1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/proc.h> 88 #include <sys/racct.h> 89 #include <sys/resourcevar.h> 90 #include <sys/rwlock.h> 91 #include <sys/sysctl.h> 92 #include <sys/vmmeter.h> 93 #include <sys/vnode.h> 94 #ifdef KTRACE 95 #include <sys/ktrace.h> 96 #endif 97 98 #include <vm/vm.h> 99 #include <vm/vm_param.h> 100 #include <vm/pmap.h> 101 #include <vm/vm_map.h> 102 #include <vm/vm_object.h> 103 #include <vm/vm_page.h> 104 #include <vm/vm_pageout.h> 105 #include <vm/vm_kern.h> 106 #include <vm/vm_pager.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_reserv.h> 109 110 #define PFBAK 4 111 #define PFFOR 4 112 113 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 114 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 115 116 #define VM_FAULT_DONTNEED_MIN 1048576 117 118 struct faultstate { 119 vm_page_t m; 120 vm_object_t object; 121 vm_pindex_t pindex; 122 vm_page_t first_m; 123 vm_object_t first_object; 124 vm_pindex_t first_pindex; 125 vm_map_t map; 126 vm_map_entry_t entry; 127 int map_generation; 128 bool lookup_still_valid; 129 struct vnode *vp; 130 }; 131 132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 133 int ahead); 134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 135 int backward, int forward); 136 137 static inline void 138 release_page(struct faultstate *fs) 139 { 140 141 vm_page_xunbusy(fs->m); 142 vm_page_lock(fs->m); 143 vm_page_deactivate(fs->m); 144 vm_page_unlock(fs->m); 145 fs->m = NULL; 146 } 147 148 static inline void 149 unlock_map(struct faultstate *fs) 150 { 151 152 if (fs->lookup_still_valid) { 153 vm_map_lookup_done(fs->map, fs->entry); 154 fs->lookup_still_valid = false; 155 } 156 } 157 158 static void 159 unlock_vp(struct faultstate *fs) 160 { 161 162 if (fs->vp != NULL) { 163 vput(fs->vp); 164 fs->vp = NULL; 165 } 166 } 167 168 static void 169 unlock_and_deallocate(struct faultstate *fs) 170 { 171 172 vm_object_pip_wakeup(fs->object); 173 VM_OBJECT_WUNLOCK(fs->object); 174 if (fs->object != fs->first_object) { 175 VM_OBJECT_WLOCK(fs->first_object); 176 vm_page_lock(fs->first_m); 177 vm_page_free(fs->first_m); 178 vm_page_unlock(fs->first_m); 179 vm_object_pip_wakeup(fs->first_object); 180 VM_OBJECT_WUNLOCK(fs->first_object); 181 fs->first_m = NULL; 182 } 183 vm_object_deallocate(fs->first_object); 184 unlock_map(fs); 185 unlock_vp(fs); 186 } 187 188 static void 189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 190 vm_prot_t fault_type, int fault_flags, bool set_wd) 191 { 192 bool need_dirty; 193 194 if (((prot & VM_PROT_WRITE) == 0 && 195 (fault_flags & VM_FAULT_DIRTY) == 0) || 196 (m->oflags & VPO_UNMANAGED) != 0) 197 return; 198 199 VM_OBJECT_ASSERT_LOCKED(m->object); 200 201 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 202 (fault_flags & VM_FAULT_WIRE) == 0) || 203 (fault_flags & VM_FAULT_DIRTY) != 0; 204 205 if (set_wd) 206 vm_object_set_writeable_dirty(m->object); 207 else 208 /* 209 * If two callers of vm_fault_dirty() with set_wd == 210 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 211 * flag set, other with flag clear, race, it is 212 * possible for the no-NOSYNC thread to see m->dirty 213 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 214 * around manipulation of VPO_NOSYNC and 215 * vm_page_dirty() call, to avoid the race and keep 216 * m->oflags consistent. 217 */ 218 vm_page_lock(m); 219 220 /* 221 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 222 * if the page is already dirty to prevent data written with 223 * the expectation of being synced from not being synced. 224 * Likewise if this entry does not request NOSYNC then make 225 * sure the page isn't marked NOSYNC. Applications sharing 226 * data should use the same flags to avoid ping ponging. 