1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_vm.h" 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/lock.h> 83 #include <sys/mutex.h> 84 #include <sys/proc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/sysctl.h> 87 #include <sys/vmmeter.h> 88 #include <sys/vnode.h> 89 90 #include <vm/vm.h> 91 #include <vm/vm_param.h> 92 #include <vm/pmap.h> 93 #include <vm/vm_map.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_page.h> 96 #include <vm/vm_pageout.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_pager.h> 99 #include <vm/vm_extern.h> 100 101 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */ 102 103 #define PFBAK 4 104 #define PFFOR 4 105 #define PAGEORDER_SIZE (PFBAK+PFFOR) 106 107 static int prefault_pageorder[] = { 108 -1 * PAGE_SIZE, 1 * PAGE_SIZE, 109 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 110 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 111 -4 * PAGE_SIZE, 4 * PAGE_SIZE 112 }; 113 114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t); 116 117 #define VM_FAULT_READ_AHEAD 8 118 #define VM_FAULT_READ_BEHIND 7 119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1) 120 121 struct faultstate { 122 vm_page_t m; 123 vm_object_t object; 124 vm_pindex_t pindex; 125 vm_page_t first_m; 126 vm_object_t first_object; 127 vm_pindex_t first_pindex; 128 vm_map_t map; 129 vm_map_entry_t entry; 130 int lookup_still_valid; 131 struct vnode *vp; 132 int vfslocked; 133 }; 134 135 static inline void 136 release_page(struct faultstate *fs) 137 { 138 139 vm_page_wakeup(fs->m); 140 vm_page_lock(fs->m); 141 vm_page_deactivate(fs->m); 142 vm_page_unlock(fs->m); 143 fs->m = NULL; 144 } 145 146 static inline void 147 unlock_map(struct faultstate *fs) 148 { 149 150 if (fs->lookup_still_valid) { 151 vm_map_lookup_done(fs->map, fs->entry); 152 fs->lookup_still_valid = FALSE; 153 } 154 } 155 156 static void 157 unlock_and_deallocate(struct faultstate *fs) 158 { 159 160 vm_object_pip_wakeup(fs->object); 161 VM_OBJECT_UNLOCK(fs->object); 162 if (fs->object != fs->first_object) { 163 VM_OBJECT_LOCK(fs->first_object); 164 vm_page_lock(fs->first_m); 165 vm_page_free(fs->first_m); 166 vm_page_unlock(fs->first_m); 167 vm_object_pip_wakeup(fs->first_object); 168 VM_OBJECT_UNLOCK(fs->first_object); 169 fs->first_m = NULL; 170 } 171 vm_object_deallocate(fs->first_object); 172 unlock_map(fs); 173 if (fs->vp != NULL) { 174 vput(fs->vp); 175 fs->vp = NULL; 176 } 177 VFS_UNLOCK_GIANT(fs->vfslocked); 178 fs->vfslocked = 0; 179 } 180 181 /* 182 * TRYPAGER - used by vm_fault to calculate whether the pager for the 183 * current object *might* contain the page. 184 * 185 * default objects are zero-fill, there is no real pager. 186 */ 187 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 188 ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired)) 189 190 /* 191 * vm_fault: 192 * 193 * Handle a page fault occurring at the given address, 194 * requiring the given permissions, in the map specified. 195 * If successful, the page is inserted into the 196 * associated physical map. 197 * 198 * NOTE: the given address should be truncated to the 199 * proper page address. 200 * 201 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 202 * a standard error specifying why the fault is fatal is returned. 203 * 204 * The map in question must be referenced, and remains so. 205 * Caller may hold no locks. 206 */ 207 int 208 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 209 int fault_flags) 210 { 211 212 return (vm_fault_hold(map, vaddr, fault_type, fault_flags, NULL)); 213 } 214 215 int 216 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 217 int fault_flags, vm_page_t *m_hold) 218 { 219 vm_prot_t prot; 220 int is_first_object_locked, result; 221 boolean_t growstack, wired; 222 int map_generation; 223 vm_object_t next_object; 224 vm_page_t marray[VM_FAULT_READ], mt, mt_prev; 225 int hardfault; 226 int faultcount, ahead, behind, alloc_req; 227 struct faultstate fs; 228 struct vnode *vp; 229 int locked, error; 230 231 hardfault = 0; 232 growstack = TRUE; 233 PCPU_INC(cnt.v_vm_faults); 234 fs.vp = NULL; 235 fs.vfslocked = 0; 236 faultcount = behind = 0; 237 238 RetryFault:; 239 240 /* 241 * Find the backing store object and offset into it to begin the 242 * search. 243 */ 244 fs.map = map; 245 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 246 &fs.first_object, &fs.first_pindex, &prot, &wired); 247 if (result != KERN_SUCCESS) { 248 if (growstack && result == KERN_INVALID_ADDRESS && 249 map != kernel_map) { 250 result = vm_map_growstack(curproc, vaddr); 251 if (result != KERN_SUCCESS) 252 return (KERN_FAILURE); 253 growstack = FALSE; 254 goto RetryFault; 255 } 256 return (result); 257 } 258 259 map_generation = fs.map->timestamp; 260 261 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 262 panic("vm_fault: fault on nofault entry, addr: %lx", 263 (u_long)vaddr); 264 } 265 266 /* 267 * Make a reference to this object to prevent its disposal while we 268 * are messing with it. Once we have the reference, the map is free 269 * to be diddled. Since objects reference their shadows (and copies), 270 * they will stay around as well. 271 * 272 * Bump the paging-in-progress count to prevent size changes (e.g. 273 * truncation operations) during I/O. This must be done after 274 * obtaining the vnode lock in order to avoid possible deadlocks. 