xref: /freebsd/sys/vm/vm_fault.c (revision 86aa9539fef591a363b06a0ebd3aa7a07f4c1579)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/rwlock.h>
92 #include <sys/sysctl.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_extern.h>
109 #include <vm/vm_reserv.h>
110 
111 #define PFBAK 4
112 #define PFFOR 4
113 
114 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
115 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
116 
117 #define	VM_FAULT_DONTNEED_MIN	1048576
118 
119 struct faultstate {
120 	vm_page_t m;
121 	vm_object_t object;
122 	vm_pindex_t pindex;
123 	vm_page_t first_m;
124 	vm_object_t	first_object;
125 	vm_pindex_t first_pindex;
126 	vm_map_t map;
127 	vm_map_entry_t entry;
128 	int map_generation;
129 	bool lookup_still_valid;
130 	struct vnode *vp;
131 };
132 
133 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
134 	    int ahead);
135 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
136 	    int backward, int forward, bool obj_locked);
137 
138 static int vm_pfault_oom_attempts = 3;
139 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
140     &vm_pfault_oom_attempts, 0,
141     "Number of page allocation attempts in page fault handler before it "
142     "triggers OOM handling");
143 
144 static int vm_pfault_oom_wait = 10;
145 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
146     &vm_pfault_oom_wait, 0,
147     "Number of seconds to wait for free pages before retrying "
148     "the page fault handler");
149 
150 static inline void
151 release_page(struct faultstate *fs)
152 {
153 
154 	vm_page_xunbusy(fs->m);
155 	vm_page_lock(fs->m);
156 	vm_page_deactivate(fs->m);
157 	vm_page_unlock(fs->m);
158 	fs->m = NULL;
159 }
160 
161 static inline void
162 unlock_map(struct faultstate *fs)
163 {
164 
165 	if (fs->lookup_still_valid) {
166 		vm_map_lookup_done(fs->map, fs->entry);
167 		fs->lookup_still_valid = false;
168 	}
169 }
170 
171 static void
172 unlock_vp(struct faultstate *fs)
173 {
174 
175 	if (fs->vp != NULL) {
176 		vput(fs->vp);
177 		fs->vp = NULL;
178 	}
179 }
180 
181 static void
182 unlock_and_deallocate(struct faultstate *fs)
183 {
184 
185 	vm_object_pip_wakeup(fs->object);
186 	VM_OBJECT_WUNLOCK(fs->object);
187 	if (fs->object != fs->first_object) {
188 		VM_OBJECT_WLOCK(fs->first_object);
189 		vm_page_lock(fs->first_m);
190 		vm_page_free(fs->first_m);
191 		vm_page_unlock(fs->first_m);
192 		vm_object_pip_wakeup(fs->first_object);
193 		VM_OBJECT_WUNLOCK(fs->first_object);
194 		fs->first_m = NULL;
195 	}
196 	vm_object_deallocate(fs->first_object);
197 	unlock_map(fs);
198 	unlock_vp(fs);
199 }
200 
201 static void
202 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
203     vm_prot_t fault_type, int fault_flags, bool set_wd)
204 {
205 	bool need_dirty;
206 
207 	if (((prot & VM_PROT_WRITE) == 0 &&
208 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
209 	    (m->oflags & VPO_UNMANAGED) != 0)
210 		return;
211 
212 	VM_OBJECT_ASSERT_LOCKED(m->object);
213 
214 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
215 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
216 	    (fault_flags & VM_FAULT_DIRTY) != 0;
217 
218 	if (set_wd)
219 		vm_object_set_writeable_dirty(m->object);
220 	else
221 		/*
222 		 * If two callers of vm_fault_dirty() with set_wd ==
223 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
224 		 * flag set, other with flag clear, race, it is
225 		 * possible for the no-NOSYNC thread to see m->dirty
226 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
227 		 * around manipulation of VPO_NOSYNC and
228 		 * vm_page_dirty() call, to avoid the race and keep
229 		 * m->oflags consistent.
230 		 */
231 		vm_page_lock(m);
232 
233 	/*
234 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
235 	 * if the page is already dirty to prevent data written with
236 	 * the expectation of being synced from not being synced.
237 	 * Likewise if this entry does not request NOSYNC then make
238 	 * sure the page isn't marked NOSYNC.  Applications sharing
239 	 * data should use the same flags to avoid ping ponging.
240 	 */
241 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
242 		if (m->dirty == 0) {
243 			m->oflags |= VPO_NOSYNC;
244 		}
245 	} else {
246 		m->oflags &= ~VPO_NOSYNC;
247 	}
248 
249 	/*
250 	 * If the fault is a write, we know that this page is being
251 	 * written NOW so dirty it explicitly to save on
252 	 * pmap_is_modified() calls later.
253 	 *
254 	 * Also, since the page is now dirty, we can possibly tell
255 	 * the pager to release any swap backing the page.  Calling
256 	 * the pager requires a write lock on the object.
257 	 */
258 	if (need_dirty)
259 		vm_page_dirty(m);
260 	if (!set_wd)
261 		vm_page_unlock(m);
262 	else if (need_dirty)
263 		vm_pager_page_unswapped(m);
264 }
265 
266 static void
267 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
268 {
269 
270 	if (m_hold != NULL) {
271 		*m_hold = m;
272 		vm_page_lock(m);
273 		vm_page_wire(m);
274 		vm_page_unlock(m);
275 	}
276 }
277 
278 /*
279  * Unlocks fs.first_object and fs.map on success.
280  */
281 static int
282 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
283     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
284 {
285 	vm_page_t m, m_map;
286 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
287     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
288     VM_NRESERVLEVEL > 0
289 	vm_page_t m_super;
290 	int flags;
291 #endif
292 	int psind, rv;
293 
294 	MPASS(fs->vp == NULL);
295 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
296 	/* A busy page can be mapped for read|execute access. */
297 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
298 	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
299 		return (KERN_FAILURE);
300 	m_map = m;
301 	psind = 0;
302 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
303     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \
304     VM_NRESERVLEVEL > 0
305 	if ((m->flags & PG_FICTITIOUS) == 0 &&
306 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
307 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
308 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
309 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
310 	    (pagesizes[m_super->psind] - 1)) && !wired &&
311 	    pmap_ps_enabled(fs->map->pmap)) {
312 		flags = PS_ALL_VALID;
313 		if ((prot & VM_PROT_WRITE) != 0) {
314 			/*
315 			 * Create a superpage mapping allowing write access
316 			 * only if none of the constituent pages are busy and
317 			 * all of them are already dirty (except possibly for
318 			 * the page that was faulted on).
319 			 */
320 			flags |= PS_NONE_BUSY;
321 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
322 				flags |= PS_ALL_DIRTY;
323 		}
324 		if (vm_page_ps_test(m_super, flags, m)) {
325 			m_map = m_super;
326 			psind = m_super->psind;
327 			vaddr = rounddown2(vaddr, pagesizes[psind]);
328 			/* Preset the modified bit for dirty superpages. */
329 			if ((flags & PS_ALL_DIRTY) != 0)
330 				fault_type |= VM_PROT_WRITE;
331 		}
332 	}
333 #endif
334 	rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
335 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
336 	if (rv != KERN_SUCCESS)
337 		return (rv);
338 	vm_fault_fill_hold(m_hold, m);
339 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
340 	if (psind == 0 && !wired)
341 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
342 	VM_OBJECT_RUNLOCK(fs->first_object);
343 	vm_map_lookup_done(fs->map, fs->entry);
344 	curthread->td_ru.ru_minflt++;
345 	return (KERN_SUCCESS);
346 }
347 
348 static void
349 vm_fault_restore_map_lock(struct faultstate *fs)
350 {
351 
352 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
353 	MPASS(fs->first_object->paging_in_progress > 0);
354 
355 	if (!vm_map_trylock_read(fs->map)) {
356 		VM_OBJECT_WUNLOCK(fs->first_object);
357 		vm_map_lock_read(fs->map);
358 		VM_OBJECT_WLOCK(fs->first_object);
359 	}
360 	fs->lookup_still_valid = true;
361 }
362 
363 static void
364 vm_fault_populate_check_page(vm_page_t m)
365 {
366 
367 	/*
368 	 * Check each page to ensure that the pager is obeying the
369 	 * interface: the page must be installed in the object, fully
370 	 * valid, and exclusively busied.
