	/*
288 	 * Search for the page at object/offset.
289 	 */
290 	fs.object = fs.first_object;
291 	fs.pindex = fs.first_pindex;
292 	while (TRUE) {
293 		/*
294 		 * If the object is dead, we stop here
295 		 */
296 		if (fs.object->flags & OBJ_DEAD) {
297 			unlock_and_deallocate(&fs);
298 			return (KERN_PROTECTION_FAILURE);
299 		}
300 
301 		/*
302 		 * See if page is resident
303 		 */
304 		fs.m = vm_page_lookup(fs.object, fs.pindex);
305 		if (fs.m != NULL) {
306 			/*
307 			 * check for page-based copy on write.
308 			 * We check fs.object == fs.first_object so
309 			 * as to ensure the legacy COW mechanism is
310 			 * used when the page in question is part of
311 			 * a shadow object.  Otherwise, vm_page_cowfault()
312 			 * removes the page from the backing object,
313 			 * which is not what we want.
314 			 */
315 			vm_page_lock(fs.m);
316 			if ((fs.m->cow) &&
317 			    (fault_type & VM_PROT_WRITE) &&
318 			    (fs.object == fs.first_object)) {
319 				vm_page_cowfault(fs.m);
320 				unlock_and_deallocate(&fs);
321 				goto RetryFault;
322 			}
323 
324 			/*
325 			 * Wait/Retry if the page is busy.  We have to do this
326 			 * if the page is busy via either VPO_BUSY or
327 			 * vm_page_t->busy because the vm_pager may be using
328 			 * vm_page_t->busy for pageouts ( and even pageins if
329 			 * it is the vnode pager ), and we could end up trying
330 			 * to pagein and pageout the same page simultaneously.
331 			 *
332 			 * We can theoretically allow the busy case on a read
333 			 * fault if the page is marked valid, but since such
334 			 * pages are typically already pmap'd, putting that
335 			 * special case in might be more effort then it is
336 			 * worth.  We cannot under any circumstances mess
337 			 * around with a vm_page_t->busy page except, perhaps,
338 			 * to pmap it.
339 			 */
340 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
341 				/*
342 				 * Reference the page before unlocking and
343 				 * sleeping so that the page daemon is less
344 				 * likely to reclaim it.
345 				 */
346 				vm_page_lock_queues();
347 				vm_page_flag_set(fs.m, PG_REFERENCED);
348 				vm_page_unlock_queues();
349 				vm_page_unlock(fs.m);
350 				if (fs.object != fs.first_object) {
351 					if (!VM_OBJECT_TRYLOCK(
352 					    fs.first_object)) {
353 						VM_OBJECT_UNLOCK(fs.object);
354 						VM_OBJECT_LOCK(fs.first_object);
355 						VM_OBJECT_LOCK(fs.object);
356 					}
357 					vm_page_lock(fs.first_m);
358 					vm_page_free(fs.first_m);
359 					vm_page_unlock(fs.first_m);
360 					vm_object_pip_wakeup(fs.first_object);
361 					VM_OBJECT_UNLOCK(fs.first_object);
362 					fs.first_m = NULL;
363 				}
364 				unlock_map(&fs);
365 				if (fs.m == vm_page_lookup(fs.object,
366 				    fs.pindex)) {
367 					vm_page_sleep_if_busy(fs.m, TRUE,
368 					    "vmpfw");
369 				}
370 				vm_object_pip_wakeup(fs.object);
371 				VM_OBJECT_UNLOCK(fs.object);
372 				PCPU_INC(cnt.v_intrans);
373 				vm_object_deallocate(fs.first_object);
374 				goto RetryFault;
375 			}
376 			vm_pageq_remove(fs.m);
377 			vm_page_unlock(fs.m);
378 
379 			/*
380 			 * Mark page busy for other processes, and the
381 			 * pagedaemon.  If it still isn't completely valid
382 			 * (readable), jump to readrest, else break-out ( we
383 			 * found the page ).
384 			 */
385 			vm_page_busy(fs.m);
386 			if (fs.m->valid != VM_PAGE_BITS_ALL)
387 				goto readrest;
388 			break;
389 		}
390 
391 		/*
392 		 * Page is not resident, If this is the search termination
393 		 * or the pager might contain the page, allocate a new page.
394 		 */
395 		if (TRYPAGER || fs.object == fs.first_object) {
396 			if (fs.pindex >= fs.object->size) {
397 				unlock_and_deallocate(&fs);
398 				return (KERN_PROTECTION_FAILURE);
399 			}
400 
401 			/*
402 			 * Allocate a new page for this object/offset pair.
403 			 *
404 			 * Unlocked read of the p_flag is harmless. At
405 			 * worst, the P_KILLED might be not observed
406 			 * there, and allocation can fail, causing
407 			 * restart and new reading of the p_flag.
408 			 */
409 			fs.m = NULL;
410 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
411 #if VM_NRESERVLEVEL > 0
412 				if ((fs.object->flags & OBJ_COLORED) == 0) {
413 					fs.object->flags |= OBJ_COLORED;
414 					fs.object->pg_color = atop(vaddr) -
415 					    fs.pindex;
416 				}
417 #endif
418 				alloc_req = P_KILLED(curproc) ?