227 */ 228 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 229 if (m->dirty == 0) { 230 m->oflags |= VPO_NOSYNC; 231 } 232 } else { 233 m->oflags &= ~VPO_NOSYNC; 234 } 235 236 /* 237 * If the fault is a write, we know that this page is being 238 * written NOW so dirty it explicitly to save on 239 * pmap_is_modified() calls later. 240 * 241 * Also, since the page is now dirty, we can possibly tell 242 * the pager to release any swap backing the page. Calling 243 * the pager requires a write lock on the object. 244 */ 245 if (need_dirty) 246 vm_page_dirty(m); 247 if (!set_wd) 248 vm_page_unlock(m); 249 else if (need_dirty) 250 vm_pager_page_unswapped(m); 251 } 252 253 static void 254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m) 255 { 256 257 if (m_hold != NULL) { 258 *m_hold = m; 259 vm_page_lock(m); 260 vm_page_hold(m); 261 vm_page_unlock(m); 262 } 263 } 264 265 /* 266 * Unlocks fs.first_object and fs.map on success. 267 */ 268 static int 269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 270 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 271 { 272 vm_page_t m, m_map; 273 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 274 vm_page_t m_super; 275 int flags; 276 #endif 277 int psind, rv; 278 279 MPASS(fs->vp == NULL); 280 m = vm_page_lookup(fs->first_object, fs->first_pindex); 281 /* A busy page can be mapped for read|execute access. */ 282 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 283 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 284 return (KERN_FAILURE); 285 m_map = m; 286 psind = 0; 287 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 288 if ((m->flags & PG_FICTITIOUS) == 0 && 289 (m_super = vm_reserv_to_superpage(m)) != NULL && 290 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 291 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 292 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 293 (pagesizes[m_super->psind] - 1)) && 294 pmap_ps_enabled(fs->map->pmap)) { 295 flags = PS_ALL_VALID; 296 if ((prot & VM_PROT_WRITE) != 0) { 297 /* 298 * Create a superpage mapping allowing write access 299 * only if none of the constituent pages are busy and 300 * all of them are already dirty (except possibly for 301 * the page that was faulted on). 302 */ 303 flags |= PS_NONE_BUSY; 304 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 305 flags |= PS_ALL_DIRTY; 306 } 307 if (vm_page_ps_test(m_super, flags, m)) { 308 m_map = m_super; 309 psind = m_super->psind; 310 vaddr = rounddown2(vaddr, pagesizes[psind]); 311 /* Preset the modified bit for dirty superpages. */ 312 if ((flags & PS_ALL_DIRTY) != 0) 313 fault_type |= VM_PROT_WRITE; 314 } 315 } 316 #endif 317 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 318 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 319 if (rv != KERN_SUCCESS) 320 return (rv); 321 vm_fault_fill_hold(m_hold, m); 322 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 323 VM_OBJECT_RUNLOCK(fs->first_object); 324 if (psind == 0 && !wired) 325 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR); 326 vm_map_lookup_done(fs->map, fs->entry); 327 curthread->td_ru.ru_minflt++; 328 return (KERN_SUCCESS); 329 } 330 331 static void 332 vm_fault_restore_map_lock(struct faultstate *fs) 333 { 334 335 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 336 MPASS(fs->first_object->paging_in_progress > 0); 337 338 if (!vm_map_trylock_read(fs->map)) { 339 VM_OBJECT_WUNLOCK(fs->first_object); 340 vm_map_lock_read(fs->map); 341 VM_OBJECT_WLOCK(fs->first_object); 342 } 343 fs->lookup_still_valid = true; 344 } 345 346 static void 347 vm_fault_populate_check_page(vm_page_t m) 348 { 349 350 /* 351 * Check each page to ensure that the pager is obeying the 352 * interface: the page must be installed in the object, fully 353 * valid, and exclusively busied. 