xref: /freebsd/sys/vm/vm_fault.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
101 
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105 
106 static int prefault_pageorder[] = {
107 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112 
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115 
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119 
120 struct faultstate {
121 	vm_page_t m;
122 	vm_object_t object;
123 	vm_pindex_t pindex;
124 	vm_page_t first_m;
125 	vm_object_t	first_object;
126 	vm_pindex_t first_pindex;
127 	vm_map_t map;
128 	vm_map_entry_t entry;
129 	int lookup_still_valid;
130 	struct vnode *vp;
131 };
132 
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136 	vm_page_lock_queues();
137 	vm_page_wakeup(fs->m);
138 	vm_page_deactivate(fs->m);
139 	vm_page_unlock_queues();
140 	fs->m = NULL;
141 }
142 
143 static inline void
144 unlock_map(struct faultstate *fs)
145 {
146 	if (fs->lookup_still_valid) {
147 		vm_map_lookup_done(fs->map, fs->entry);
148 		fs->lookup_still_valid = FALSE;
149 	}
150 }
151 
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155 	boolean_t firstobjneedgiant;
156 
157 	vm_object_pip_wakeup(fs->object);
158 	VM_OBJECT_UNLOCK(fs->object);
159 	if (fs->object != fs->first_object) {
160 		VM_OBJECT_LOCK(fs->first_object);
161 		vm_page_lock_queues();
162 		vm_page_free(fs->first_m);
163 		vm_page_unlock_queues();
164 		vm_object_pip_wakeup(fs->first_object);
165 		VM_OBJECT_UNLOCK(fs->first_object);
166 		fs->first_m = NULL;
167 	}
168 	firstobjneedgiant = (fs->first_object->flags & OBJ_NEEDGIANT) != 0;
169 	vm_object_deallocate(fs->first_object);
170 	unlock_map(fs);
171 	if (fs->vp != NULL) {
172 		int vfslocked;
173 
174 		vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
175 		vput(fs->vp);
176 		fs->vp = NULL;
177 		VFS_UNLOCK_GIANT(vfslocked);
178 	}
179 	if (firstobjneedgiant)
180 		VM_UNLOCK_GIANT();
181 }
182 
183 /*
184  * TRYPAGER - used by vm_fault to calculate whether the pager for the
185  *	      current object *might* contain the page.
186  *
187  *	      default objects are zero-fill, there is no real pager.
188  */
189 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
190 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
191 
192 /*
193  *	vm_fault:
194  *
195  *	Handle a page fault occurring at the given address,
196  *	requiring the given permissions, in the map specified.
197  *	If successful, the page is inserted into the
198  *	associated physical map.
199  *
200  *	NOTE: the given address should be truncated to the
201  *	proper page address.
202  *
203  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
204  *	a standard error specifying why the fault is fatal is returned.
205  *
206  *
207  *	The map in question must be referenced, and remains so.
208  *	Caller may hold no locks.
209  */
210 int
211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
212 	 int fault_flags)
213 {
214 	vm_prot_t prot;
215 	int is_first_object_locked, result;
216 	boolean_t growstack, wired;
217 	int map_generation;
218 	vm_object_t next_object;
219 	vm_page_t marray[VM_FAULT_READ];
220 	int hardfault;
221 	int faultcount;
222 	struct faultstate fs;
223 
224 	hardfault = 0;
225 	growstack = TRUE;
226 	atomic_add_int(&cnt.v_vm_faults, 1);
227 
228 RetryFault:;
229 
230 	/*
231 	 * Find the backing store object and offset into it to begin the
232 	 * search.
233 	 */
234 	fs.map = map;
235 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
236 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
237 	if (result != KERN_SUCCESS) {
238 		if (result != KERN_PROTECTION_FAILURE ||
239 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
240 			if (growstack && result == KERN_INVALID_ADDRESS &&
241 			    map != kernel_map && curproc != NULL) {
242 				result = vm_map_growstack(curproc, vaddr);
243 				if (result != KERN_SUCCESS)
244 					return (KERN_FAILURE);
245 				growstack = FALSE;
246 				goto RetryFault;
247 			}
248 			return (result);
249 		}
250 
251 		/*
252    		 * If we are user-wiring a r/w segment, and it is COW, then
253    		 * we need to do the COW operation.  Note that we don't COW
254    		 * currently RO sections now, because it is NOT desirable
255    		 * to COW .text.  We simply keep .text from ever being COW'ed
256    		 * and take the heat that one cannot debug wired .text sections.
257    		 */
258 		result = vm_map_lookup(&fs.map, vaddr,
259 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
260 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
261 		if (result != KERN_SUCCESS)
262 			return (result);
263 
264 		/*
265 		 * If we don't COW now, on a user wire, the user will never
266 		 * be able to write to the mapping.  If we don't make this
267 		 * restriction, the bookkeeping would be nearly impossible.
268 		 *
269 		 * XXX The following assignment modifies the map without
270 		 * holding a write lock on it.