371 	 */
372 	MPASS(m != NULL);
373 	MPASS(m->valid == VM_PAGE_BITS_ALL);
374 	MPASS(vm_page_xbusied(m));
375 }
376 
377 static void
378 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
379     vm_pindex_t last)
380 {
381 	vm_page_t m;
382 	vm_pindex_t pidx;
383 
384 	VM_OBJECT_ASSERT_WLOCKED(object);
385 	MPASS(first <= last);
386 	for (pidx = first, m = vm_page_lookup(object, pidx);
387 	    pidx <= last; pidx++, m = vm_page_next(m)) {
388 		vm_fault_populate_check_page(m);
389 		vm_page_lock(m);
390 		vm_page_deactivate(m);
391 		vm_page_unlock(m);
392 		vm_page_xunbusy(m);
393 	}
394 }
395 
396 static int
397 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
398     int fault_flags, boolean_t wired, vm_page_t *m_hold)
399 {
400 	struct mtx *m_mtx;
401 	vm_offset_t vaddr;
402 	vm_page_t m;
403 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
404 	int i, npages, psind, rv;
405 
406 	MPASS(fs->object == fs->first_object);
407 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
408 	MPASS(fs->first_object->paging_in_progress > 0);
409 	MPASS(fs->first_object->backing_object == NULL);
410 	MPASS(fs->lookup_still_valid);
411 
412 	pager_first = OFF_TO_IDX(fs->entry->offset);
413 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
414 	unlock_map(fs);
415 	unlock_vp(fs);
416 
417 	/*
418 	 * Call the pager (driver) populate() method.
419 	 *
420 	 * There is no guarantee that the method will be called again
421 	 * if the current fault is for read, and a future fault is
422 	 * for write.  Report the entry's maximum allowed protection
423 	 * to the driver.
424 	 */
425 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
426 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
427 
428 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
429 	if (rv == VM_PAGER_BAD) {
430 		/*
431 		 * VM_PAGER_BAD is the backdoor for a pager to request
432 		 * normal fault handling.
433 		 */
434 		vm_fault_restore_map_lock(fs);
435 		if (fs->map->timestamp != fs->map_generation)
436 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
437 		return (KERN_NOT_RECEIVER);
438 	}
439 	if (rv != VM_PAGER_OK)
440 		return (KERN_FAILURE); /* AKA SIGSEGV */
441 
442 	/* Ensure that the driver is obeying the interface. */
443 	MPASS(pager_first <= pager_last);
444 	MPASS(fs->first_pindex <= pager_last);
445 	MPASS(fs->first_pindex >= pager_first);
446 	MPASS(pager_last < fs->first_object->size);
447 
448 	vm_fault_restore_map_lock(fs);
449 	if (fs->map->timestamp != fs->map_generation) {
450 		vm_fault_populate_cleanup(fs->first_object, pager_first,
451 		    pager_last);
452 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
453 	}
454 
455 	/*
456 	 * The map is unchanged after our last unlock.  Process the fault.
457 	 *
458 	 * The range [pager_first, pager_last] that is given to the
459 	 * pager is only a hint.  The pager may populate any range
460 	 * within the object that includes the requested page index.
461 	 * In case the pager expanded the range, clip it to fit into
462 	 * the map entry.
463 	 */
464 	map_first = OFF_TO_IDX(fs->entry->offset);
465 	if (map_first > pager_first) {
466 		vm_fault_populate_cleanup(fs->first_object, pager_first,
467 		    map_first - 1);
468 		pager_first = map_first;
469 	}
470 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
471 	if (map_last < pager_last) {
472 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
473 		    pager_last);
474 		pager_last = map_last;
475 	}
476 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
477 	    pidx <= pager_last;
478 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
479 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
480 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \
481     __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)
482 		psind = m->psind;
483 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
484 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
485 		    !pmap_ps_enabled(fs->map->pmap) || wired))
486 			psind = 0;
487 #else
488 		psind = 0;
489 #endif
490 		npages = atop(pagesizes[psind]);
491 		for (i = 0; i < npages; i++) {
492 			vm_fault_populate_check_page(&m[i]);
493 			vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
494 			    fault_flags, true);
495 		}
496 		VM_OBJECT_WUNLOCK(fs->first_object);
497 		rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type |
498 		    (wired ? PMAP_ENTER_WIRED : 0), psind);
499 #if defined(__amd64__)
500 		if (psind > 0 && rv == KERN_FAILURE) {
501 			for (i = 0; i < npages; i++) {
502 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
503 				    &m[i], prot, fault_type |
504 				    (wired ? PMAP_ENTER_WIRED : 0), 0);
505 				MPASS(rv == KERN_SUCCESS);
506 			}
507 		}
508 #else
509 		MPASS(rv == KERN_SUCCESS);
510 #endif
511 		VM_OBJECT_WLOCK(fs->first_object);
512 		m_mtx = NULL;
513 		for (i = 0; i < npages; i++) {
514 			vm_page_change_lock(&m[i], &m_mtx);
515 			if ((fault_flags & VM_FAULT_WIRE) != 0)
516 				vm_page_wire(&m[i]);
517 			else
518 				vm_page_activate(&m[i]);
519 			if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
520 				*m_hold = &m[i];
521 				vm_page_wire(&m[i]);
522 			}
523 			vm_page_xunbusy_maybelocked(&m[i]);
524 		}
525 		if (m_mtx != NULL)
526 			mtx_unlock(m_mtx);
527 	}
528 	curthread->td_ru.ru_majflt++;
529 	return (KERN_SUCCESS);
530 }
531 
532 /*
533  *	vm_fault:
534  *
535  *	Handle a page fault occurring at the given address,
536  *	requiring the given permissions, in the map specified.
537  *	If successful, the page is inserted into the
538  *	associated physical map.
539  *
540  *	NOTE: the given address should be truncated to the
541  *	proper page address.
542  *
543  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
544  *	a standard error specifying why the fault is fatal is returned.
545  *
546  *	The map in question must be referenced, and remains so.
547  *	Caller may hold no locks.
548  */
549 int
550 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
551     int fault_flags)
552 {
553 	struct thread *td;
554 	int result;
555 
556 	td = curthread;
557 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
558 		return (KERN_PROTECTION_FAILURE);
559 #ifdef KTRACE
560 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
561 		ktrfault(vaddr, fault_type);
562 #endif
563 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
564 	    NULL);
565 #ifdef KTRACE
566 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
567 		ktrfaultend(result);
568 #endif
569 	return (result);
570 }
571 
572 int
573 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
574     int fault_flags, vm_page_t *m_hold)
575 {
576 	struct faultstate fs;
577 	struct vnode *vp;
578 	struct domainset *dset;
579 	struct mtx *mtx;
580 	vm_object_t next_object, retry_object;
581 	vm_offset_t e_end, e_start;
582 	vm_pindex_t retry_pindex;
583 	vm_prot_t prot, retry_prot;
584 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
585 	int locked, nera, oom, result, rv;
586 	u_char behavior;
587 	boolean_t wired;	/* Passed by reference. */
588 	bool dead, hardfault, is_first_object_locked;
589 
590 	VM_CNT_INC(v_vm_faults);
591 	fs.vp = NULL;
592 	faultcount = 0;
593 	nera = -1;
594 	hardfault = false;
595 
596 RetryFault:
597 	oom = 0;
598 RetryFault_oom:
599 
600 	/*
601 	 * Find the backing store object and offset into it to begin the
602 	 * search.