419 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
420 				if (fs.object->type != OBJT_VNODE &&
421 				    fs.object->backing_object == NULL)
422 					alloc_req |= VM_ALLOC_ZERO;
423 				fs.m = vm_page_alloc(fs.object, fs.pindex,
424 				    alloc_req);
425 			}
426 			if (fs.m == NULL) {
427 				unlock_and_deallocate(&fs);
428 				VM_WAITPFAULT;
429 				goto RetryFault;
430 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
431 				break;
432 		}
433 
434 readrest:
435 		/*
436 		 * We have found a valid page or we have allocated a new page.
437 		 * The page thus may not be valid or may not be entirely
438 		 * valid.
439 		 *
440 		 * Attempt to fault-in the page if there is a chance that the
441 		 * pager has it, and potentially fault in additional pages
442 		 * at the same time.
443 		 */
444 		if (TRYPAGER) {
445 			int rv;
446 			int reqpage = 0;
447 			u_char behavior = vm_map_entry_behavior(fs.entry);
448 
449 			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
450 			    P_KILLED(curproc)) {
451 				ahead = 0;
452 				behind = 0;
453 			} else {
454 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
455 				if (behind > VM_FAULT_READ_BEHIND)
456 					behind = VM_FAULT_READ_BEHIND;
457 
458 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
459 				if (ahead > VM_FAULT_READ_AHEAD)
460 					ahead = VM_FAULT_READ_AHEAD;
461 			}
462 			is_first_object_locked = FALSE;
463 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
464 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
465 			      fs.pindex >= fs.entry->lastr &&
466 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
467 			    (fs.first_object == fs.object ||
468 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
469 			    fs.first_object->type != OBJT_DEVICE &&
470 			    fs.first_object->type != OBJT_PHYS &&
471 			    fs.first_object->type != OBJT_SG) {
472 				vm_pindex_t firstpindex;
473 
474 				if (fs.first_pindex < 2 * VM_FAULT_READ)
475 					firstpindex = 0;
476 				else
477 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
478 				mt = fs.first_object != fs.object ?
479 				    fs.first_m : fs.m;
480 				KASSERT(mt != NULL, ("vm_fault: missing mt"));
481 				KASSERT((mt->oflags & VPO_BUSY) != 0,
482 				    ("vm_fault: mt %p not busy", mt));
483 				mt_prev = vm_page_prev(mt);
484 
485 				/*
486 				 * note: partially valid pages cannot be
487 				 * included in the lookahead - NFS piecemeal
488 				 * writes will barf on it badly.
489 				 */
490 				while ((mt = mt_prev) != NULL &&
491 				    mt->pindex >= firstpindex &&
492 				    mt->valid == VM_PAGE_BITS_ALL) {
493 					mt_prev = vm_page_prev(mt);
494 					if (mt->busy ||
495 					    (mt->oflags & VPO_BUSY))
496 						continue;
497 					vm_page_lock(mt);
498 					if (mt->hold_count ||
499 					    mt->wire_count) {
500 						vm_page_unlock(mt);
501 						continue;
502 					}
503 					pmap_remove_all(mt);
504 					if (mt->dirty != 0)
505 						vm_page_deactivate(mt);
506 					else
507 						vm_page_cache(mt);
508 					vm_page_unlock(mt);
509 				}
510 				ahead += behind;
511 				behind = 0;
512 			}
513 			if (is_first_object_locked)
514 				VM_OBJECT_UNLOCK(fs.first_object);
515 
516 			/*
517 			 * Call the pager to retrieve the data, if any, after
518 			 * releasing the lock on the map.  We hold a ref on
519 			 * fs.object and the pages are VPO_BUSY'd.
520 			 */
521 			unlock_map(&fs);
522 
523 vnode_lock:
524 			if (fs.object->type == OBJT_VNODE) {
525 				vp = fs.object->handle;
526 				if (vp == fs.vp)
527 					goto vnode_locked;
528 				else if (fs.vp != NULL) {
529 					vput(fs.vp);
530 					fs.vp = NULL;
531 				}
532 				locked = VOP_ISLOCKED(vp);
533 
534 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
535 					fs.vfslocked = 1;
536 					if (!mtx_trylock(&Giant)) {
537 						VM_OBJECT_UNLOCK(fs.object);
538 						mtx_lock(&Giant);
539 						VM_OBJECT_LOCK(fs.object);
540 						goto vnode_lock;
541 					}
542 				}
543 				if (locked != LK_EXCLUSIVE)
544 					locked = LK_SHARED;
545 				/* Do not sleep for vnode lock while fs.m is busy */
546 				error = vget(vp, locked | LK_CANRECURSE |
547 				    LK_NOWAIT, curthread);
548 				if (error != 0) {
549 					int vfslocked;
550 
551 					vfslocked = fs.vfslocked;
552 					fs.vfslocked = 0; /* Keep Giant */
553 					vhold(vp);
554 					release_page(&fs);
555 					unlock_and_deallocate(&fs);
556 					error = vget(vp, locked | LK_RETRY |
557 					    LK_CANRECURSE, curthread);
558 					vdrop(vp);
559 					fs.vp = vp;
560 					fs.vfslocked = vfslocked;
561 					KASSERT(error == 0,
562 					    ("vm_fault: vget failed"));
563 					goto RetryFault;
564 				}
565 				fs.vp = vp;
566 			}
567 vnode_locked:
568 			KASSERT(fs.vp == NULL || !fs.map->system_map,
569 			    ("vm_fault: vnode-backed object mapped by system map"));
570 
571 			/*
572 			 * now we find out if any other pages should be paged
573 			 * in at this time this routine checks to see if the
574 			 * pages surrounding this fault reside in the same
575 			 * object as the page for this fault.  If they do,
576 			 * then they are faulted in also into the object.  The
577 			 * array "marray" returned contains an array of
578 			 * vm_page_t structs where one of them is the
579 			 * vm_page_t passed to the routine.  The reqpage
580 			 * return value is the index into the marray for the
581 			 * vm_page_t passed to the routine.