271 		 */
272 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
273 			fs.entry->max_protection &= ~VM_PROT_WRITE;
274 	}
275 
276 	map_generation = fs.map->timestamp;
277 
278 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
279 		panic("vm_fault: fault on nofault entry, addr: %lx",
280 		    (u_long)vaddr);
281 	}
282 
283 	/*
284 	 * Make a reference to this object to prevent its disposal while we
285 	 * are messing with it.  Once we have the reference, the map is free
286 	 * to be diddled.  Since objects reference their shadows (and copies),
287 	 * they will stay around as well.
288 	 *
289 	 * Bump the paging-in-progress count to prevent size changes (e.g.
290 	 * truncation operations) during I/O.  This must be done after
291 	 * obtaining the vnode lock in order to avoid possible deadlocks.
292 	 *
293 	 * XXX vnode_pager_lock() can block without releasing the map lock.
294 	 */
295 	if (fs.first_object->flags & OBJ_NEEDGIANT)
296 		mtx_lock(&Giant);
297 	VM_OBJECT_LOCK(fs.first_object);
298 	vm_object_reference_locked(fs.first_object);
299 	fs.vp = vnode_pager_lock(fs.first_object);
300 	KASSERT(fs.vp == NULL || !fs.map->system_map,
301 	    ("vm_fault: vnode-backed object mapped by system map"));
302 	KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
303 	    !fs.map->system_map,
304 	    ("vm_fault: Object requiring giant mapped by system map"));
305 	if (fs.first_object->flags & OBJ_NEEDGIANT && debug_mpsafevm)
306 		mtx_unlock(&Giant);
307 	vm_object_pip_add(fs.first_object, 1);
308 
309 	fs.lookup_still_valid = TRUE;
310 
311 	if (wired)
312 		fault_type = prot;
313 
314 	fs.first_m = NULL;
315 
316 	/*
317 	 * Search for the page at object/offset.
318 	 */
319 	fs.object = fs.first_object;
320 	fs.pindex = fs.first_pindex;
321 	while (TRUE) {
322 		/*
323 		 * If the object is dead, we stop here
324 		 */
325 		if (fs.object->flags & OBJ_DEAD) {
326 			unlock_and_deallocate(&fs);
327 			return (KERN_PROTECTION_FAILURE);
328 		}
329 
330 		/*
331 		 * See if page is resident
332 		 */
333 		fs.m = vm_page_lookup(fs.object, fs.pindex);
334 		if (fs.m != NULL) {
335 			int queue;
336 
337 			/*
338 			 * check for page-based copy on write.
339 			 * We check fs.object == fs.first_object so
340 			 * as to ensure the legacy COW mechanism is
341 			 * used when the page in question is part of
342 			 * a shadow object.  Otherwise, vm_page_cowfault()
343 			 * removes the page from the backing object,
344 			 * which is not what we want.
345 			 */
346 			vm_page_lock_queues();
347 			if ((fs.m->cow) &&
348 			    (fault_type & VM_PROT_WRITE) &&
349 			    (fs.object == fs.first_object)) {
350 				vm_page_cowfault(fs.m);
351 				vm_page_unlock_queues();
352 				unlock_and_deallocate(&fs);
353 				goto RetryFault;
354 			}
355 
356 			/*
357 			 * Wait/Retry if the page is busy.  We have to do this
358 			 * if the page is busy via either PG_BUSY or
359 			 * vm_page_t->busy because the vm_pager may be using
360 			 * vm_page_t->busy for pageouts ( and even pageins if
361 			 * it is the vnode pager ), and we could end up trying
362 			 * to pagein and pageout the same page simultaneously.
363 			 *
364 			 * We can theoretically allow the busy case on a read
365 			 * fault if the page is marked valid, but since such
366 			 * pages are typically already pmap'd, putting that
367 			 * special case in might be more effort then it is
368 			 * worth.  We cannot under any circumstances mess
369 			 * around with a vm_page_t->busy page except, perhaps,
370 			 * to pmap it.
371 			 */
372 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
373 				vm_page_unlock_queues();
374 				VM_OBJECT_UNLOCK(fs.object);
375 				if (fs.object != fs.first_object) {
376 					VM_OBJECT_LOCK(fs.first_object);
377 					vm_page_lock_queues();
378 					vm_page_free(fs.first_m);
379 					vm_page_unlock_queues();
380 					vm_object_pip_wakeup(fs.first_object);
381 					VM_OBJECT_UNLOCK(fs.first_object);
382 					fs.first_m = NULL;
383 				}
384 				unlock_map(&fs);
385 				if (fs.vp != NULL) {
386 					int vfslck;
387 
388 					vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
389 					vput(fs.vp);
390 					fs.vp = NULL;
391 					VFS_UNLOCK_GIANT(vfslck);
392 				}
393 				VM_OBJECT_LOCK(fs.object);
394 				if (fs.m == vm_page_lookup(fs.object,
395 				    fs.pindex)) {
396 					vm_page_lock_queues();
397 					if (!vm_page_sleep_if_busy(fs.m, TRUE,
398 					    "vmpfw"))
399 						vm_page_unlock_queues();
400 				}
401 				vm_object_pip_wakeup(fs.object);
402 				VM_OBJECT_UNLOCK(fs.object);
403 				atomic_add_int(&cnt.v_intrans, 1);
404 				if (fs.first_object->flags & OBJ_NEEDGIANT)
405 					VM_UNLOCK_GIANT();
406 				vm_object_deallocate(fs.first_object);
407 				goto RetryFault;
408 			}
409 			queue = fs.m->queue;
410 
411 			vm_pageq_remove_nowakeup(fs.m);
412 
413 			if (VM_PAGE_RESOLVEQUEUE(fs.m, queue) == PQ_CACHE &&
414 			    vm_page_count_severe()) {
415 				vm_page_activate(fs.m);
416 				vm_page_unlock_queues();
417 				unlock_and_deallocate(&fs);
418 				VM_WAITPFAULT;
419 				goto RetryFault;
420 			}
421 
422 			/*
423 			 * Mark page busy for other processes, and the
424 			 * pagedaemon.  If it still isn't completely valid
425 			 * (readable), jump to readrest, else break-out ( we
426 			 * found the page ).
