xref: /freebsd/sys/vm/vm_fault.c (revision 849f9ac370bd66993ce5cc6fca0d2ef9bd03c2c9)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 #include "opt_ktrace.h"
76 #include "opt_vm.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/lock.h>
82 #include <sys/mman.h>
83 #include <sys/mutex.h>
84 #include <sys/pctrie.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/refcount.h>
88 #include <sys/resourcevar.h>
89 #include <sys/rwlock.h>
90 #include <sys/signalvar.h>
91 #include <sys/sysctl.h>
92 #include <sys/sysent.h>
93 #include <sys/vmmeter.h>
94 #include <sys/vnode.h>
95 #ifdef KTRACE
96 #include <sys/ktrace.h>
97 #endif
98 
99 #include <vm/vm.h>
100 #include <vm/vm_param.h>
101 #include <vm/pmap.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_pager.h>
108 #include <vm/vm_extern.h>
109 #include <vm/vm_reserv.h>
110 
111 #define PFBAK 4
112 #define PFFOR 4
113 
114 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
115 
116 #define	VM_FAULT_DONTNEED_MIN	1048576
117 
118 struct faultstate {
119 	/* Fault parameters. */
120 	vm_offset_t	vaddr;
121 	vm_page_t	*m_hold;
122 	vm_prot_t	fault_type;
123 	vm_prot_t	prot;
124 	int		fault_flags;
125 	boolean_t	wired;
126 
127 	/* Control state. */
128 	struct timeval	oom_start_time;
129 	bool		oom_started;
130 	int		nera;
131 	bool		can_read_lock;
132 
133 	/* Page reference for cow. */
134 	vm_page_t m_cow;
135 
136 	/* Current object. */
137 	vm_object_t	object;
138 	vm_pindex_t	pindex;
139 	vm_page_t	m;
140 
141 	/* Top-level map object. */
142 	vm_object_t	first_object;
143 	vm_pindex_t	first_pindex;
144 	vm_page_t	first_m;
145 
146 	/* Map state. */
147 	vm_map_t	map;
148 	vm_map_entry_t	entry;
149 	int		map_generation;
150 	bool		lookup_still_valid;
151 
152 	/* Vnode if locked. */
153 	struct vnode	*vp;
154 };
155 
156 /*
157  * Return codes for internal fault routines.
158  */
159 enum fault_status {
160 	FAULT_SUCCESS = 10000,	/* Return success to user. */
161 	FAULT_FAILURE,		/* Return failure to user. */
162 	FAULT_CONTINUE,		/* Continue faulting. */
163 	FAULT_RESTART,		/* Restart fault. */
164 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
165 	FAULT_HARD,		/* Performed I/O. */
166 	FAULT_SOFT,		/* Found valid page. */
167 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
168 };
169 
170 enum fault_next_status {
171 	FAULT_NEXT_GOTOBJ = 1,
172 	FAULT_NEXT_NOOBJ,
173 	FAULT_NEXT_RESTART,
174 };
175 
176 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
177 	    int ahead);
178 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
179 	    int backward, int forward, bool obj_locked);
180 
181 static int vm_pfault_oom_attempts = 3;
182 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
183     &vm_pfault_oom_attempts, 0,
184     "Number of page allocation attempts in page fault handler before it "
185     "triggers OOM handling");
186 
187 static int vm_pfault_oom_wait = 10;
188 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
189     &vm_pfault_oom_wait, 0,
190     "Number of seconds to wait for free pages before retrying "
191     "the page fault handler");
192 
193 static inline void
194 vm_fault_page_release(vm_page_t *mp)
195 {
196 	vm_page_t m;
197 
198 	m = *mp;
199 	if (m != NULL) {
200 		/*
201 		 * We are likely to loop around again and attempt to busy
202 		 * this page.  Deactivating it leaves it available for
203 		 * pageout while optimizing fault restarts.
204 		 */
205 		vm_page_deactivate(m);
206 		vm_page_xunbusy(m);
207 		*mp = NULL;
208 	}
209 }
210 
211 static inline void
212 vm_fault_page_free(vm_page_t *mp)
213 {
214 	vm_page_t m;
215 
216 	m = *mp;
217 	if (m != NULL) {
218 		VM_OBJECT_ASSERT_WLOCKED(m->object);
219 		if (!vm_page_wired(m))
220 			vm_page_free(m);
221 		else
222 			vm_page_xunbusy(m);
223 		*mp = NULL;
224 	}
225 }
226 
227 /*
228  * Return true if a vm_pager_get_pages() call is needed in order to check
229  * whether the pager might have a particular page, false if it can be determined
230  * immediately that the pager can not have a copy.  For swap objects, this can
231  * be checked quickly.
232  */
233 static inline bool
234 vm_fault_object_needs_getpages(vm_object_t object)
235 {
236 	VM_OBJECT_ASSERT_LOCKED(object);
237 
238 	return ((object->flags & OBJ_SWAP) == 0 ||
239 	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
240 }
241 
242 static inline void
243 vm_fault_unlock_map(struct faultstate *fs)
244 {
245 
246 	if (fs->lookup_still_valid) {
247 		vm_map_lookup_done(fs->map, fs->entry);
248 		fs->lookup_still_valid = false;
249 	}
250 }
251 
252 static void
253 vm_fault_unlock_vp(struct faultstate *fs)
254 {
255 
256 	if (fs->vp != NULL) {
257 		vput(fs->vp);
258 		fs->vp = NULL;
259 	}
260 }
261 
262 static void
263 vm_fault_deallocate(struct faultstate *fs)
264 {
265 
266 	vm_fault_page_release(&fs->m_cow);
267 	vm_fault_page_release(&fs->m);
268 	vm_object_pip_wakeup(fs->object);
269 	if (fs->object != fs->first_object) {
270 		VM_OBJECT_WLOCK(fs->first_object);
271 		vm_fault_page_free(&fs->first_m);
272 		VM_OBJECT_WUNLOCK(fs->first_object);
273 		vm_object_pip_wakeup(fs->first_object);
274 	}
275 	vm_object_deallocate(fs->first_object);
276 	vm_fault_unlock_map(fs);
277 	vm_fault_unlock_vp(fs);
278 }
279 
280 static void
281 vm_fault_unlock_and_deallocate(struct faultstate *fs)
282 {
283 
284 	VM_OBJECT_UNLOCK(fs->object);
285 	vm_fault_deallocate(fs);
286 }
287 
288 static void
289 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
290 {
291 	bool need_dirty;
292 
293 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
294 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
295 	    (m->oflags & VPO_UNMANAGED) != 0)
296 		return;
297 
298 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
299 
300 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
301 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
302 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
303 
304 	vm_object_set_writeable_dirty(m->object);
305 
306 	/*
307 	 * If the fault is a write, we know that this page is being
308 	 * written NOW so dirty it explicitly to save on
309 	 * pmap_is_modified() calls later.
310 	 *
311 	 * Also, since the page is now dirty, we can possibly tell
312 	 * the pager to release any swap backing the page.
313 	 */
314 	if (need_dirty && vm_page_set_dirty(m) == 0) {
315 		/*
316 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
317 		 * if the page is already dirty to prevent data written with
318 		 * the expectation of being synced from not being synced.
319 		 * Likewise if this entry does not request NOSYNC then make
320 		 * sure the page isn't marked NOSYNC.  Applications sharing
321 		 * data should use the same flags to avoid ping ponging.
322 		 */
323 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
324 			vm_page_aflag_set(m, PGA_NOSYNC);
325 		else
326 			vm_page_aflag_clear(m, PGA_NOSYNC);
327 	}
328 
329 }
330 
331 /*
332  * Unlocks fs.first_object and fs.map on success.
333  */
334 static enum fault_status
335 vm_fault_soft_fast(struct faultstate *fs)
336 {
337 	vm_page_t m, m_map;
338 #if VM_NRESERVLEVEL > 0
339 	vm_page_t m_super;
340 	int flags;
341 #endif
342 	int psind;
343 	vm_offset_t vaddr;
344 
345 	MPASS(fs->vp == NULL);
346 
347 	/*
348 	 * If we fail, vast majority of the time it is because the page is not
349 	 * there to begin with. Opportunistically perform the lookup and
350 	 * subsequent checks without the object lock, revalidate later.
351 	 *
352 	 * Note: a busy page can be mapped for read|execute access.
353 	 */
354 	m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex);
355 	if (m == NULL || !vm_page_all_valid(m) ||
356 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) {
357 		VM_OBJECT_WLOCK(fs->first_object);
358 		return (FAULT_FAILURE);
359 	}
360 
361 	vaddr = fs->vaddr;
362 
363 	VM_OBJECT_RLOCK(fs->first_object);
364 
365 	/*
366 	 * Now that we stabilized the state, revalidate the page is in the shape
367 	 * we encountered above.
368 	 */
369 
370 	if (m->object != fs->first_object || m->pindex != fs->first_pindex)
371 		goto fail;
372 
373 	vm_object_busy(fs->first_object);
374 
375 	if (!vm_page_all_valid(m) ||
376 	    ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m)))
377 		goto fail_busy;
378 
379 	m_map = m;
380 	psind = 0;
381 #if VM_NRESERVLEVEL > 0
382 	if ((m->flags & PG_FICTITIOUS) == 0 &&
383 	    (m_super = vm_reserv_to_superpage(m)) != NULL) {
384 		psind = m_super->psind;
385 		KASSERT(psind > 0,
386 		    ("psind %d of m_super %p < 1", psind, m_super));
387 		flags = PS_ALL_VALID;
388 		if ((fs->prot & VM_PROT_WRITE) != 0) {
389 			/*
390 			 * Create a superpage mapping allowing write access
391 			 * only if none of the constituent pages are busy and
392 			 * all of them are already dirty (except possibly for
393 			 * the page that was faulted on).