275 */ 276 VM_OBJECT_LOCK(fs.first_object); 277 vm_object_reference_locked(fs.first_object); 278 vm_object_pip_add(fs.first_object, 1); 279 280 fs.lookup_still_valid = TRUE; 281 282 if (wired) 283 fault_type = prot | (fault_type & VM_PROT_COPY); 284 285 fs.first_m = NULL; 286 287 /* 288 * Search for the page at object/offset. 289 */ 290 fs.object = fs.first_object; 291 fs.pindex = fs.first_pindex; 292 while (TRUE) { 293 /* 294 * If the object is dead, we stop here 295 */ 296 if (fs.object->flags & OBJ_DEAD) { 297 unlock_and_deallocate(&fs); 298 return (KERN_PROTECTION_FAILURE); 299 } 300 301 /* 302 * See if page is resident 303 */ 304 fs.m = vm_page_lookup(fs.object, fs.pindex); 305 if (fs.m != NULL) { 306 /* 307 * check for page-based copy on write. 308 * We check fs.object == fs.first_object so 309 * as to ensure the legacy COW mechanism is 310 * used when the page in question is part of 311 * a shadow object. Otherwise, vm_page_cowfault() 312 * removes the page from the backing object, 313 * which is not what we want. 314 */ 315 vm_page_lock(fs.m); 316 if ((fs.m->cow) && 317 (fault_type & VM_PROT_WRITE) && 318 (fs.object == fs.first_object)) { 319 vm_page_cowfault(fs.m); 320 unlock_and_deallocate(&fs); 321 goto RetryFault; 322 } 323 324 /* 325 * Wait/Retry if the page is busy. We have to do this 326 * if the page is busy via either VPO_BUSY or 327 * vm_page_t->busy because the vm_pager may be using 328 * vm_page_t->busy for pageouts ( and even pageins if 329 * it is the vnode pager ), and we could end up trying 330 * to pagein and pageout the same page simultaneously. 331 * 332 * We can theoretically allow the busy case on a read 333 * fault if the page is marked valid, but since such 334 * pages are typically already pmap'd, putting that 335 * special case in might be more effort then it is 336 * worth. We cannot under any circumstances mess 337 * around with a vm_page_t->busy page except, perhaps, 338 * to pmap it. 339 */ 340 if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) { 341 /* 342 * Reference the page before unlocking and 343 * sleeping so that the page daemon is less 344 * likely to reclaim it. 345 */ 346 vm_page_lock_queues(); 347 vm_page_flag_set(fs.m, PG_REFERENCED); 348 vm_page_unlock_queues(); 349 vm_page_unlock(fs.m); 350 if (fs.object != fs.first_object) { 351 if (!VM_OBJECT_TRYLOCK( 352 fs.first_object)) { 353 VM_OBJECT_UNLOCK(fs.object); 354 VM_OBJECT_LOCK(fs.first_object); 355 VM_OBJECT_LOCK(fs.object); 356 } 357 vm_page_lock(fs.first_m); 358 vm_page_free(fs.first_m); 359 vm_page_unlock(fs.first_m); 360 vm_object_pip_wakeup(fs.first_object); 361 VM_OBJECT_UNLOCK(fs.first_object); 362 fs.first_m = NULL; 363 } 364 unlock_map(&fs); 365 if (fs.m == vm_page_lookup(fs.object, 366 fs.pindex)) { 367 vm_page_sleep_if_busy(fs.m, TRUE, 368 "vmpfw"); 369 } 370 vm_object_pip_wakeup(fs.object); 371 VM_OBJECT_UNLOCK(fs.object); 372 PCPU_INC(cnt.v_intrans); 373 vm_object_deallocate(fs.first_object); 374 goto RetryFault; 375 } 376 vm_pageq_remove(fs.m); 377 vm_page_unlock(fs.m); 378 379 /* 380 * Mark page busy for other processes, and the 381 * pagedaemon. If it still isn't completely valid 382 * (readable), jump to readrest, else break-out ( we 383 * found the page ). 384 */ 385 vm_page_busy(fs.m); 386 if (fs.m->valid != VM_PAGE_BITS_ALL) 387 goto readrest; 388 break; 389 } 390 391 /* 392 * Page is not resident, If this is the search termination 393 * or the pager might contain the page, allocate a new page. 394 */ 395 if (TRYPAGER || fs.object == fs.first_object) { 396 if (fs.pindex >= fs.object->size) { 397 unlock_and_deallocate(&fs); 398 return (KERN_PROTECTION_FAILURE); 399 } 400 401 /* 402 * Allocate a new page for this object/offset pair. 403 * 404 * Unlocked read of the p_flag is harmless. At 405 * worst, the P_KILLED might be not observed 406 * there, and allocation can fail, causing 407 * restart and new reading of the p_flag. 408 */ 409 fs.m = NULL; 410 if (!vm_page_count_severe() || P_KILLED(curproc)) { 411 #if VM_NRESERVLEVEL > 0 412 if ((fs.object->flags & OBJ_COLORED) == 0) { 413 fs.object->flags |= OBJ_COLORED; 414 fs.object->pg_color = atop(vaddr) - 415 fs.pindex; 416 } 417 #endif 418 alloc_req = P_KILLED(curproc) ? 