427 			 */
428 			vm_page_busy(fs.m);
429 			vm_page_unlock_queues();
430 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
431 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
432 				goto readrest;
433 			}
434 
435 			break;
436 		}
437 
438 		/*
439 		 * Page is not resident, If this is the search termination
440 		 * or the pager might contain the page, allocate a new page.
441 		 */
442 		if (TRYPAGER || fs.object == fs.first_object) {
443 			if (fs.pindex >= fs.object->size) {
444 				unlock_and_deallocate(&fs);
445 				return (KERN_PROTECTION_FAILURE);
446 			}
447 
448 			/*
449 			 * Allocate a new page for this object/offset pair.
450 			 */
451 			fs.m = NULL;
452 			if (!vm_page_count_severe()) {
453 				fs.m = vm_page_alloc(fs.object, fs.pindex,
454 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
455 			}
456 			if (fs.m == NULL) {
457 				unlock_and_deallocate(&fs);
458 				VM_WAITPFAULT;
459 				goto RetryFault;
460 			}
461 		}
462 
463 readrest:
464 		/*
465 		 * We have found a valid page or we have allocated a new page.
466 		 * The page thus may not be valid or may not be entirely
467 		 * valid.
468 		 *
469 		 * Attempt to fault-in the page if there is a chance that the
470 		 * pager has it, and potentially fault in additional pages
471 		 * at the same time.
472 		 */
473 		if (TRYPAGER) {
474 			int rv;
475 			int reqpage;
476 			int ahead, behind;
477 			u_char behavior = vm_map_entry_behavior(fs.entry);
478 
479 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
480 				ahead = 0;
481 				behind = 0;
482 			} else {
483 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
484 				if (behind > VM_FAULT_READ_BEHIND)
485 					behind = VM_FAULT_READ_BEHIND;
486 
487 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
488 				if (ahead > VM_FAULT_READ_AHEAD)
489 					ahead = VM_FAULT_READ_AHEAD;
490 			}
491 			is_first_object_locked = FALSE;
492 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
493 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
494 			      fs.pindex >= fs.entry->lastr &&
495 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
496 			    (fs.first_object == fs.object ||
497 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
498 			    fs.first_object->type != OBJT_DEVICE) {
499 				vm_pindex_t firstpindex, tmppindex;
500 
501 				if (fs.first_pindex < 2 * VM_FAULT_READ)
502 					firstpindex = 0;
503 				else
504 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
505 
506 				vm_page_lock_queues();
507 				/*
508 				 * note: partially valid pages cannot be
509 				 * included in the lookahead - NFS piecemeal
510 				 * writes will barf on it badly.
511 				 */
512 				for (tmppindex = fs.first_pindex - 1;
513 					tmppindex >= firstpindex;
514 					--tmppindex) {
515 					vm_page_t mt;
516 
517 					mt = vm_page_lookup(fs.first_object, tmppindex);
518 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
519 						break;
520 					if (mt->busy ||
521 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
522 						mt->hold_count ||
523 						mt->wire_count)
524 						continue;
525 					pmap_remove_all(mt);
526 					if (mt->dirty) {
527 						vm_page_deactivate(mt);
528 					} else {
529 						vm_page_cache(mt);
530 					}
531 				}
532 				vm_page_unlock_queues();
533 				ahead += behind;
534 				behind = 0;
535 			}
536 			if (is_first_object_locked)
537 				VM_OBJECT_UNLOCK(fs.first_object);
538 			/*
539 			 * now we find out if any other pages should be paged
540 			 * in at this time this routine checks to see if the
541 			 * pages surrounding this fault reside in the same
542 			 * object as the page for this fault.  If they do,
543 			 * then they are faulted in also into the object.  The
544 			 * array "marray" returned contains an array of
545 			 * vm_page_t structs where one of them is the
546 			 * vm_page_t passed to the routine.  The reqpage
547 			 * return value is the index into the marray for the
548 			 * vm_page_t passed to the routine.
549 			 *
550 			 * fs.m plus the additional pages are PG_BUSY'd.
551 			 *
552 			 * XXX vm_fault_additional_pages() can block
553 			 * without releasing the map lock.
554 			 */
555 			faultcount = vm_fault_additional_pages(
556 			    fs.m, behind, ahead, marray, &reqpage);
557 
558 			/*
559 			 * update lastr imperfectly (we do not know how much
560 			 * getpages will actually read), but good enough.
