1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 int map_generation; 126 bool lookup_still_valid; 127 struct vnode *vp; 128 }; 129 130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 131 int ahead); 132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 133 int backward, int forward); 134 135 static inline void 136 release_page(struct faultstate *fs) 137 { 138 139 vm_page_xunbusy(fs->m); 140 vm_page_lock(fs->m); 141 vm_page_deactivate(fs->m); 142 vm_page_unlock(fs->m); 143 fs->m = NULL; 144 } 145 146 static inline void 147 unlock_map(struct faultstate *fs) 148 { 149 150 if (fs->lookup_still_valid) { 151 vm_map_lookup_done(fs->map, fs->entry); 152 fs->lookup_still_valid = false; 153 } 154 } 155 156 static void 157 unlock_vp(struct faultstate *fs) 158 { 159 160 if (fs->vp != NULL) { 161 vput(fs->vp); 162 fs->vp = NULL; 163 } 164 } 165 166 static void 167 unlock_and_deallocate(struct faultstate *fs) 168 { 169 170 vm_object_pip_wakeup(fs->object); 171 VM_OBJECT_WUNLOCK(fs->object); 172 if (fs->object != fs->first_object) { 173 VM_OBJECT_WLOCK(fs->first_object); 174 vm_page_lock(fs->first_m); 175 vm_page_free(fs->first_m); 176 vm_page_unlock(fs->first_m); 177 vm_object_pip_wakeup(fs->first_object); 178 VM_OBJECT_WUNLOCK(fs->first_object); 179 fs->first_m = NULL; 180 } 181 vm_object_deallocate(fs->first_object); 182 unlock_map(fs); 183 unlock_vp(fs); 184 } 185 186 static void 187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 188 vm_prot_t fault_type, int fault_flags, bool set_wd) 189 { 190 bool need_dirty; 191 192 if (((prot & VM_PROT_WRITE) == 0 && 193 (fault_flags & VM_FAULT_DIRTY) == 0) || 194 (m->oflags & VPO_UNMANAGED) != 0) 195 return; 196 197 VM_OBJECT_ASSERT_LOCKED(m->object); 198 199 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 200 (fault_flags & VM_FAULT_WIRE) == 0) || 201 (fault_flags & VM_FAULT_DIRTY) != 0; 202 203 if (set_wd) 204 vm_object_set_writeable_dirty(m->object); 205 else 206 /* 207 * If two callers of vm_fault_dirty() with set_wd == 208 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 209 * flag set, other with flag clear, race, it is 210 * possible for the no-NOSYNC thread to see m->dirty 211 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 212 * around manipulation of VPO_NOSYNC and 213 * vm_page_dirty() call, to avoid the race and keep 214 * m->oflags consistent. 215 */ 216 vm_page_lock(m); 217 218 /* 219 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 220 * if the page is already dirty to prevent data written with 221 * the expectation of being synced from not being synced. 222 * Likewise if this entry does not request NOSYNC then make 223 * sure the page isn't marked NOSYNC. Applications sharing 224 * data should use the same flags to avoid ping ponging. 225 */ 226 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 227 if (m->dirty == 0) { 228 m->oflags |= VPO_NOSYNC; 229 } 230 } else { 231 m->oflags &= ~VPO_NOSYNC; 232 } 233 234 /* 235 * If the fault is a write, we know that this page is being 236 * written NOW so dirty it explicitly to save on 237 * pmap_is_modified() calls later. 238 * 239 * Also tell the backing pager, if any, that it should remove 240 * any swap backing since the page is now dirty. 241 */ 242 if (need_dirty) 243 vm_page_dirty(m); 244 if (!set_wd) 245 vm_page_unlock(m); 246 if (need_dirty) 247 vm_pager_page_unswapped(m); 248 } 249 250 static void 251 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m) 252 { 253 254 if (m_hold != NULL) { 255 *m_hold = m; 256 vm_page_lock(m); 257 vm_page_hold(m); 258 vm_page_unlock(m); 259 } 260 } 261 262 /* 263 * Unlocks fs.first_object and fs.map on success. 264 */ 265 static int 266 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 267 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 268 { 269 vm_page_t m, m_map; 270 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 271 vm_page_t m_super; 272 int flags; 273 #endif 274 int psind, rv; 275 276 MPASS(fs->vp == NULL); 277 m = vm_page_lookup(fs->first_object, fs->first_pindex); 278 /* A busy page can be mapped for read|execute access. */ 279 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 280 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 281 return (KERN_FAILURE); 282 m_map = m; 283 psind = 0; 284 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 285 if ((m->flags & PG_FICTITIOUS) == 0 && 286 (m_super = vm_reserv_to_superpage(m)) != NULL && 287 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 288 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 289 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 290 (pagesizes[m_super->psind] - 1)) && 291 pmap_ps_enabled(fs->map->pmap)) { 292 flags = PS_ALL_VALID; 293 if ((prot & VM_PROT_WRITE) != 0) { 294 /* 295 * Create a superpage mapping allowing write access 296 * only if none of the constituent pages are busy and 297 * all of them are already dirty (except possibly for 298 * the page that was faulted on). 299 */ 300 flags |= PS_NONE_BUSY; 301 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 302 flags |= PS_ALL_DIRTY; 303 } 304 if (vm_page_ps_test(m_super, flags, m)) { 305 m_map = m_super; 306 psind = m_super->psind; 307 vaddr = rounddown2(vaddr, pagesizes[psind]); 308 /* Preset the modified bit for dirty superpages. */ 309 if ((flags & PS_ALL_DIRTY) != 0) 310 fault_type |= VM_PROT_WRITE; 311 } 312 } 313 #endif 314 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 315 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 316 if (rv != KERN_SUCCESS) 317 return (rv); 318 vm_fault_fill_hold(m_hold, m); 319 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 320 VM_OBJECT_RUNLOCK(fs->first_object); 321 if (psind == 0 && !wired) 322 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR); 323 vm_map_lookup_done(fs->map, fs->entry); 324 curthread->td_ru.ru_minflt++; 325 return (KERN_SUCCESS); 326 } 327 328 static void 329 vm_fault_restore_map_lock(struct faultstate *fs) 330 { 331 332 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 333 MPASS(fs->first_object->paging_in_progress > 0); 334 335 if (!vm_map_trylock_read(fs->map)) { 336 VM_OBJECT_WUNLOCK(fs->first_object); 337 vm_map_lock_read(fs->map); 338 VM_OBJECT_WLOCK(fs->first_object); 339 } 340 fs->lookup_still_valid = true; 341 } 342 343 static void 344 vm_fault_populate_check_page(vm_page_t m) 345 { 346 347 /* 348 * Check each page to ensure that the pager is obeying the 349 * interface: the page must be installed in the object, fully 350 * valid, and exclusively busied. 