582 			 *
583 			 * fs.m plus the additional pages are VPO_BUSY'd.
584 			 */
585 			faultcount = vm_fault_additional_pages(
586 			    fs.m, behind, ahead, marray, &reqpage);
587 
588 			rv = faultcount ?
589 			    vm_pager_get_pages(fs.object, marray, faultcount,
590 				reqpage) : VM_PAGER_FAIL;
591 
592 			if (rv == VM_PAGER_OK) {
593 				/*
594 				 * Found the page. Leave it busy while we play
595 				 * with it.
596 				 */
597 
598 				/*
599 				 * Relookup in case pager changed page. Pager
600 				 * is responsible for disposition of old page
601 				 * if moved.
602 				 */
603 				fs.m = vm_page_lookup(fs.object, fs.pindex);
604 				if (!fs.m) {
605 					unlock_and_deallocate(&fs);
606 					goto RetryFault;
607 				}
608 
609 				hardfault++;
610 				break; /* break to PAGE HAS BEEN FOUND */
611 			}
612 			/*
613 			 * Remove the bogus page (which does not exist at this
614 			 * object/offset); before doing so, we must get back
615 			 * our object lock to preserve our invariant.
616 			 *
617 			 * Also wake up any other process that may want to bring
618 			 * in this page.
619 			 *
620 			 * If this is the top-level object, we must leave the
621 			 * busy page to prevent another process from rushing
622 			 * past us, and inserting the page in that object at
623 			 * the same time that we are.
624 			 */
625 			if (rv == VM_PAGER_ERROR)
626 				printf("vm_fault: pager read error, pid %d (%s)\n",
627 				    curproc->p_pid, curproc->p_comm);
628 			/*
629 			 * Data outside the range of the pager or an I/O error
630 			 */
631 			/*
632 			 * XXX - the check for kernel_map is a kludge to work
633 			 * around having the machine panic on a kernel space
634 			 * fault w/ I/O error.
635 			 */
636 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
637 				(rv == VM_PAGER_BAD)) {
638 				vm_page_lock(fs.m);
639 				vm_page_free(fs.m);
640 				vm_page_unlock(fs.m);
641 				fs.m = NULL;
642 				unlock_and_deallocate(&fs);
643 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
644 			}
645 			if (fs.object != fs.first_object) {
646 				vm_page_lock(fs.m);
647 				vm_page_free(fs.m);
648 				vm_page_unlock(fs.m);
649 				fs.m = NULL;
650 				/*
651 				 * XXX - we cannot just fall out at this
652 				 * point, m has been freed and is invalid!
653 				 */
654 			}
655 		}
656 
657 		/*
658 		 * We get here if the object has default pager (or unwiring)
659 		 * or the pager doesn't have the page.
660 		 */
661 		if (fs.object == fs.first_object)
662 			fs.first_m = fs.m;
663 
664 		/*
665 		 * Move on to the next object.  Lock the next object before
666 		 * unlocking the current one.
667 		 */
668 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
669 		next_object = fs.object->backing_object;
670 		if (next_object == NULL) {
671 			/*
672 			 * If there's no object left, fill the page in the top
673 			 * object with zeros.
674 			 */
675 			if (fs.object != fs.first_object) {
676 				vm_object_pip_wakeup(fs.object);
677 				VM_OBJECT_UNLOCK(fs.object);
678 
679 				fs.object = fs.first_object;
680 				fs.pindex = fs.first_pindex;
681 				fs.m = fs.first_m;
682 				VM_OBJECT_LOCK(fs.object);
683 			}
684 			fs.first_m = NULL;
685 
686 			/*
687 			 * Zero the page if necessary and mark it valid.
688 			 */
689 			if ((fs.m->flags & PG_ZERO) == 0) {
690 				pmap_zero_page(fs.m);
691 			} else {
692 				PCPU_INC(cnt.v_ozfod);
693 			}
694 			PCPU_INC(cnt.v_zfod);
695 			fs.m->valid = VM_PAGE_BITS_ALL;
696 			break;	/* break to PAGE HAS BEEN FOUND */
697 		} else {
698 			KASSERT(fs.object != next_object,
699 			    ("object loop %p", next_object));
700 			VM_OBJECT_LOCK(next_object);
701 			vm_object_pip_add(next_object, 1);
702 			if (fs.object != fs.first_object)
703 				vm_object_pip_wakeup(fs.object);
704 			VM_OBJECT_UNLOCK(fs.object);
705 			fs.object = next_object;
706 		}
707 	}
708 
709 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
710 	    ("vm_fault: not busy after main loop"));
711 
712 	/*
713 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
714 	 * is held.]