561 			 *
562 			 * XXX The following assignment modifies the map
563 			 * without holding a write lock on it.
564 			 */
565 			fs.entry->lastr = fs.pindex + faultcount - behind;
566 
567 			/*
568 			 * Call the pager to retrieve the data, if any, after
569 			 * releasing the lock on the map.  We hold a ref on
570 			 * fs.object and the pages are PG_BUSY'd.
571 			 */
572 			unlock_map(&fs);
573 
574 			rv = faultcount ?
575 			    vm_pager_get_pages(fs.object, marray, faultcount,
576 				reqpage) : VM_PAGER_FAIL;
577 
578 			if (rv == VM_PAGER_OK) {
579 				/*
580 				 * Found the page. Leave it busy while we play
581 				 * with it.
582 				 */
583 
584 				/*
585 				 * Relookup in case pager changed page. Pager
586 				 * is responsible for disposition of old page
587 				 * if moved.
588 				 */
589 				fs.m = vm_page_lookup(fs.object, fs.pindex);
590 				if (!fs.m) {
591 					unlock_and_deallocate(&fs);
592 					goto RetryFault;
593 				}
594 
595 				hardfault++;
596 				break; /* break to PAGE HAS BEEN FOUND */
597 			}
598 			/*
599 			 * Remove the bogus page (which does not exist at this
600 			 * object/offset); before doing so, we must get back
601 			 * our object lock to preserve our invariant.
602 			 *
603 			 * Also wake up any other process that may want to bring
604 			 * in this page.
605 			 *
606 			 * If this is the top-level object, we must leave the
607 			 * busy page to prevent another process from rushing
608 			 * past us, and inserting the page in that object at
609 			 * the same time that we are.
610 			 */
611 			if (rv == VM_PAGER_ERROR)
612 				printf("vm_fault: pager read error, pid %d (%s)\n",
613 				    curproc->p_pid, curproc->p_comm);
614 			/*
615 			 * Data outside the range of the pager or an I/O error
616 			 */
617 			/*
618 			 * XXX - the check for kernel_map is a kludge to work
619 			 * around having the machine panic on a kernel space
620 			 * fault w/ I/O error.
621 			 */
622 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
623 				(rv == VM_PAGER_BAD)) {
624 				vm_page_lock_queues();
625 				vm_page_free(fs.m);
626 				vm_page_unlock_queues();
627 				fs.m = NULL;
628 				unlock_and_deallocate(&fs);
629 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
630 			}
631 			if (fs.object != fs.first_object) {
632 				vm_page_lock_queues();
633 				vm_page_free(fs.m);
634 				vm_page_unlock_queues();
635 				fs.m = NULL;
636 				/*
637 				 * XXX - we cannot just fall out at this
638 				 * point, m has been freed and is invalid!
639 				 */
640 			}
641 		}
642 
643 		/*
644 		 * We get here if the object has default pager (or unwiring)
645 		 * or the pager doesn't have the page.
646 		 */
647 		if (fs.object == fs.first_object)
648 			fs.first_m = fs.m;
649 
650 		/*
651 		 * Move on to the next object.  Lock the next object before
652 		 * unlocking the current one.
653 		 */
654 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
655 		next_object = fs.object->backing_object;
656 		if (next_object == NULL) {
657 			/*
658 			 * If there's no object left, fill the page in the top
659 			 * object with zeros.
660 			 */
661 			if (fs.object != fs.first_object) {
662 				vm_object_pip_wakeup(fs.object);
663 				VM_OBJECT_UNLOCK(fs.object);
664 
665 				fs.object = fs.first_object;
666 				fs.pindex = fs.first_pindex;
667 				fs.m = fs.first_m;
668 				VM_OBJECT_LOCK(fs.object);
669 			}
670 			fs.first_m = NULL;
671 
672 			/*
673 			 * Zero the page if necessary and mark it valid.
674 			 */
675 			if ((fs.m->flags & PG_ZERO) == 0) {
676 				pmap_zero_page(fs.m);
677 			} else {
678 				atomic_add_int(&cnt.v_ozfod, 1);
679 			}
680 			atomic_add_int(&cnt.v_zfod, 1);
681 			fs.m->valid = VM_PAGE_BITS_ALL;
682 			break;	/* break to PAGE HAS BEEN FOUND */
683 		} else {
684 			KASSERT(fs.object != next_object,
685 			    ("object loop %p", next_object));
686 			VM_OBJECT_LOCK(next_object);
687 			vm_object_pip_add(next_object, 1);
688 			if (fs.object != fs.first_object)
689 				vm_object_pip_wakeup(fs.object);
690 			VM_OBJECT_UNLOCK(fs.object);
691 			fs.object = next_object;
692 		}
693 	}
694 
695 	KASSERT((fs.m->flags & PG_BUSY) != 0,
696 	    ("vm_fault: not busy after main loop"));
697 
698 	/*
699 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
700 	 * is held.]
701 	 */
702 
703 	/*
704 	 * If the page is being written, but isn't already owned by the
705 	 * top-level object, we have to copy it into a new page owned by the
706 	 * top-level object.
707 	 */
708 	if (fs.object != fs.first_object) {
709 		/*
710 		 * We only really need to copy if we want to write it.