419 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 420 if (fs.object->type != OBJT_VNODE && 421 fs.object->backing_object == NULL) 422 alloc_req |= VM_ALLOC_ZERO; 423 fs.m = vm_page_alloc(fs.object, fs.pindex, 424 alloc_req); 425 } 426 if (fs.m == NULL) { 427 unlock_and_deallocate(&fs); 428 VM_WAITPFAULT; 429 goto RetryFault; 430 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 431 break; 432 } 433 434 readrest: 435 /* 436 * We have found a valid page or we have allocated a new page. 437 * The page thus may not be valid or may not be entirely 438 * valid. 439 * 440 * Attempt to fault-in the page if there is a chance that the 441 * pager has it, and potentially fault in additional pages 442 * at the same time. 443 */ 444 if (TRYPAGER) { 445 int rv; 446 int reqpage = 0; 447 u_char behavior = vm_map_entry_behavior(fs.entry); 448 449 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 450 P_KILLED(curproc)) { 451 ahead = 0; 452 behind = 0; 453 } else { 454 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT; 455 if (behind > VM_FAULT_READ_BEHIND) 456 behind = VM_FAULT_READ_BEHIND; 457 458 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1; 459 if (ahead > VM_FAULT_READ_AHEAD) 460 ahead = VM_FAULT_READ_AHEAD; 461 } 462 is_first_object_locked = FALSE; 463 if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 464 (behavior != MAP_ENTRY_BEHAV_RANDOM && 465 fs.pindex >= fs.entry->lastr && 466 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) && 467 (fs.first_object == fs.object || 468 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) && 469 fs.first_object->type != OBJT_DEVICE && 470 fs.first_object->type != OBJT_PHYS && 471 fs.first_object->type != OBJT_SG) { 472 vm_pindex_t firstpindex; 473 474 if (fs.first_pindex < 2 * VM_FAULT_READ) 475 firstpindex = 0; 476 else 477 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ; 478 mt = fs.first_object != fs.object ? 479 fs.first_m : fs.m; 480 KASSERT(mt != NULL, ("vm_fault: missing mt")); 481 KASSERT((mt->oflags & VPO_BUSY) != 0, 482 ("vm_fault: mt %p not busy", mt)); 483 mt_prev = vm_page_prev(mt); 484 485 /* 486 * note: partially valid pages cannot be 487 * included in the lookahead - NFS piecemeal 488 * writes will barf on it badly. 489 */ 490 while ((mt = mt_prev) != NULL && 491 mt->pindex >= firstpindex && 492 mt->valid == VM_PAGE_BITS_ALL) { 493 mt_prev = vm_page_prev(mt); 494 if (mt->busy || 495 (mt->oflags & VPO_BUSY)) 496 continue; 497 vm_page_lock(mt); 498 if (mt->hold_count || 499 mt->wire_count) { 500 vm_page_unlock(mt); 501 continue; 502 } 503 pmap_remove_all(mt); 504 if (mt->dirty != 0) 505 vm_page_deactivate(mt); 506 else 507 vm_page_cache(mt); 508 vm_page_unlock(mt); 509 } 510 ahead += behind; 511 behind = 0; 512 } 513 if (is_first_object_locked) 514 VM_OBJECT_UNLOCK(fs.first_object); 515 516 /* 517 * Call the pager to retrieve the data, if any, after 518 * releasing the lock on the map. We hold a ref on 519 * fs.object and the pages are VPO_BUSY'd. 520 */ 521 unlock_map(&fs); 522 523 vnode_lock: 524 if (fs.object->type == OBJT_VNODE) { 525 vp = fs.object->handle; 526 if (vp == fs.vp) 527 goto vnode_locked; 528 else if (fs.vp != NULL) { 529 vput(fs.vp); 530 fs.vp = NULL; 531 } 532 locked = VOP_ISLOCKED(vp); 533 534 if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) { 535 fs.vfslocked = 1; 536 if (!mtx_trylock(&Giant)) { 537 VM_OBJECT_UNLOCK(fs.object); 538 mtx_lock(&Giant); 539 VM_OBJECT_LOCK(fs.object); 540 goto vnode_lock; 541 } 542 } 543 if (locked != LK_EXCLUSIVE) 544 locked = LK_SHARED; 545 /* Do not sleep for vnode lock while fs.m is busy */ 546 error = vget(vp, locked | LK_CANRECURSE | 547 LK_NOWAIT, curthread); 548 if (error != 0) { 549 int vfslocked; 550 551 vfslocked = fs.vfslocked; 552 fs.vfslocked = 0; /* Keep Giant */ 553 vhold(vp); 554 release_page(&fs); 555 unlock_and_deallocate(&fs); 556 error = vget(vp, locked | LK_RETRY | 557 LK_CANRECURSE, curthread); 558 vdrop(vp); 559 fs.vp = vp; 560 fs.vfslocked = vfslocked; 561 KASSERT(error == 0, 562 ("vm_fault: vget failed")); 563 goto RetryFault; 564 } 565 fs.vp = vp; 566 } 567 vnode_locked: 568 KASSERT(fs.vp == NULL || !fs.map->system_map, 569 ("vm_fault: vnode-backed object mapped by system map")); 570 571 /* 572 * now we find out if any other pages should be paged 573 * in at this time this routine checks to see if the 574 * pages surrounding this fault reside in the same 575 * object as the page for this fault. If they do, 576 * then they are faulted in also into the object. The 577 * array "marray" returned contains an array of 578 * vm_page_t structs where one of them is the 579 * vm_page_t passed to the routine. The reqpage 580 * return value is the index into the marray for the 581 * vm_page_t passed to the routine. 582 * 583 * fs.m plus the additional pages are VPO_BUSY'd. 584 */ 585 faultcount = vm_fault_additional_pages( 586 fs.m, behind, ahead, marray, &reqpage); 587 588 rv = faultcount ? 589 vm_pager_get_pages(fs.object, marray, faultcount, 590 reqpage) : VM_PAGER_FAIL; 591 592 if (rv == VM_PAGER_OK) { 593 /* 594 * Found the page. Leave it busy while we play 595 * with it. 596 */ 597 598 /* 599 * Relookup in case pager changed page. Pager 600 * is responsible for disposition of old page 601 * if moved. 