715 	 */
716 
717 	/*
718 	 * If the page is being written, but isn't already owned by the
719 	 * top-level object, we have to copy it into a new page owned by the
720 	 * top-level object.
721 	 */
722 	if (fs.object != fs.first_object) {
723 		/*
724 		 * We only really need to copy if we want to write it.
725 		 */
726 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
727 			/*
728 			 * This allows pages to be virtually copied from a
729 			 * backing_object into the first_object, where the
730 			 * backing object has no other refs to it, and cannot
731 			 * gain any more refs.  Instead of a bcopy, we just
732 			 * move the page from the backing object to the
733 			 * first object.  Note that we must mark the page
734 			 * dirty in the first object so that it will go out
735 			 * to swap when needed.
736 			 */
737 			is_first_object_locked = FALSE;
738 			if (
739 				/*
740 				 * Only one shadow object
741 				 */
742 				(fs.object->shadow_count == 1) &&
743 				/*
744 				 * No COW refs, except us
745 				 */
746 				(fs.object->ref_count == 1) &&
747 				/*
748 				 * No one else can look this object up
749 				 */
750 				(fs.object->handle == NULL) &&
751 				/*
752 				 * No other ways to look the object up
753 				 */
754 				((fs.object->type == OBJT_DEFAULT) ||
755 				 (fs.object->type == OBJT_SWAP)) &&
756 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
757 				/*
758 				 * We don't chase down the shadow chain
759 				 */
760 			    fs.object == fs.first_object->backing_object) {
761 				/*
762 				 * get rid of the unnecessary page
763 				 */
764 				vm_page_lock(fs.first_m);
765 				vm_page_free(fs.first_m);
766 				vm_page_unlock(fs.first_m);
767 				/*
768 				 * grab the page and put it into the
769 				 * process'es object.  The page is
770 				 * automatically made dirty.
771 				 */
772 				vm_page_lock(fs.m);
773 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
774 				vm_page_unlock(fs.m);
775 				vm_page_busy(fs.m);
776 				fs.first_m = fs.m;
777 				fs.m = NULL;
778 				PCPU_INC(cnt.v_cow_optim);
779 			} else {
780 				/*
781 				 * Oh, well, lets copy it.
782 				 */
783 				pmap_copy_page(fs.m, fs.first_m);
784 				fs.first_m->valid = VM_PAGE_BITS_ALL;
785 				if (wired && (fault_flags &
786 				    VM_FAULT_CHANGE_WIRING) == 0) {
787 					vm_page_lock(fs.first_m);
788 					vm_page_wire(fs.first_m);
789 					vm_page_unlock(fs.first_m);
790 
791 					vm_page_lock(fs.m);
792 					vm_page_unwire(fs.m, FALSE);
793 					vm_page_unlock(fs.m);
794 				}
795 				/*
796 				 * We no longer need the old page or object.
797 				 */
798 				release_page(&fs);
799 			}
800 			/*
801 			 * fs.object != fs.first_object due to above
802 			 * conditional
803 			 */
804 			vm_object_pip_wakeup(fs.object);
805 			VM_OBJECT_UNLOCK(fs.object);
806 			/*
807 			 * Only use the new page below...
808 			 */
809 			fs.object = fs.first_object;
810 			fs.pindex = fs.first_pindex;
811 			fs.m = fs.first_m;
812 			if (!is_first_object_locked)
813 				VM_OBJECT_LOCK(fs.object);
814 			PCPU_INC(cnt.v_cow_faults);
815 		} else {
816 			prot &= ~VM_PROT_WRITE;
817 		}
818 	}
819 
820 	/*
821 	 * We must verify that the maps have not changed since our last
822 	 * lookup.
823 	 */
824 	if (!fs.lookup_still_valid) {
825 		vm_object_t retry_object;
826 		vm_pindex_t retry_pindex;
827 		vm_prot_t retry_prot;
828 
829 		if (!vm_map_trylock_read(fs.map)) {
830 			release_page(&fs);
831 			unlock_and_deallocate(&fs);
832 			goto RetryFault;
833 		}
834 		fs.lookup_still_valid = TRUE;
835 		if (fs.map->timestamp != map_generation) {
836 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
837 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
838 
839 			/*
840 			 * If we don't need the page any longer, put it on the inactive
841 			 * list (the easiest thing to do here).  If no one needs it,
842 			 * pageout will grab it eventually.
843 			 */
844 			if (result != KERN_SUCCESS) {
845 				release_page(&fs);
846 				unlock_and_deallocate(&fs);
847 
848 				/*
849 				 * If retry of map lookup would have blocked then
850 				 * retry fault from start.