603 	 */
604 	fs.map = map;
605 	result = vm_map_lookup(&fs.map, vaddr, fault_type |
606 	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
607 	    &fs.first_pindex, &prot, &wired);
608 	if (result != KERN_SUCCESS) {
609 		unlock_vp(&fs);
610 		return (result);
611 	}
612 
613 	fs.map_generation = fs.map->timestamp;
614 
615 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
616 		panic("%s: fault on nofault entry, addr: %#lx",
617 		    __func__, (u_long)vaddr);
618 	}
619 
620 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
621 	    fs.entry->wiring_thread != curthread) {
622 		vm_map_unlock_read(fs.map);
623 		vm_map_lock(fs.map);
624 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
625 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
626 			unlock_vp(&fs);
627 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
628 			vm_map_unlock_and_wait(fs.map, 0);
629 		} else
630 			vm_map_unlock(fs.map);
631 		goto RetryFault;
632 	}
633 
634 	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
635 
636 	if (wired)
637 		fault_type = prot | (fault_type & VM_PROT_COPY);
638 	else
639 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
640 		    ("!wired && VM_FAULT_WIRE"));
641 
642 	/*
643 	 * Try to avoid lock contention on the top-level object through
644 	 * special-case handling of some types of page faults, specifically,
645 	 * those that are both (1) mapping an existing page from the top-
646 	 * level object and (2) not having to mark that object as containing
647 	 * dirty pages.  Under these conditions, a read lock on the top-level
648 	 * object suffices, allowing multiple page faults of a similar type to
649 	 * run in parallel on the same top-level object.
650 	 */
651 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
652 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
653 	    /* avoid calling vm_object_set_writeable_dirty() */
654 	    ((prot & VM_PROT_WRITE) == 0 ||
655 	    (fs.first_object->type != OBJT_VNODE &&
656 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
657 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
658 		VM_OBJECT_RLOCK(fs.first_object);
659 		if ((prot & VM_PROT_WRITE) == 0 ||
660 		    (fs.first_object->type != OBJT_VNODE &&
661 		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
662 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
663 			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
664 			    fault_flags, wired, m_hold);
665 			if (rv == KERN_SUCCESS)
666 				return (rv);
667 		}
668 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
669 			VM_OBJECT_RUNLOCK(fs.first_object);
670 			VM_OBJECT_WLOCK(fs.first_object);
671 		}
672 	} else {
673 		VM_OBJECT_WLOCK(fs.first_object);
674 	}
675 
676 	/*
677 	 * Make a reference to this object to prevent its disposal while we
678 	 * are messing with it.  Once we have the reference, the map is free
679 	 * to be diddled.  Since objects reference their shadows (and copies),
680 	 * they will stay around as well.
681 	 *
682 	 * Bump the paging-in-progress count to prevent size changes (e.g.
683 	 * truncation operations) during I/O.
684 	 */
685 	vm_object_reference_locked(fs.first_object);
686 	vm_object_pip_add(fs.first_object, 1);
687 
688 	fs.lookup_still_valid = true;
689 
690 	fs.first_m = NULL;
691 
692 	/*
693 	 * Search for the page at object/offset.
694 	 */
695 	fs.object = fs.first_object;
696 	fs.pindex = fs.first_pindex;
697 	while (TRUE) {
698 		/*
699 		 * If the object is marked for imminent termination,
700 		 * we retry here, since the collapse pass has raced
701 		 * with us.  Otherwise, if we see terminally dead
702 		 * object, return fail.
703 		 */
704 		if ((fs.object->flags & OBJ_DEAD) != 0) {
705 			dead = fs.object->type == OBJT_DEAD;
706 			unlock_and_deallocate(&fs);
707 			if (dead)
708 				return (KERN_PROTECTION_FAILURE);
709 			pause("vmf_de", 1);
710 			goto RetryFault;
711 		}
712 
713 		/*
714 		 * See if page is resident
715 		 */
716 		fs.m = vm_page_lookup(fs.object, fs.pindex);
717 		if (fs.m != NULL) {
718 			/*
719 			 * Wait/Retry if the page is busy.  We have to do this
720 			 * if the page is either exclusive or shared busy
721 			 * because the vm_pager may be using read busy for
722 			 * pageouts (and even pageins if it is the vnode
723 			 * pager), and we could end up trying to pagein and
724 			 * pageout the same page simultaneously.
725 			 *
726 			 * We can theoretically allow the busy case on a read
727 			 * fault if the page is marked valid, but since such
728 			 * pages are typically already pmap'd, putting that
729 			 * special case in might be more effort then it is
730 			 * worth.  We cannot under any circumstances mess
731 			 * around with a shared busied page except, perhaps,
732 			 * to pmap it.
733 			 */
734 			if (vm_page_busied(fs.m)) {
735 				/*
736 				 * Reference the page before unlocking and
737 				 * sleeping so that the page daemon is less
738 				 * likely to reclaim it.
739 				 */
740 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
741 				if (fs.object != fs.first_object) {
742 					if (!VM_OBJECT_TRYWLOCK(
743 					    fs.first_object)) {
744 						VM_OBJECT_WUNLOCK(fs.object);
745 						VM_OBJECT_WLOCK(fs.first_object);
746 						VM_OBJECT_WLOCK(fs.object);
747 					}
748 					vm_page_lock(fs.first_m);
749 					vm_page_free(fs.first_m);
750 					vm_page_unlock(fs.first_m);
751 					vm_object_pip_wakeup(fs.first_object);
752 					VM_OBJECT_WUNLOCK(fs.first_object);
753 					fs.first_m = NULL;
754 				}
755 				unlock_map(&fs);
756 				if (fs.m == vm_page_lookup(fs.object,
757 				    fs.pindex)) {
758 					vm_page_sleep_if_busy(fs.m, "vmpfw");
759 				}
760 				vm_object_pip_wakeup(fs.object);
761 				VM_OBJECT_WUNLOCK(fs.object);
762 				VM_CNT_INC(v_intrans);
763 				vm_object_deallocate(fs.first_object);
764 				goto RetryFault;
765 			}
766 
767 			/*
768 			 * Mark page busy for other processes, and the
769 			 * pagedaemon.  If it still isn't completely valid
770 			 * (readable), jump to readrest, else break-out ( we
771 			 * found the page ).
772 			 */
773 			vm_page_xbusy(fs.m);
774 			if (fs.m->valid != VM_PAGE_BITS_ALL)
775 				goto readrest;
776 			break; /* break to PAGE HAS BEEN FOUND */
777 		}
778 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
779 
780 		/*
781 		 * Page is not resident.  If the pager might contain the page
782 		 * or this is the beginning of the search, allocate a new
783 		 * page.  (Default objects are zero-fill, so there is no real
784 		 * pager for them.)
785 		 */
786 		if (fs.object->type != OBJT_DEFAULT ||
787 		    fs.object == fs.first_object) {
788 			if (fs.pindex >= fs.object->size) {
789 				unlock_and_deallocate(&fs);
790 				return (KERN_PROTECTION_FAILURE);
791 			}
792 
793 			if (fs.object == fs.first_object &&
794 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
795 			    fs.first_object->shadow_count == 0) {
796 				rv = vm_fault_populate(&fs, prot, fault_type,
797 				    fault_flags, wired, m_hold);
798 				switch (rv) {
799 				case KERN_SUCCESS:
800 				case KERN_FAILURE:
801 					unlock_and_deallocate(&fs);
802 					return (rv);
803 				case KERN_RESOURCE_SHORTAGE:
804 					unlock_and_deallocate(&fs);
805 					goto RetryFault;
806 				case KERN_NOT_RECEIVER:
807 					/*
808 					 * Pager's populate() method
809 					 * returned VM_PAGER_BAD.