711 		 */
712 		if (fault_type & VM_PROT_WRITE) {
713 			/*
714 			 * This allows pages to be virtually copied from a
715 			 * backing_object into the first_object, where the
716 			 * backing object has no other refs to it, and cannot
717 			 * gain any more refs.  Instead of a bcopy, we just
718 			 * move the page from the backing object to the
719 			 * first object.  Note that we must mark the page
720 			 * dirty in the first object so that it will go out
721 			 * to swap when needed.
722 			 */
723 			is_first_object_locked = FALSE;
724 			if (
725 				/*
726 				 * Only one shadow object
727 				 */
728 				(fs.object->shadow_count == 1) &&
729 				/*
730 				 * No COW refs, except us
731 				 */
732 				(fs.object->ref_count == 1) &&
733 				/*
734 				 * No one else can look this object up
735 				 */
736 				(fs.object->handle == NULL) &&
737 				/*
738 				 * No other ways to look the object up
739 				 */
740 				((fs.object->type == OBJT_DEFAULT) ||
741 				 (fs.object->type == OBJT_SWAP)) &&
742 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
743 				/*
744 				 * We don't chase down the shadow chain
745 				 */
746 			    fs.object == fs.first_object->backing_object) {
747 				vm_page_lock_queues();
748 				/*
749 				 * get rid of the unnecessary page
750 				 */
751 				vm_page_free(fs.first_m);
752 				/*
753 				 * grab the page and put it into the
754 				 * process'es object.  The page is
755 				 * automatically made dirty.
756 				 */
757 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
758 				vm_page_busy(fs.m);
759 				vm_page_unlock_queues();
760 				fs.first_m = fs.m;
761 				fs.m = NULL;
762 				atomic_add_int(&cnt.v_cow_optim, 1);
763 			} else {
764 				/*
765 				 * Oh, well, lets copy it.
766 				 */
767 				pmap_copy_page(fs.m, fs.first_m);
768 				fs.first_m->valid = VM_PAGE_BITS_ALL;
769 			}
770 			if (fs.m) {
771 				/*
772 				 * We no longer need the old page or object.
773 				 */
774 				release_page(&fs);
775 			}
776 			/*
777 			 * fs.object != fs.first_object due to above
778 			 * conditional
779 			 */
780 			vm_object_pip_wakeup(fs.object);
781 			VM_OBJECT_UNLOCK(fs.object);
782 			/*
783 			 * Only use the new page below...
784 			 */
785 			fs.object = fs.first_object;
786 			fs.pindex = fs.first_pindex;
787 			fs.m = fs.first_m;
788 			if (!is_first_object_locked)
789 				VM_OBJECT_LOCK(fs.object);
790 			atomic_add_int(&cnt.v_cow_faults, 1);
791 		} else {
792 			prot &= ~VM_PROT_WRITE;
793 		}
794 	}
795 
796 	/*
797 	 * We must verify that the maps have not changed since our last
798 	 * lookup.
799 	 */
800 	if (!fs.lookup_still_valid) {
801 		vm_object_t retry_object;
802 		vm_pindex_t retry_pindex;
803 		vm_prot_t retry_prot;
804 
805 		if (!vm_map_trylock_read(fs.map)) {
806 			release_page(&fs);
807 			unlock_and_deallocate(&fs);
808 			goto RetryFault;
809 		}
810 		fs.lookup_still_valid = TRUE;
811 		if (fs.map->timestamp != map_generation) {
812 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
813 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
814 
815 			/*
816 			 * If we don't need the page any longer, put it on the inactive
817 			 * list (the easiest thing to do here).  If no one needs it,
818 			 * pageout will grab it eventually.
819 			 */
820 			if (result != KERN_SUCCESS) {
821 				release_page(&fs);
822 				unlock_and_deallocate(&fs);
823 
824 				/*
825 				 * If retry of map lookup would have blocked then
826 				 * retry fault from start.
827 				 */
828 				if (result == KERN_FAILURE)
829 					goto RetryFault;
830 				return (result);
831 			}
832 			if ((retry_object != fs.first_object) ||
833 			    (retry_pindex != fs.first_pindex)) {
834 				release_page(&fs);
835 				unlock_and_deallocate(&fs);
836 				goto RetryFault;
837 			}
838 
839 			/*
840 			 * Check whether the protection has changed or the object has
841 			 * been copied while we left the map unlocked. Changing from
842 			 * read to write permission is OK - we leave the page
843 			 * write-protected, and catch the write fault. Changing from
844 			 * write to read permission means that we can't mark the page
845 			 * write-enabled after all.
846 			 */
847 			prot &= retry_prot;
848 		}
849 	}
850 	if (prot & VM_PROT_WRITE) {
851 		vm_page_lock_queues();
852 		vm_page_flag_set(fs.m, PG_WRITEABLE);
853 		vm_object_set_writeable_dirty(fs.m->object);
854 
855 		/*
856 		 * If the fault is a write, we know that this page is being
857 		 * written NOW so dirty it explicitly to save on
858 		 * pmap_is_modified() calls later.
859 		 *
860 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
861 		 * if the page is already dirty to prevent data written with
862 		 * the expectation of being synced from not being synced.