602 */ 603 fs.m = vm_page_lookup(fs.object, fs.pindex); 604 if (!fs.m) { 605 unlock_and_deallocate(&fs); 606 goto RetryFault; 607 } 608 609 hardfault++; 610 break; /* break to PAGE HAS BEEN FOUND */ 611 } 612 /* 613 * Remove the bogus page (which does not exist at this 614 * object/offset); before doing so, we must get back 615 * our object lock to preserve our invariant. 616 * 617 * Also wake up any other process that may want to bring 618 * in this page. 619 * 620 * If this is the top-level object, we must leave the 621 * busy page to prevent another process from rushing 622 * past us, and inserting the page in that object at 623 * the same time that we are. 624 */ 625 if (rv == VM_PAGER_ERROR) 626 printf("vm_fault: pager read error, pid %d (%s)\n", 627 curproc->p_pid, curproc->p_comm); 628 /* 629 * Data outside the range of the pager or an I/O error 630 */ 631 /* 632 * XXX - the check for kernel_map is a kludge to work 633 * around having the machine panic on a kernel space 634 * fault w/ I/O error. 635 */ 636 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 637 (rv == VM_PAGER_BAD)) { 638 vm_page_lock(fs.m); 639 vm_page_free(fs.m); 640 vm_page_unlock(fs.m); 641 fs.m = NULL; 642 unlock_and_deallocate(&fs); 643 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 644 } 645 if (fs.object != fs.first_object) { 646 vm_page_lock(fs.m); 647 vm_page_free(fs.m); 648 vm_page_unlock(fs.m); 649 fs.m = NULL; 650 /* 651 * XXX - we cannot just fall out at this 652 * point, m has been freed and is invalid! 653 */ 654 } 655 } 656 657 /* 658 * We get here if the object has default pager (or unwiring) 659 * or the pager doesn't have the page. 660 */ 661 if (fs.object == fs.first_object) 662 fs.first_m = fs.m; 663 664 /* 665 * Move on to the next object. Lock the next object before 666 * unlocking the current one. 667 */ 668 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 669 next_object = fs.object->backing_object; 670 if (next_object == NULL) { 671 /* 672 * If there's no object left, fill the page in the top 673 * object with zeros. 674 */ 675 if (fs.object != fs.first_object) { 676 vm_object_pip_wakeup(fs.object); 677 VM_OBJECT_UNLOCK(fs.object); 678 679 fs.object = fs.first_object; 680 fs.pindex = fs.first_pindex; 681 fs.m = fs.first_m; 682 VM_OBJECT_LOCK(fs.object); 683 } 684 fs.first_m = NULL; 685 686 /* 687 * Zero the page if necessary and mark it valid. 688 */ 689 if ((fs.m->flags & PG_ZERO) == 0) { 690 pmap_zero_page(fs.m); 691 } else { 692 PCPU_INC(cnt.v_ozfod); 693 } 694 PCPU_INC(cnt.v_zfod); 695 fs.m->valid = VM_PAGE_BITS_ALL; 696 break; /* break to PAGE HAS BEEN FOUND */ 697 } else { 698 KASSERT(fs.object != next_object, 699 ("object loop %p", next_object)); 700 VM_OBJECT_LOCK(next_object); 701 vm_object_pip_add(next_object, 1); 702 if (fs.object != fs.first_object) 703 vm_object_pip_wakeup(fs.object); 704 VM_OBJECT_UNLOCK(fs.object); 705 fs.object = next_object; 706 } 707 } 708 709 KASSERT((fs.m->oflags & VPO_BUSY) != 0, 710 ("vm_fault: not busy after main loop")); 711 712 /* 713 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 714 * is held.] 715 */ 716 717 /* 718 * If the page is being written, but isn't already owned by the 719 * top-level object, we have to copy it into a new page owned by the 720 * top-level object. 721 */ 722 if (fs.object != fs.first_object) { 723 /* 724 * We only really need to copy if we want to write it. 725 */ 726 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 727 /* 728 * This allows pages to be virtually copied from a 729 * backing_object into the first_object, where the 730 * backing object has no other refs to it, and cannot 731 * gain any more refs. Instead of a bcopy, we just 732 * move the page from the backing object to the 733 * first object. Note that we must mark the page 734 * dirty in the first object so that it will go out 735 * to swap when needed. 736 */ 737 is_first_object_locked = FALSE; 738 if ( 739 /* 740 * Only one shadow object 741 */ 742 (fs.object->shadow_count == 1) && 743 /* 744 * No COW refs, except us 745 */ 746 (fs.object->ref_count == 1) && 747 /* 748 * No one else can look this object up 749 */ 750 (fs.object->handle == NULL) && 751 /* 752 * No other ways to look the object up 753 */ 754 ((fs.object->type == OBJT_DEFAULT) || 755 (fs.object->type == OBJT_SWAP)) && 756 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) && 757 /* 758 * We don't chase down the shadow chain 759 */ 760 fs.object == fs.first_object->backing_object) { 761 /* 762 * get rid of the unnecessary page 763 */ 764 vm_page_lock(fs.first_m); 765 vm_page_free(fs.first_m); 766 vm_page_unlock(fs.first_m); 767 /* 768 * grab the page and put it into the 769 * process'es object. The page is 770 * automatically made dirty. 