810 					 */
811 					break;
812 				default:
813 					panic("inconsistent return codes");
814 				}
815 			}
816 
817 			/*
818 			 * Allocate a new page for this object/offset pair.
819 			 *
820 			 * Unlocked read of the p_flag is harmless. At
821 			 * worst, the P_KILLED might be not observed
822 			 * there, and allocation can fail, causing
823 			 * restart and new reading of the p_flag.
824 			 */
825 			dset = fs.object->domain.dr_policy;
826 			if (dset == NULL)
827 				dset = curthread->td_domain.dr_policy;
828 			if (!vm_page_count_severe_set(&dset->ds_mask) ||
829 			    P_KILLED(curproc)) {
830 #if VM_NRESERVLEVEL > 0
831 				vm_object_color(fs.object, atop(vaddr) -
832 				    fs.pindex);
833 #endif
834 				alloc_req = P_KILLED(curproc) ?
835 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
836 				if (fs.object->type != OBJT_VNODE &&
837 				    fs.object->backing_object == NULL)
838 					alloc_req |= VM_ALLOC_ZERO;
839 				fs.m = vm_page_alloc(fs.object, fs.pindex,
840 				    alloc_req);
841 			}
842 			if (fs.m == NULL) {
843 				unlock_and_deallocate(&fs);
844 				if (vm_pfault_oom_attempts < 0 ||
845 				    oom < vm_pfault_oom_attempts) {
846 					oom++;
847 					vm_waitpfault(dset,
848 					    vm_pfault_oom_wait * hz);
849 					goto RetryFault_oom;
850 				}
851 				if (bootverbose)
852 					printf(
853 	"proc %d (%s) failed to alloc page on fault, starting OOM\n",
854 					    curproc->p_pid, curproc->p_comm);
855 				vm_pageout_oom(VM_OOM_MEM_PF);
856 				goto RetryFault;
857 			}
858 		}
859 
860 readrest:
861 		/*
862 		 * At this point, we have either allocated a new page or found
863 		 * an existing page that is only partially valid.
864 		 *
865 		 * We hold a reference on the current object and the page is
866 		 * exclusive busied.
867 		 */
868 
869 		/*
870 		 * If the pager for the current object might have the page,
871 		 * then determine the number of additional pages to read and
872 		 * potentially reprioritize previously read pages for earlier
873 		 * reclamation.  These operations should only be performed
874 		 * once per page fault.  Even if the current pager doesn't
875 		 * have the page, the number of additional pages to read will
876 		 * apply to subsequent objects in the shadow chain.
877 		 */
878 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
879 		    !P_KILLED(curproc)) {
880 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
881 			era = fs.entry->read_ahead;
882 			behavior = vm_map_entry_behavior(fs.entry);
883 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
884 				nera = 0;
885 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
886 				nera = VM_FAULT_READ_AHEAD_MAX;
887 				if (vaddr == fs.entry->next_read)
888 					vm_fault_dontneed(&fs, vaddr, nera);
889 			} else if (vaddr == fs.entry->next_read) {
890 				/*
891 				 * This is a sequential fault.  Arithmetically
892 				 * increase the requested number of pages in
893 				 * the read-ahead window.  The requested
894 				 * number of pages is "# of sequential faults
895 				 * x (read ahead min + 1) + read ahead min"
896 				 */
897 				nera = VM_FAULT_READ_AHEAD_MIN;
898 				if (era > 0) {
899 					nera += era + 1;
900 					if (nera > VM_FAULT_READ_AHEAD_MAX)
901 						nera = VM_FAULT_READ_AHEAD_MAX;
902 				}
903 				if (era == VM_FAULT_READ_AHEAD_MAX)
904 					vm_fault_dontneed(&fs, vaddr, nera);
905 			} else {
906 				/*
907 				 * This is a non-sequential fault.
908 				 */
909 				nera = 0;
910 			}
911 			if (era != nera) {
912 				/*
913 				 * A read lock on the map suffices to update
914 				 * the read ahead count safely.
915 				 */
916 				fs.entry->read_ahead = nera;
917 			}
918 
919 			/*
920 			 * Prepare for unlocking the map.  Save the map
921 			 * entry's start and end addresses, which are used to
922 			 * optimize the size of the pager operation below.
923 			 * Even if the map entry's addresses change after
924 			 * unlocking the map, using the saved addresses is
925 			 * safe.
926 			 */
927 			e_start = fs.entry->start;
928 			e_end = fs.entry->end;
929 		}
930 
931 		/*
932 		 * Call the pager to retrieve the page if there is a chance
933 		 * that the pager has it, and potentially retrieve additional
934 		 * pages at the same time.
935 		 */
936 		if (fs.object->type != OBJT_DEFAULT) {
937 			/*
938 			 * Release the map lock before locking the vnode or
939 			 * sleeping in the pager.  (If the current object has
940 			 * a shadow, then an earlier iteration of this loop
941 			 * may have already unlocked the map.)
942 			 */
943 			unlock_map(&fs);
944 
945 			if (fs.object->type == OBJT_VNODE &&
946 			    (vp = fs.object->handle) != fs.vp) {
947 				/*
948 				 * Perform an unlock in case the desired vnode
949 				 * changed while the map was unlocked during a
950 				 * retry.
951 				 */
952 				unlock_vp(&fs);
953 
954 				locked = VOP_ISLOCKED(vp);
955 				if (locked != LK_EXCLUSIVE)
956 					locked = LK_SHARED;
957 
958 				/*
959 				 * We must not sleep acquiring the vnode lock
960 				 * while we have the page exclusive busied or
961 				 * the object's paging-in-progress count
962 				 * incremented.  Otherwise, we could deadlock.
963 				 */
964 				error = vget(vp, locked | LK_CANRECURSE |
965 				    LK_NOWAIT, curthread);
966 				if (error != 0) {
967 					vhold(vp);
968 					release_page(&fs);
969 					unlock_and_deallocate(&fs);
970 					error = vget(vp, locked | LK_RETRY |
971 					    LK_CANRECURSE, curthread);
972 					vdrop(vp);
973 					fs.vp = vp;
974 					KASSERT(error == 0,
975 					    ("vm_fault: vget failed"));
976 					goto RetryFault;
977 				}
978 				fs.vp = vp;
979 			}
980 			KASSERT(fs.vp == NULL || !fs.map->system_map,
981 			    ("vm_fault: vnode-backed object mapped by system map"));
982 
983 			/*
984 			 * Page in the requested page and hint the pager,
985 			 * that it may bring up surrounding pages.
986 			 */
987 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
988 			    P_KILLED(curproc)) {
989 				behind = 0;
990 				ahead = 0;
991 			} else {
992 				/* Is this a sequential fault? */
993 				if (nera > 0) {
994 					behind = 0;
995 					ahead = nera;
996 				} else {
997 					/*
998 					 * Request a cluster of pages that is
999 					 * aligned to a VM_FAULT_READ_DEFAULT
1000 					 * page offset boundary within the
1001 					 * object.  Alignment to a page offset
1002 					 * boundary is more likely to coincide
1003 					 * with the underlying file system
1004 					 * block than alignment to a virtual
1005 					 * address boundary.
1006 					 */
1007 					cluster_offset = fs.pindex %
1008 					    VM_FAULT_READ_DEFAULT;
1009 					behind = ulmin(cluster_offset,
1010 					    atop(vaddr - e_start));
1011 					ahead = VM_FAULT_READ_DEFAULT - 1 -
1012 					    cluster_offset;
1013 				}
1014 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
1015 			}
1016 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
1017 			    &behind, &ahead);
1018 			if (rv == VM_PAGER_OK) {
1019 				faultcount = behind + 1 + ahead;
1020 				hardfault = true;
1021 				break; /* break to PAGE HAS BEEN FOUND */
1022 			}
1023 			if (rv == VM_PAGER_ERROR)
1024 				printf("vm_fault: pager read error, pid %d (%s)\n",
1025 				    curproc->p_pid, curproc->p_comm);
1026 
1027 			/*
1028 			 * If an I/O error occurred or the requested page was
1029 			 * outside the range of the pager, clean up and return
1030 			 * an error.