863 		 * Likewise if this entry does not request NOSYNC then make
864 		 * sure the page isn't marked NOSYNC.  Applications sharing
865 		 * data should use the same flags to avoid ping ponging.
866 		 *
867 		 * Also tell the backing pager, if any, that it should remove
868 		 * any swap backing since the page is now dirty.
869 		 */
870 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
871 			if (fs.m->dirty == 0)
872 				vm_page_flag_set(fs.m, PG_NOSYNC);
873 		} else {
874 			vm_page_flag_clear(fs.m, PG_NOSYNC);
875 		}
876 		vm_page_unlock_queues();
877 		if (fault_flags & VM_FAULT_DIRTY) {
878 			vm_page_dirty(fs.m);
879 			vm_pager_page_unswapped(fs.m);
880 		}
881 	}
882 
883 	/*
884 	 * Page had better still be busy
885 	 */
886 	KASSERT(fs.m->flags & PG_BUSY,
887 		("vm_fault: page %p not busy!", fs.m));
888 	/*
889 	 * Sanity check: page must be completely valid or it is not fit to
890 	 * map into user space.  vm_pager_get_pages() ensures this.
891 	 */
892 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
893 		vm_page_zero_invalid(fs.m, TRUE);
894 		printf("Warning: page %p partially invalid on fault\n", fs.m);
895 	}
896 	VM_OBJECT_UNLOCK(fs.object);
897 
898 	/*
899 	 * Put this page into the physical map.  We had to do the unlock above
900 	 * because pmap_enter() may sleep.  We don't put the page
901 	 * back on the active queue until later so that the pageout daemon
902 	 * won't find it (yet).
903 	 */
904 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
905 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
906 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
907 	}
908 	VM_OBJECT_LOCK(fs.object);
909 	vm_page_lock_queues();
910 	vm_page_flag_set(fs.m, PG_REFERENCED);
911 
912 	/*
913 	 * If the page is not wired down, then put it where the pageout daemon
914 	 * can find it.
915 	 */
916 	if (fault_flags & VM_FAULT_WIRE_MASK) {
917 		if (wired)
918 			vm_page_wire(fs.m);
919 		else
920 			vm_page_unwire(fs.m, 1);
921 	} else {
922 		vm_page_activate(fs.m);
923 	}
924 	vm_page_wakeup(fs.m);
925 	vm_page_unlock_queues();
926 
927 	/*
928 	 * Unlock everything, and return
929 	 */
930 	unlock_and_deallocate(&fs);
931 	PROC_LOCK(curproc);
932 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
933 		if (hardfault) {
934 			curproc->p_stats->p_ru.ru_majflt++;
935 		} else {
936 			curproc->p_stats->p_ru.ru_minflt++;
937 		}
938 	}
939 	PROC_UNLOCK(curproc);
940 
941 	return (KERN_SUCCESS);
942 }
943 
944 /*
945  * vm_fault_prefault provides a quick way of clustering
946  * pagefaults into a processes address space.  It is a "cousin"
947  * of vm_map_pmap_enter, except it runs at page fault time instead
948  * of mmap time.
949  */
950 static void
951 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
952 {
953 	int i;
954 	vm_offset_t addr, starta;
955 	vm_pindex_t pindex;
956 	vm_page_t m, mpte;
957 	vm_object_t object;
958 
959 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
960 		return;
961 
962 	object = entry->object.vm_object;
963 
964 	starta = addra - PFBAK * PAGE_SIZE;
965 	if (starta < entry->start) {
966 		starta = entry->start;
967 	} else if (starta > addra) {
968 		starta = 0;
969 	}
970 
971 	mpte = NULL;
972 	for (i = 0; i < PAGEORDER_SIZE; i++) {
973 		vm_object_t backing_object, lobject;
974 
975 		addr = addra + prefault_pageorder[i];
976 		if (addr > addra + (PFFOR * PAGE_SIZE))
977 			addr = 0;
978 
979 		if (addr < starta || addr >= entry->end)
980 			continue;
981 
982 		if (!pmap_is_prefaultable(pmap, addr))
983 			continue;
984 
985 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
986 		lobject = object;
987 		VM_OBJECT_LOCK(lobject);
988 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
989 		    lobject->type == OBJT_DEFAULT &&
990 		    (backing_object = lobject->backing_object) != NULL) {
991 			if (lobject->backing_object_offset & PAGE_MASK)
992 				break;
993 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
994 			VM_OBJECT_LOCK(backing_object);
995 			VM_OBJECT_UNLOCK(lobject);
996 			lobject = backing_object;
997 		}
998 		/*
999 		 * give-up when a page is not in memory
1000 		 */
1001 		if (m == NULL) {
1002 			VM_OBJECT_UNLOCK(lobject);
1003 			break;
1004 		}
1005 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1006 			(m->busy == 0) &&
1007 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1008 
1009 			vm_page_lock_queues();
1010 			if (VM_PAGE_INQUEUE1(m, PQ_CACHE))
1011 				vm_page_deactivate(m);
1012 			mpte = pmap_enter_quick(pmap, addr, m,
1013 			    entry->protection, mpte);
1014 			vm_page_unlock_queues();
1015 		}
1016 		VM_OBJECT_UNLOCK(lobject);
1017 	}
1018 }
1019 
1020 /*
1021  *	vm_fault_quick:
1022  *
1023  *	Ensure that the requested virtual address, which may be in userland,
1024  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1025  */
1026 int
1027 vm_fault_quick(caddr_t v, int prot)
1028 {
1029 	int r;
1030 
1031 	if (prot & VM_PROT_WRITE)
1032 		r = subyte(v, fubyte(v));
1033 	else
1034 		r = fubyte(v);
1035 	return(r);
1036 }
1037 
1038 /*
1039  *	vm_fault_wire:
1040  *
1041  *	Wire down a range of virtual addresses in a map.