351 */ 352 MPASS(m != NULL); 353 MPASS(m->valid == VM_PAGE_BITS_ALL); 354 MPASS(vm_page_xbusied(m)); 355 } 356 357 static void 358 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 359 vm_pindex_t last) 360 { 361 vm_page_t m; 362 vm_pindex_t pidx; 363 364 VM_OBJECT_ASSERT_WLOCKED(object); 365 MPASS(first <= last); 366 for (pidx = first, m = vm_page_lookup(object, pidx); 367 pidx <= last; pidx++, m = vm_page_next(m)) { 368 vm_fault_populate_check_page(m); 369 vm_page_lock(m); 370 vm_page_deactivate(m); 371 vm_page_unlock(m); 372 vm_page_xunbusy(m); 373 } 374 } 375 376 static int 377 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 378 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 379 { 380 vm_page_t m; 381 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 382 int rv; 383 384 MPASS(fs->object == fs->first_object); 385 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 386 MPASS(fs->first_object->paging_in_progress > 0); 387 MPASS(fs->first_object->backing_object == NULL); 388 MPASS(fs->lookup_still_valid); 389 390 pager_first = OFF_TO_IDX(fs->entry->offset); 391 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 392 unlock_map(fs); 393 unlock_vp(fs); 394 395 /* 396 * Call the pager (driver) populate() method. 397 * 398 * There is no guarantee that the method will be called again 399 * if the current fault is for read, and a future fault is 400 * for write. Report the entry's maximum allowed protection 401 * to the driver. 402 */ 403 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 404 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 405 406 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 407 if (rv == VM_PAGER_BAD) { 408 /* 409 * VM_PAGER_BAD is the backdoor for a pager to request 410 * normal fault handling. 411 */ 412 vm_fault_restore_map_lock(fs); 413 if (fs->map->timestamp != fs->map_generation) 414 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 415 return (KERN_NOT_RECEIVER); 416 } 417 if (rv != VM_PAGER_OK) 418 return (KERN_FAILURE); /* AKA SIGSEGV */ 419 420 /* Ensure that the driver is obeying the interface. */ 421 MPASS(pager_first <= pager_last); 422 MPASS(fs->first_pindex <= pager_last); 423 MPASS(fs->first_pindex >= pager_first); 424 MPASS(pager_last < fs->first_object->size); 425 426 vm_fault_restore_map_lock(fs); 427 if (fs->map->timestamp != fs->map_generation) { 428 vm_fault_populate_cleanup(fs->first_object, pager_first, 429 pager_last); 430 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 431 } 432 433 /* 434 * The map is unchanged after our last unlock. Process the fault. 435 * 436 * The range [pager_first, pager_last] that is given to the 437 * pager is only a hint. The pager may populate any range 438 * within the object that includes the requested page index. 439 * In case the pager expanded the range, clip it to fit into 440 * the map entry. 441 */ 442 map_first = OFF_TO_IDX(fs->entry->offset); 443 if (map_first > pager_first) { 444 vm_fault_populate_cleanup(fs->first_object, pager_first, 445 map_first - 1); 446 pager_first = map_first; 447 } 448 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 449 if (map_last < pager_last) { 450 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 451 pager_last); 452 pager_last = map_last; 453 } 454 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 455 pidx <= pager_last; pidx++, m = vm_page_next(m)) { 456 vm_fault_populate_check_page(m); 457 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, 458 true); 459 VM_OBJECT_WUNLOCK(fs->first_object); 460 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) - 461 fs->entry->offset, m, prot, fault_type | (wired ? 462 PMAP_ENTER_WIRED : 0), 0); 463 VM_OBJECT_WLOCK(fs->first_object); 464 if (pidx == fs->first_pindex) 465 vm_fault_fill_hold(m_hold, m); 466 vm_page_lock(m); 467 if ((fault_flags & VM_FAULT_WIRE) != 0) { 468 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 469 vm_page_wire(m); 470 } else { 471 vm_page_activate(m); 472 } 473 vm_page_unlock(m); 474 vm_page_xunbusy(m); 475 } 476 curthread->td_ru.ru_majflt++; 477 return (KERN_SUCCESS); 478 } 479 480 /* 481 * vm_fault: 482 * 483 * Handle a page fault occurring at the given address, 484 * requiring the given permissions, in the map specified. 485 * If successful, the page is inserted into the 486 * associated physical map. 487 * 488 * NOTE: the given address should be truncated to the 489 * proper page address. 490 * 491 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 492 * a standard error specifying why the fault is fatal is returned. 493 * 494 * The map in question must be referenced, and remains so. 495 * Caller may hold no locks. 496 */ 497 int 498 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 499 int fault_flags) 500 { 501 struct thread *td; 502 int result; 503 504 td = curthread; 505 if ((td->td_pflags & TDP_NOFAULTING) != 0) 506 return (KERN_PROTECTION_FAILURE); 507 #ifdef KTRACE 508 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 509 ktrfault(vaddr, fault_type); 510 #endif 511 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 512 NULL); 513 #ifdef KTRACE 514 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 515 ktrfaultend(result); 516 #endif 517 return (result); 518 } 519 520 int 521 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 522 int fault_flags, vm_page_t *m_hold) 523 { 524 struct faultstate fs; 525 struct vnode *vp; 526 vm_object_t next_object, retry_object; 527 vm_offset_t e_end, e_start; 528 vm_pindex_t retry_pindex; 529 vm_prot_t prot, retry_prot; 530 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 531 int locked, nera, result, rv; 532 u_char behavior; 533 boolean_t wired; /* Passed by reference. */ 534 bool dead, hardfault, is_first_object_locked; 535 536 VM_CNT_INC(v_vm_faults); 537 fs.vp = NULL; 538 faultcount = 0; 539 nera = -1; 540 hardfault = false; 541 542 RetryFault:; 543 544 /* 545 * Find the backing store object and offset into it to begin the 546 * search. 