354 */ 355 MPASS(m != NULL); 356 MPASS(m->valid == VM_PAGE_BITS_ALL); 357 MPASS(vm_page_xbusied(m)); 358 } 359 360 static void 361 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 362 vm_pindex_t last) 363 { 364 vm_page_t m; 365 vm_pindex_t pidx; 366 367 VM_OBJECT_ASSERT_WLOCKED(object); 368 MPASS(first <= last); 369 for (pidx = first, m = vm_page_lookup(object, pidx); 370 pidx <= last; pidx++, m = vm_page_next(m)) { 371 vm_fault_populate_check_page(m); 372 vm_page_lock(m); 373 vm_page_deactivate(m); 374 vm_page_unlock(m); 375 vm_page_xunbusy(m); 376 } 377 } 378 379 static int 380 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 381 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 382 { 383 vm_page_t m; 384 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 385 int rv; 386 387 MPASS(fs->object == fs->first_object); 388 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 389 MPASS(fs->first_object->paging_in_progress > 0); 390 MPASS(fs->first_object->backing_object == NULL); 391 MPASS(fs->lookup_still_valid); 392 393 pager_first = OFF_TO_IDX(fs->entry->offset); 394 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 395 unlock_map(fs); 396 unlock_vp(fs); 397 398 /* 399 * Call the pager (driver) populate() method. 400 * 401 * There is no guarantee that the method will be called again 402 * if the current fault is for read, and a future fault is 403 * for write. Report the entry's maximum allowed protection 404 * to the driver. 405 */ 406 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 407 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 408 409 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 410 if (rv == VM_PAGER_BAD) { 411 /* 412 * VM_PAGER_BAD is the backdoor for a pager to request 413 * normal fault handling. 414 */ 415 vm_fault_restore_map_lock(fs); 416 if (fs->map->timestamp != fs->map_generation) 417 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 418 return (KERN_NOT_RECEIVER); 419 } 420 if (rv != VM_PAGER_OK) 421 return (KERN_FAILURE); /* AKA SIGSEGV */ 422 423 /* Ensure that the driver is obeying the interface. */ 424 MPASS(pager_first <= pager_last); 425 MPASS(fs->first_pindex <= pager_last); 426 MPASS(fs->first_pindex >= pager_first); 427 MPASS(pager_last < fs->first_object->size); 428 429 vm_fault_restore_map_lock(fs); 430 if (fs->map->timestamp != fs->map_generation) { 431 vm_fault_populate_cleanup(fs->first_object, pager_first, 432 pager_last); 433 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 434 } 435 436 /* 437 * The map is unchanged after our last unlock. Process the fault. 438 * 439 * The range [pager_first, pager_last] that is given to the 440 * pager is only a hint. The pager may populate any range 441 * within the object that includes the requested page index. 442 * In case the pager expanded the range, clip it to fit into 443 * the map entry. 444 */ 445 map_first = OFF_TO_IDX(fs->entry->offset); 446 if (map_first > pager_first) { 447 vm_fault_populate_cleanup(fs->first_object, pager_first, 448 map_first - 1); 449 pager_first = map_first; 450 } 451 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 452 if (map_last < pager_last) { 453 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 454 pager_last); 455 pager_last = map_last; 456 } 457 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 458 pidx <= pager_last; pidx++, m = vm_page_next(m)) { 459 vm_fault_populate_check_page(m); 460 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, 461 true); 462 VM_OBJECT_WUNLOCK(fs->first_object); 463 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) - 464 fs->entry->offset, m, prot, fault_type | (wired ? 