851 				 */
852 				if (result == KERN_FAILURE)
853 					goto RetryFault;
854 				return (result);
855 			}
856 			if ((retry_object != fs.first_object) ||
857 			    (retry_pindex != fs.first_pindex)) {
858 				release_page(&fs);
859 				unlock_and_deallocate(&fs);
860 				goto RetryFault;
861 			}
862 
863 			/*
864 			 * Check whether the protection has changed or the object has
865 			 * been copied while we left the map unlocked. Changing from
866 			 * read to write permission is OK - we leave the page
867 			 * write-protected, and catch the write fault. Changing from
868 			 * write to read permission means that we can't mark the page
869 			 * write-enabled after all.
870 			 */
871 			prot &= retry_prot;
872 		}
873 	}
874 	/*
875 	 * If the page was filled by a pager, update the map entry's
876 	 * last read offset.  Since the pager does not return the
877 	 * actual set of pages that it read, this update is based on
878 	 * the requested set.  Typically, the requested and actual
879 	 * sets are the same.
880 	 *
881 	 * XXX The following assignment modifies the map
882 	 * without holding a write lock on it.
883 	 */
884 	if (hardfault)
885 		fs.entry->lastr = fs.pindex + faultcount - behind;
886 
887 	if ((prot & VM_PROT_WRITE) != 0 ||
888 	    (fault_flags & VM_FAULT_DIRTY) != 0) {
889 		vm_object_set_writeable_dirty(fs.object);
890 
891 		/*
892 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
893 		 * if the page is already dirty to prevent data written with
894 		 * the expectation of being synced from not being synced.
895 		 * Likewise if this entry does not request NOSYNC then make
896 		 * sure the page isn't marked NOSYNC.  Applications sharing
897 		 * data should use the same flags to avoid ping ponging.
898 		 */
899 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
900 			if (fs.m->dirty == 0)
901 				fs.m->oflags |= VPO_NOSYNC;
902 		} else {
903 			fs.m->oflags &= ~VPO_NOSYNC;
904 		}
905 
906 		/*
907 		 * If the fault is a write, we know that this page is being
908 		 * written NOW so dirty it explicitly to save on
909 		 * pmap_is_modified() calls later.
910 		 *
911 		 * Also tell the backing pager, if any, that it should remove
912 		 * any swap backing since the page is now dirty.
913 		 */
914 		if (((fault_type & VM_PROT_WRITE) != 0 &&
915 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
916 		    (fault_flags & VM_FAULT_DIRTY) != 0) {
917 			vm_page_dirty(fs.m);
918 			vm_pager_page_unswapped(fs.m);
919 		}
920 	}
921 
922 	/*
923 	 * Page had better still be busy
924 	 */
925 	KASSERT(fs.m->oflags & VPO_BUSY,
926 		("vm_fault: page %p not busy!", fs.m));
927 	/*
928 	 * Page must be completely valid or it is not fit to
929 	 * map into user space.  vm_pager_get_pages() ensures this.
930 	 */
931 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
932 	    ("vm_fault: page %p partially invalid", fs.m));
933 	VM_OBJECT_UNLOCK(fs.object);
934 
935 	/*
936 	 * Put this page into the physical map.  We had to do the unlock above
937 	 * because pmap_enter() may sleep.  We don't put the page
938 	 * back on the active queue until later so that the pageout daemon
939 	 * won't find it (yet).
940 	 */
941 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
942 	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
943 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
944 	VM_OBJECT_LOCK(fs.object);
945 	vm_page_lock(fs.m);
946 
947 	/*
948 	 * If the page is not wired down, then put it where the pageout daemon
949 	 * can find it.
950 	 */
951 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
952 		if (wired)
953 			vm_page_wire(fs.m);
954 		else
955 			vm_page_unwire(fs.m, 1);
956 	} else
957 		vm_page_activate(fs.m);
958 	if (m_hold != NULL) {
959 		*m_hold = fs.m;
960 		vm_page_hold(fs.m);
961 	}
962 	vm_page_unlock(fs.m);
963 	vm_page_wakeup(fs.m);
964 
965 	/*
966 	 * Unlock everything, and return
967 	 */
968 	unlock_and_deallocate(&fs);
969 	if (hardfault)
970 		curthread->td_ru.ru_majflt++;
971 	else
972 		curthread->td_ru.ru_minflt++;
973 
974 	return (KERN_SUCCESS);
975 }
976 
977 /*
978  * vm_fault_prefault provides a quick way of clustering
979  * pagefaults into a processes address space.  It is a "cousin"
980  * of vm_map_pmap_enter, except it runs at page fault time instead
981  * of mmap time.