394 			 */
395 			flags |= PS_NONE_BUSY;
396 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
397 				flags |= PS_ALL_DIRTY;
398 		}
399 		while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start ||
400 		    roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end ||
401 		    (vaddr & (pagesizes[psind] - 1)) !=
402 		    (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) ||
403 		    !vm_page_ps_test(m_super, psind, flags, m) ||
404 		    !pmap_ps_enabled(fs->map->pmap)) {
405 			psind--;
406 			if (psind == 0)
407 				break;
408 			m_super += rounddown2(m - m_super,
409 			    atop(pagesizes[psind]));
410 			KASSERT(m_super->psind >= psind,
411 			    ("psind %d of m_super %p < %d", m_super->psind,
412 			    m_super, psind));
413 		}
414 		if (psind > 0) {
415 			m_map = m_super;
416 			vaddr = rounddown2(vaddr, pagesizes[psind]);
417 			/* Preset the modified bit for dirty superpages. */
418 			if ((flags & PS_ALL_DIRTY) != 0)
419 				fs->fault_type |= VM_PROT_WRITE;
420 		}
421 	}
422 #endif
423 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
424 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
425 	    KERN_SUCCESS)
426 		goto fail_busy;
427 	if (fs->m_hold != NULL) {
428 		(*fs->m_hold) = m;
429 		vm_page_wire(m);
430 	}
431 	if (psind == 0 && !fs->wired)
432 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
433 	VM_OBJECT_RUNLOCK(fs->first_object);
434 	vm_fault_dirty(fs, m);
435 	vm_object_unbusy(fs->first_object);
436 	vm_map_lookup_done(fs->map, fs->entry);
437 	curthread->td_ru.ru_minflt++;
438 	return (FAULT_SUCCESS);
439 fail_busy:
440 	vm_object_unbusy(fs->first_object);
441 fail:
442 	if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) {
443 		VM_OBJECT_RUNLOCK(fs->first_object);
444 		VM_OBJECT_WLOCK(fs->first_object);
445 	}
446 	return (FAULT_FAILURE);
447 }
448 
449 static void
450 vm_fault_restore_map_lock(struct faultstate *fs)
451 {
452 
453 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
454 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
455 
456 	if (!vm_map_trylock_read(fs->map)) {
457 		VM_OBJECT_WUNLOCK(fs->first_object);
458 		vm_map_lock_read(fs->map);
459 		VM_OBJECT_WLOCK(fs->first_object);
460 	}
461 	fs->lookup_still_valid = true;
462 }
463 
464 static void
465 vm_fault_populate_check_page(vm_page_t m)
466 {
467 
468 	/*
469 	 * Check each page to ensure that the pager is obeying the
470 	 * interface: the page must be installed in the object, fully
471 	 * valid, and exclusively busied.
472 	 */
473 	MPASS(m != NULL);
474 	MPASS(vm_page_all_valid(m));
475 	MPASS(vm_page_xbusied(m));
476 }
477 
478 static void
479 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
480     vm_pindex_t last)
481 {
482 	vm_page_t m;
483 	vm_pindex_t pidx;
484 
485 	VM_OBJECT_ASSERT_WLOCKED(object);
486 	MPASS(first <= last);
487 	for (pidx = first, m = vm_page_lookup(object, pidx);
488 	    pidx <= last; pidx++, m = TAILQ_NEXT(m, listq)) {
489 		KASSERT(m != NULL && m->pindex == pidx,
490 		    ("%s: pindex mismatch", __func__));
491 		vm_fault_populate_check_page(m);
492 		vm_page_deactivate(m);
493 		vm_page_xunbusy(m);
494 	}
495 }
496 
497 static enum fault_status
498 vm_fault_populate(struct faultstate *fs)
499 {
500 	vm_offset_t vaddr;
501 	vm_page_t m;
502 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
503 	int bdry_idx, i, npages, psind, rv;
504 	enum fault_status res;
505 
506 	MPASS(fs->object == fs->first_object);
507 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
508 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
509 	MPASS(fs->first_object->backing_object == NULL);
510 	MPASS(fs->lookup_still_valid);
511 
512 	pager_first = OFF_TO_IDX(fs->entry->offset);
513 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
514 	vm_fault_unlock_map(fs);
515 	vm_fault_unlock_vp(fs);
516 
517 	res = FAULT_SUCCESS;
518 
519 	/*
520 	 * Call the pager (driver) populate() method.
521 	 *
522 	 * There is no guarantee that the method will be called again
523 	 * if the current fault is for read, and a future fault is
524 	 * for write.  Report the entry's maximum allowed protection
525 	 * to the driver.
526 	 */
527 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
528 	    fs->fault_type, fs->entry->max_protection, &pager_first,
529 	    &pager_last);
530 
531 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
532 	if (rv == VM_PAGER_BAD) {
533 		/*
534 		 * VM_PAGER_BAD is the backdoor for a pager to request
535 		 * normal fault handling.
536 		 */
537 		vm_fault_restore_map_lock(fs);
538 		if (fs->map->timestamp != fs->map_generation)
539 			return (FAULT_RESTART);
540 		return (FAULT_CONTINUE);
541 	}
542 	if (rv != VM_PAGER_OK)
543 		return (FAULT_FAILURE); /* AKA SIGSEGV */
544 
545 	/* Ensure that the driver is obeying the interface. */
546 	MPASS(pager_first <= pager_last);
547 	MPASS(fs->first_pindex <= pager_last);
548 	MPASS(fs->first_pindex >= pager_first);
549 	MPASS(pager_last < fs->first_object->size);
550 
551 	vm_fault_restore_map_lock(fs);
552 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry);
553 	if (fs->map->timestamp != fs->map_generation) {
554 		if (bdry_idx == 0) {
555 			vm_fault_populate_cleanup(fs->first_object, pager_first,
556 			    pager_last);
557 		} else {
558 			m = vm_page_lookup(fs->first_object, pager_first);
559 			if (m != fs->m)
560 				vm_page_xunbusy(m);
561 		}
562 		return (FAULT_RESTART);
563 	}
564 
565 	/*
566 	 * The map is unchanged after our last unlock.  Process the fault.
567 	 *
568 	 * First, the special case of largepage mappings, where
569 	 * populate only busies the first page in superpage run.
570 	 */
571 	if (bdry_idx != 0) {
572 		KASSERT(PMAP_HAS_LARGEPAGES,
573 		    ("missing pmap support for large pages"));
574 		m = vm_page_lookup(fs->first_object, pager_first);
575 		vm_fault_populate_check_page(m);
576 		VM_OBJECT_WUNLOCK(fs->first_object);
577 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
578 		    fs->entry->offset;
579 		/* assert alignment for entry */
580 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
581     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
582 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
583 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
584 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
585 		    ("unaligned superpage m %p %#jx", m,
586 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
587 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
588 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
589 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
590 		VM_OBJECT_WLOCK(fs->first_object);
591 		vm_page_xunbusy(m);
592 		if (rv != KERN_SUCCESS) {
593 			res = FAULT_FAILURE;
594 			goto out;
595 		}
596 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
597 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
598 				vm_page_wire(m + i);
599 		}
600 		if (fs->m_hold != NULL) {
601 			*fs->m_hold = m + (fs->first_pindex - pager_first);
602 			vm_page_wire(*fs->m_hold);
603 		}
604 		goto out;
605 	}
606 
607 	/*
608 	 * The range [pager_first, pager_last] that is given to the
609 	 * pager is only a hint.  The pager may populate any range
610 	 * within the object that includes the requested page index.
611 	 * In case the pager expanded the range, clip it to fit into
612 	 * the map entry.
613 	 */
614 	map_first = OFF_TO_IDX(fs->entry->offset);
615 	if (map_first > pager_first) {
616 		vm_fault_populate_cleanup(fs->first_object, pager_first,
617 		    map_first - 1);
618 		pager_first = map_first;
619 	}
620 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
621 	if (map_last < pager_last) {
622 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
623 		    pager_last);
624 		pager_last = map_last;
625 	}
626 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
627 	    pidx <= pager_last;
628 	    pidx += npages, m = TAILQ_NEXT(&m[npages - 1], listq)) {
629 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
630 		KASSERT(m != NULL && m->pindex == pidx,
631 		    ("%s: pindex mismatch", __func__));
632 		psind = m->psind;
633 		while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
634 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
635 		    !pmap_ps_enabled(fs->map->pmap)))
636 			psind--;
637 
638 		npages = atop(pagesizes[psind]);
639 		for (i = 0; i < npages; i++) {
640 			vm_fault_populate_check_page(&m[i]);
641 			vm_fault_dirty(fs, &m[i]);
642 		}
643 		VM_OBJECT_WUNLOCK(fs->first_object);
644 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
645 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
646 
647 		/*
648 		 * pmap_enter() may fail for a superpage mapping if additional
649 		 * protection policies prevent the full mapping.
650 		 * For example, this will happen on amd64 if the entire
651 		 * address range does not share the same userspace protection
652 		 * key.  Revert to single-page mappings if this happens.