465 PMAP_ENTER_WIRED : 0), 0); 466 VM_OBJECT_WLOCK(fs->first_object); 467 if (pidx == fs->first_pindex) 468 vm_fault_fill_hold(m_hold, m); 469 vm_page_lock(m); 470 if ((fault_flags & VM_FAULT_WIRE) != 0) { 471 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 472 vm_page_wire(m); 473 } else { 474 vm_page_activate(m); 475 } 476 vm_page_unlock(m); 477 vm_page_xunbusy(m); 478 } 479 curthread->td_ru.ru_majflt++; 480 return (KERN_SUCCESS); 481 } 482 483 /* 484 * vm_fault: 485 * 486 * Handle a page fault occurring at the given address, 487 * requiring the given permissions, in the map specified. 488 * If successful, the page is inserted into the 489 * associated physical map. 490 * 491 * NOTE: the given address should be truncated to the 492 * proper page address. 493 * 494 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 495 * a standard error specifying why the fault is fatal is returned. 496 * 497 * The map in question must be referenced, and remains so. 498 * Caller may hold no locks. 499 */ 500 int 501 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 502 int fault_flags) 503 { 504 struct thread *td; 505 int result; 506 507 td = curthread; 508 if ((td->td_pflags & TDP_NOFAULTING) != 0) 509 return (KERN_PROTECTION_FAILURE); 510 #ifdef KTRACE 511 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 512 ktrfault(vaddr, fault_type); 513 #endif 514 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 515 NULL); 516 #ifdef KTRACE 517 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 518 ktrfaultend(result); 519 #endif 520 return (result); 521 } 522 523 int 524 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 525 int fault_flags, vm_page_t *m_hold) 526 { 527 struct faultstate fs; 528 struct vnode *vp; 529 vm_object_t next_object, retry_object; 530 vm_offset_t e_end, e_start; 531 vm_pindex_t retry_pindex; 532 vm_prot_t prot, retry_prot; 533 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 534 int locked, nera, result, rv; 535 u_char behavior; 536 boolean_t wired; /* Passed by reference. */ 537 bool dead, hardfault, is_first_object_locked; 538 539 VM_CNT_INC(v_vm_faults); 540 fs.vp = NULL; 541 faultcount = 0; 542 nera = -1; 543 hardfault = false; 544 545 RetryFault:; 546 547 /* 548 * Find the backing store object and offset into it to begin the 549 * search. 550 */ 551 fs.map = map; 552 result = vm_map_lookup(&fs.map, vaddr, fault_type | 553 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 554 &fs.first_pindex, &prot, &wired); 555 if (result != KERN_SUCCESS) { 556 unlock_vp(&fs); 557 return (result); 558 } 559 560 fs.map_generation = fs.map->timestamp; 561 562 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 563 panic("%s: fault on nofault entry, addr: %#lx", 564 __func__, (u_long)vaddr); 565 } 566 567 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 568 fs.entry->wiring_thread != curthread) { 569 vm_map_unlock_read(fs.map); 570 vm_map_lock(fs.map); 571 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 572 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 573 unlock_vp(&fs); 574 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 575 vm_map_unlock_and_wait(fs.map, 0); 576 } else 577 vm_map_unlock(fs.map); 578 goto RetryFault; 579 } 580 581 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 582 583 if (wired) 584 fault_type = prot | (fault_type & VM_PROT_COPY); 585 else 586 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 587 ("!wired && VM_FAULT_WIRE")); 588 589 /* 590 * Try to avoid lock contention on the top-level object through 591 * special-case handling of some types of page faults, specifically, 592 * those that are both (1) mapping an existing page from the top- 593 * level object and (2) not having to mark that object as containing 594 * dirty pages. Under these conditions, a read lock on the top-level 595 * object suffices, allowing multiple page faults of a similar type to 596 * run in parallel on the same top-level object. 