982  */
983 static void
984 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
985 {
986 	int i;
987 	vm_offset_t addr, starta;
988 	vm_pindex_t pindex;
989 	vm_page_t m;
990 	vm_object_t object;
991 
992 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
993 		return;
994 
995 	object = entry->object.vm_object;
996 
997 	starta = addra - PFBAK * PAGE_SIZE;
998 	if (starta < entry->start) {
999 		starta = entry->start;
1000 	} else if (starta > addra) {
1001 		starta = 0;
1002 	}
1003 
1004 	for (i = 0; i < PAGEORDER_SIZE; i++) {
1005 		vm_object_t backing_object, lobject;
1006 
1007 		addr = addra + prefault_pageorder[i];
1008 		if (addr > addra + (PFFOR * PAGE_SIZE))
1009 			addr = 0;
1010 
1011 		if (addr < starta || addr >= entry->end)
1012 			continue;
1013 
1014 		if (!pmap_is_prefaultable(pmap, addr))
1015 			continue;
1016 
1017 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1018 		lobject = object;
1019 		VM_OBJECT_LOCK(lobject);
1020 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1021 		    lobject->type == OBJT_DEFAULT &&
1022 		    (backing_object = lobject->backing_object) != NULL) {
1023 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1024 			    0, ("vm_fault_prefault: unaligned object offset"));
1025 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1026 			VM_OBJECT_LOCK(backing_object);
1027 			VM_OBJECT_UNLOCK(lobject);
1028 			lobject = backing_object;
1029 		}
1030 		/*
1031 		 * give-up when a page is not in memory
1032 		 */
1033 		if (m == NULL) {
1034 			VM_OBJECT_UNLOCK(lobject);
1035 			break;
1036 		}
1037 		if (m->valid == VM_PAGE_BITS_ALL &&
1038 		    (m->flags & PG_FICTITIOUS) == 0)
1039 			pmap_enter_quick(pmap, addr, m, entry->protection);
1040 		VM_OBJECT_UNLOCK(lobject);
1041 	}
1042 }
1043 
1044 /*
1045  * Hold each of the physical pages that are mapped by the specified range of
1046  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1047  * and allow the specified types of access, "prot".  If all of the implied
1048  * pages are successfully held, then the number of held pages is returned
1049  * together with pointers to those pages in the array "ma".  However, if any
1050  * of the pages cannot be held, -1 is returned.
1051  */
1052 int
1053 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1054     vm_prot_t prot, vm_page_t *ma, int max_count)
1055 {
1056 	vm_offset_t end, va;
1057 	vm_page_t *mp;
1058 	int count;
1059 	boolean_t pmap_failed;
1060 
1061 	if (len == 0)
1062 		return (0);
1063 	end = round_page(addr + len);
1064 	addr = trunc_page(addr);
1065 
1066 	/*
1067 	 * Check for illegal addresses.
1068 	 */
1069 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1070 		return (-1);
1071 
1072 	count = howmany(end - addr, PAGE_SIZE);
1073 	if (count > max_count)
1074 		panic("vm_fault_quick_hold_pages: count > max_count");
1075 
1076 	/*
1077 	 * Most likely, the physical pages are resident in the pmap, so it is
1078 	 * faster to try pmap_extract_and_hold() first.
1079 	 */
1080 	pmap_failed = FALSE;
1081 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1082 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1083 		if (*mp == NULL)
1084 			pmap_failed = TRUE;
1085 		else if ((prot & VM_PROT_WRITE) != 0 &&
1086 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1087 			/*
1088 			 * Explicitly dirty the physical page.  Otherwise, the
1089 			 * caller's changes may go unnoticed because they are
1090 			 * performed through an unmanaged mapping or by a DMA
1091 			 * operation.
1092 			 */
1093 			vm_page_lock_queues();
1094 			vm_page_dirty(*mp);
1095 			vm_page_unlock_queues();
1096 		}
1097 	}
1098 	if (pmap_failed) {
1099 		/*
1100 		 * One or more pages could not be held by the pmap.  Either no
1101 		 * page was mapped at the specified virtual address or that
1102 		 * mapping had insufficient permissions.  Attempt to fault in
1103 		 * and hold these pages.
1104 		 */
1105 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1106 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1107 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1108 				goto error;
1109 	}
1110 	return (count);
1111 error:
1112 	for (mp = ma; mp < ma + count; mp++)
1113 		if (*mp != NULL) {
1114 			vm_page_lock(*mp);
1115 			vm_page_unhold(*mp);
1116 			vm_page_unlock(*mp);
1117 		}
1118 	return (-1);
1119 }
1120 
1121 /*
1122  *	vm_fault_wire:
1123  *
1124  *	Wire down a range of virtual addresses in a map.
1125  */
1126 int
1127 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1128     boolean_t fictitious)
1129 {
1130 	vm_offset_t va;
1131 	int rv;
1132 
1133 	/*
1134 	 * We simulate a fault to get the page and enter it in the physical
1135 	 * map.  For user wiring, we only ask for read access on currently
1136 	 * read-only sections.
1137 	 */
1138 	for (va = start; va < end; va += PAGE_SIZE) {
1139 		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1140 		if (rv) {
1141 			if (va != start)
1142 				vm_fault_unwire(map, start, va, fictitious);
1143 			return (rv);
1144 		}
1145 	}
1146 	return (KERN_SUCCESS);
1147 }
1148 
1149 /*
1150  *	vm_fault_unwire:
1151  *
1152  *	Unwire a range of virtual addresses in a map.
1153  */
1154 void
1155 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1156     boolean_t fictitious)
1157 {
1158 	vm_paddr_t pa;
1159 	vm_offset_t va;
1160 	vm_page_t m;
1161 	pmap_t pmap;
1162 
1163 	pmap = vm_map_pmap(map);
1164 
1165 	/*
1166 	 * Since the pages are wired down, we must be able to get their
1167 	 * mappings from the physical map system.