1031 			 */
1032 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1033 				vm_page_lock(fs.m);
1034 				if (!vm_page_wired(fs.m))
1035 					vm_page_free(fs.m);
1036 				else
1037 					vm_page_xunbusy_maybelocked(fs.m);
1038 				vm_page_unlock(fs.m);
1039 				fs.m = NULL;
1040 				unlock_and_deallocate(&fs);
1041 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
1042 				    KERN_PROTECTION_FAILURE);
1043 			}
1044 
1045 			/*
1046 			 * The requested page does not exist at this object/
1047 			 * offset.  Remove the invalid page from the object,
1048 			 * waking up anyone waiting for it, and continue on to
1049 			 * the next object.  However, if this is the top-level
1050 			 * object, we must leave the busy page in place to
1051 			 * prevent another process from rushing past us, and
1052 			 * inserting the page in that object at the same time
1053 			 * that we are.
1054 			 */
1055 			if (fs.object != fs.first_object) {
1056 				vm_page_lock(fs.m);
1057 				if (!vm_page_wired(fs.m))
1058 					vm_page_free(fs.m);
1059 				else
1060 					vm_page_xunbusy_maybelocked(fs.m);
1061 				vm_page_unlock(fs.m);
1062 				fs.m = NULL;
1063 			}
1064 		}
1065 
1066 		/*
1067 		 * We get here if the object has default pager (or unwiring)
1068 		 * or the pager doesn't have the page.
1069 		 */
1070 		if (fs.object == fs.first_object)
1071 			fs.first_m = fs.m;
1072 
1073 		/*
1074 		 * Move on to the next object.  Lock the next object before
1075 		 * unlocking the current one.
1076 		 */
1077 		next_object = fs.object->backing_object;
1078 		if (next_object == NULL) {
1079 			/*
1080 			 * If there's no object left, fill the page in the top
1081 			 * object with zeros.
1082 			 */
1083 			if (fs.object != fs.first_object) {
1084 				vm_object_pip_wakeup(fs.object);
1085 				VM_OBJECT_WUNLOCK(fs.object);
1086 
1087 				fs.object = fs.first_object;
1088 				fs.pindex = fs.first_pindex;
1089 				fs.m = fs.first_m;
1090 				VM_OBJECT_WLOCK(fs.object);
1091 			}
1092 			fs.first_m = NULL;
1093 
1094 			/*
1095 			 * Zero the page if necessary and mark it valid.
1096 			 */
1097 			if ((fs.m->flags & PG_ZERO) == 0) {
1098 				pmap_zero_page(fs.m);
1099 			} else {
1100 				VM_CNT_INC(v_ozfod);
1101 			}
1102 			VM_CNT_INC(v_zfod);
1103 			fs.m->valid = VM_PAGE_BITS_ALL;
1104 			/* Don't try to prefault neighboring pages. */
1105 			faultcount = 1;
1106 			break;	/* break to PAGE HAS BEEN FOUND */
1107 		} else {
1108 			KASSERT(fs.object != next_object,
1109 			    ("object loop %p", next_object));
1110 			VM_OBJECT_WLOCK(next_object);
1111 			vm_object_pip_add(next_object, 1);
1112 			if (fs.object != fs.first_object)
1113 				vm_object_pip_wakeup(fs.object);
1114 			fs.pindex +=
1115 			    OFF_TO_IDX(fs.object->backing_object_offset);
1116 			VM_OBJECT_WUNLOCK(fs.object);
1117 			fs.object = next_object;
1118 		}
1119 	}
1120 
1121 	vm_page_assert_xbusied(fs.m);
1122 
1123 	/*
1124 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1125 	 * is held.]
1126 	 */
1127 
1128 	/*
1129 	 * If the page is being written, but isn't already owned by the
1130 	 * top-level object, we have to copy it into a new page owned by the
1131 	 * top-level object.
1132 	 */
1133 	if (fs.object != fs.first_object) {
1134 		/*
1135 		 * We only really need to copy if we want to write it.
1136 		 */
1137 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1138 			/*
1139 			 * This allows pages to be virtually copied from a
1140 			 * backing_object into the first_object, where the
1141 			 * backing object has no other refs to it, and cannot
1142 			 * gain any more refs.  Instead of a bcopy, we just
1143 			 * move the page from the backing object to the
1144 			 * first object.  Note that we must mark the page
1145 			 * dirty in the first object so that it will go out
1146 			 * to swap when needed.
1147 			 */
1148 			is_first_object_locked = false;
1149 			if (
1150 				/*
1151 				 * Only one shadow object
1152 				 */
1153 				(fs.object->shadow_count == 1) &&
1154 				/*
1155 				 * No COW refs, except us
1156 				 */
1157 				(fs.object->ref_count == 1) &&
1158 				/*
1159 				 * No one else can look this object up
1160 				 */
1161 				(fs.object->handle == NULL) &&
1162 				/*
1163 				 * No other ways to look the object up
1164 				 */
1165 				((fs.object->type == OBJT_DEFAULT) ||
1166 				 (fs.object->type == OBJT_SWAP)) &&
1167 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1168 				/*
1169 				 * We don't chase down the shadow chain
1170 				 */
1171 			    fs.object == fs.first_object->backing_object) {
1172 				/*
1173 				 * Keep the page wired to ensure that it is not
1174 				 * freed by another thread, such as the page
1175 				 * daemon, while it is disassociated from an
1176 				 * object.
1177 				 */
1178 				mtx = NULL;
1179 				vm_page_change_lock(fs.m, &mtx);
1180 				vm_page_wire(fs.m);
1181 				(void)vm_page_remove(fs.m);
1182 				vm_page_change_lock(fs.first_m, &mtx);
1183 				vm_page_replace_checked(fs.m, fs.first_object,
1184 				    fs.first_pindex, fs.first_m);
1185 				vm_page_free(fs.first_m);
1186 				vm_page_change_lock(fs.m, &mtx);
1187 				vm_page_unwire(fs.m, PQ_ACTIVE);
1188 				mtx_unlock(mtx);
1189 				vm_page_dirty(fs.m);
1190 #if VM_NRESERVLEVEL > 0
1191 				/*
1192 				 * Rename the reservation.
1193 				 */
1194 				vm_reserv_rename(fs.m, fs.first_object,
1195 				    fs.object, OFF_TO_IDX(
1196 				    fs.first_object->backing_object_offset));
1197 #endif
1198 				/*
1199 				 * Removing the page from the backing object
1200 				 * unbusied it.
1201 				 */
1202 				vm_page_xbusy(fs.m);
1203 				fs.first_m = fs.m;
1204 				fs.m = NULL;
1205 				VM_CNT_INC(v_cow_optim);
1206 			} else {
1207 				/*
1208 				 * Oh, well, lets copy it.
1209 				 */
1210 				pmap_copy_page(fs.m, fs.first_m);
1211 				fs.first_m->valid = VM_PAGE_BITS_ALL;
1212 				if (wired && (fault_flags &
1213 				    VM_FAULT_WIRE) == 0) {
1214 					vm_page_lock(fs.first_m);
1215 					vm_page_wire(fs.first_m);
1216 					vm_page_unlock(fs.first_m);
1217 
1218 					vm_page_lock(fs.m);
1219 					vm_page_unwire(fs.m, PQ_INACTIVE);
1220 					vm_page_unlock(fs.m);
1221 				}
1222 				/*
1223 				 * We no longer need the old page or object.