547 */ 548 fs.map = map; 549 result = vm_map_lookup(&fs.map, vaddr, fault_type | 550 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 551 &fs.first_pindex, &prot, &wired); 552 if (result != KERN_SUCCESS) { 553 unlock_vp(&fs); 554 return (result); 555 } 556 557 fs.map_generation = fs.map->timestamp; 558 559 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 560 panic("%s: fault on nofault entry, addr: %#lx", 561 __func__, (u_long)vaddr); 562 } 563 564 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 565 fs.entry->wiring_thread != curthread) { 566 vm_map_unlock_read(fs.map); 567 vm_map_lock(fs.map); 568 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 569 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 570 unlock_vp(&fs); 571 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 572 vm_map_unlock_and_wait(fs.map, 0); 573 } else 574 vm_map_unlock(fs.map); 575 goto RetryFault; 576 } 577 578 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 579 580 if (wired) 581 fault_type = prot | (fault_type & VM_PROT_COPY); 582 else 583 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 584 ("!wired && VM_FAULT_WIRE")); 585 586 /* 587 * Try to avoid lock contention on the top-level object through 588 * special-case handling of some types of page faults, specifically, 589 * those that are both (1) mapping an existing page from the top- 590 * level object and (2) not having to mark that object as containing 591 * dirty pages. Under these conditions, a read lock on the top-level 592 * object suffices, allowing multiple page faults of a similar type to 593 * run in parallel on the same top-level object. 594 */ 595 if (fs.vp == NULL /* avoid locked vnode leak */ && 596 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 597 /* avoid calling vm_object_set_writeable_dirty() */ 598 ((prot & VM_PROT_WRITE) == 0 || 599 (fs.first_object->type != OBJT_VNODE && 600 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 601 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 602 VM_OBJECT_RLOCK(fs.first_object); 603 if ((prot & VM_PROT_WRITE) == 0 || 604 (fs.first_object->type != OBJT_VNODE && 605 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 606 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 607 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 608 fault_flags, wired, m_hold); 609 if (rv == KERN_SUCCESS) 610 return (rv); 611 } 612 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 613 VM_OBJECT_RUNLOCK(fs.first_object); 614 VM_OBJECT_WLOCK(fs.first_object); 615 } 616 } else { 617 VM_OBJECT_WLOCK(fs.first_object); 618 } 619 620 /* 621 * Make a reference to this object to prevent its disposal while we 622 * are messing with it. Once we have the reference, the map is free 623 * to be diddled. Since objects reference their shadows (and copies), 624 * they will stay around as well. 625 * 626 * Bump the paging-in-progress count to prevent size changes (e.g. 627 * truncation operations) during I/O. 628 */ 629 vm_object_reference_locked(fs.first_object); 630 vm_object_pip_add(fs.first_object, 1); 631 632 fs.lookup_still_valid = true; 633 634 fs.first_m = NULL; 635 636 /* 637 * Search for the page at object/offset. 638 */ 639 fs.object = fs.first_object; 640 fs.pindex = fs.first_pindex; 641 while (TRUE) { 642 /* 643 * If the object is marked for imminent termination, 644 * we retry here, since the collapse pass has raced 645 * with us. Otherwise, if we see terminally dead 646 * object, return fail. 647 */ 648 if ((fs.object->flags & OBJ_DEAD) != 0) { 649 dead = fs.object->type == OBJT_DEAD; 650 unlock_and_deallocate(&fs); 651 if (dead) 652 return (KERN_PROTECTION_FAILURE); 653 pause("vmf_de", 1); 654 goto RetryFault; 655 } 656 657 /* 658 * See if page is resident 659 */ 660 fs.m = vm_page_lookup(fs.object, fs.pindex); 661 if (fs.m != NULL) { 662 /* 663 * Wait/Retry if the page is busy. We have to do this 664 * if the page is either exclusive or shared busy 665 * because the vm_pager may be using read busy for 666 * pageouts (and even pageins if it is the vnode 667 * pager), and we could end up trying to pagein and 668 * pageout the same page simultaneously. 669 * 670 * We can theoretically allow the busy case on a read 671 * fault if the page is marked valid, but since such 672 * pages are typically already pmap'd, putting that 673 * special case in might be more effort then it is 674 * worth. We cannot under any circumstances mess 675 * around with a shared busied page except, perhaps, 676 * to pmap it. 677 */ 678 if (vm_page_busied(fs.m)) { 679 /* 680 * Reference the page before unlocking and 681 * sleeping so that the page daemon is less 682 * likely to reclaim it. 683 */ 684 vm_page_aflag_set(fs.m, PGA_REFERENCED); 685 if (fs.object != fs.first_object) { 686 if (!VM_OBJECT_TRYWLOCK( 687 fs.first_object)) { 688 VM_OBJECT_WUNLOCK(fs.object); 689 VM_OBJECT_WLOCK(fs.first_object); 690 VM_OBJECT_WLOCK(fs.object); 691 } 692 vm_page_lock(fs.first_m); 693 vm_page_free(fs.first_m); 694 vm_page_unlock(fs.first_m); 695 vm_object_pip_wakeup(fs.first_object); 696 VM_OBJECT_WUNLOCK(fs.first_object); 697 fs.first_m = NULL; 698 } 699 unlock_map(&fs); 700 if (fs.m == vm_page_lookup(fs.object, 701 fs.pindex)) { 702 vm_page_sleep_if_busy(fs.m, "vmpfw"); 703 } 704 vm_object_pip_wakeup(fs.object); 705 VM_OBJECT_WUNLOCK(fs.object); 706 VM_CNT_INC(v_intrans); 707 vm_object_deallocate(fs.first_object); 708 goto RetryFault; 709 } 710 vm_page_lock(fs.m); 711 vm_page_remque(fs.m); 712 vm_page_unlock(fs.m); 713 714 /* 715 * Mark page busy for other processes, and the 716 * pagedaemon. If it still isn't completely valid 717 * (readable), jump to readrest, else break-out ( we 718 * found the page ). 