1168 	 */
1169 	for (va = start; va < end; va += PAGE_SIZE) {
1170 		pa = pmap_extract(pmap, va);
1171 		if (pa != 0) {
1172 			pmap_change_wiring(pmap, va, FALSE);
1173 			if (!fictitious) {
1174 				m = PHYS_TO_VM_PAGE(pa);
1175 				vm_page_lock(m);
1176 				vm_page_unwire(m, TRUE);
1177 				vm_page_unlock(m);
1178 			}
1179 		}
1180 	}
1181 }
1182 
1183 /*
1184  *	Routine:
1185  *		vm_fault_copy_entry
1186  *	Function:
1187  *		Create new shadow object backing dst_entry with private copy of
1188  *		all underlying pages. When src_entry is equal to dst_entry,
1189  *		function implements COW for wired-down map entry. Otherwise,
1190  *		it forks wired entry into dst_map.
1191  *
1192  *	In/out conditions:
1193  *		The source and destination maps must be locked for write.
1194  *		The source map entry must be wired down (or be a sharing map
1195  *		entry corresponding to a main map entry that is wired down).
1196  */
1197 void
1198 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1199     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1200     vm_ooffset_t *fork_charge)
1201 {
1202 	vm_object_t backing_object, dst_object, object, src_object;
1203 	vm_pindex_t dst_pindex, pindex, src_pindex;
1204 	vm_prot_t access, prot;
1205 	vm_offset_t vaddr;
1206 	vm_page_t dst_m;
1207 	vm_page_t src_m;
1208 	boolean_t src_readonly, upgrade;
1209 
1210 #ifdef	lint
1211 	src_map++;
1212 #endif	/* lint */
1213 
1214 	upgrade = src_entry == dst_entry;
1215 
1216 	src_object = src_entry->object.vm_object;
1217 	src_pindex = OFF_TO_IDX(src_entry->offset);
1218 	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1219 
1220 	/*
1221 	 * Create the top-level object for the destination entry. (Doesn't
1222 	 * actually shadow anything - we copy the pages directly.)
1223 	 */
1224 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1225 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1226 #if VM_NRESERVLEVEL > 0
1227 	dst_object->flags |= OBJ_COLORED;
1228 	dst_object->pg_color = atop(dst_entry->start);
1229 #endif
1230 
1231 	VM_OBJECT_LOCK(dst_object);
1232 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1233 	    ("vm_fault_copy_entry: vm_object not NULL"));
1234 	dst_entry->object.vm_object = dst_object;
1235 	dst_entry->offset = 0;
1236 	dst_object->charge = dst_entry->end - dst_entry->start;
1237 	if (fork_charge != NULL) {
1238 		KASSERT(dst_entry->cred == NULL,
1239 		    ("vm_fault_copy_entry: leaked swp charge"));
1240 		dst_object->cred = curthread->td_ucred;
1241 		crhold(dst_object->cred);
1242 		*fork_charge += dst_object->charge;
1243 	} else {
1244 		dst_object->cred = dst_entry->cred;
1245 		dst_entry->cred = NULL;
1246 	}
1247 	access = prot = dst_entry->protection;
1248 	/*
1249 	 * If not an upgrade, then enter the mappings in the pmap as
1250 	 * read and/or execute accesses.  Otherwise, enter them as
1251 	 * write accesses.
1252 	 *
1253 	 * A writeable large page mapping is only created if all of
1254 	 * the constituent small page mappings are modified. Marking
1255 	 * PTEs as modified on inception allows promotion to happen
1256 	 * without taking potentially large number of soft faults.
1257 	 */
1258 	if (!upgrade)
1259 		access &= ~VM_PROT_WRITE;
1260 
1261 	/*
1262 	 * Loop through all of the pages in the entry's range, copying each
1263 	 * one from the source object (it should be there) to the destination
1264 	 * object.
1265 	 */
1266 	for (vaddr = dst_entry->start, dst_pindex = 0;
1267 	    vaddr < dst_entry->end;
1268 	    vaddr += PAGE_SIZE, dst_pindex++) {
1269 
1270 		/*
1271 		 * Allocate a page in the destination object.
1272 		 */
1273 		do {
1274 			dst_m = vm_page_alloc(dst_object, dst_pindex,
1275 			    VM_ALLOC_NORMAL);
1276 			if (dst_m == NULL) {
1277 				VM_OBJECT_UNLOCK(dst_object);
1278 				VM_WAIT;
1279 				VM_OBJECT_LOCK(dst_object);
1280 			}
1281 		} while (dst_m == NULL);
1282 
1283 		/*
1284 		 * Find the page in the source object, and copy it in.
1285 		 * (Because the source is wired down, the page will be in
1286 		 * memory.)
1287 		 */
1288 		VM_OBJECT_LOCK(src_object);
1289 		object = src_object;
1290 		pindex = src_pindex + dst_pindex;
1291 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1292 		    src_readonly &&
1293 		    (backing_object = object->backing_object) != NULL) {
1294 			/*
1295 			 * Allow fallback to backing objects if we are reading.