1224 				 */
1225 				release_page(&fs);
1226 			}
1227 			/*
1228 			 * fs.object != fs.first_object due to above
1229 			 * conditional
1230 			 */
1231 			vm_object_pip_wakeup(fs.object);
1232 			VM_OBJECT_WUNLOCK(fs.object);
1233 
1234 			/*
1235 			 * We only try to prefault read-only mappings to the
1236 			 * neighboring pages when this copy-on-write fault is
1237 			 * a hard fault.  In other cases, trying to prefault
1238 			 * is typically wasted effort.
1239 			 */
1240 			if (faultcount == 0)
1241 				faultcount = 1;
1242 
1243 			/*
1244 			 * Only use the new page below...
1245 			 */
1246 			fs.object = fs.first_object;
1247 			fs.pindex = fs.first_pindex;
1248 			fs.m = fs.first_m;
1249 			if (!is_first_object_locked)
1250 				VM_OBJECT_WLOCK(fs.object);
1251 			VM_CNT_INC(v_cow_faults);
1252 			curthread->td_cow++;
1253 		} else {
1254 			prot &= ~VM_PROT_WRITE;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * We must verify that the maps have not changed since our last
1260 	 * lookup.
1261 	 */
1262 	if (!fs.lookup_still_valid) {
1263 		if (!vm_map_trylock_read(fs.map)) {
1264 			release_page(&fs);
1265 			unlock_and_deallocate(&fs);
1266 			goto RetryFault;
1267 		}
1268 		fs.lookup_still_valid = true;
1269 		if (fs.map->timestamp != fs.map_generation) {
1270 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1271 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1272 
1273 			/*
1274 			 * If we don't need the page any longer, put it on the inactive
1275 			 * list (the easiest thing to do here).  If no one needs it,
1276 			 * pageout will grab it eventually.
1277 			 */
1278 			if (result != KERN_SUCCESS) {
1279 				release_page(&fs);
1280 				unlock_and_deallocate(&fs);
1281 
1282 				/*
1283 				 * If retry of map lookup would have blocked then
1284 				 * retry fault from start.
1285 				 */
1286 				if (result == KERN_FAILURE)
1287 					goto RetryFault;
1288 				return (result);
1289 			}
1290 			if ((retry_object != fs.first_object) ||
1291 			    (retry_pindex != fs.first_pindex)) {
1292 				release_page(&fs);
1293 				unlock_and_deallocate(&fs);
1294 				goto RetryFault;
1295 			}
1296 
1297 			/*
1298 			 * Check whether the protection has changed or the object has
1299 			 * been copied while we left the map unlocked. Changing from
1300 			 * read to write permission is OK - we leave the page
1301 			 * write-protected, and catch the write fault. Changing from
1302 			 * write to read permission means that we can't mark the page
1303 			 * write-enabled after all.
1304 			 */
1305 			prot &= retry_prot;
1306 			fault_type &= retry_prot;
1307 			if (prot == 0) {
1308 				release_page(&fs);
1309 				unlock_and_deallocate(&fs);
1310 				goto RetryFault;
1311 			}
1312 
1313 			/* Reassert because wired may have changed. */
1314 			KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0,
1315 			    ("!wired && VM_FAULT_WIRE"));
1316 		}
1317 	}
1318 
1319 	/*
1320 	 * If the page was filled by a pager, save the virtual address that
1321 	 * should be faulted on next under a sequential access pattern to the
1322 	 * map entry.  A read lock on the map suffices to update this address
1323 	 * safely.
1324 	 */
1325 	if (hardfault)
1326 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1327 
1328 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1329 	vm_page_assert_xbusied(fs.m);
1330 
1331 	/*
1332 	 * Page must be completely valid or it is not fit to
1333 	 * map into user space.  vm_pager_get_pages() ensures this.
1334 	 */
1335 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1336 	    ("vm_fault: page %p partially invalid", fs.m));
1337 	VM_OBJECT_WUNLOCK(fs.object);
1338 
1339 	/*
1340 	 * Put this page into the physical map.  We had to do the unlock above
1341 	 * because pmap_enter() may sleep.  We don't put the page
1342 	 * back on the active queue until later so that the pageout daemon
1343 	 * won't find it (yet).
1344 	 */
1345 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1346 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1347 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1348 	    wired == 0)
1349 		vm_fault_prefault(&fs, vaddr,
1350 		    faultcount > 0 ? behind : PFBAK,
1351 		    faultcount > 0 ? ahead : PFFOR, false);
1352 	VM_OBJECT_WLOCK(fs.object);
1353 	vm_page_lock(fs.m);
1354 
1355 	/*
1356 	 * If the page is not wired down, then put it where the pageout daemon
1357 	 * can find it.
1358 	 */
1359 	if ((fault_flags & VM_FAULT_WIRE) != 0)
1360 		vm_page_wire(fs.m);
1361 	else
1362 		vm_page_activate(fs.m);
1363 	if (m_hold != NULL) {
1364 		*m_hold = fs.m;
1365 		vm_page_wire(fs.m);
1366 	}
1367 	vm_page_unlock(fs.m);
1368 	vm_page_xunbusy(fs.m);
1369 
1370 	/*
1371 	 * Unlock everything, and return
1372 	 */
1373 	unlock_and_deallocate(&fs);
1374 	if (hardfault) {
1375 		VM_CNT_INC(v_io_faults);
1376 		curthread->td_ru.ru_majflt++;
1377 #ifdef RACCT
1378 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1379 			PROC_LOCK(curproc);
1380 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1381 				racct_add_force(curproc, RACCT_WRITEBPS,
1382 				    PAGE_SIZE + behind * PAGE_SIZE);
1383 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1384 			} else {
1385 				racct_add_force(curproc, RACCT_READBPS,
1386 				    PAGE_SIZE + ahead * PAGE_SIZE);
1387 				racct_add_force(curproc, RACCT_READIOPS, 1);
1388 			}
1389 			PROC_UNLOCK(curproc);
1390 		}
1391 #endif
1392 	} else
1393 		curthread->td_ru.ru_minflt++;
1394 
1395 	return (KERN_SUCCESS);
1396 }
1397 
1398 /*
1399  * Speed up the reclamation of pages that precede the faulting pindex within
1400  * the first object of the shadow chain.  Essentially, perform the equivalent
1401  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1402  * the faulting pindex by the cluster size when the pages read by vm_fault()
1403  * cross a cluster-size boundary.  The cluster size is the greater of the
1404  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1405  *
1406  * When "fs->first_object" is a shadow object, the pages in the backing object
1407  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1408  * function must only be concerned with pages in the first object.
1409  */
1410 static void
1411 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1412 {
1413 	vm_map_entry_t entry;
1414 	vm_object_t first_object, object;
1415 	vm_offset_t end, start;
1416 	vm_page_t m, m_next;
1417 	vm_pindex_t pend, pstart;
1418 	vm_size_t size;
1419 
1420 	object = fs->object;
1421 	VM_OBJECT_ASSERT_WLOCKED(object);
1422 	first_object = fs->first_object;
1423 	if (first_object != object) {
1424 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1425 			VM_OBJECT_WUNLOCK(object);
1426 			VM_OBJECT_WLOCK(first_object);
1427 			VM_OBJECT_WLOCK(object);
1428 		}
1429 	}
1430 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1431 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1432 		size = VM_FAULT_DONTNEED_MIN;
1433 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1434 			size = pagesizes[1];
1435 		end = rounddown2(vaddr, size);
1436 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1437 		    (entry = fs->entry)->start < end) {
1438 			if (end - entry->start < size)
1439 				start = entry->start;
1440 			else
1441 				start = end - size;
1442 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1443 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1444 			    entry->start);
1445 			m_next = vm_page_find_least(first_object, pstart);
1446 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1447 			    entry->start);
1448 			while ((m = m_next) != NULL && m->pindex < pend) {
1449 				m_next = TAILQ_NEXT(m, listq);
1450 				if (m->valid != VM_PAGE_BITS_ALL ||
1451 				    vm_page_busied(m))
1452 					continue;
1453 
1454 				/*
1455 				 * Don't clear PGA_REFERENCED, since it would
1456 				 * likely represent a reference by a different
1457 				 * process.