653 		 */
654 		MPASS(rv == KERN_SUCCESS ||
655 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
656 		if (__predict_false(psind > 0 &&
657 		    rv == KERN_PROTECTION_FAILURE)) {
658 			MPASS(!fs->wired);
659 			for (i = 0; i < npages; i++) {
660 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
661 				    &m[i], fs->prot, fs->fault_type, 0);
662 				MPASS(rv == KERN_SUCCESS);
663 			}
664 		}
665 
666 		VM_OBJECT_WLOCK(fs->first_object);
667 		for (i = 0; i < npages; i++) {
668 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
669 			    m[i].pindex == fs->first_pindex)
670 				vm_page_wire(&m[i]);
671 			else
672 				vm_page_activate(&m[i]);
673 			if (fs->m_hold != NULL &&
674 			    m[i].pindex == fs->first_pindex) {
675 				(*fs->m_hold) = &m[i];
676 				vm_page_wire(&m[i]);
677 			}
678 			vm_page_xunbusy(&m[i]);
679 		}
680 	}
681 out:
682 	curthread->td_ru.ru_majflt++;
683 	return (res);
684 }
685 
686 static int prot_fault_translation;
687 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
688     &prot_fault_translation, 0,
689     "Control signal to deliver on protection fault");
690 
691 /* compat definition to keep common code for signal translation */
692 #define	UCODE_PAGEFLT	12
693 #ifdef T_PAGEFLT
694 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
695 #endif
696 
697 /*
698  *	vm_fault_trap:
699  *
700  *	Handle a page fault occurring at the given address,
701  *	requiring the given permissions, in the map specified.
702  *	If successful, the page is inserted into the
703  *	associated physical map.
704  *
705  *	NOTE: the given address should be truncated to the
706  *	proper page address.
707  *
708  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
709  *	a standard error specifying why the fault is fatal is returned.
710  *
711  *	The map in question must be referenced, and remains so.
712  *	Caller may hold no locks.
713  */
714 int
715 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
716     int fault_flags, int *signo, int *ucode)
717 {
718 	int result;
719 
720 	MPASS(signo == NULL || ucode != NULL);
721 #ifdef KTRACE
722 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
723 		ktrfault(vaddr, fault_type);
724 #endif
725 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
726 	    NULL);
727 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
728 	    result == KERN_INVALID_ADDRESS ||
729 	    result == KERN_RESOURCE_SHORTAGE ||
730 	    result == KERN_PROTECTION_FAILURE ||
731 	    result == KERN_OUT_OF_BOUNDS,
732 	    ("Unexpected Mach error %d from vm_fault()", result));
733 #ifdef KTRACE
734 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
735 		ktrfaultend(result);
736 #endif
737 	if (result != KERN_SUCCESS && signo != NULL) {
738 		switch (result) {
739 		case KERN_FAILURE:
740 		case KERN_INVALID_ADDRESS:
741 			*signo = SIGSEGV;
742 			*ucode = SEGV_MAPERR;
743 			break;
744 		case KERN_RESOURCE_SHORTAGE:
745 			*signo = SIGBUS;
746 			*ucode = BUS_OOMERR;
747 			break;
748 		case KERN_OUT_OF_BOUNDS:
749 			*signo = SIGBUS;
750 			*ucode = BUS_OBJERR;
751 			break;
752 		case KERN_PROTECTION_FAILURE:
753 			if (prot_fault_translation == 0) {
754 				/*
755 				 * Autodetect.  This check also covers
756 				 * the images without the ABI-tag ELF
757 				 * note.
758 				 */
759 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
760 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
761 					*signo = SIGSEGV;
762 					*ucode = SEGV_ACCERR;
763 				} else {
764 					*signo = SIGBUS;
765 					*ucode = UCODE_PAGEFLT;
766 				}
767 			} else if (prot_fault_translation == 1) {
768 				/* Always compat mode. */
769 				*signo = SIGBUS;
770 				*ucode = UCODE_PAGEFLT;
771 			} else {
772 				/* Always SIGSEGV mode. */
773 				*signo = SIGSEGV;
774 				*ucode = SEGV_ACCERR;
775 			}
776 			break;
777 		default:
778 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
779 			    result));
780 			break;
781 		}
782 	}
783 	return (result);
784 }
785 
786 static bool
787 vm_fault_object_ensure_wlocked(struct faultstate *fs)
788 {
789 	if (fs->object == fs->first_object)
790 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
791 
792 	if (!fs->can_read_lock)  {
793 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
794 		return (true);
795 	}
796 
797 	if (VM_OBJECT_WOWNED(fs->object))
798 		return (true);
799 
800 	if (VM_OBJECT_TRYUPGRADE(fs->object))
801 		return (true);
802 
803 	return (false);
804 }
805 
806 static enum fault_status
807 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
808 {
809 	struct vnode *vp;
810 	int error, locked;
811 
812 	if (fs->object->type != OBJT_VNODE)
813 		return (FAULT_CONTINUE);
814 	vp = fs->object->handle;
815 	if (vp == fs->vp) {
816 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
817 		return (FAULT_CONTINUE);
818 	}
819 
820 	/*
821 	 * Perform an unlock in case the desired vnode changed while
822 	 * the map was unlocked during a retry.
823 	 */
824 	vm_fault_unlock_vp(fs);
825 
826 	locked = VOP_ISLOCKED(vp);
827 	if (locked != LK_EXCLUSIVE)
828 		locked = LK_SHARED;
829 
830 	/*
831 	 * We must not sleep acquiring the vnode lock while we have
832 	 * the page exclusive busied or the object's
833 	 * paging-in-progress count incremented.  Otherwise, we could
834 	 * deadlock.
835 	 */
836 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
837 	if (error == 0) {
838 		fs->vp = vp;
839 		return (FAULT_CONTINUE);
840 	}
841 
842 	vhold(vp);
843 	if (objlocked)
844 		vm_fault_unlock_and_deallocate(fs);
845 	else
846 		vm_fault_deallocate(fs);
847 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
848 	vdrop(vp);
849 	fs->vp = vp;
850 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
851 	return (FAULT_RESTART);
852 }
853 
854 /*
855  * Calculate the desired readahead.  Handle drop-behind.
856  *
857  * Returns the number of readahead blocks to pass to the pager.
858  */
859 static int
860 vm_fault_readahead(struct faultstate *fs)
861 {
862 	int era, nera;
863 	u_char behavior;
864 
865 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
866 	era = fs->entry->read_ahead;
867 	behavior = vm_map_entry_behavior(fs->entry);
868 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
869 		nera = 0;
870 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
871 		nera = VM_FAULT_READ_AHEAD_MAX;
872 		if (fs->vaddr == fs->entry->next_read)
873 			vm_fault_dontneed(fs, fs->vaddr, nera);
874 	} else if (fs->vaddr == fs->entry->next_read) {
875 		/*
876 		 * This is a sequential fault.  Arithmetically
877 		 * increase the requested number of pages in
878 		 * the read-ahead window.  The requested
879 		 * number of pages is "# of sequential faults
880 		 * x (read ahead min + 1) + read ahead min"
881 		 */
882 		nera = VM_FAULT_READ_AHEAD_MIN;
883 		if (era > 0) {
884 			nera += era + 1;
885 			if (nera > VM_FAULT_READ_AHEAD_MAX)
886 				nera = VM_FAULT_READ_AHEAD_MAX;
887 		}
888 		if (era == VM_FAULT_READ_AHEAD_MAX)
889 			vm_fault_dontneed(fs, fs->vaddr, nera);
890 	} else {
891 		/*
892 		 * This is a non-sequential fault.
893 		 */
894 		nera = 0;
895 	}
896 	if (era != nera) {
897 		/*
898 		 * A read lock on the map suffices to update
899 		 * the read ahead count safely.
900 		 */
901 		fs->entry->read_ahead = nera;
902 	}
903 
904 	return (nera);
905 }
906 
907 static int
908 vm_fault_lookup(struct faultstate *fs)
909 {
910 	int result;
911 
912 	KASSERT(!fs->lookup_still_valid,
913 	   ("vm_fault_lookup: Map already locked."));
914 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
915 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
916 	    &fs->first_pindex, &fs->prot, &fs->wired);
917 	if (result != KERN_SUCCESS) {
918 		vm_fault_unlock_vp(fs);
919 		return (result);
920 	}
921 
922 	fs->map_generation = fs->map->timestamp;
923 
924 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
925 		panic("%s: fault on nofault entry, addr: %#lx",
926 		    __func__, (u_long)fs->vaddr);
927 	}
928 
929 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
930 	    fs->entry->wiring_thread != curthread) {
931 		vm_map_unlock_read(fs->map);
932 		vm_map_lock(fs->map);
933 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
934 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
935 			vm_fault_unlock_vp(fs);
936 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
937 			vm_map_unlock_and_wait(fs->map, 0);
938 		} else
939 			vm_map_unlock(fs->map);
940 		return (KERN_RESOURCE_SHORTAGE);
941 	}
942 
943 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
944 
945 	if (fs->wired)
946 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
947 	else
948 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
949 		    ("!fs->wired && VM_FAULT_WIRE"));
950 	fs->lookup_still_valid = true;
951 
952 	return (KERN_SUCCESS);
953 }
954 
955 static int
956 vm_fault_relookup(struct faultstate *fs)
957 {
958 	vm_object_t retry_object;
959 	vm_pindex_t retry_pindex;
960 	vm_prot_t retry_prot;
961 	int result;
962 
963 	if (!vm_map_trylock_read(fs->map))
964 		return (KERN_RESTART);
965 
966 	fs->lookup_still_valid = true;
967 	if (fs->map->timestamp == fs->map_generation)
968 		return (KERN_SUCCESS);
969 
970 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
971 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
972 	    &fs->wired);
973 	if (result != KERN_SUCCESS) {
974 		/*
975 		 * If retry of map lookup would have blocked then
976 		 * retry fault from start.