719 */ 720 vm_page_xbusy(fs.m); 721 if (fs.m->valid != VM_PAGE_BITS_ALL) 722 goto readrest; 723 break; 724 } 725 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 726 727 /* 728 * Page is not resident. If the pager might contain the page 729 * or this is the beginning of the search, allocate a new 730 * page. (Default objects are zero-fill, so there is no real 731 * pager for them.) 732 */ 733 if (fs.object->type != OBJT_DEFAULT || 734 fs.object == fs.first_object) { 735 if (fs.pindex >= fs.object->size) { 736 unlock_and_deallocate(&fs); 737 return (KERN_PROTECTION_FAILURE); 738 } 739 740 if (fs.object == fs.first_object && 741 (fs.first_object->flags & OBJ_POPULATE) != 0 && 742 fs.first_object->shadow_count == 0) { 743 rv = vm_fault_populate(&fs, vaddr, prot, 744 fault_type, fault_flags, wired, m_hold); 745 switch (rv) { 746 case KERN_SUCCESS: 747 case KERN_FAILURE: 748 unlock_and_deallocate(&fs); 749 return (rv); 750 case KERN_RESOURCE_SHORTAGE: 751 unlock_and_deallocate(&fs); 752 goto RetryFault; 753 case KERN_NOT_RECEIVER: 754 /* 755 * Pager's populate() method 756 * returned VM_PAGER_BAD. 757 */ 758 break; 759 default: 760 panic("inconsistent return codes"); 761 } 762 } 763 764 /* 765 * Allocate a new page for this object/offset pair. 766 * 767 * Unlocked read of the p_flag is harmless. At 768 * worst, the P_KILLED might be not observed 769 * there, and allocation can fail, causing 770 * restart and new reading of the p_flag. 771 */ 772 if (!vm_page_count_severe() || P_KILLED(curproc)) { 773 #if VM_NRESERVLEVEL > 0 774 vm_object_color(fs.object, atop(vaddr) - 775 fs.pindex); 776 #endif 777 alloc_req = P_KILLED(curproc) ? 778 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 779 if (fs.object->type != OBJT_VNODE && 780 fs.object->backing_object == NULL) 781 alloc_req |= VM_ALLOC_ZERO; 782 fs.m = vm_page_alloc(fs.object, fs.pindex, 783 alloc_req); 784 } 785 if (fs.m == NULL) { 786 unlock_and_deallocate(&fs); 787 VM_WAITPFAULT; 788 goto RetryFault; 789 } 790 } 791 792 readrest: 793 /* 794 * At this point, we have either allocated a new page or found 795 * an existing page that is only partially valid. 796 * 797 * We hold a reference on the current object and the page is 798 * exclusive busied. 799 */ 800 801 /* 802 * If the pager for the current object might have the page, 803 * then determine the number of additional pages to read and 804 * potentially reprioritize previously read pages for earlier 805 * reclamation. These operations should only be performed 806 * once per page fault. Even if the current pager doesn't 807 * have the page, the number of additional pages to read will 808 * apply to subsequent objects in the shadow chain. 809 */ 810 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 811 !P_KILLED(curproc)) { 812 KASSERT(fs.lookup_still_valid, ("map unlocked")); 813 era = fs.entry->read_ahead; 814 behavior = vm_map_entry_behavior(fs.entry); 815 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 816 nera = 0; 817 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 818 nera = VM_FAULT_READ_AHEAD_MAX; 819 if (vaddr == fs.entry->next_read) 820 vm_fault_dontneed(&fs, vaddr, nera); 821 } else if (vaddr == fs.entry->next_read) { 822 /* 823 * This is a sequential fault. Arithmetically 824 * increase the requested number of pages in 825 * the read-ahead window. The requested 826 * number of pages is "# of sequential faults 827 * x (read ahead min + 1) + read ahead min" 828 */ 829 nera = VM_FAULT_READ_AHEAD_MIN; 830 if (era > 0) { 831 nera += era + 1; 832 if (nera > VM_FAULT_READ_AHEAD_MAX) 833 nera = VM_FAULT_READ_AHEAD_MAX; 834 } 835 if (era == VM_FAULT_READ_AHEAD_MAX) 836 vm_fault_dontneed(&fs, vaddr, nera); 837 } else { 838 /* 839 * This is a non-sequential fault. 840 */ 841 nera = 0; 842 } 843 if (era != nera) { 844 /* 845 * A read lock on the map suffices to update 846 * the read ahead count safely. 847 */ 848 fs.entry->read_ahead = nera; 849 } 850 851 /* 852 * Prepare for unlocking the map. Save the map 853 * entry's start and end addresses, which are used to 854 * optimize the size of the pager operation below. 855 * Even if the map entry's addresses change after 856 * unlocking the map, using the saved addresses is 857 * safe. 858 */ 859 e_start = fs.entry->start; 860 e_end = fs.entry->end; 861 } 862 863 /* 864 * Call the pager to retrieve the page if there is a chance 865 * that the pager has it, and potentially retrieve additional 866 * pages at the same time. 867 */ 868 if (fs.object->type != OBJT_DEFAULT) { 869 /* 870 * Release the map lock before locking the vnode or 871 * sleeping in the pager. (If the current object has 872 * a shadow, then an earlier iteration of this loop 873 * may have already unlocked the map.) 874 */ 875 unlock_map(&fs); 876 877 if (fs.object->type == OBJT_VNODE && 878 (vp = fs.object->handle) != fs.vp) { 879 /* 880 * Perform an unlock in case the desired vnode 881 * changed while the map was unlocked during a 882 * retry. 883 */ 884 unlock_vp(&fs); 885 886 locked = VOP_ISLOCKED(vp); 887 if (locked != LK_EXCLUSIVE) 888 locked = LK_SHARED; 889 890 /* 891 * We must not sleep acquiring the vnode lock 892 * while we have the page exclusive busied or 893 * the object's paging-in-progress count 894 * incremented. Otherwise, we could deadlock. 895 */ 896 error = vget(vp, locked | LK_CANRECURSE | 897 LK_NOWAIT, curthread); 898 if (error != 0) { 899 vhold(vp); 900 release_page(&fs); 901 unlock_and_deallocate(&fs); 902 error = vget(vp, locked | LK_RETRY | 903 LK_CANRECURSE, curthread); 904 vdrop(vp); 905 fs.vp = vp; 906 KASSERT(error == 0, 907 ("vm_fault: vget failed")); 908 goto RetryFault; 909 } 910 fs.vp = vp; 911 } 912 KASSERT(fs.vp == NULL || !fs.map->system_map, 913 ("vm_fault: vnode-backed object mapped by system map")); 914 915 /* 916 * Page in the requested page and hint the pager, 917 * that it may bring up surrounding pages. 918 */ 919 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 920 P_KILLED(curproc)) { 921 behind = 0; 922 ahead = 0; 923 } else { 924 /* Is this a sequential fault? */ 925 if (nera > 0) { 926 behind = 0; 927 ahead = nera; 928 } else { 929 /* 930 * Request a cluster of pages that is 931 * aligned to a VM_FAULT_READ_DEFAULT 932 * page offset boundary within the 933 * object. Alignment to a page offset 934 * boundary is more likely to coincide 935 * with the underlying file system 936 * block than alignment to a virtual 937 * address boundary. 