1458 				 *
1459 				 * Typically, at this point, prefetched pages
1460 				 * are still in the inactive queue.  Only
1461 				 * pages that triggered page faults are in the
1462 				 * active queue.
1463 				 */
1464 				vm_page_lock(m);
1465 				if (!vm_page_inactive(m))
1466 					vm_page_deactivate(m);
1467 				vm_page_unlock(m);
1468 			}
1469 		}
1470 	}
1471 	if (first_object != object)
1472 		VM_OBJECT_WUNLOCK(first_object);
1473 }
1474 
1475 /*
1476  * vm_fault_prefault provides a quick way of clustering
1477  * pagefaults into a processes address space.  It is a "cousin"
1478  * of vm_map_pmap_enter, except it runs at page fault time instead
1479  * of mmap time.
1480  */
1481 static void
1482 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1483     int backward, int forward, bool obj_locked)
1484 {
1485 	pmap_t pmap;
1486 	vm_map_entry_t entry;
1487 	vm_object_t backing_object, lobject;
1488 	vm_offset_t addr, starta;
1489 	vm_pindex_t pindex;
1490 	vm_page_t m;
1491 	int i;
1492 
1493 	pmap = fs->map->pmap;
1494 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1495 		return;
1496 
1497 	entry = fs->entry;
1498 
1499 	if (addra < backward * PAGE_SIZE) {
1500 		starta = entry->start;
1501 	} else {
1502 		starta = addra - backward * PAGE_SIZE;
1503 		if (starta < entry->start)
1504 			starta = entry->start;
1505 	}
1506 
1507 	/*
1508 	 * Generate the sequence of virtual addresses that are candidates for
1509 	 * prefaulting in an outward spiral from the faulting virtual address,
1510 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1511 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1512 	 * If the candidate address doesn't have a backing physical page, then
1513 	 * the loop immediately terminates.
1514 	 */
1515 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1516 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1517 		    PAGE_SIZE);
1518 		if (addr > addra + forward * PAGE_SIZE)
1519 			addr = 0;
1520 
1521 		if (addr < starta || addr >= entry->end)
1522 			continue;
1523 
1524 		if (!pmap_is_prefaultable(pmap, addr))
1525 			continue;
1526 
1527 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1528 		lobject = entry->object.vm_object;
1529 		if (!obj_locked)
1530 			VM_OBJECT_RLOCK(lobject);
1531 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1532 		    lobject->type == OBJT_DEFAULT &&
1533 		    (backing_object = lobject->backing_object) != NULL) {
1534 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1535 			    0, ("vm_fault_prefault: unaligned object offset"));
1536 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1537 			VM_OBJECT_RLOCK(backing_object);
1538 			if (!obj_locked || lobject != entry->object.vm_object)
1539 				VM_OBJECT_RUNLOCK(lobject);
1540 			lobject = backing_object;
1541 		}
1542 		if (m == NULL) {
1543 			if (!obj_locked || lobject != entry->object.vm_object)
1544 				VM_OBJECT_RUNLOCK(lobject);
1545 			break;
1546 		}
1547 		if (m->valid == VM_PAGE_BITS_ALL &&
1548 		    (m->flags & PG_FICTITIOUS) == 0)
1549 			pmap_enter_quick(pmap, addr, m, entry->protection);
1550 		if (!obj_locked || lobject != entry->object.vm_object)
1551 			VM_OBJECT_RUNLOCK(lobject);
1552 	}
1553 }
1554 
1555 /*
1556  * Hold each of the physical pages that are mapped by the specified range of
1557  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1558  * and allow the specified types of access, "prot".  If all of the implied
1559  * pages are successfully held, then the number of held pages is returned
1560  * together with pointers to those pages in the array "ma".  However, if any
1561  * of the pages cannot be held, -1 is returned.
1562  */
1563 int
1564 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1565     vm_prot_t prot, vm_page_t *ma, int max_count)
1566 {
1567 	vm_offset_t end, va;
1568 	vm_page_t *mp;
1569 	int count;
1570 	boolean_t pmap_failed;
1571 
1572 	if (len == 0)
1573 		return (0);
1574 	end = round_page(addr + len);
1575 	addr = trunc_page(addr);
1576 
1577 	/*
1578 	 * Check for illegal addresses.
1579 	 */
1580 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1581 		return (-1);
1582 
1583 	if (atop(end - addr) > max_count)
1584 		panic("vm_fault_quick_hold_pages: count > max_count");
1585 	count = atop(end - addr);
1586 
1587 	/*
1588 	 * Most likely, the physical pages are resident in the pmap, so it is
1589 	 * faster to try pmap_extract_and_hold() first.
1590 	 */
1591 	pmap_failed = FALSE;
1592 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1593 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1594 		if (*mp == NULL)
1595 			pmap_failed = TRUE;
1596 		else if ((prot & VM_PROT_WRITE) != 0 &&
1597 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1598 			/*
1599 			 * Explicitly dirty the physical page.  Otherwise, the
1600 			 * caller's changes may go unnoticed because they are
1601 			 * performed through an unmanaged mapping or by a DMA
1602 			 * operation.
1603 			 *
1604 			 * The object lock is not held here.
1605 			 * See vm_page_clear_dirty_mask().
1606 			 */
1607 			vm_page_dirty(*mp);
1608 		}
1609 	}
1610 	if (pmap_failed) {
1611 		/*
1612 		 * One or more pages could not be held by the pmap.  Either no
1613 		 * page was mapped at the specified virtual address or that
1614 		 * mapping had insufficient permissions.  Attempt to fault in
1615 		 * and hold these pages.
1616 		 *
1617 		 * If vm_fault_disable_pagefaults() was called,
1618 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1619 		 * acquire MD VM locks, which means we must not call
1620 		 * vm_fault_hold().  Some (out of tree) callers mark
1621 		 * too wide a code area with vm_fault_disable_pagefaults()
1622 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1623 		 * the proper behaviour explicitly.
1624 		 */
1625 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1626 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1627 			goto error;
1628 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1629 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1630 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1631 				goto error;
1632 	}
1633 	return (count);
1634 error:
1635 	for (mp = ma; mp < ma + count; mp++)
1636 		if (*mp != NULL) {
1637 			vm_page_lock(*mp);
1638 			if (vm_page_unwire(*mp, PQ_INACTIVE) &&
1639 			    (*mp)->object == NULL)
1640 				vm_page_free(*mp);
1641 			vm_page_unlock(*mp);
1642 		}
1643 	return (-1);
1644 }
1645 
1646 /*
1647  *	Routine:
1648  *		vm_fault_copy_entry
1649  *	Function:
1650  *		Create new shadow object backing dst_entry with private copy of
1651  *		all underlying pages. When src_entry is equal to dst_entry,
1652  *		function implements COW for wired-down map entry. Otherwise,
1653  *		it forks wired entry into dst_map.
1654  *
1655  *	In/out conditions:
1656  *		The source and destination maps must be locked for write.
1657  *		The source map entry must be wired down (or be a sharing map
1658  *		entry corresponding to a main map entry that is wired down).