977 		 */
978 		if (result == KERN_FAILURE)
979 			return (KERN_RESTART);
980 		return (result);
981 	}
982 	if (retry_object != fs->first_object ||
983 	    retry_pindex != fs->first_pindex)
984 		return (KERN_RESTART);
985 
986 	/*
987 	 * Check whether the protection has changed or the object has
988 	 * been copied while we left the map unlocked. Changing from
989 	 * read to write permission is OK - we leave the page
990 	 * write-protected, and catch the write fault. Changing from
991 	 * write to read permission means that we can't mark the page
992 	 * write-enabled after all.
993 	 */
994 	fs->prot &= retry_prot;
995 	fs->fault_type &= retry_prot;
996 	if (fs->prot == 0)
997 		return (KERN_RESTART);
998 
999 	/* Reassert because wired may have changed. */
1000 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
1001 	    ("!wired && VM_FAULT_WIRE"));
1002 
1003 	return (KERN_SUCCESS);
1004 }
1005 
1006 static void
1007 vm_fault_cow(struct faultstate *fs)
1008 {
1009 	bool is_first_object_locked;
1010 
1011 	KASSERT(fs->object != fs->first_object,
1012 	    ("source and target COW objects are identical"));
1013 
1014 	/*
1015 	 * This allows pages to be virtually copied from a backing_object
1016 	 * into the first_object, where the backing object has no other
1017 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
1018 	 * we just move the page from the backing object to the first
1019 	 * object.  Note that we must mark the page dirty in the first
1020 	 * object so that it will go out to swap when needed.
1021 	 */
1022 	is_first_object_locked = false;
1023 	if (
1024 	    /*
1025 	     * Only one shadow object and no other refs.
1026 	     */
1027 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
1028 	    /*
1029 	     * No other ways to look the object up
1030 	     */
1031 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
1032 	    /*
1033 	     * We don't chase down the shadow chain and we can acquire locks.
1034 	     */
1035 	    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
1036 	    fs->object == fs->first_object->backing_object &&
1037 	    VM_OBJECT_TRYWLOCK(fs->object)) {
1038 		/*
1039 		 * Remove but keep xbusy for replace.  fs->m is moved into
1040 		 * fs->first_object and left busy while fs->first_m is
1041 		 * conditionally freed.
1042 		 */
1043 		vm_page_remove_xbusy(fs->m);
1044 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
1045 		    fs->first_m);
1046 		vm_page_dirty(fs->m);
1047 #if VM_NRESERVLEVEL > 0
1048 		/*
1049 		 * Rename the reservation.
1050 		 */
1051 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
1052 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
1053 #endif
1054 		VM_OBJECT_WUNLOCK(fs->object);
1055 		VM_OBJECT_WUNLOCK(fs->first_object);
1056 		fs->first_m = fs->m;
1057 		fs->m = NULL;
1058 		VM_CNT_INC(v_cow_optim);
1059 	} else {
1060 		if (is_first_object_locked)
1061 			VM_OBJECT_WUNLOCK(fs->first_object);
1062 		/*
1063 		 * Oh, well, lets copy it.
1064 		 */
1065 		pmap_copy_page(fs->m, fs->first_m);
1066 		vm_page_valid(fs->first_m);
1067 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1068 			vm_page_wire(fs->first_m);
1069 			vm_page_unwire(fs->m, PQ_INACTIVE);
1070 		}
1071 		/*
1072 		 * Save the cow page to be released after
1073 		 * pmap_enter is complete.
1074 		 */
1075 		fs->m_cow = fs->m;
1076 		fs->m = NULL;
1077 
1078 		/*
1079 		 * Typically, the shadow object is either private to this
1080 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1081 		 * In the highly unusual case where the pages of a shadow object
1082 		 * are read/write shared between this and other address spaces,
1083 		 * we need to ensure that any pmap-level mappings to the
1084 		 * original, copy-on-write page from the backing object are
1085 		 * removed from those other address spaces.
1086 		 *
1087 		 * The flag check is racy, but this is tolerable: if
1088 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1089 		 * ensures that new mappings of m_cow can't be created.
1090 		 * pmap_enter() will replace an existing mapping in the current
1091 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1092 		 * removing mappings will at worse trigger some unnecessary page
1093 		 * faults.
1094 		 */
1095 		vm_page_assert_xbusied(fs->m_cow);
1096 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1097 			pmap_remove_all(fs->m_cow);
1098 	}
1099 
1100 	vm_object_pip_wakeup(fs->object);
1101 
1102 	/*
1103 	 * Only use the new page below...
1104 	 */
1105 	fs->object = fs->first_object;
1106 	fs->pindex = fs->first_pindex;
1107 	fs->m = fs->first_m;
1108 	VM_CNT_INC(v_cow_faults);
1109 	curthread->td_cow++;
1110 }
1111 
1112 static enum fault_next_status
1113 vm_fault_next(struct faultstate *fs)
1114 {
1115 	vm_object_t next_object;
1116 
1117 	if (fs->object == fs->first_object || !fs->can_read_lock)
1118 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1119 	else
1120 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1121 
1122 	/*
1123 	 * The requested page does not exist at this object/
1124 	 * offset.  Remove the invalid page from the object,
1125 	 * waking up anyone waiting for it, and continue on to
1126 	 * the next object.  However, if this is the top-level
1127 	 * object, we must leave the busy page in place to
1128 	 * prevent another process from rushing past us, and
1129 	 * inserting the page in that object at the same time
1130 	 * that we are.
1131 	 */
1132 	if (fs->object == fs->first_object) {
1133 		fs->first_m = fs->m;
1134 		fs->m = NULL;
1135 	} else if (fs->m != NULL) {
1136 		if (!vm_fault_object_ensure_wlocked(fs)) {
1137 			fs->can_read_lock = false;
1138 			vm_fault_unlock_and_deallocate(fs);
1139 			return (FAULT_NEXT_RESTART);
1140 		}
1141 		vm_fault_page_free(&fs->m);
1142 	}
1143 
1144 	/*
1145 	 * Move on to the next object.  Lock the next object before
1146 	 * unlocking the current one.
1147 	 */
1148 	next_object = fs->object->backing_object;
1149 	if (next_object == NULL)
1150 		return (FAULT_NEXT_NOOBJ);
1151 	MPASS(fs->first_m != NULL);
1152 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1153 	if (fs->can_read_lock)
1154 		VM_OBJECT_RLOCK(next_object);
1155 	else
1156 		VM_OBJECT_WLOCK(next_object);
1157 	vm_object_pip_add(next_object, 1);
1158 	if (fs->object != fs->first_object)
1159 		vm_object_pip_wakeup(fs->object);
1160 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1161 	VM_OBJECT_UNLOCK(fs->object);
1162 	fs->object = next_object;
1163 
1164 	return (FAULT_NEXT_GOTOBJ);
1165 }
1166 
1167 static void
1168 vm_fault_zerofill(struct faultstate *fs)
1169 {
1170 
1171 	/*
1172 	 * If there's no object left, fill the page in the top
1173 	 * object with zeros.
1174 	 */
1175 	if (fs->object != fs->first_object) {
1176 		vm_object_pip_wakeup(fs->object);
1177 		fs->object = fs->first_object;
1178 		fs->pindex = fs->first_pindex;
1179 	}
1180 	MPASS(fs->first_m != NULL);
1181 	MPASS(fs->m == NULL);
1182 	fs->m = fs->first_m;
1183 	fs->first_m = NULL;
1184 
1185 	/*
1186 	 * Zero the page if necessary and mark it valid.
1187 	 */
1188 	if ((fs->m->flags & PG_ZERO) == 0) {
1189 		pmap_zero_page(fs->m);
1190 	} else {
1191 		VM_CNT_INC(v_ozfod);
1192 	}
1193 	VM_CNT_INC(v_zfod);
1194 	vm_page_valid(fs->m);
1195 }
1196 
1197 /*
1198  * Initiate page fault after timeout.  Returns true if caller should
1199  * do vm_waitpfault() after the call.
1200  */
1201 static bool
1202 vm_fault_allocate_oom(struct faultstate *fs)
1203 {
1204 	struct timeval now;
1205 
1206 	vm_fault_unlock_and_deallocate(fs);
1207 	if (vm_pfault_oom_attempts < 0)
1208 		return (true);
1209 	if (!fs->oom_started) {
1210 		fs->oom_started = true;
1211 		getmicrotime(&fs->oom_start_time);
1212 		return (true);
1213 	}
1214 
1215 	getmicrotime(&now);
1216 	timevalsub(&now, &fs->oom_start_time);
1217 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1218 		return (true);
1219 
1220 	if (bootverbose)
1221 		printf(
1222 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1223 		    curproc->p_pid, curproc->p_comm);
1224 	vm_pageout_oom(VM_OOM_MEM_PF);
1225 	fs->oom_started = false;
1226 	return (false);
1227 }
1228 
1229 /*
1230  * Allocate a page directly or via the object populate method.