938 */ 939 cluster_offset = fs.pindex % 940 VM_FAULT_READ_DEFAULT; 941 behind = ulmin(cluster_offset, 942 atop(vaddr - e_start)); 943 ahead = VM_FAULT_READ_DEFAULT - 1 - 944 cluster_offset; 945 } 946 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 947 } 948 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 949 &behind, &ahead); 950 if (rv == VM_PAGER_OK) { 951 faultcount = behind + 1 + ahead; 952 hardfault = true; 953 break; /* break to PAGE HAS BEEN FOUND */ 954 } 955 if (rv == VM_PAGER_ERROR) 956 printf("vm_fault: pager read error, pid %d (%s)\n", 957 curproc->p_pid, curproc->p_comm); 958 959 /* 960 * If an I/O error occurred or the requested page was 961 * outside the range of the pager, clean up and return 962 * an error. 963 */ 964 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 965 vm_page_lock(fs.m); 966 if (fs.m->wire_count == 0) 967 vm_page_free(fs.m); 968 else 969 vm_page_xunbusy_maybelocked(fs.m); 970 vm_page_unlock(fs.m); 971 fs.m = NULL; 972 unlock_and_deallocate(&fs); 973 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 974 KERN_PROTECTION_FAILURE); 975 } 976 977 /* 978 * The requested page does not exist at this object/ 979 * offset. Remove the invalid page from the object, 980 * waking up anyone waiting for it, and continue on to 981 * the next object. However, if this is the top-level 982 * object, we must leave the busy page in place to 983 * prevent another process from rushing past us, and 984 * inserting the page in that object at the same time 985 * that we are. 986 */ 987 if (fs.object != fs.first_object) { 988 vm_page_lock(fs.m); 989 if (fs.m->wire_count == 0) 990 vm_page_free(fs.m); 991 else 992 vm_page_xunbusy_maybelocked(fs.m); 993 vm_page_unlock(fs.m); 994 fs.m = NULL; 995 } 996 } 997 998 /* 999 * We get here if the object has default pager (or unwiring) 1000 * or the pager doesn't have the page. 1001 */ 1002 if (fs.object == fs.first_object) 1003 fs.first_m = fs.m; 1004 1005 /* 1006 * Move on to the next object. Lock the next object before 1007 * unlocking the current one. 1008 */ 1009 next_object = fs.object->backing_object; 1010 if (next_object == NULL) { 1011 /* 1012 * If there's no object left, fill the page in the top 1013 * object with zeros. 1014 */ 1015 if (fs.object != fs.first_object) { 1016 vm_object_pip_wakeup(fs.object); 1017 VM_OBJECT_WUNLOCK(fs.object); 1018 1019 fs.object = fs.first_object; 1020 fs.pindex = fs.first_pindex; 1021 fs.m = fs.first_m; 1022 VM_OBJECT_WLOCK(fs.object); 1023 } 1024 fs.first_m = NULL; 1025 1026 /* 1027 * Zero the page if necessary and mark it valid. 1028 */ 1029 if ((fs.m->flags & PG_ZERO) == 0) { 1030 pmap_zero_page(fs.m); 1031 } else { 1032 VM_CNT_INC(v_ozfod); 1033 } 1034 VM_CNT_INC(v_zfod); 1035 fs.m->valid = VM_PAGE_BITS_ALL; 1036 /* Don't try to prefault neighboring pages. */ 1037 faultcount = 1; 1038 break; /* break to PAGE HAS BEEN FOUND */ 1039 } else { 1040 KASSERT(fs.object != next_object, 1041 ("object loop %p", next_object)); 1042 VM_OBJECT_WLOCK(next_object); 1043 vm_object_pip_add(next_object, 1); 1044 if (fs.object != fs.first_object) 1045 vm_object_pip_wakeup(fs.object); 1046 fs.pindex += 1047 OFF_TO_IDX(fs.object->backing_object_offset); 1048 VM_OBJECT_WUNLOCK(fs.object); 1049 fs.object = next_object; 1050 } 1051 } 1052 1053 vm_page_assert_xbusied(fs.m); 1054 1055 /* 1056 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1057 * is held.] 1058 */ 1059 1060 /* 1061 * If the page is being written, but isn't already owned by the 1062 * top-level object, we have to copy it into a new page owned by the 1063 * top-level object. 1064 */ 1065 if (fs.object != fs.first_object) { 1066 /* 1067 * We only really need to copy if we want to write it. 1068 */ 1069 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1070 /* 1071 * This allows pages to be virtually copied from a 1072 * backing_object into the first_object, where the 1073 * backing object has no other refs to it, and cannot 1074 * gain any more refs. Instead of a bcopy, we just 1075 * move the page from the backing object to the 1076 * first object. Note that we must mark the page 1077 * dirty in the first object so that it will go out 1078 * to swap when needed. 1079 */ 1080 is_first_object_locked = false; 1081 if ( 1082 /* 1083 * Only one shadow object 1084 */ 1085 (fs.object->shadow_count == 1) && 1086 /* 1087 * No COW refs, except us 1088 */ 1089 (fs.object->ref_count == 1) && 1090 /* 1091 * No one else can look this object up 1092 */ 1093 (fs.object->handle == NULL) && 1094 /* 1095 * No other ways to look the object up 1096 */ 1097 ((fs.object->type == OBJT_DEFAULT) || 1098 (fs.object->type == OBJT_SWAP)) && 1099 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1100 /* 1101 * We don't chase down the shadow chain 1102 */ 1103 fs.object == fs.first_object->backing_object) { 1104 vm_page_lock(fs.m); 1105 vm_page_remove(fs.m); 1106 vm_page_unlock(fs.m); 1107 vm_page_lock(fs.first_m); 1108 vm_page_replace_checked(fs.m, fs.first_object, 1109 fs.first_pindex, fs.first_m); 1110 vm_page_free(fs.first_m); 1111 vm_page_unlock(fs.first_m); 1112 vm_page_dirty(fs.m); 1113 #if VM_NRESERVLEVEL > 0 1114 /* 1115 * Rename the reservation. 1116 */ 1117 vm_reserv_rename(fs.m, fs.first_object, 1118 fs.object, OFF_TO_IDX( 1119 fs.first_object->backing_object_offset)); 1120 #endif 1121 /* 1122 * Removing the page from the backing object 1123 * unbusied it. 1124 */ 1125 vm_page_xbusy(fs.m); 1126 fs.first_m = fs.m; 1127 fs.m = NULL; 1128 VM_CNT_INC(v_cow_optim); 1129 } else { 1130 /* 1131 * Oh, well, lets copy it. 1132 */ 1133 pmap_copy_page(fs.m, fs.first_m); 1134 fs.first_m->valid = VM_PAGE_BITS_ALL; 1135 if (wired && (fault_flags & 1136 VM_FAULT_WIRE) == 0) { 1137 vm_page_lock(fs.first_m); 1138 vm_page_wire(fs.first_m); 1139 vm_page_unlock(fs.first_m); 1140 1141 vm_page_lock(fs.m); 1142 vm_page_unwire(fs.m, PQ_INACTIVE); 1143 vm_page_unlock(fs.m); 1144 } 1145 /* 1146 * We no longer need the old page or object. 1147 */ 1148 release_page(&fs); 1149 } 1150 /* 1151 * fs.object != fs.first_object due to above 1152 * conditional 1153 */ 1154 vm_object_pip_wakeup(fs.object); 1155 VM_OBJECT_WUNLOCK(fs.object); 1156 /* 1157 * Only use the new page below... 1158 */ 1159 fs.object = fs.first_object; 1160 fs.pindex = fs.first_pindex; 1161 fs.m = fs.first_m; 1162 if (!is_first_object_locked) 1163 VM_OBJECT_WLOCK(fs.object); 1164 VM_CNT_INC(v_cow_faults); 1165 curthread->td_cow++; 1166 } else { 1167 prot &= ~VM_PROT_WRITE; 1168 } 1169 } 1170 1171 /* 1172 * We must verify that the maps have not changed since our last 1173 * lookup. 