1042  */
1043 int
1044 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1045     boolean_t user_wire, boolean_t fictitious)
1046 {
1047 	vm_offset_t va;
1048 	int rv;
1049 
1050 	/*
1051 	 * We simulate a fault to get the page and enter it in the physical
1052 	 * map.  For user wiring, we only ask for read access on currently
1053 	 * read-only sections.
1054 	 */
1055 	for (va = start; va < end; va += PAGE_SIZE) {
1056 		rv = vm_fault(map, va,
1057 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1058 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1059 		if (rv) {
1060 			if (va != start)
1061 				vm_fault_unwire(map, start, va, fictitious);
1062 			return (rv);
1063 		}
1064 	}
1065 	return (KERN_SUCCESS);
1066 }
1067 
1068 /*
1069  *	vm_fault_unwire:
1070  *
1071  *	Unwire a range of virtual addresses in a map.
1072  */
1073 void
1074 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1075     boolean_t fictitious)
1076 {
1077 	vm_paddr_t pa;
1078 	vm_offset_t va;
1079 	pmap_t pmap;
1080 
1081 	pmap = vm_map_pmap(map);
1082 
1083 	/*
1084 	 * Since the pages are wired down, we must be able to get their
1085 	 * mappings from the physical map system.
1086 	 */
1087 	for (va = start; va < end; va += PAGE_SIZE) {
1088 		pa = pmap_extract(pmap, va);
1089 		if (pa != 0) {
1090 			pmap_change_wiring(pmap, va, FALSE);
1091 			if (!fictitious) {
1092 				vm_page_lock_queues();
1093 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1094 				vm_page_unlock_queues();
1095 			}
1096 		}
1097 	}
1098 }
1099 
1100 /*
1101  *	Routine:
1102  *		vm_fault_copy_entry
1103  *	Function:
1104  *		Copy all of the pages from a wired-down map entry to another.
1105  *
1106  *	In/out conditions:
1107  *		The source and destination maps must be locked for write.
1108  *		The source map entry must be wired down (or be a sharing map
1109  *		entry corresponding to a main map entry that is wired down).
1110  */
1111 void
1112 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1113 	vm_map_t dst_map;
1114 	vm_map_t src_map;
1115 	vm_map_entry_t dst_entry;
1116 	vm_map_entry_t src_entry;
1117 {
1118 	vm_object_t backing_object, dst_object, object;
1119 	vm_object_t src_object;
1120 	vm_ooffset_t dst_offset;
1121 	vm_ooffset_t src_offset;
1122 	vm_pindex_t pindex;
1123 	vm_prot_t prot;
1124 	vm_offset_t vaddr;
1125 	vm_page_t dst_m;
1126 	vm_page_t src_m;
1127 
1128 #ifdef	lint
1129 	src_map++;
1130 #endif	/* lint */
1131 
1132 	src_object = src_entry->object.vm_object;
1133 	src_offset = src_entry->offset;
1134 
1135 	/*
1136 	 * Create the top-level object for the destination entry. (Doesn't
1137 	 * actually shadow anything - we copy the pages directly.)
1138 	 */
1139 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1140 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1141 
1142 	VM_OBJECT_LOCK(dst_object);
1143 	dst_entry->object.vm_object = dst_object;
1144 	dst_entry->offset = 0;
1145 
1146 	prot = dst_entry->max_protection;
1147 
1148 	/*
1149 	 * Loop through all of the pages in the entry's range, copying each
1150 	 * one from the source object (it should be there) to the destination
1151 	 * object.
1152 	 */
1153 	for (vaddr = dst_entry->start, dst_offset = 0;
1154 	    vaddr < dst_entry->end;
1155 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1156 
1157 		/*
1158 		 * Allocate a page in the destination object
1159 		 */
1160 		do {
1161 			dst_m = vm_page_alloc(dst_object,
1162 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1163 			if (dst_m == NULL) {
1164 				VM_OBJECT_UNLOCK(dst_object);
1165 				VM_WAIT;
1166 				VM_OBJECT_LOCK(dst_object);
1167 			}
1168 		} while (dst_m == NULL);
1169 
1170 		/*
1171 		 * Find the page in the source object, and copy it in.
1172 		 * (Because the source is wired down, the page will be in
1173 		 * memory.)
1174 		 */
1175 		VM_OBJECT_LOCK(src_object);
1176 		object = src_object;
1177 		pindex = 0;
1178 		while ((src_m = vm_page_lookup(object, pindex +
1179 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1180 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1181 		    (backing_object = object->backing_object) != NULL) {
1182 			/*
1183 			 * Allow fallback to backing objects if we are reading.