1231  */
1232 static enum fault_status
1233 vm_fault_allocate(struct faultstate *fs)
1234 {
1235 	struct domainset *dset;
1236 	enum fault_status res;
1237 
1238 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1239 		res = vm_fault_lock_vnode(fs, true);
1240 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1241 		if (res == FAULT_RESTART)
1242 			return (res);
1243 	}
1244 
1245 	if (fs->pindex >= fs->object->size) {
1246 		vm_fault_unlock_and_deallocate(fs);
1247 		return (FAULT_OUT_OF_BOUNDS);
1248 	}
1249 
1250 	if (fs->object == fs->first_object &&
1251 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1252 	    fs->first_object->shadow_count == 0) {
1253 		res = vm_fault_populate(fs);
1254 		switch (res) {
1255 		case FAULT_SUCCESS:
1256 		case FAULT_FAILURE:
1257 		case FAULT_RESTART:
1258 			vm_fault_unlock_and_deallocate(fs);
1259 			return (res);
1260 		case FAULT_CONTINUE:
1261 			/*
1262 			 * Pager's populate() method
1263 			 * returned VM_PAGER_BAD.
1264 			 */
1265 			break;
1266 		default:
1267 			panic("inconsistent return codes");
1268 		}
1269 	}
1270 
1271 	/*
1272 	 * Allocate a new page for this object/offset pair.
1273 	 *
1274 	 * If the process has a fatal signal pending, prioritize the allocation
1275 	 * with the expectation that the process will exit shortly and free some
1276 	 * pages.  In particular, the signal may have been posted by the page
1277 	 * daemon in an attempt to resolve an out-of-memory condition.
1278 	 *
1279 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1280 	 * might be not observed here, and allocation fails, causing a restart
1281 	 * and new reading of the p_flag.
1282 	 */
1283 	dset = fs->object->domain.dr_policy;
1284 	if (dset == NULL)
1285 		dset = curthread->td_domain.dr_policy;
1286 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1287 #if VM_NRESERVLEVEL > 0
1288 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1289 #endif
1290 		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1291 			vm_fault_unlock_and_deallocate(fs);
1292 			return (FAULT_FAILURE);
1293 		}
1294 		fs->m = vm_page_alloc(fs->object, fs->pindex,
1295 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1296 	}
1297 	if (fs->m == NULL) {
1298 		if (vm_fault_allocate_oom(fs))
1299 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1300 		return (FAULT_RESTART);
1301 	}
1302 	fs->oom_started = false;
1303 
1304 	return (FAULT_CONTINUE);
1305 }
1306 
1307 /*
1308  * Call the pager to retrieve the page if there is a chance
1309  * that the pager has it, and potentially retrieve additional
1310  * pages at the same time.
1311  */
1312 static enum fault_status
1313 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1314 {
1315 	vm_offset_t e_end, e_start;
1316 	int ahead, behind, cluster_offset, rv;
1317 	enum fault_status status;
1318 	u_char behavior;
1319 
1320 	/*
1321 	 * Prepare for unlocking the map.  Save the map
1322 	 * entry's start and end addresses, which are used to
1323 	 * optimize the size of the pager operation below.
1324 	 * Even if the map entry's addresses change after
1325 	 * unlocking the map, using the saved addresses is
1326 	 * safe.
1327 	 */
1328 	e_start = fs->entry->start;
1329 	e_end = fs->entry->end;
1330 	behavior = vm_map_entry_behavior(fs->entry);
1331 
1332 	/*
1333 	 * If the pager for the current object might have
1334 	 * the page, then determine the number of additional
1335 	 * pages to read and potentially reprioritize
1336 	 * previously read pages for earlier reclamation.
1337 	 * These operations should only be performed once per
1338 	 * page fault.  Even if the current pager doesn't
1339 	 * have the page, the number of additional pages to
1340 	 * read will apply to subsequent objects in the
1341 	 * shadow chain.
1342 	 */
1343 	if (fs->nera == -1 && !P_KILLED(curproc))
1344 		fs->nera = vm_fault_readahead(fs);
1345 
1346 	/*
1347 	 * Release the map lock before locking the vnode or
1348 	 * sleeping in the pager.  (If the current object has
1349 	 * a shadow, then an earlier iteration of this loop
1350 	 * may have already unlocked the map.)
1351 	 */
1352 	vm_fault_unlock_map(fs);
1353 
1354 	status = vm_fault_lock_vnode(fs, false);
1355 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1356 	if (status == FAULT_RESTART)
1357 		return (status);
1358 	KASSERT(fs->vp == NULL || !fs->map->system_map,
1359 	    ("vm_fault: vnode-backed object mapped by system map"));
1360 
1361 	/*
1362 	 * Page in the requested page and hint the pager,
1363 	 * that it may bring up surrounding pages.
1364 	 */
1365 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1366 	    P_KILLED(curproc)) {
1367 		behind = 0;
1368 		ahead = 0;
1369 	} else {
1370 		/* Is this a sequential fault? */
1371 		if (fs->nera > 0) {
1372 			behind = 0;
1373 			ahead = fs->nera;
1374 		} else {
1375 			/*
1376 			 * Request a cluster of pages that is
1377 			 * aligned to a VM_FAULT_READ_DEFAULT
1378 			 * page offset boundary within the
1379 			 * object.  Alignment to a page offset
1380 			 * boundary is more likely to coincide
1381 			 * with the underlying file system
1382 			 * block than alignment to a virtual
1383 			 * address boundary.
1384 			 */
1385 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1386 			behind = ulmin(cluster_offset,
1387 			    atop(fs->vaddr - e_start));
1388 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1389 		}
1390 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1391 	}
1392 	*behindp = behind;
1393 	*aheadp = ahead;
1394 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1395 	if (rv == VM_PAGER_OK)
1396 		return (FAULT_HARD);
1397 	if (rv == VM_PAGER_ERROR)
1398 		printf("vm_fault: pager read error, pid %d (%s)\n",
1399 		    curproc->p_pid, curproc->p_comm);
1400 	/*
1401 	 * If an I/O error occurred or the requested page was
1402 	 * outside the range of the pager, clean up and return
1403 	 * an error.
1404 	 */
1405 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1406 		VM_OBJECT_WLOCK(fs->object);
1407 		vm_fault_page_free(&fs->m);
1408 		vm_fault_unlock_and_deallocate(fs);
1409 		return (FAULT_OUT_OF_BOUNDS);
1410 	}
1411 	KASSERT(rv == VM_PAGER_FAIL,
1412 	    ("%s: unexpected pager error %d", __func__, rv));
1413 	return (FAULT_CONTINUE);
1414 }
1415 
1416 /*
1417  * Wait/Retry if the page is busy.  We have to do this if the page is
1418  * either exclusive or shared busy because the vm_pager may be using
1419  * read busy for pageouts (and even pageins if it is the vnode pager),
1420  * and we could end up trying to pagein and pageout the same page
1421  * simultaneously.
1422  *
1423  * We can theoretically allow the busy case on a read fault if the page
1424  * is marked valid, but since such pages are typically already pmap'd,
1425  * putting that special case in might be more effort then it is worth.
1426  * We cannot under any circumstances mess around with a shared busied
1427  * page except, perhaps, to pmap it.
1428  */
1429 static void
1430 vm_fault_busy_sleep(struct faultstate *fs)
1431 {
1432 	/*
1433 	 * Reference the page before unlocking and
1434 	 * sleeping so that the page daemon is less
1435 	 * likely to reclaim it.
1436 	 */
1437 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1438 	if (fs->object != fs->first_object) {
1439 		vm_fault_page_release(&fs->first_m);
1440 		vm_object_pip_wakeup(fs->first_object);
1441 	}
1442 	vm_object_pip_wakeup(fs->object);
1443 	vm_fault_unlock_map(fs);
1444 	if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1445 	    !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1446 		VM_OBJECT_UNLOCK(fs->object);
1447 	VM_CNT_INC(v_intrans);
1448 	vm_object_deallocate(fs->first_object);
1449 }
1450 
1451 /*
1452  * Handle page lookup, populate, allocate, page-in for the current
1453  * object.
1454  *
1455  * The object is locked on entry and will remain locked with a return
1456  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1457  * Otherwise, the object will be unlocked upon return.
1458  */
1459 static enum fault_status
1460 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1461 {
1462 	enum fault_status res;
1463 	bool dead;
1464 
1465 	if (fs->object == fs->first_object || !fs->can_read_lock)
1466 		VM_OBJECT_ASSERT_WLOCKED(fs->object);
1467 	else
1468 		VM_OBJECT_ASSERT_LOCKED(fs->object);
1469 
1470 	/*
1471 	 * If the object is marked for imminent termination, we retry
1472 	 * here, since the collapse pass has raced with us.  Otherwise,
1473 	 * if we see terminally dead object, return fail.
1474 	 */
1475 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1476 		dead = fs->object->type == OBJT_DEAD;
1477 		vm_fault_unlock_and_deallocate(fs);
1478 		if (dead)
1479 			return (FAULT_PROTECTION_FAILURE);
1480 		pause("vmf_de", 1);
1481 		return (FAULT_RESTART);
1482 	}
1483 
1484 	/*
1485 	 * See if the page is resident.
1486 	 */
1487 	fs->m = vm_page_lookup(fs->object, fs->pindex);
1488 	if (fs->m != NULL) {
1489 		if (!vm_page_tryxbusy(fs->m)) {
1490 			vm_fault_busy_sleep(fs);
1491 			return (FAULT_RESTART);
1492 		}
1493 
1494 		/*
1495 		 * The page is marked busy for other processes and the
1496 		 * pagedaemon.  If it is still completely valid we are
1497 		 * done.
1498 		 */
1499 		if (vm_page_all_valid(fs->m)) {
1500 			VM_OBJECT_UNLOCK(fs->object);
1501 			return (FAULT_SOFT);
1502 		}
1503 	}
1504 
1505 	/*
1506 	 * Page is not resident.  If the pager might contain the page
1507 	 * or this is the beginning of the search, allocate a new
1508 	 * page.