771 */ 772 vm_page_lock(fs.m); 773 vm_page_rename(fs.m, fs.first_object, fs.first_pindex); 774 vm_page_unlock(fs.m); 775 vm_page_busy(fs.m); 776 fs.first_m = fs.m; 777 fs.m = NULL; 778 PCPU_INC(cnt.v_cow_optim); 779 } else { 780 /* 781 * Oh, well, lets copy it. 782 */ 783 pmap_copy_page(fs.m, fs.first_m); 784 fs.first_m->valid = VM_PAGE_BITS_ALL; 785 if (wired && (fault_flags & 786 VM_FAULT_CHANGE_WIRING) == 0) { 787 vm_page_lock(fs.first_m); 788 vm_page_wire(fs.first_m); 789 vm_page_unlock(fs.first_m); 790 791 vm_page_lock(fs.m); 792 vm_page_unwire(fs.m, FALSE); 793 vm_page_unlock(fs.m); 794 } 795 /* 796 * We no longer need the old page or object. 797 */ 798 release_page(&fs); 799 } 800 /* 801 * fs.object != fs.first_object due to above 802 * conditional 803 */ 804 vm_object_pip_wakeup(fs.object); 805 VM_OBJECT_UNLOCK(fs.object); 806 /* 807 * Only use the new page below... 808 */ 809 fs.object = fs.first_object; 810 fs.pindex = fs.first_pindex; 811 fs.m = fs.first_m; 812 if (!is_first_object_locked) 813 VM_OBJECT_LOCK(fs.object); 814 PCPU_INC(cnt.v_cow_faults); 815 } else { 816 prot &= ~VM_PROT_WRITE; 817 } 818 } 819 820 /* 821 * We must verify that the maps have not changed since our last 822 * lookup. 823 */ 824 if (!fs.lookup_still_valid) { 825 vm_object_t retry_object; 826 vm_pindex_t retry_pindex; 827 vm_prot_t retry_prot; 828 829 if (!vm_map_trylock_read(fs.map)) { 830 release_page(&fs); 831 unlock_and_deallocate(&fs); 832 goto RetryFault; 833 } 834 fs.lookup_still_valid = TRUE; 835 if (fs.map->timestamp != map_generation) { 836 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 837 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 838 839 /* 840 * If we don't need the page any longer, put it on the inactive 841 * list (the easiest thing to do here). If no one needs it, 842 * pageout will grab it eventually. 843 */ 844 if (result != KERN_SUCCESS) { 845 release_page(&fs); 846 unlock_and_deallocate(&fs); 847 848 /* 849 * If retry of map lookup would have blocked then 850 * retry fault from start. 851 */ 852 if (result == KERN_FAILURE) 853 goto RetryFault; 854 return (result); 855 } 856 if ((retry_object != fs.first_object) || 857 (retry_pindex != fs.first_pindex)) { 858 release_page(&fs); 859 unlock_and_deallocate(&fs); 860 goto RetryFault; 861 } 862 863 /* 864 * Check whether the protection has changed or the object has 865 * been copied while we left the map unlocked. Changing from 866 * read to write permission is OK - we leave the page 867 * write-protected, and catch the write fault. Changing from 868 * write to read permission means that we can't mark the page 869 * write-enabled after all. 870 */ 871 prot &= retry_prot; 872 } 873 } 874 /* 875 * If the page was filled by a pager, update the map entry's 876 * last read offset. Since the pager does not return the 877 * actual set of pages that it read, this update is based on 878 * the requested set. Typically, the requested and actual 879 * sets are the same. 880 * 881 * XXX The following assignment modifies the map 882 * without holding a write lock on it. 883 */ 884 if (hardfault) 885 fs.entry->lastr = fs.pindex + faultcount - behind; 886 887 if ((prot & VM_PROT_WRITE) != 0 || 888 (fault_flags & VM_FAULT_DIRTY) != 0) { 889 vm_object_set_writeable_dirty(fs.object); 890 891 /* 892 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 893 * if the page is already dirty to prevent data written with 894 * the expectation of being synced from not being synced. 895 * Likewise if this entry does not request NOSYNC then make 896 * sure the page isn't marked NOSYNC. Applications sharing 897 * data should use the same flags to avoid ping ponging. 898 */ 899 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) { 900 if (fs.m->dirty == 0) 901 fs.m->oflags |= VPO_NOSYNC; 902 } else { 903 fs.m->oflags &= ~VPO_NOSYNC; 904 } 905 906 /* 907 * If the fault is a write, we know that this page is being 908 * written NOW so dirty it explicitly to save on 909 * pmap_is_modified() calls later. 910 * 911 * Also tell the backing pager, if any, that it should remove 912 * any swap backing since the page is now dirty. 913 */ 914 if (((fault_type & VM_PROT_WRITE) != 0 && 915 (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) || 916 (fault_flags & VM_FAULT_DIRTY) != 0) { 917 vm_page_dirty(fs.m); 918 vm_pager_page_unswapped(fs.m); 919 } 920 } 921 922 /* 923 * Page had better still be busy 924 */ 925 KASSERT(fs.m->oflags & VPO_BUSY, 926 ("vm_fault: page %p not busy!", fs.m)); 927 /* 928 * Page must be completely valid or it is not fit to 929 * map into user space. vm_pager_get_pages() ensures this. 930 */ 931 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 932 ("vm_fault: page %p partially invalid", fs.m)); 933 VM_OBJECT_UNLOCK(fs.object); 934 935 /* 936 * Put this page into the physical map. We had to do the unlock above 937 * because pmap_enter() may sleep. We don't put the page 938 * back on the active queue until later so that the pageout daemon 939 * won't find it (yet). 