597 */ 598 if (fs.vp == NULL /* avoid locked vnode leak */ && 599 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 600 /* avoid calling vm_object_set_writeable_dirty() */ 601 ((prot & VM_PROT_WRITE) == 0 || 602 (fs.first_object->type != OBJT_VNODE && 603 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 604 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 605 VM_OBJECT_RLOCK(fs.first_object); 606 if ((prot & VM_PROT_WRITE) == 0 || 607 (fs.first_object->type != OBJT_VNODE && 608 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 609 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 610 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 611 fault_flags, wired, m_hold); 612 if (rv == KERN_SUCCESS) 613 return (rv); 614 } 615 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 616 VM_OBJECT_RUNLOCK(fs.first_object); 617 VM_OBJECT_WLOCK(fs.first_object); 618 } 619 } else { 620 VM_OBJECT_WLOCK(fs.first_object); 621 } 622 623 /* 624 * Make a reference to this object to prevent its disposal while we 625 * are messing with it. Once we have the reference, the map is free 626 * to be diddled. Since objects reference their shadows (and copies), 627 * they will stay around as well. 628 * 629 * Bump the paging-in-progress count to prevent size changes (e.g. 630 * truncation operations) during I/O. 631 */ 632 vm_object_reference_locked(fs.first_object); 633 vm_object_pip_add(fs.first_object, 1); 634 635 fs.lookup_still_valid = true; 636 637 fs.first_m = NULL; 638 639 /* 640 * Search for the page at object/offset. 641 */ 642 fs.object = fs.first_object; 643 fs.pindex = fs.first_pindex; 644 while (TRUE) { 645 /* 646 * If the object is marked for imminent termination, 647 * we retry here, since the collapse pass has raced 648 * with us. Otherwise, if we see terminally dead 649 * object, return fail. 650 */ 651 if ((fs.object->flags & OBJ_DEAD) != 0) { 652 dead = fs.object->type == OBJT_DEAD; 653 unlock_and_deallocate(&fs); 654 if (dead) 655 return (KERN_PROTECTION_FAILURE); 656 pause("vmf_de", 1); 657 goto RetryFault; 658 } 659 660 /* 661 * See if page is resident 662 */ 663 fs.m = vm_page_lookup(fs.object, fs.pindex); 664 if (fs.m != NULL) { 665 /* 666 * Wait/Retry if the page is busy. We have to do this 667 * if the page is either exclusive or shared busy 668 * because the vm_pager may be using read busy for 669 * pageouts (and even pageins if it is the vnode 670 * pager), and we could end up trying to pagein and 671 * pageout the same page simultaneously. 672 * 673 * We can theoretically allow the busy case on a read 674 * fault if the page is marked valid, but since such 675 * pages are typically already pmap'd, putting that 676 * special case in might be more effort then it is 677 * worth. We cannot under any circumstances mess 678 * around with a shared busied page except, perhaps, 679 * to pmap it. 680 */ 681 if (vm_page_busied(fs.m)) { 682 /* 683 * Reference the page before unlocking and 684 * sleeping so that the page daemon is less 685 * likely to reclaim it. 686 */ 687 vm_page_aflag_set(fs.m, PGA_REFERENCED); 688 if (fs.object != fs.first_object) { 689 if (!VM_OBJECT_TRYWLOCK( 690 fs.first_object)) { 691 VM_OBJECT_WUNLOCK(fs.object); 692 VM_OBJECT_WLOCK(fs.first_object); 693 VM_OBJECT_WLOCK(fs.object); 694 } 695 vm_page_lock(fs.first_m); 696 vm_page_free(fs.first_m); 697 vm_page_unlock(fs.first_m); 698 vm_object_pip_wakeup(fs.first_object); 699 VM_OBJECT_WUNLOCK(fs.first_object); 700 fs.first_m = NULL; 701 } 702 unlock_map(&fs); 703 if (fs.m == vm_page_lookup(fs.object, 704 fs.pindex)) { 705 vm_page_sleep_if_busy(fs.m, "vmpfw"); 706 } 707 vm_object_pip_wakeup(fs.object); 708 VM_OBJECT_WUNLOCK(fs.object); 709 VM_CNT_INC(v_intrans); 710 vm_object_deallocate(fs.first_object); 711 goto RetryFault; 712 } 713 714 /* 715 * Mark page busy for other processes, and the 716 * pagedaemon. If it still isn't completely valid 717 * (readable), jump to readrest, else break-out ( we 718 * found the page ). 