1296 			 */
1297 			VM_OBJECT_LOCK(backing_object);
1298 			pindex += OFF_TO_IDX(object->backing_object_offset);
1299 			VM_OBJECT_UNLOCK(object);
1300 			object = backing_object;
1301 		}
1302 		if (src_m == NULL)
1303 			panic("vm_fault_copy_wired: page missing");
1304 		pmap_copy_page(src_m, dst_m);
1305 		VM_OBJECT_UNLOCK(object);
1306 		dst_m->valid = VM_PAGE_BITS_ALL;
1307 		VM_OBJECT_UNLOCK(dst_object);
1308 
1309 		/*
1310 		 * Enter it in the pmap. If a wired, copy-on-write
1311 		 * mapping is being replaced by a write-enabled
1312 		 * mapping, then wire that new mapping.
1313 		 */
1314 		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1315 
1316 		/*
1317 		 * Mark it no longer busy, and put it on the active list.
1318 		 */
1319 		VM_OBJECT_LOCK(dst_object);
1320 
1321 		if (upgrade) {
1322 			vm_page_lock(src_m);
1323 			vm_page_unwire(src_m, 0);
1324 			vm_page_unlock(src_m);
1325 
1326 			vm_page_lock(dst_m);
1327 			vm_page_wire(dst_m);
1328 			vm_page_unlock(dst_m);
1329 		} else {
1330 			vm_page_lock(dst_m);
1331 			vm_page_activate(dst_m);
1332 			vm_page_unlock(dst_m);
1333 		}
1334 		vm_page_wakeup(dst_m);
1335 	}
1336 	VM_OBJECT_UNLOCK(dst_object);
1337 	if (upgrade) {
1338 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1339 		vm_object_deallocate(src_object);
1340 	}
1341 }
1342 
1343 
1344 /*
1345  * This routine checks around the requested page for other pages that
1346  * might be able to be faulted in.  This routine brackets the viable
1347  * pages for the pages to be paged in.
1348  *
1349  * Inputs:
1350  *	m, rbehind, rahead
1351  *
1352  * Outputs:
1353  *  marray (array of vm_page_t), reqpage (index of requested page)
1354  *
1355  * Return value:
1356  *  number of pages in marray
1357  */
1358 static int
1359 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1360 	vm_page_t m;
1361 	int rbehind;
1362 	int rahead;
1363 	vm_page_t *marray;
1364 	int *reqpage;
1365 {
1366 	int i,j;
1367 	vm_object_t object;
1368 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1369 	vm_page_t rtm;
1370 	int cbehind, cahead;
1371 
1372 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1373 
1374 	object = m->object;
1375 	pindex = m->pindex;
1376 	cbehind = cahead = 0;
1377 
1378 	/*
1379 	 * if the requested page is not available, then give up now
1380 	 */
1381 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1382 		return 0;
1383 	}
1384 
1385 	if ((cbehind == 0) && (cahead == 0)) {
1386 		*reqpage = 0;
1387 		marray[0] = m;
1388 		return 1;
1389 	}
1390 
1391 	if (rahead > cahead) {
1392 		rahead = cahead;
1393 	}
1394 
1395 	if (rbehind > cbehind) {
1396 		rbehind = cbehind;
1397 	}
1398 
1399 	/*
1400 	 * scan backward for the read behind pages -- in memory
1401 	 */
1402 	if (pindex > 0) {
1403 		if (rbehind > pindex) {
1404 			rbehind = pindex;
1405 			startpindex = 0;
1406 		} else {
1407 			startpindex = pindex - rbehind;
1408 		}
1409 
1410 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1411 		    rtm->pindex >= startpindex)
1412 			startpindex = rtm->pindex + 1;
1413 
1414 		/* tpindex is unsigned; beware of numeric underflow. */
1415 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1416 		    tpindex < pindex; i++, tpindex--) {
1417 
1418 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1419 			    VM_ALLOC_IFNOTCACHED);
1420 			if (rtm == NULL) {
1421 				/*
1422 				 * Shift the allocated pages to the
1423 				 * beginning of the array.
1424 				 */
1425 				for (j = 0; j < i; j++) {
1426 					marray[j] = marray[j + tpindex + 1 -
1427 					    startpindex];
1428 				}
1429 				break;
1430 			}
1431 
1432 			marray[tpindex - startpindex] = rtm;
1433 		}
1434 	} else {
1435 		startpindex = 0;
1436 		i = 0;
1437 	}
1438 
1439 	marray[i] = m;
1440 	/* page offset of the required page */
1441 	*reqpage = i;
1442 
1443 	tpindex = pindex + 1;
1444 	i++;
1445 
1446 	/*
1447 	 * scan forward for the read ahead pages
1448 	 */
1449 	endpindex = tpindex + rahead;
1450 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1451 		endpindex = rtm->pindex;
1452 	if (endpindex > object->size)
1453 		endpindex = object->size;
1454 
1455 	for (; tpindex < endpindex; i++, tpindex++) {
1456 
1457 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1458 		    VM_ALLOC_IFNOTCACHED);
1459 		if (rtm == NULL) {
1460 			break;
1461 		}
1462 
1463 		marray[i] = rtm;
1464 	}
1465 
1466 	/* return number of pages */
1467 	return i;
1468 }
1469