1184 			 */
1185 			VM_OBJECT_LOCK(backing_object);
1186 			pindex += OFF_TO_IDX(object->backing_object_offset);
1187 			VM_OBJECT_UNLOCK(object);
1188 			object = backing_object;
1189 		}
1190 		if (src_m == NULL)
1191 			panic("vm_fault_copy_wired: page missing");
1192 		pmap_copy_page(src_m, dst_m);
1193 		VM_OBJECT_UNLOCK(object);
1194 		dst_m->valid = VM_PAGE_BITS_ALL;
1195 		VM_OBJECT_UNLOCK(dst_object);
1196 
1197 		/*
1198 		 * Enter it in the pmap...
1199 		 */
1200 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1201 		VM_OBJECT_LOCK(dst_object);
1202 		vm_page_lock_queues();
1203 		if ((prot & VM_PROT_WRITE) != 0)
1204 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1205 
1206 		/*
1207 		 * Mark it no longer busy, and put it on the active list.
1208 		 */
1209 		vm_page_activate(dst_m);
1210 		vm_page_wakeup(dst_m);
1211 		vm_page_unlock_queues();
1212 	}
1213 	VM_OBJECT_UNLOCK(dst_object);
1214 }
1215 
1216 
1217 /*
1218  * This routine checks around the requested page for other pages that
1219  * might be able to be faulted in.  This routine brackets the viable
1220  * pages for the pages to be paged in.
1221  *
1222  * Inputs:
1223  *	m, rbehind, rahead
1224  *
1225  * Outputs:
1226  *  marray (array of vm_page_t), reqpage (index of requested page)
1227  *
1228  * Return value:
1229  *  number of pages in marray
1230  *
1231  * This routine can't block.
1232  */
1233 static int
1234 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1235 	vm_page_t m;
1236 	int rbehind;
1237 	int rahead;
1238 	vm_page_t *marray;
1239 	int *reqpage;
1240 {
1241 	int i,j;
1242 	vm_object_t object;
1243 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1244 	vm_page_t rtm;
1245 	int cbehind, cahead;
1246 
1247 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1248 
1249 	object = m->object;
1250 	pindex = m->pindex;
1251 
1252 	/*
1253 	 * we don't fault-ahead for device pager
1254 	 */
1255 	if (object->type == OBJT_DEVICE) {
1256 		*reqpage = 0;
1257 		marray[0] = m;
1258 		return 1;
1259 	}
1260 
1261 	/*
1262 	 * if the requested page is not available, then give up now
1263 	 */
1264 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1265 		return 0;
1266 	}
1267 
1268 	if ((cbehind == 0) && (cahead == 0)) {
1269 		*reqpage = 0;
1270 		marray[0] = m;
1271 		return 1;
1272 	}
1273 
1274 	if (rahead > cahead) {
1275 		rahead = cahead;
1276 	}
1277 
1278 	if (rbehind > cbehind) {
1279 		rbehind = cbehind;
1280 	}
1281 
1282 	/*
1283 	 * try to do any readahead that we might have free pages for.
1284 	 */
1285 	if ((rahead + rbehind) >
1286 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1287 		pagedaemon_wakeup();
1288 		marray[0] = m;
1289 		*reqpage = 0;
1290 		return 1;
1291 	}
1292 
1293 	/*
1294 	 * scan backward for the read behind pages -- in memory
1295 	 */
1296 	if (pindex > 0) {
1297 		if (rbehind > pindex) {
1298 			rbehind = pindex;
1299 			startpindex = 0;
1300 		} else {
1301 			startpindex = pindex - rbehind;
1302 		}
1303 
1304 		for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1305 			if (vm_page_lookup(object, tpindex)) {
1306 				startpindex = tpindex + 1;
1307 				break;
1308 			}
1309 			if (tpindex == 0)
1310 				break;
1311 		}
1312 
1313 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1314 
1315 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1316 			if (rtm == NULL) {
1317 				vm_page_lock_queues();
1318 				for (j = 0; j < i; j++) {
1319 					vm_page_free(marray[j]);
1320 				}
1321 				vm_page_unlock_queues();
1322 				marray[0] = m;
1323 				*reqpage = 0;
1324 				return 1;
1325 			}
1326 
1327 			marray[i] = rtm;
1328 		}
1329 	} else {
1330 		startpindex = 0;
1331 		i = 0;
1332 	}
1333 
1334 	marray[i] = m;
1335 	/* page offset of the required page */
1336 	*reqpage = i;
1337 
1338 	tpindex = pindex + 1;
1339 	i++;
1340 
1341 	/*
1342 	 * scan forward for the read ahead pages
1343 	 */
1344 	endpindex = tpindex + rahead;
1345 	if (endpindex > object->size)
1346 		endpindex = object->size;
1347 
1348 	for (; tpindex < endpindex; i++, tpindex++) {
1349 
1350 		if (vm_page_lookup(object, tpindex)) {
1351 			break;
1352 		}
1353 
1354 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1355 		if (rtm == NULL) {
1356 			break;
1357 		}
1358 
1359 		marray[i] = rtm;
1360 	}
1361 
1362 	/* return number of bytes of pages */
1363 	return i;
1364 }
1365