719 */ 720 vm_page_xbusy(fs.m); 721 if (fs.m->valid != VM_PAGE_BITS_ALL) 722 goto readrest; 723 break; /* break to PAGE HAS BEEN FOUND */ 724 } 725 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 726 727 /* 728 * Page is not resident. If the pager might contain the page 729 * or this is the beginning of the search, allocate a new 730 * page. (Default objects are zero-fill, so there is no real 731 * pager for them.) 732 */ 733 if (fs.object->type != OBJT_DEFAULT || 734 fs.object == fs.first_object) { 735 if (fs.pindex >= fs.object->size) { 736 unlock_and_deallocate(&fs); 737 return (KERN_PROTECTION_FAILURE); 738 } 739 740 if (fs.object == fs.first_object && 741 (fs.first_object->flags & OBJ_POPULATE) != 0 && 742 fs.first_object->shadow_count == 0) { 743 rv = vm_fault_populate(&fs, vaddr, prot, 744 fault_type, fault_flags, wired, m_hold); 745 switch (rv) { 746 case KERN_SUCCESS: 747 case KERN_FAILURE: 748 unlock_and_deallocate(&fs); 749 return (rv); 750 case KERN_RESOURCE_SHORTAGE: 751 unlock_and_deallocate(&fs); 752 goto RetryFault; 753 case KERN_NOT_RECEIVER: 754 /* 755 * Pager's populate() method 756 * returned VM_PAGER_BAD. 757 */ 758 break; 759 default: 760 panic("inconsistent return codes"); 761 } 762 } 763 764 /* 765 * Allocate a new page for this object/offset pair. 766 * 767 * Unlocked read of the p_flag is harmless. At 768 * worst, the P_KILLED might be not observed 769 * there, and allocation can fail, causing 770 * restart and new reading of the p_flag. 771 */ 772 if (!vm_page_count_severe() || P_KILLED(curproc)) { 773 #if VM_NRESERVLEVEL > 0 774 vm_object_color(fs.object, atop(vaddr) - 775 fs.pindex); 776 #endif 777 alloc_req = P_KILLED(curproc) ? 778 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 779 if (fs.object->type != OBJT_VNODE && 780 fs.object->backing_object == NULL) 781 alloc_req |= VM_ALLOC_ZERO; 782 fs.m = vm_page_alloc(fs.object, fs.pindex, 783 alloc_req); 784 } 785 if (fs.m == NULL) { 786 unlock_and_deallocate(&fs); 787 vm_waitpfault(); 788 goto RetryFault; 789 } 790 } 791 792 readrest: 793 /* 794 * At this point, we have either allocated a new page or found 795 * an existing page that is only partially valid. 796 * 797 * We hold a reference on the current object and the page is 798 * exclusive busied. 799 */ 800 801 /* 802 * If the pager for the current object might have the page, 803 * then determine the number of additional pages to read and 804 * potentially reprioritize previously read pages for earlier 805 * reclamation. These operations should only be performed 806 * once per page fault. Even if the current pager doesn't 807 * have the page, the number of additional pages to read will 808 * apply to subsequent objects in the shadow chain. 