1509 	 */
1510 	if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) ||
1511 	    fs->object == fs->first_object)) {
1512 		if (!vm_fault_object_ensure_wlocked(fs)) {
1513 			fs->can_read_lock = false;
1514 			vm_fault_unlock_and_deallocate(fs);
1515 			return (FAULT_RESTART);
1516 		}
1517 		res = vm_fault_allocate(fs);
1518 		if (res != FAULT_CONTINUE)
1519 			return (res);
1520 	}
1521 
1522 	/*
1523 	 * Check to see if the pager can possibly satisfy this fault.
1524 	 * If not, skip to the next object without dropping the lock to
1525 	 * preserve atomicity of shadow faults.
1526 	 */
1527 	if (vm_fault_object_needs_getpages(fs->object)) {
1528 		/*
1529 		 * At this point, we have either allocated a new page
1530 		 * or found an existing page that is only partially
1531 		 * valid.
1532 		 *
1533 		 * We hold a reference on the current object and the
1534 		 * page is exclusive busied.  The exclusive busy
1535 		 * prevents simultaneous faults and collapses while
1536 		 * the object lock is dropped.
1537 		 */
1538 		VM_OBJECT_UNLOCK(fs->object);
1539 		res = vm_fault_getpages(fs, behindp, aheadp);
1540 		if (res == FAULT_CONTINUE)
1541 			VM_OBJECT_WLOCK(fs->object);
1542 	} else {
1543 		res = FAULT_CONTINUE;
1544 	}
1545 	return (res);
1546 }
1547 
1548 int
1549 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1550     int fault_flags, vm_page_t *m_hold)
1551 {
1552 	struct faultstate fs;
1553 	int ahead, behind, faultcount, rv;
1554 	enum fault_status res;
1555 	enum fault_next_status res_next;
1556 	bool hardfault;
1557 
1558 	VM_CNT_INC(v_vm_faults);
1559 
1560 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1561 		return (KERN_PROTECTION_FAILURE);
1562 
1563 	fs.vp = NULL;
1564 	fs.vaddr = vaddr;
1565 	fs.m_hold = m_hold;
1566 	fs.fault_flags = fault_flags;
1567 	fs.map = map;
1568 	fs.lookup_still_valid = false;
1569 	fs.oom_started = false;
1570 	fs.nera = -1;
1571 	fs.can_read_lock = true;
1572 	faultcount = 0;
1573 	hardfault = false;
1574 
1575 RetryFault:
1576 	fs.fault_type = fault_type;
1577 
1578 	/*
1579 	 * Find the backing store object and offset into it to begin the
1580 	 * search.
1581 	 */
1582 	rv = vm_fault_lookup(&fs);
1583 	if (rv != KERN_SUCCESS) {
1584 		if (rv == KERN_RESOURCE_SHORTAGE)
1585 			goto RetryFault;
1586 		return (rv);
1587 	}
1588 
1589 	/*
1590 	 * Try to avoid lock contention on the top-level object through
1591 	 * special-case handling of some types of page faults, specifically,
1592 	 * those that are mapping an existing page from the top-level object.
1593 	 * Under this condition, a read lock on the object suffices, allowing
1594 	 * multiple page faults of a similar type to run in parallel.
1595 	 */
1596 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1597 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1598 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1599 		res = vm_fault_soft_fast(&fs);
1600 		if (res == FAULT_SUCCESS) {
1601 			VM_OBJECT_ASSERT_UNLOCKED(fs.first_object);
1602 			return (KERN_SUCCESS);
1603 		}
1604 		VM_OBJECT_ASSERT_WLOCKED(fs.first_object);
1605 	} else {
1606 		VM_OBJECT_WLOCK(fs.first_object);
1607 	}
1608 
1609 	/*
1610 	 * Make a reference to this object to prevent its disposal while we
1611 	 * are messing with it.  Once we have the reference, the map is free
1612 	 * to be diddled.  Since objects reference their shadows (and copies),
1613 	 * they will stay around as well.
1614 	 *
1615 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1616 	 * truncation operations) during I/O.
1617 	 */
1618 	vm_object_reference_locked(fs.first_object);
1619 	vm_object_pip_add(fs.first_object, 1);
1620 
1621 	fs.m_cow = fs.m = fs.first_m = NULL;
1622 
1623 	/*
1624 	 * Search for the page at object/offset.
1625 	 */
1626 	fs.object = fs.first_object;
1627 	fs.pindex = fs.first_pindex;
1628 
1629 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1630 		res = vm_fault_allocate(&fs);
1631 		switch (res) {
1632 		case FAULT_RESTART:
1633 			goto RetryFault;
1634 		case FAULT_SUCCESS:
1635 			return (KERN_SUCCESS);
1636 		case FAULT_FAILURE:
1637 			return (KERN_FAILURE);
1638 		case FAULT_OUT_OF_BOUNDS:
1639 			return (KERN_OUT_OF_BOUNDS);
1640 		case FAULT_CONTINUE:
1641 			break;
1642 		default:
1643 			panic("vm_fault: Unhandled status %d", res);
1644 		}
1645 	}
1646 
1647 	while (TRUE) {
1648 		KASSERT(fs.m == NULL,
1649 		    ("page still set %p at loop start", fs.m));
1650 
1651 		res = vm_fault_object(&fs, &behind, &ahead);
1652 		switch (res) {
1653 		case FAULT_SOFT:
1654 			goto found;
1655 		case FAULT_HARD:
1656 			faultcount = behind + 1 + ahead;
1657 			hardfault = true;
1658 			goto found;
1659 		case FAULT_RESTART:
1660 			goto RetryFault;
1661 		case FAULT_SUCCESS:
1662 			return (KERN_SUCCESS);
1663 		case FAULT_FAILURE:
1664 			return (KERN_FAILURE);
1665 		case FAULT_OUT_OF_BOUNDS:
1666 			return (KERN_OUT_OF_BOUNDS);
1667 		case FAULT_PROTECTION_FAILURE:
1668 			return (KERN_PROTECTION_FAILURE);
1669 		case FAULT_CONTINUE:
1670 			break;
1671 		default:
1672 			panic("vm_fault: Unhandled status %d", res);
1673 		}
1674 
1675 		/*
1676 		 * The page was not found in the current object.  Try to
1677 		 * traverse into a backing object or zero fill if none is
1678 		 * found.
1679 		 */
1680 		res_next = vm_fault_next(&fs);
1681 		if (res_next == FAULT_NEXT_RESTART)
1682 			goto RetryFault;
1683 		else if (res_next == FAULT_NEXT_GOTOBJ)
1684 			continue;
1685 		MPASS(res_next == FAULT_NEXT_NOOBJ);
1686 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1687 			if (fs.first_object == fs.object)
1688 				vm_fault_page_free(&fs.first_m);
1689 			vm_fault_unlock_and_deallocate(&fs);
1690 			return (KERN_OUT_OF_BOUNDS);
1691 		}
1692 		VM_OBJECT_UNLOCK(fs.object);
1693 		vm_fault_zerofill(&fs);
1694 		/* Don't try to prefault neighboring pages. */
1695 		faultcount = 1;
1696 		break;
1697 	}
1698 
1699 found:
1700 	/*
1701 	 * A valid page has been found and exclusively busied.  The
1702 	 * object lock must no longer be held.
1703 	 */
1704 	vm_page_assert_xbusied(fs.m);
1705 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1706 
1707 	/*
1708 	 * If the page is being written, but isn't already owned by the
1709 	 * top-level object, we have to copy it into a new page owned by the
1710 	 * top-level object.
1711 	 */
1712 	if (fs.object != fs.first_object) {
1713 		/*
1714 		 * We only really need to copy if we want to write it.
1715 		 */
1716 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1717 			vm_fault_cow(&fs);
1718 			/*
1719 			 * We only try to prefault read-only mappings to the
1720 			 * neighboring pages when this copy-on-write fault is
1721 			 * a hard fault.  In other cases, trying to prefault
1722 			 * is typically wasted effort.
1723 			 */
1724 			if (faultcount == 0)
1725 				faultcount = 1;
1726 
1727 		} else {
1728 			fs.prot &= ~VM_PROT_WRITE;
1729 		}
1730 	}
1731 
1732 	/*
1733 	 * We must verify that the maps have not changed since our last
1734 	 * lookup.
1735 	 */
1736 	if (!fs.lookup_still_valid) {
1737 		rv = vm_fault_relookup(&fs);
1738 		if (rv != KERN_SUCCESS) {
1739 			vm_fault_deallocate(&fs);
1740 			if (rv == KERN_RESTART)
1741 				goto RetryFault;
1742 			return (rv);
1743 		}
1744 	}
1745 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1746 
1747 	/*
1748 	 * If the page was filled by a pager, save the virtual address that
1749 	 * should be faulted on next under a sequential access pattern to the
1750 	 * map entry.  A read lock on the map suffices to update this address
1751 	 * safely.
1752 	 */
1753 	if (hardfault)
1754 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1755 
1756 	/*
1757 	 * Page must be completely valid or it is not fit to
1758 	 * map into user space.  vm_pager_get_pages() ensures this.
1759 	 */
1760 	vm_page_assert_xbusied(fs.m);
1761 	KASSERT(vm_page_all_valid(fs.m),
1762 	    ("vm_fault: page %p partially invalid", fs.m));
1763 
1764 	vm_fault_dirty(&fs, fs.m);
1765 
1766 	/*
1767 	 * Put this page into the physical map.  We had to do the unlock above
1768 	 * because pmap_enter() may sleep.  We don't put the page
1769 	 * back on the active queue until later so that the pageout daemon
1770 	 * won't find it (yet).