1174 */ 1175 if (!fs.lookup_still_valid) { 1176 if (!vm_map_trylock_read(fs.map)) { 1177 release_page(&fs); 1178 unlock_and_deallocate(&fs); 1179 goto RetryFault; 1180 } 1181 fs.lookup_still_valid = true; 1182 if (fs.map->timestamp != fs.map_generation) { 1183 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1184 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1185 1186 /* 1187 * If we don't need the page any longer, put it on the inactive 1188 * list (the easiest thing to do here). If no one needs it, 1189 * pageout will grab it eventually. 1190 */ 1191 if (result != KERN_SUCCESS) { 1192 release_page(&fs); 1193 unlock_and_deallocate(&fs); 1194 1195 /* 1196 * If retry of map lookup would have blocked then 1197 * retry fault from start. 1198 */ 1199 if (result == KERN_FAILURE) 1200 goto RetryFault; 1201 return (result); 1202 } 1203 if ((retry_object != fs.first_object) || 1204 (retry_pindex != fs.first_pindex)) { 1205 release_page(&fs); 1206 unlock_and_deallocate(&fs); 1207 goto RetryFault; 1208 } 1209 1210 /* 1211 * Check whether the protection has changed or the object has 1212 * been copied while we left the map unlocked. Changing from 1213 * read to write permission is OK - we leave the page 1214 * write-protected, and catch the write fault. Changing from 1215 * write to read permission means that we can't mark the page 1216 * write-enabled after all. 1217 */ 1218 prot &= retry_prot; 1219 } 1220 } 1221 1222 /* 1223 * If the page was filled by a pager, save the virtual address that 1224 * should be faulted on next under a sequential access pattern to the 1225 * map entry. A read lock on the map suffices to update this address 1226 * safely. 1227 */ 1228 if (hardfault) 1229 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1230 1231 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1232 vm_page_assert_xbusied(fs.m); 1233 1234 /* 1235 * Page must be completely valid or it is not fit to 1236 * map into user space. vm_pager_get_pages() ensures this. 1237 */ 1238 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1239 ("vm_fault: page %p partially invalid", fs.m)); 1240 VM_OBJECT_WUNLOCK(fs.object); 1241 1242 /* 1243 * Put this page into the physical map. We had to do the unlock above 1244 * because pmap_enter() may sleep. We don't put the page 1245 * back on the active queue until later so that the pageout daemon 1246 * won't find it (yet). 1247 */ 1248 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1249 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1250 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1251 wired == 0) 1252 vm_fault_prefault(&fs, vaddr, 1253 faultcount > 0 ? behind : PFBAK, 1254 faultcount > 0 ? ahead : PFFOR); 1255 VM_OBJECT_WLOCK(fs.object); 1256 vm_page_lock(fs.m); 1257 1258 /* 1259 * If the page is not wired down, then put it where the pageout daemon 1260 * can find it. 1261 */ 1262 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1263 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 1264 vm_page_wire(fs.m); 1265 } else 1266 vm_page_activate(fs.m); 1267 if (m_hold != NULL) { 1268 *m_hold = fs.m; 1269 vm_page_hold(fs.m); 1270 } 1271 vm_page_unlock(fs.m); 1272 vm_page_xunbusy(fs.m); 1273 1274 /* 1275 * Unlock everything, and return 1276 */ 1277 unlock_and_deallocate(&fs); 1278 if (hardfault) { 1279 VM_CNT_INC(v_io_faults); 1280 curthread->td_ru.ru_majflt++; 1281 #ifdef RACCT 1282 if (racct_enable && fs.object->type == OBJT_VNODE) { 1283 PROC_LOCK(curproc); 1284 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1285 racct_add_force(curproc, RACCT_WRITEBPS, 1286 PAGE_SIZE + behind * PAGE_SIZE); 1287 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1288 } else { 1289 racct_add_force(curproc, RACCT_READBPS, 1290 PAGE_SIZE + ahead * PAGE_SIZE); 1291 racct_add_force(curproc, RACCT_READIOPS, 1); 1292 } 1293 PROC_UNLOCK(curproc); 1294 } 1295 #endif 1296 } else 1297 curthread->td_ru.ru_minflt++; 1298 1299 return (KERN_SUCCESS); 1300 } 1301 1302 /* 1303 * Speed up the reclamation of pages that precede the faulting pindex within 1304 * the first object of the shadow chain. Essentially, perform the equivalent 1305 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1306 * the faulting pindex by the cluster size when the pages read by vm_fault() 1307 * cross a cluster-size boundary. The cluster size is the greater of the 1308 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1309 * 1310 * When "fs->first_object" is a shadow object, the pages in the backing object 1311 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1312 * function must only be concerned with pages in the first object. 1313 */ 1314 static void 1315 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1316 { 1317 vm_map_entry_t entry; 1318 vm_object_t first_object, object; 1319 vm_offset_t end, start; 1320 vm_page_t m, m_next; 1321 vm_pindex_t pend, pstart; 1322 vm_size_t size; 1323 1324 object = fs->object; 1325 VM_OBJECT_ASSERT_WLOCKED(object); 1326 first_object = fs->first_object; 1327 if (first_object != object) { 1328 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1329 VM_OBJECT_WUNLOCK(object); 1330 VM_OBJECT_WLOCK(first_object); 1331 VM_OBJECT_WLOCK(object); 1332 } 1333 } 1334 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1335 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1336 size = VM_FAULT_DONTNEED_MIN; 1337 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1338 size = pagesizes[1]; 1339 end = rounddown2(vaddr, size); 1340 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1341 (entry = fs->entry)->start < end) { 1342 if (end - entry->start < size) 1343 start = entry->start; 1344 else 1345 start = end - size; 1346 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1347 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1348 entry->start); 1349 m_next = vm_page_find_least(first_object, pstart); 1350 pend = OFF_TO_IDX(entry->offset) + atop(end - 1351 entry->start); 1352 while ((m = m_next) != NULL && m->pindex < pend) { 1353 m_next = TAILQ_NEXT(m, listq); 1354 if (m->valid != VM_PAGE_BITS_ALL || 1355 vm_page_busied(m)) 1356 continue; 1357 1358 /* 1359 * Don't clear PGA_REFERENCED, since it would 1360 * likely represent a reference by a different 1361 * process. 