940 */ 941 pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired); 942 if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0) 943 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry); 944 VM_OBJECT_LOCK(fs.object); 945 vm_page_lock(fs.m); 946 947 /* 948 * If the page is not wired down, then put it where the pageout daemon 949 * can find it. 950 */ 951 if (fault_flags & VM_FAULT_CHANGE_WIRING) { 952 if (wired) 953 vm_page_wire(fs.m); 954 else 955 vm_page_unwire(fs.m, 1); 956 } else 957 vm_page_activate(fs.m); 958 if (m_hold != NULL) { 959 *m_hold = fs.m; 960 vm_page_hold(fs.m); 961 } 962 vm_page_unlock(fs.m); 963 vm_page_wakeup(fs.m); 964 965 /* 966 * Unlock everything, and return 967 */ 968 unlock_and_deallocate(&fs); 969 if (hardfault) 970 curthread->td_ru.ru_majflt++; 971 else 972 curthread->td_ru.ru_minflt++; 973 974 return (KERN_SUCCESS); 975 } 976 977 /* 978 * vm_fault_prefault provides a quick way of clustering 979 * pagefaults into a processes address space. It is a "cousin" 980 * of vm_map_pmap_enter, except it runs at page fault time instead 981 * of mmap time. 982 */ 983 static void 984 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry) 985 { 986 int i; 987 vm_offset_t addr, starta; 988 vm_pindex_t pindex; 989 vm_page_t m; 990 vm_object_t object; 991 992 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 993 return; 994 995 object = entry->object.vm_object; 996 997 starta = addra - PFBAK * PAGE_SIZE; 998 if (starta < entry->start) { 999 starta = entry->start; 1000 } else if (starta > addra) { 1001 starta = 0; 1002 } 1003 1004 for (i = 0; i < PAGEORDER_SIZE; i++) { 1005 vm_object_t backing_object, lobject; 1006 1007 addr = addra + prefault_pageorder[i]; 1008 if (addr > addra + (PFFOR * PAGE_SIZE)) 1009 addr = 0; 1010 1011 if (addr < starta || addr >= entry->end) 1012 continue; 1013 1014 if (!pmap_is_prefaultable(pmap, addr)) 1015 continue; 1016 1017 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1018 lobject = object; 1019 VM_OBJECT_LOCK(lobject); 1020 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1021 lobject->type == OBJT_DEFAULT && 1022 (backing_object = lobject->backing_object) != NULL) { 1023 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1024 0, ("vm_fault_prefault: unaligned object offset")); 1025 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1026 VM_OBJECT_LOCK(backing_object); 1027 VM_OBJECT_UNLOCK(lobject); 1028 lobject = backing_object; 1029 } 1030 /* 1031 * give-up when a page is not in memory 1032 */ 1033 if (m == NULL) { 1034 VM_OBJECT_UNLOCK(lobject); 1035 break; 1036 } 1037 if (m->valid == VM_PAGE_BITS_ALL && 1038 (m->flags & PG_FICTITIOUS) == 0) 1039 pmap_enter_quick(pmap, addr, m, entry->protection); 1040 VM_OBJECT_UNLOCK(lobject); 1041 } 1042 } 1043 1044 /* 1045 * Hold each of the physical pages that are mapped by the specified range of 1046 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1047 * and allow the specified types of access, "prot". If all of the implied 1048 * pages are successfully held, then the number of held pages is returned 1049 * together with pointers to those pages in the array "ma". However, if any 1050 * of the pages cannot be held, -1 is returned. 1051 */ 1052 int 1053 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1054 vm_prot_t prot, vm_page_t *ma, int max_count) 1055 { 1056 vm_offset_t end, va; 1057 vm_page_t *mp; 1058 int count; 1059 boolean_t pmap_failed; 1060 1061 if (len == 0) 1062 return (0); 1063 end = round_page(addr + len); 1064 addr = trunc_page(addr); 1065 1066 /* 1067 * Check for illegal addresses. 1068 */ 1069 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1070 return (-1); 1071 1072 count = howmany(end - addr, PAGE_SIZE); 1073 if (count > max_count) 1074 panic("vm_fault_quick_hold_pages: count > max_count"); 1075 1076 /* 1077 * Most likely, the physical pages are resident in the pmap, so it is 1078 * faster to try pmap_extract_and_hold() first. 1079 */ 1080 pmap_failed = FALSE; 1081 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1082 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1083 if (*mp == NULL) 1084 pmap_failed = TRUE; 1085 else if ((prot & VM_PROT_WRITE) != 0 && 1086 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1087 /* 1088 * Explicitly dirty the physical page. Otherwise, the 1089 * caller's changes may go unnoticed because they are 1090 * performed through an unmanaged mapping or by a DMA 1091 * operation. 1092 */ 1093 vm_page_lock_queues(); 1094 vm_page_dirty(*mp); 1095 vm_page_unlock_queues(); 1096 } 1097 } 1098 if (pmap_failed) { 1099 /* 1100 * One or more pages could not be held by the pmap. Either no 1101 * page was mapped at the specified virtual address or that 1102 * mapping had insufficient permissions. Attempt to fault in 1103 * and hold these pages. 