1771 	 */
1772 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1773 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1774 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1775 	    fs.wired == 0)
1776 		vm_fault_prefault(&fs, vaddr,
1777 		    faultcount > 0 ? behind : PFBAK,
1778 		    faultcount > 0 ? ahead : PFFOR, false);
1779 
1780 	/*
1781 	 * If the page is not wired down, then put it where the pageout daemon
1782 	 * can find it.
1783 	 */
1784 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1785 		vm_page_wire(fs.m);
1786 	else
1787 		vm_page_activate(fs.m);
1788 	if (fs.m_hold != NULL) {
1789 		(*fs.m_hold) = fs.m;
1790 		vm_page_wire(fs.m);
1791 	}
1792 	vm_page_xunbusy(fs.m);
1793 	fs.m = NULL;
1794 
1795 	/*
1796 	 * Unlock everything, and return
1797 	 */
1798 	vm_fault_deallocate(&fs);
1799 	if (hardfault) {
1800 		VM_CNT_INC(v_io_faults);
1801 		curthread->td_ru.ru_majflt++;
1802 #ifdef RACCT
1803 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1804 			PROC_LOCK(curproc);
1805 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1806 				racct_add_force(curproc, RACCT_WRITEBPS,
1807 				    PAGE_SIZE + behind * PAGE_SIZE);
1808 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1809 			} else {
1810 				racct_add_force(curproc, RACCT_READBPS,
1811 				    PAGE_SIZE + ahead * PAGE_SIZE);
1812 				racct_add_force(curproc, RACCT_READIOPS, 1);
1813 			}
1814 			PROC_UNLOCK(curproc);
1815 		}
1816 #endif
1817 	} else
1818 		curthread->td_ru.ru_minflt++;
1819 
1820 	return (KERN_SUCCESS);
1821 }
1822 
1823 /*
1824  * Speed up the reclamation of pages that precede the faulting pindex within
1825  * the first object of the shadow chain.  Essentially, perform the equivalent
1826  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1827  * the faulting pindex by the cluster size when the pages read by vm_fault()
1828  * cross a cluster-size boundary.  The cluster size is the greater of the
1829  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1830  *
1831  * When "fs->first_object" is a shadow object, the pages in the backing object
1832  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1833  * function must only be concerned with pages in the first object.
1834  */
1835 static void
1836 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1837 {
1838 	vm_map_entry_t entry;
1839 	vm_object_t first_object;
1840 	vm_offset_t end, start;
1841 	vm_page_t m, m_next;
1842 	vm_pindex_t pend, pstart;
1843 	vm_size_t size;
1844 
1845 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1846 	first_object = fs->first_object;
1847 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1848 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1849 		VM_OBJECT_RLOCK(first_object);
1850 		size = VM_FAULT_DONTNEED_MIN;
1851 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1852 			size = pagesizes[1];
1853 		end = rounddown2(vaddr, size);
1854 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1855 		    (entry = fs->entry)->start < end) {
1856 			if (end - entry->start < size)
1857 				start = entry->start;
1858 			else
1859 				start = end - size;
1860 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1861 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1862 			    entry->start);
1863 			m_next = vm_page_find_least(first_object, pstart);
1864 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1865 			    entry->start);
1866 			while ((m = m_next) != NULL && m->pindex < pend) {
1867 				m_next = TAILQ_NEXT(m, listq);
1868 				if (!vm_page_all_valid(m) ||
1869 				    vm_page_busied(m))
1870 					continue;
1871 
1872 				/*
1873 				 * Don't clear PGA_REFERENCED, since it would
1874 				 * likely represent a reference by a different
1875 				 * process.
1876 				 *
1877 				 * Typically, at this point, prefetched pages
1878 				 * are still in the inactive queue.  Only
1879 				 * pages that triggered page faults are in the
1880 				 * active queue.  The test for whether the page
1881 				 * is in the inactive queue is racy; in the
1882 				 * worst case we will requeue the page
1883 				 * unnecessarily.
1884 				 */
1885 				if (!vm_page_inactive(m))
1886 					vm_page_deactivate(m);
1887 			}
1888 		}
1889 		VM_OBJECT_RUNLOCK(first_object);
1890 	}
1891 }
1892 
1893 /*
1894  * vm_fault_prefault provides a quick way of clustering
1895  * pagefaults into a processes address space.  It is a "cousin"
1896  * of vm_map_pmap_enter, except it runs at page fault time instead
1897  * of mmap time.
1898  */
1899 static void
1900 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1901     int backward, int forward, bool obj_locked)
1902 {
1903 	pmap_t pmap;
1904 	vm_map_entry_t entry;
1905 	vm_object_t backing_object, lobject;
1906 	vm_offset_t addr, starta;
1907 	vm_pindex_t pindex;
1908 	vm_page_t m;
1909 	vm_prot_t prot;
1910 	int i;
1911 
1912 	pmap = fs->map->pmap;
1913 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1914 		return;
1915 
1916 	entry = fs->entry;
1917 
1918 	if (addra < backward * PAGE_SIZE) {
1919 		starta = entry->start;
1920 	} else {
1921 		starta = addra - backward * PAGE_SIZE;
1922 		if (starta < entry->start)
1923 			starta = entry->start;
1924 	}
1925 	prot = entry->protection;
1926 
1927 	/*
1928 	 * If pmap_enter() has enabled write access on a nearby mapping, then
1929 	 * don't attempt promotion, because it will fail.
1930 	 */
1931 	if ((fs->prot & VM_PROT_WRITE) != 0)
1932 		prot |= VM_PROT_NO_PROMOTE;
1933 
1934 	/*
1935 	 * Generate the sequence of virtual addresses that are candidates for
1936 	 * prefaulting in an outward spiral from the faulting virtual address,
1937 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1938 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1939 	 * If the candidate address doesn't have a backing physical page, then
1940 	 * the loop immediately terminates.
1941 	 */
1942 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1943 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1944 		    PAGE_SIZE);
1945 		if (addr > addra + forward * PAGE_SIZE)
1946 			addr = 0;
1947 
1948 		if (addr < starta || addr >= entry->end)
1949 			continue;
1950 
1951 		if (!pmap_is_prefaultable(pmap, addr))
1952 			continue;
1953 
1954 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1955 		lobject = entry->object.vm_object;
1956 		if (!obj_locked)
1957 			VM_OBJECT_RLOCK(lobject);
1958 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1959 		    !vm_fault_object_needs_getpages(lobject) &&
1960 		    (backing_object = lobject->backing_object) != NULL) {
1961 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1962 			    0, ("vm_fault_prefault: unaligned object offset"));
1963 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1964 			VM_OBJECT_RLOCK(backing_object);
1965 			if (!obj_locked || lobject != entry->object.vm_object)
1966 				VM_OBJECT_RUNLOCK(lobject);
1967 			lobject = backing_object;
1968 		}
1969 		if (m == NULL) {
1970 			if (!obj_locked || lobject != entry->object.vm_object)
1971 				VM_OBJECT_RUNLOCK(lobject);
1972 			break;
1973 		}
1974 		if (vm_page_all_valid(m) &&
1975 		    (m->flags & PG_FICTITIOUS) == 0)
1976 			pmap_enter_quick(pmap, addr, m, prot);
1977 		if (!obj_locked || lobject != entry->object.vm_object)
1978 			VM_OBJECT_RUNLOCK(lobject);
1979 	}
1980 }
1981 
1982 /*
1983  * Hold each of the physical pages that are mapped by the specified range of
1984  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1985  * and allow the specified types of access, "prot".  If all of the implied
1986  * pages are successfully held, then the number of held pages is returned
1987  * together with pointers to those pages in the array "ma".  However, if any
1988  * of the pages cannot be held, -1 is returned.
1989  */
1990 int
1991 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1992     vm_prot_t prot, vm_page_t *ma, int max_count)
1993 {
1994 	vm_offset_t end, va;
1995 	vm_page_t *mp;
1996 	int count;
1997 	boolean_t pmap_failed;
1998 
1999 	if (len == 0)
2000 		return (0);
2001 	end = round_page(addr + len);
2002 	addr = trunc_page(addr);
2003 
2004 	if (!vm_map_range_valid(map, addr, end))
2005 		return (-1);
2006 
2007 	if (atop(end - addr) > max_count)
2008 		panic("vm_fault_quick_hold_pages: count > max_count");
2009 	count = atop(end - addr);
2010 
2011 	/*
2012 	 * Most likely, the physical pages are resident in the pmap, so it is
2013 	 * faster to try pmap_extract_and_hold() first.
2014 	 */
2015 	pmap_failed = FALSE;
2016 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
2017 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
2018 		if (*mp == NULL)
2019 			pmap_failed = TRUE;
2020 		else if ((prot & VM_PROT_WRITE) != 0 &&
2021 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
2022 			/*
2023 			 * Explicitly dirty the physical page.  Otherwise, the
2024 			 * caller's changes may go unnoticed because they are
2025 			 * performed through an unmanaged mapping or by a DMA
2026 			 * operation.
2027 			 *
2028 			 * The object lock is not held here.
2029 			 * See vm_page_clear_dirty_mask().
2030 			 */
2031 			vm_page_dirty(*mp);
2032 		}
2033 	}
2034 	if (pmap_failed) {
2035 		/*
2036 		 * One or more pages could not be held by the pmap.  Either no
2037 		 * page was mapped at the specified virtual address or that
2038 		 * mapping had insufficient permissions.  Attempt to fault in
2039 		 * and hold these pages.