1362 * 1363 * Typically, at this point, prefetched pages 1364 * are still in the inactive queue. Only 1365 * pages that triggered page faults are in the 1366 * active queue. 1367 */ 1368 vm_page_lock(m); 1369 vm_page_deactivate(m); 1370 vm_page_unlock(m); 1371 } 1372 } 1373 } 1374 if (first_object != object) 1375 VM_OBJECT_WUNLOCK(first_object); 1376 } 1377 1378 /* 1379 * vm_fault_prefault provides a quick way of clustering 1380 * pagefaults into a processes address space. It is a "cousin" 1381 * of vm_map_pmap_enter, except it runs at page fault time instead 1382 * of mmap time. 1383 */ 1384 static void 1385 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1386 int backward, int forward) 1387 { 1388 pmap_t pmap; 1389 vm_map_entry_t entry; 1390 vm_object_t backing_object, lobject; 1391 vm_offset_t addr, starta; 1392 vm_pindex_t pindex; 1393 vm_page_t m; 1394 int i; 1395 1396 pmap = fs->map->pmap; 1397 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1398 return; 1399 1400 entry = fs->entry; 1401 1402 if (addra < backward * PAGE_SIZE) { 1403 starta = entry->start; 1404 } else { 1405 starta = addra - backward * PAGE_SIZE; 1406 if (starta < entry->start) 1407 starta = entry->start; 1408 } 1409 1410 /* 1411 * Generate the sequence of virtual addresses that are candidates for 1412 * prefaulting in an outward spiral from the faulting virtual address, 1413 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1414 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1415 * If the candidate address doesn't have a backing physical page, then 1416 * the loop immediately terminates. 1417 */ 1418 for (i = 0; i < 2 * imax(backward, forward); i++) { 1419 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1420 PAGE_SIZE); 1421 if (addr > addra + forward * PAGE_SIZE) 1422 addr = 0; 1423 1424 if (addr < starta || addr >= entry->end) 1425 continue; 1426 1427 if (!pmap_is_prefaultable(pmap, addr)) 1428 continue; 1429 1430 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1431 lobject = entry->object.vm_object; 1432 VM_OBJECT_RLOCK(lobject); 1433 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1434 lobject->type == OBJT_DEFAULT && 1435 (backing_object = lobject->backing_object) != NULL) { 1436 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1437 0, ("vm_fault_prefault: unaligned object offset")); 1438 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1439 VM_OBJECT_RLOCK(backing_object); 1440 VM_OBJECT_RUNLOCK(lobject); 1441 lobject = backing_object; 1442 } 1443 if (m == NULL) { 1444 VM_OBJECT_RUNLOCK(lobject); 1445 break; 1446 } 1447 if (m->valid == VM_PAGE_BITS_ALL && 1448 (m->flags & PG_FICTITIOUS) == 0) 1449 pmap_enter_quick(pmap, addr, m, entry->protection); 1450 VM_OBJECT_RUNLOCK(lobject); 1451 } 1452 } 1453 1454 /* 1455 * Hold each of the physical pages that are mapped by the specified range of 1456 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1457 * and allow the specified types of access, "prot". If all of the implied 1458 * pages are successfully held, then the number of held pages is returned 1459 * together with pointers to those pages in the array "ma". However, if any 1460 * of the pages cannot be held, -1 is returned. 1461 */ 1462 int 1463 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1464 vm_prot_t prot, vm_page_t *ma, int max_count) 1465 { 1466 vm_offset_t end, va; 1467 vm_page_t *mp; 1468 int count; 1469 boolean_t pmap_failed; 1470 1471 if (len == 0) 1472 return (0); 1473 end = round_page(addr + len); 1474 addr = trunc_page(addr); 1475 1476 /* 1477 * Check for illegal addresses. 1478 */ 1479 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1480 return (-1); 1481 1482 if (atop(end - addr) > max_count) 1483 panic("vm_fault_quick_hold_pages: count > max_count"); 1484 count = atop(end - addr); 1485 1486 /* 1487 * Most likely, the physical pages are resident in the pmap, so it is 1488 * faster to try pmap_extract_and_hold() first. 1489 */ 1490 pmap_failed = FALSE; 1491 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1492 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1493 if (*mp == NULL) 1494 pmap_failed = TRUE; 1495 else if ((prot & VM_PROT_WRITE) != 0 && 1496 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1497 /* 1498 * Explicitly dirty the physical page. Otherwise, the 1499 * caller's changes may go unnoticed because they are 1500 * performed through an unmanaged mapping or by a DMA 1501 * operation. 1502 * 1503 * The object lock is not held here. 1504 * See vm_page_clear_dirty_mask(). 1505 */ 1506 vm_page_dirty(*mp); 1507 } 1508 } 1509 if (pmap_failed) { 1510 /* 1511 * One or more pages could not be held by the pmap. Either no 1512 * page was mapped at the specified virtual address or that 1513 * mapping had insufficient permissions. Attempt to fault in 1514 * and hold these pages. 1515 */ 1516 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1517 if (*mp == NULL && vm_fault_hold(map, va, prot, 1518 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1519 goto error; 1520 } 1521 return (count); 1522 error: 1523 for (mp = ma; mp < ma + count; mp++) 1524 if (*mp != NULL) { 1525 vm_page_lock(*mp); 1526 vm_page_unhold(*mp); 1527 vm_page_unlock(*mp); 1528 } 1529 return (-1); 1530 } 1531 1532 /* 1533 * Routine: 1534 * vm_fault_copy_entry 1535 * Function: 1536 * Create new shadow object backing dst_entry with private copy of 1537 * all underlying pages. When src_entry is equal to dst_entry, 1538 * function implements COW for wired-down map entry. Otherwise, 1539 * it forks wired entry into dst_map. 1540 * 1541 * In/out conditions: 1542 * The source and destination maps must be locked for write. 1543 * The source map entry must be wired down (or be a sharing map 1544 * entry corresponding to a main map entry that is wired down). 