1104 */ 1105 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1106 if (*mp == NULL && vm_fault_hold(map, va, prot, 1107 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1108 goto error; 1109 } 1110 return (count); 1111 error: 1112 for (mp = ma; mp < ma + count; mp++) 1113 if (*mp != NULL) { 1114 vm_page_lock(*mp); 1115 vm_page_unhold(*mp); 1116 vm_page_unlock(*mp); 1117 } 1118 return (-1); 1119 } 1120 1121 /* 1122 * vm_fault_wire: 1123 * 1124 * Wire down a range of virtual addresses in a map. 1125 */ 1126 int 1127 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1128 boolean_t fictitious) 1129 { 1130 vm_offset_t va; 1131 int rv; 1132 1133 /* 1134 * We simulate a fault to get the page and enter it in the physical 1135 * map. For user wiring, we only ask for read access on currently 1136 * read-only sections. 1137 */ 1138 for (va = start; va < end; va += PAGE_SIZE) { 1139 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING); 1140 if (rv) { 1141 if (va != start) 1142 vm_fault_unwire(map, start, va, fictitious); 1143 return (rv); 1144 } 1145 } 1146 return (KERN_SUCCESS); 1147 } 1148 1149 /* 1150 * vm_fault_unwire: 1151 * 1152 * Unwire a range of virtual addresses in a map. 1153 */ 1154 void 1155 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1156 boolean_t fictitious) 1157 { 1158 vm_paddr_t pa; 1159 vm_offset_t va; 1160 vm_page_t m; 1161 pmap_t pmap; 1162 1163 pmap = vm_map_pmap(map); 1164 1165 /* 1166 * Since the pages are wired down, we must be able to get their 1167 * mappings from the physical map system. 1168 */ 1169 for (va = start; va < end; va += PAGE_SIZE) { 1170 pa = pmap_extract(pmap, va); 1171 if (pa != 0) { 1172 pmap_change_wiring(pmap, va, FALSE); 1173 if (!fictitious) { 1174 m = PHYS_TO_VM_PAGE(pa); 1175 vm_page_lock(m); 1176 vm_page_unwire(m, TRUE); 1177 vm_page_unlock(m); 1178 } 1179 } 1180 } 1181 } 1182 1183 /* 1184 * Routine: 1185 * vm_fault_copy_entry 1186 * Function: 1187 * Create new shadow object backing dst_entry with private copy of 1188 * all underlying pages. When src_entry is equal to dst_entry, 1189 * function implements COW for wired-down map entry. Otherwise, 1190 * it forks wired entry into dst_map. 1191 * 1192 * In/out conditions: 1193 * The source and destination maps must be locked for write. 1194 * The source map entry must be wired down (or be a sharing map 1195 * entry corresponding to a main map entry that is wired down). 1196 */ 1197 void 1198 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1199 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1200 vm_ooffset_t *fork_charge) 1201 { 1202 vm_object_t backing_object, dst_object, object, src_object; 1203 vm_pindex_t dst_pindex, pindex, src_pindex; 1204 vm_prot_t access, prot; 1205 vm_offset_t vaddr; 1206 vm_page_t dst_m; 1207 vm_page_t src_m; 1208 boolean_t src_readonly, upgrade; 1209 1210 #ifdef lint 1211 src_map++; 1212 #endif /* lint */ 1213 1214 upgrade = src_entry == dst_entry; 1215 1216 src_object = src_entry->object.vm_object; 1217 src_pindex = OFF_TO_IDX(src_entry->offset); 1218 src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0; 1219 1220 /* 1221 * Create the top-level object for the destination entry. (Doesn't 1222 * actually shadow anything - we copy the pages directly.) 1223 */ 1224 dst_object = vm_object_allocate(OBJT_DEFAULT, 1225 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1226 #if VM_NRESERVLEVEL > 0 1227 dst_object->flags |= OBJ_COLORED; 1228 dst_object->pg_color = atop(dst_entry->start); 1229 #endif 1230 1231 VM_OBJECT_LOCK(dst_object); 1232 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1233 ("vm_fault_copy_entry: vm_object not NULL")); 1234 dst_entry->object.vm_object = dst_object; 1235 dst_entry->offset = 0; 1236 dst_object->charge = dst_entry->end - dst_entry->start; 1237 if (fork_charge != NULL) { 1238 KASSERT(dst_entry->cred == NULL, 1239 ("vm_fault_copy_entry: leaked swp charge")); 1240 dst_object->cred = curthread->td_ucred; 1241 crhold(dst_object->cred); 1242 *fork_charge += dst_object->charge; 1243 } else { 1244 dst_object->cred = dst_entry->cred; 1245 dst_entry->cred = NULL; 1246 } 1247 access = prot = dst_entry->protection; 1248 /* 1249 * If not an upgrade, then enter the mappings in the pmap as 1250 * read and/or execute accesses. Otherwise, enter them as 1251 * write accesses. 1252 * 1253 * A writeable large page mapping is only created if all of 1254 * the constituent small page mappings are modified. Marking 1255 * PTEs as modified on inception allows promotion to happen 1256 * without taking potentially large number of soft faults. 1257 */ 1258 if (!upgrade) 1259 access &= ~VM_PROT_WRITE; 1260 1261 /* 1262 * Loop through all of the pages in the entry's range, copying each 1263 * one from the source object (it should be there) to the destination 1264 * object. 1265 */ 1266 for (vaddr = dst_entry->start, dst_pindex = 0; 1267 vaddr < dst_entry->end; 1268 vaddr += PAGE_SIZE, dst_pindex++) { 1269 1270 /* 1271 * Allocate a page in the destination object. 