2040 		 *
2041 		 * If vm_fault_disable_pagefaults() was called,
2042 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
2043 		 * acquire MD VM locks, which means we must not call
2044 		 * vm_fault().  Some (out of tree) callers mark
2045 		 * too wide a code area with vm_fault_disable_pagefaults()
2046 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
2047 		 * the proper behaviour explicitly.
2048 		 */
2049 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
2050 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
2051 			goto error;
2052 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
2053 			if (*mp == NULL && vm_fault(map, va, prot,
2054 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
2055 				goto error;
2056 	}
2057 	return (count);
2058 error:
2059 	for (mp = ma; mp < ma + count; mp++)
2060 		if (*mp != NULL)
2061 			vm_page_unwire(*mp, PQ_INACTIVE);
2062 	return (-1);
2063 }
2064 
2065 /*
2066  *	Routine:
2067  *		vm_fault_copy_entry
2068  *	Function:
2069  *		Create new object backing dst_entry with private copy of all
2070  *		underlying pages. When src_entry is equal to dst_entry, function
2071  *		implements COW for wired-down map entry. Otherwise, it forks
2072  *		wired entry into dst_map.
2073  *
2074  *	In/out conditions:
2075  *		The source and destination maps must be locked for write.
2076  *		The source map entry must be wired down (or be a sharing map
2077  *		entry corresponding to a main map entry that is wired down).
2078  */
2079 void
2080 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
2081     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
2082     vm_ooffset_t *fork_charge)
2083 {
2084 	vm_object_t backing_object, dst_object, object, src_object;
2085 	vm_pindex_t dst_pindex, pindex, src_pindex;
2086 	vm_prot_t access, prot;
2087 	vm_offset_t vaddr;
2088 	vm_page_t dst_m;
2089 	vm_page_t src_m;
2090 	bool upgrade;
2091 
2092 	upgrade = src_entry == dst_entry;
2093 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2094 	    ("vm_fault_copy_entry: vm_object not NULL"));
2095 
2096 	/*
2097 	 * If not an upgrade, then enter the mappings in the pmap as
2098 	 * read and/or execute accesses.  Otherwise, enter them as
2099 	 * write accesses.
2100 	 *
2101 	 * A writeable large page mapping is only created if all of
2102 	 * the constituent small page mappings are modified. Marking
2103 	 * PTEs as modified on inception allows promotion to happen
2104 	 * without taking potentially large number of soft faults.
2105 	 */
2106 	access = prot = dst_entry->protection;
2107 	if (!upgrade)
2108 		access &= ~VM_PROT_WRITE;
2109 
2110 	src_object = src_entry->object.vm_object;
2111 	src_pindex = OFF_TO_IDX(src_entry->offset);
2112 
2113 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2114 		dst_object = src_object;
2115 		vm_object_reference(dst_object);
2116 	} else {
2117 		/*
2118 		 * Create the top-level object for the destination entry.
2119 		 * Doesn't actually shadow anything - we copy the pages
2120 		 * directly.
2121 		 */
2122 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2123 		    dst_entry->start), NULL, NULL, 0);
2124 #if VM_NRESERVLEVEL > 0
2125 		dst_object->flags |= OBJ_COLORED;
2126 		dst_object->pg_color = atop(dst_entry->start);
2127 #endif
2128 		dst_object->domain = src_object->domain;
2129 		dst_object->charge = dst_entry->end - dst_entry->start;
2130 
2131 		dst_entry->object.vm_object = dst_object;
2132 		dst_entry->offset = 0;
2133 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2134 	}
2135 
2136 	VM_OBJECT_WLOCK(dst_object);
2137 	if (fork_charge != NULL) {
2138 		KASSERT(dst_entry->cred == NULL,
2139 		    ("vm_fault_copy_entry: leaked swp charge"));
2140 		dst_object->cred = curthread->td_ucred;
2141 		crhold(dst_object->cred);
2142 		*fork_charge += dst_object->charge;
2143 	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2144 	    dst_object->cred == NULL) {
2145 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2146 		    dst_entry));
2147 		dst_object->cred = dst_entry->cred;
2148 		dst_entry->cred = NULL;
2149 	}
2150 
2151 	/*
2152 	 * Loop through all of the virtual pages within the entry's
2153 	 * range, copying each page from the source object to the
2154 	 * destination object.  Since the source is wired, those pages
2155 	 * must exist.  In contrast, the destination is pageable.
2156 	 * Since the destination object doesn't share any backing storage
2157 	 * with the source object, all of its pages must be dirtied,
2158 	 * regardless of whether they can be written.
2159 	 */
2160 	for (vaddr = dst_entry->start, dst_pindex = 0;
2161 	    vaddr < dst_entry->end;
2162 	    vaddr += PAGE_SIZE, dst_pindex++) {
2163 again:
2164 		/*
2165 		 * Find the page in the source object, and copy it in.
2166 		 * Because the source is wired down, the page will be
2167 		 * in memory.
2168 		 */
2169 		if (src_object != dst_object)
2170 			VM_OBJECT_RLOCK(src_object);
2171 		object = src_object;
2172 		pindex = src_pindex + dst_pindex;
2173 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2174 		    (backing_object = object->backing_object) != NULL) {
2175 			/*
2176 			 * Unless the source mapping is read-only or
2177 			 * it is presently being upgraded from
2178 			 * read-only, the first object in the shadow
2179 			 * chain should provide all of the pages.  In
2180 			 * other words, this loop body should never be
2181 			 * executed when the source mapping is already
2182 			 * read/write.
2183 			 */
2184 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2185 			    upgrade,
2186 			    ("vm_fault_copy_entry: main object missing page"));
2187 
2188 			VM_OBJECT_RLOCK(backing_object);
2189 			pindex += OFF_TO_IDX(object->backing_object_offset);
2190 			if (object != dst_object)
2191 				VM_OBJECT_RUNLOCK(object);
2192 			object = backing_object;
2193 		}
2194 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2195 
2196 		if (object != dst_object) {
2197 			/*
2198 			 * Allocate a page in the destination object.
2199 			 */
2200 			dst_m = vm_page_alloc(dst_object, (src_object ==
2201 			    dst_object ? src_pindex : 0) + dst_pindex,
2202 			    VM_ALLOC_NORMAL);
2203 			if (dst_m == NULL) {
2204 				VM_OBJECT_WUNLOCK(dst_object);
2205 				VM_OBJECT_RUNLOCK(object);
2206 				vm_wait(dst_object);
2207 				VM_OBJECT_WLOCK(dst_object);
2208 				goto again;
2209 			}
2210 
2211 			/*
2212 			 * See the comment in vm_fault_cow().
2213 			 */
2214 			if (src_object == dst_object &&
2215 			    (object->flags & OBJ_ONEMAPPING) == 0)
2216 				pmap_remove_all(src_m);
2217 			pmap_copy_page(src_m, dst_m);
2218 
2219 			/*
2220 			 * The object lock does not guarantee that "src_m" will
2221 			 * transition from invalid to valid, but it does ensure
2222 			 * that "src_m" will not transition from valid to
2223 			 * invalid.
2224 			 */
2225 			dst_m->dirty = dst_m->valid = src_m->valid;
2226 			VM_OBJECT_RUNLOCK(object);
2227 		} else {
2228 			dst_m = src_m;
2229 			if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2230 				goto again;
2231 			if (dst_m->pindex >= dst_object->size) {
2232 				/*
2233 				 * We are upgrading.  Index can occur
2234 				 * out of bounds if the object type is
2235 				 * vnode and the file was truncated.
2236 				 */
2237 				vm_page_xunbusy(dst_m);
2238 				break;
2239 			}
2240 		}
2241 
2242 		/*
2243 		 * Enter it in the pmap. If a wired, copy-on-write
2244 		 * mapping is being replaced by a write-enabled
2245 		 * mapping, then wire that new mapping.
2246 		 *
2247 		 * The page can be invalid if the user called
2248 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2249 		 * or shared memory object.  In this case, do not
2250 		 * insert it into pmap, but still do the copy so that
2251 		 * all copies of the wired map entry have similar
2252 		 * backing pages.
2253 		 */
2254 		if (vm_page_all_valid(dst_m)) {
2255 			VM_OBJECT_WUNLOCK(dst_object);
2256 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2257 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2258 			VM_OBJECT_WLOCK(dst_object);
2259 		}
2260 
2261 		/*
2262 		 * Mark it no longer busy, and put it on the active list.
2263 		 */
2264 		if (upgrade) {
2265 			if (src_m != dst_m) {
2266 				vm_page_unwire(src_m, PQ_INACTIVE);
2267 				vm_page_wire(dst_m);
2268 			} else {
2269 				KASSERT(vm_page_wired(dst_m),
2270 				    ("dst_m %p is not wired", dst_m));
2271 			}
2272 		} else {
2273 			vm_page_activate(dst_m);
2274 		}
2275 		vm_page_xunbusy(dst_m);
2276 	}
2277 	VM_OBJECT_WUNLOCK(dst_object);
2278 	if (upgrade) {
2279 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2280 		vm_object_deallocate(src_object);
2281 	}
2282 }
2283 
2284 /*
2285  * Block entry into the machine-independent layer's page fault handler by
2286  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2287  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2288  * spurious page faults.
2289  */
2290 int
2291 vm_fault_disable_pagefaults(void)
2292 {
2293 
2294 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2295 }
2296 
2297 void
2298 vm_fault_enable_pagefaults(int save)
2299 {
2300 
2301 	curthread_pflags_restore(save);
2302 }
2303