1659  */
1660 void
1661 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1662     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1663     vm_ooffset_t *fork_charge)
1664 {
1665 	vm_object_t backing_object, dst_object, object, src_object;
1666 	vm_pindex_t dst_pindex, pindex, src_pindex;
1667 	vm_prot_t access, prot;
1668 	vm_offset_t vaddr;
1669 	vm_page_t dst_m;
1670 	vm_page_t src_m;
1671 	boolean_t upgrade;
1672 
1673 #ifdef	lint
1674 	src_map++;
1675 #endif	/* lint */
1676 
1677 	upgrade = src_entry == dst_entry;
1678 	access = prot = dst_entry->protection;
1679 
1680 	src_object = src_entry->object.vm_object;
1681 	src_pindex = OFF_TO_IDX(src_entry->offset);
1682 
1683 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1684 		dst_object = src_object;
1685 		vm_object_reference(dst_object);
1686 	} else {
1687 		/*
1688 		 * Create the top-level object for the destination entry. (Doesn't
1689 		 * actually shadow anything - we copy the pages directly.)
1690 		 */
1691 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1692 		    atop(dst_entry->end - dst_entry->start));
1693 #if VM_NRESERVLEVEL > 0
1694 		dst_object->flags |= OBJ_COLORED;
1695 		dst_object->pg_color = atop(dst_entry->start);
1696 #endif
1697 		dst_object->domain = src_object->domain;
1698 		dst_object->charge = dst_entry->end - dst_entry->start;
1699 	}
1700 
1701 	VM_OBJECT_WLOCK(dst_object);
1702 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1703 	    ("vm_fault_copy_entry: vm_object not NULL"));
1704 	if (src_object != dst_object) {
1705 		dst_entry->object.vm_object = dst_object;
1706 		dst_entry->offset = 0;
1707 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
1708 	}
1709 	if (fork_charge != NULL) {
1710 		KASSERT(dst_entry->cred == NULL,
1711 		    ("vm_fault_copy_entry: leaked swp charge"));
1712 		dst_object->cred = curthread->td_ucred;
1713 		crhold(dst_object->cred);
1714 		*fork_charge += dst_object->charge;
1715 	} else if ((dst_object->type == OBJT_DEFAULT ||
1716 	    dst_object->type == OBJT_SWAP) &&
1717 	    dst_object->cred == NULL) {
1718 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1719 		    dst_entry));
1720 		dst_object->cred = dst_entry->cred;
1721 		dst_entry->cred = NULL;
1722 	}
1723 
1724 	/*
1725 	 * If not an upgrade, then enter the mappings in the pmap as
1726 	 * read and/or execute accesses.  Otherwise, enter them as
1727 	 * write accesses.
1728 	 *
1729 	 * A writeable large page mapping is only created if all of
1730 	 * the constituent small page mappings are modified. Marking
1731 	 * PTEs as modified on inception allows promotion to happen
1732 	 * without taking potentially large number of soft faults.
1733 	 */
1734 	if (!upgrade)
1735 		access &= ~VM_PROT_WRITE;
1736 
1737 	/*
1738 	 * Loop through all of the virtual pages within the entry's
1739 	 * range, copying each page from the source object to the
1740 	 * destination object.  Since the source is wired, those pages
1741 	 * must exist.  In contrast, the destination is pageable.
1742 	 * Since the destination object doesn't share any backing storage
1743 	 * with the source object, all of its pages must be dirtied,
1744 	 * regardless of whether they can be written.
1745 	 */
1746 	for (vaddr = dst_entry->start, dst_pindex = 0;
1747 	    vaddr < dst_entry->end;
1748 	    vaddr += PAGE_SIZE, dst_pindex++) {
1749 again:
1750 		/*
1751 		 * Find the page in the source object, and copy it in.
1752 		 * Because the source is wired down, the page will be
1753 		 * in memory.
1754 		 */
1755 		if (src_object != dst_object)
1756 			VM_OBJECT_RLOCK(src_object);
1757 		object = src_object;
1758 		pindex = src_pindex + dst_pindex;
1759 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1760 		    (backing_object = object->backing_object) != NULL) {
1761 			/*
1762 			 * Unless the source mapping is read-only or
1763 			 * it is presently being upgraded from
1764 			 * read-only, the first object in the shadow
1765 			 * chain should provide all of the pages.  In
1766 			 * other words, this loop body should never be
1767 			 * executed when the source mapping is already
1768 			 * read/write.
1769 			 */
1770 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1771 			    upgrade,
1772 			    ("vm_fault_copy_entry: main object missing page"));
1773 
1774 			VM_OBJECT_RLOCK(backing_object);
1775 			pindex += OFF_TO_IDX(object->backing_object_offset);
1776 			if (object != dst_object)
1777 				VM_OBJECT_RUNLOCK(object);
1778 			object = backing_object;
1779 		}
1780 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1781 
1782 		if (object != dst_object) {
1783 			/*
1784 			 * Allocate a page in the destination object.
1785 			 */
1786 			dst_m = vm_page_alloc(dst_object, (src_object ==
1787 			    dst_object ? src_pindex : 0) + dst_pindex,
1788 			    VM_ALLOC_NORMAL);
1789 			if (dst_m == NULL) {
1790 				VM_OBJECT_WUNLOCK(dst_object);
1791 				VM_OBJECT_RUNLOCK(object);
1792 				vm_wait(dst_object);
1793 				VM_OBJECT_WLOCK(dst_object);
1794 				goto again;
1795 			}
1796 			pmap_copy_page(src_m, dst_m);
1797 			VM_OBJECT_RUNLOCK(object);
1798 			dst_m->dirty = dst_m->valid = src_m->valid;
1799 		} else {
1800 			dst_m = src_m;
1801 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1802 				goto again;
1803 			if (dst_m->pindex >= dst_object->size)
1804 				/*
1805 				 * We are upgrading.  Index can occur
1806 				 * out of bounds if the object type is
1807 				 * vnode and the file was truncated.
1808 				 */
1809 				break;
1810 			vm_page_xbusy(dst_m);
1811 		}
1812 		VM_OBJECT_WUNLOCK(dst_object);
1813 
1814 		/*
1815 		 * Enter it in the pmap. If a wired, copy-on-write
1816 		 * mapping is being replaced by a write-enabled
1817 		 * mapping, then wire that new mapping.
1818 		 *
1819 		 * The page can be invalid if the user called
1820 		 * msync(MS_INVALIDATE) or truncated the backing vnode
1821 		 * or shared memory object.  In this case, do not
1822 		 * insert it into pmap, but still do the copy so that
1823 		 * all copies of the wired map entry have similar
1824 		 * backing pages.
1825 		 */
1826 		if (dst_m->valid == VM_PAGE_BITS_ALL) {
1827 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1828 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1829 		}
1830 
1831 		/*
1832 		 * Mark it no longer busy, and put it on the active list.
1833 		 */
1834 		VM_OBJECT_WLOCK(dst_object);
1835 
1836 		if (upgrade) {
1837 			if (src_m != dst_m) {
1838 				vm_page_lock(src_m);
1839 				vm_page_unwire(src_m, PQ_INACTIVE);
1840 				vm_page_unlock(src_m);
1841 				vm_page_lock(dst_m);
1842 				vm_page_wire(dst_m);
1843 				vm_page_unlock(dst_m);
1844 			} else {
1845 				KASSERT(vm_page_wired(dst_m),
1846 				    ("dst_m %p is not wired", dst_m));
1847 			}
1848 		} else {
1849 			vm_page_lock(dst_m);
1850 			vm_page_activate(dst_m);
1851 			vm_page_unlock(dst_m);
1852 		}
1853 		vm_page_xunbusy(dst_m);
1854 	}
1855 	VM_OBJECT_WUNLOCK(dst_object);
1856 	if (upgrade) {
1857 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1858 		vm_object_deallocate(src_object);
1859 	}
1860 }
1861 
1862 /*
1863  * Block entry into the machine-independent layer's page fault handler by
1864  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1865  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1866  * spurious page faults.
1867  */
1868 int
1869 vm_fault_disable_pagefaults(void)
1870 {
1871 
1872 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1873 }
1874 
1875 void
1876 vm_fault_enable_pagefaults(int save)
1877 {
1878 
1879 	curthread_pflags_restore(save);
1880 }
1881