1272 */ 1273 do { 1274 dst_m = vm_page_alloc(dst_object, dst_pindex, 1275 VM_ALLOC_NORMAL); 1276 if (dst_m == NULL) { 1277 VM_OBJECT_UNLOCK(dst_object); 1278 VM_WAIT; 1279 VM_OBJECT_LOCK(dst_object); 1280 } 1281 } while (dst_m == NULL); 1282 1283 /* 1284 * Find the page in the source object, and copy it in. 1285 * (Because the source is wired down, the page will be in 1286 * memory.) 1287 */ 1288 VM_OBJECT_LOCK(src_object); 1289 object = src_object; 1290 pindex = src_pindex + dst_pindex; 1291 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1292 src_readonly && 1293 (backing_object = object->backing_object) != NULL) { 1294 /* 1295 * Allow fallback to backing objects if we are reading. 1296 */ 1297 VM_OBJECT_LOCK(backing_object); 1298 pindex += OFF_TO_IDX(object->backing_object_offset); 1299 VM_OBJECT_UNLOCK(object); 1300 object = backing_object; 1301 } 1302 if (src_m == NULL) 1303 panic("vm_fault_copy_wired: page missing"); 1304 pmap_copy_page(src_m, dst_m); 1305 VM_OBJECT_UNLOCK(object); 1306 dst_m->valid = VM_PAGE_BITS_ALL; 1307 VM_OBJECT_UNLOCK(dst_object); 1308 1309 /* 1310 * Enter it in the pmap. If a wired, copy-on-write 1311 * mapping is being replaced by a write-enabled 1312 * mapping, then wire that new mapping. 1313 */ 1314 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade); 1315 1316 /* 1317 * Mark it no longer busy, and put it on the active list. 1318 */ 1319 VM_OBJECT_LOCK(dst_object); 1320 1321 if (upgrade) { 1322 vm_page_lock(src_m); 1323 vm_page_unwire(src_m, 0); 1324 vm_page_unlock(src_m); 1325 1326 vm_page_lock(dst_m); 1327 vm_page_wire(dst_m); 1328 vm_page_unlock(dst_m); 1329 } else { 1330 vm_page_lock(dst_m); 1331 vm_page_activate(dst_m); 1332 vm_page_unlock(dst_m); 1333 } 1334 vm_page_wakeup(dst_m); 1335 } 1336 VM_OBJECT_UNLOCK(dst_object); 1337 if (upgrade) { 1338 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1339 vm_object_deallocate(src_object); 1340 } 1341 } 1342 1343 1344 /* 1345 * This routine checks around the requested page for other pages that 1346 * might be able to be faulted in. This routine brackets the viable 1347 * pages for the pages to be paged in. 1348 * 1349 * Inputs: 1350 * m, rbehind, rahead 1351 * 1352 * Outputs: 1353 * marray (array of vm_page_t), reqpage (index of requested page) 1354 * 1355 * Return value: 1356 * number of pages in marray 1357 */ 1358 static int 1359 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1360 vm_page_t m; 1361 int rbehind; 1362 int rahead; 1363 vm_page_t *marray; 1364 int *reqpage; 1365 { 1366 int i,j; 1367 vm_object_t object; 1368 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1369 vm_page_t rtm; 1370 int cbehind, cahead; 1371 1372 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1373 1374 object = m->object; 1375 pindex = m->pindex; 1376 cbehind = cahead = 0; 1377 1378 /* 1379 * if the requested page is not available, then give up now 1380 */ 1381 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1382 return 0; 1383 } 1384 1385 if ((cbehind == 0) && (cahead == 0)) { 1386 *reqpage = 0; 1387 marray[0] = m; 1388 return 1; 1389 } 1390 1391 if (rahead > cahead) { 1392 rahead = cahead; 1393 } 1394 1395 if (rbehind > cbehind) { 1396 rbehind = cbehind; 1397 } 1398 1399 /* 1400 * scan backward for the read behind pages -- in memory 1401 */ 1402 if (pindex > 0) { 1403 if (rbehind > pindex) { 1404 rbehind = pindex; 1405 startpindex = 0; 1406 } else { 1407 startpindex = pindex - rbehind; 1408 } 1409 1410 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL && 1411 rtm->pindex >= startpindex) 1412 startpindex = rtm->pindex + 1; 1413 1414 /* tpindex is unsigned; beware of numeric underflow. */ 1415 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex && 1416 tpindex < pindex; i++, tpindex--) { 1417 1418 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1419 VM_ALLOC_IFNOTCACHED); 1420 if (rtm == NULL) { 1421 /* 1422 * Shift the allocated pages to the 1423 * beginning of the array. 1424 */ 1425 for (j = 0; j < i; j++) { 1426 marray[j] = marray[j + tpindex + 1 - 1427 startpindex]; 1428 } 1429 break; 1430 } 1431 1432 marray[tpindex - startpindex] = rtm; 1433 } 1434 } else { 1435 startpindex = 0; 1436 i = 0; 1437 } 1438 1439 marray[i] = m; 1440 /* page offset of the required page */ 1441 *reqpage = i; 1442 1443 tpindex = pindex + 1; 1444 i++; 1445 1446 /* 1447 * scan forward for the read ahead pages 1448 */ 1449 endpindex = tpindex + rahead; 1450 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex) 1451 endpindex = rtm->pindex; 1452 if (endpindex > object->size) 1453 endpindex = object->size; 1454 1455 for (; tpindex < endpindex; i++, tpindex++) { 1456 1457 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1458 VM_ALLOC_IFNOTCACHED); 1459 if (rtm == NULL) { 1460 break; 1461 } 1462 1463 marray[i] = rtm; 1464 } 1465 1466 /* return number of pages */ 1467 return i; 1468 } 1469