1545 */ 1546 void 1547 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1548 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1549 vm_ooffset_t *fork_charge) 1550 { 1551 vm_object_t backing_object, dst_object, object, src_object; 1552 vm_pindex_t dst_pindex, pindex, src_pindex; 1553 vm_prot_t access, prot; 1554 vm_offset_t vaddr; 1555 vm_page_t dst_m; 1556 vm_page_t src_m; 1557 boolean_t upgrade; 1558 1559 #ifdef lint 1560 src_map++; 1561 #endif /* lint */ 1562 1563 upgrade = src_entry == dst_entry; 1564 access = prot = dst_entry->protection; 1565 1566 src_object = src_entry->object.vm_object; 1567 src_pindex = OFF_TO_IDX(src_entry->offset); 1568 1569 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1570 dst_object = src_object; 1571 vm_object_reference(dst_object); 1572 } else { 1573 /* 1574 * Create the top-level object for the destination entry. (Doesn't 1575 * actually shadow anything - we copy the pages directly.) 1576 */ 1577 dst_object = vm_object_allocate(OBJT_DEFAULT, 1578 atop(dst_entry->end - dst_entry->start)); 1579 #if VM_NRESERVLEVEL > 0 1580 dst_object->flags |= OBJ_COLORED; 1581 dst_object->pg_color = atop(dst_entry->start); 1582 #endif 1583 } 1584 1585 VM_OBJECT_WLOCK(dst_object); 1586 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1587 ("vm_fault_copy_entry: vm_object not NULL")); 1588 if (src_object != dst_object) { 1589 dst_entry->object.vm_object = dst_object; 1590 dst_entry->offset = 0; 1591 dst_object->charge = dst_entry->end - dst_entry->start; 1592 } 1593 if (fork_charge != NULL) { 1594 KASSERT(dst_entry->cred == NULL, 1595 ("vm_fault_copy_entry: leaked swp charge")); 1596 dst_object->cred = curthread->td_ucred; 1597 crhold(dst_object->cred); 1598 *fork_charge += dst_object->charge; 1599 } else if (dst_object->cred == NULL) { 1600 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1601 dst_entry)); 1602 dst_object->cred = dst_entry->cred; 1603 dst_entry->cred = NULL; 1604 } 1605 1606 /* 1607 * If not an upgrade, then enter the mappings in the pmap as 1608 * read and/or execute accesses. Otherwise, enter them as 1609 * write accesses. 1610 * 1611 * A writeable large page mapping is only created if all of 1612 * the constituent small page mappings are modified. Marking 1613 * PTEs as modified on inception allows promotion to happen 1614 * without taking potentially large number of soft faults. 1615 */ 1616 if (!upgrade) 1617 access &= ~VM_PROT_WRITE; 1618 1619 /* 1620 * Loop through all of the virtual pages within the entry's 1621 * range, copying each page from the source object to the 1622 * destination object. Since the source is wired, those pages 1623 * must exist. In contrast, the destination is pageable. 1624 * Since the destination object does share any backing storage 1625 * with the source object, all of its pages must be dirtied, 1626 * regardless of whether they can be written. 1627 */ 1628 for (vaddr = dst_entry->start, dst_pindex = 0; 1629 vaddr < dst_entry->end; 1630 vaddr += PAGE_SIZE, dst_pindex++) { 1631 again: 1632 /* 1633 * Find the page in the source object, and copy it in. 1634 * Because the source is wired down, the page will be 1635 * in memory. 1636 */ 1637 if (src_object != dst_object) 1638 VM_OBJECT_RLOCK(src_object); 1639 object = src_object; 1640 pindex = src_pindex + dst_pindex; 1641 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1642 (backing_object = object->backing_object) != NULL) { 1643 /* 1644 * Unless the source mapping is read-only or 1645 * it is presently being upgraded from 1646 * read-only, the first object in the shadow 1647 * chain should provide all of the pages. In 1648 * other words, this loop body should never be 1649 * executed when the source mapping is already 1650 * read/write. 1651 */ 1652 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1653 upgrade, 1654 ("vm_fault_copy_entry: main object missing page")); 1655 1656 VM_OBJECT_RLOCK(backing_object); 1657 pindex += OFF_TO_IDX(object->backing_object_offset); 1658 if (object != dst_object) 1659 VM_OBJECT_RUNLOCK(object); 1660 object = backing_object; 1661 } 1662 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1663 1664 if (object != dst_object) { 1665 /* 1666 * Allocate a page in the destination object. 1667 */ 1668 dst_m = vm_page_alloc(dst_object, (src_object == 1669 dst_object ? src_pindex : 0) + dst_pindex, 1670 VM_ALLOC_NORMAL); 1671 if (dst_m == NULL) { 1672 VM_OBJECT_WUNLOCK(dst_object); 1673 VM_OBJECT_RUNLOCK(object); 1674 VM_WAIT; 1675 VM_OBJECT_WLOCK(dst_object); 1676 goto again; 1677 } 1678 pmap_copy_page(src_m, dst_m); 1679 VM_OBJECT_RUNLOCK(object); 1680 dst_m->valid = VM_PAGE_BITS_ALL; 1681 dst_m->dirty = VM_PAGE_BITS_ALL; 1682 } else { 1683 dst_m = src_m; 1684 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1685 goto again; 1686 vm_page_xbusy(dst_m); 1687 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1688 ("invalid dst page %p", dst_m)); 1689 } 1690 VM_OBJECT_WUNLOCK(dst_object); 1691 1692 /* 1693 * Enter it in the pmap. If a wired, copy-on-write 1694 * mapping is being replaced by a write-enabled 1695 * mapping, then wire that new mapping. 1696 */ 1697 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1698 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1699 1700 /* 1701 * Mark it no longer busy, and put it on the active list. 1702 */ 1703 VM_OBJECT_WLOCK(dst_object); 1704 1705 if (upgrade) { 1706 if (src_m != dst_m) { 1707 vm_page_lock(src_m); 1708 vm_page_unwire(src_m, PQ_INACTIVE); 1709 vm_page_unlock(src_m); 1710 vm_page_lock(dst_m); 1711 vm_page_wire(dst_m); 1712 vm_page_unlock(dst_m); 1713 } else { 1714 KASSERT(dst_m->wire_count > 0, 1715 ("dst_m %p is not wired", dst_m)); 1716 } 1717 } else { 1718 vm_page_lock(dst_m); 1719 vm_page_activate(dst_m); 1720 vm_page_unlock(dst_m); 1721 } 1722 vm_page_xunbusy(dst_m); 1723 } 1724 VM_OBJECT_WUNLOCK(dst_object); 1725 if (upgrade) { 1726 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1727 vm_object_deallocate(src_object); 1728 } 1729 } 1730 1731 /* 1732 * Block entry into the machine-independent layer's page fault handler by 1733 * the calling thread. Subsequent calls to vm_fault() by that thread will 1734 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1735 * spurious page faults. 1736 */ 1737 int 1738 vm_fault_disable_pagefaults(void) 1739 { 1740 1741 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1742 } 1743 1744 void 1745 vm_fault_enable_pagefaults(int save) 1746 { 1747 1748 curthread_pflags_restore(save); 1749 } 1750