809 */ 810 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 811 !P_KILLED(curproc)) { 812 KASSERT(fs.lookup_still_valid, ("map unlocked")); 813 era = fs.entry->read_ahead; 814 behavior = vm_map_entry_behavior(fs.entry); 815 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 816 nera = 0; 817 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 818 nera = VM_FAULT_READ_AHEAD_MAX; 819 if (vaddr == fs.entry->next_read) 820 vm_fault_dontneed(&fs, vaddr, nera); 821 } else if (vaddr == fs.entry->next_read) { 822 /* 823 * This is a sequential fault. Arithmetically 824 * increase the requested number of pages in 825 * the read-ahead window. The requested 826 * number of pages is "# of sequential faults 827 * x (read ahead min + 1) + read ahead min" 828 */ 829 nera = VM_FAULT_READ_AHEAD_MIN; 830 if (era > 0) { 831 nera += era + 1; 832 if (nera > VM_FAULT_READ_AHEAD_MAX) 833 nera = VM_FAULT_READ_AHEAD_MAX; 834 } 835 if (era == VM_FAULT_READ_AHEAD_MAX) 836 vm_fault_dontneed(&fs, vaddr, nera); 837 } else { 838 /* 839 * This is a non-sequential fault. 840 */ 841 nera = 0; 842 } 843 if (era != nera) { 844 /* 845 * A read lock on the map suffices to update 846 * the read ahead count safely. 847 */ 848 fs.entry->read_ahead = nera; 849 } 850 851 /* 852 * Prepare for unlocking the map. Save the map 853 * entry's start and end addresses, which are used to 854 * optimize the size of the pager operation below. 855 * Even if the map entry's addresses change after 856 * unlocking the map, using the saved addresses is 857 * safe. 858 */ 859 e_start = fs.entry->start; 860 e_end = fs.entry->end; 861 } 862 863 /* 864 * Call the pager to retrieve the page if there is a chance 865 * that the pager has it, and potentially retrieve additional 866 * pages at the same time. 867 */ 868 if (fs.object->type != OBJT_DEFAULT) { 869 /* 870 * Release the map lock before locking the vnode or 871 * sleeping in the pager. (If the current object has 872 * a shadow, then an earlier iteration of this loop 873 * may have already unlocked the map.) 874 */ 875 unlock_map(&fs); 876 877 if (fs.object->type == OBJT_VNODE && 878 (vp = fs.object->handle) != fs.vp) { 879 /* 880 * Perform an unlock in case the desired vnode 881 * changed while the map was unlocked during a 882 * retry. 883 */ 884 unlock_vp(&fs); 885 886 locked = VOP_ISLOCKED(vp); 887 if (locked != LK_EXCLUSIVE) 888 locked = LK_SHARED; 889 890 /* 891 * We must not sleep acquiring the vnode lock 892 * while we have the page exclusive busied or 893 * the object's paging-in-progress count 894 * incremented. Otherwise, we could deadlock. 895 */ 896 error = vget(vp, locked | LK_CANRECURSE | 897 LK_NOWAIT, curthread); 898 if (error != 0) { 899 vhold(vp); 900 release_page(&fs); 901 unlock_and_deallocate(&fs); 902 error = vget(vp, locked | LK_RETRY | 903 LK_CANRECURSE, curthread); 904 vdrop(vp); 905 fs.vp = vp; 906 KASSERT(error == 0, 907 ("vm_fault: vget failed")); 908 goto RetryFault; 909 } 910 fs.vp = vp; 911 } 912 KASSERT(fs.vp == NULL || !fs.map->system_map, 913 ("vm_fault: vnode-backed object mapped by system map")); 914 915 /* 916 * Page in the requested page and hint the pager, 917 * that it may bring up surrounding pages. 918 */ 919 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 920 P_KILLED(curproc)) { 921 behind = 0; 922 ahead = 0; 923 } else { 924 /* Is this a sequential fault? */ 925 if (nera > 0) { 926 behind = 0; 927 ahead = nera; 928 } else { 929 /* 930 * Request a cluster of pages that is 931 * aligned to a VM_FAULT_READ_DEFAULT 932 * page offset boundary within the 933 * object. Alignment to a page offset 934 * boundary is more likely to coincide 935 * with the underlying file system 936 * block than alignment to a virtual 937 * address boundary. 938 */ 939 cluster_offset = fs.pindex % 940 VM_FAULT_READ_DEFAULT; 941 behind = ulmin(cluster_offset, 942 atop(vaddr - e_start)); 943 ahead = VM_FAULT_READ_DEFAULT - 1 - 944 cluster_offset; 945 } 946 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 947 } 948 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 949 &behind, &ahead); 950 if (rv == VM_PAGER_OK) { 951 faultcount = behind + 1 + ahead; 952 hardfault = true; 953 break; /* break to PAGE HAS BEEN FOUND */ 954 } 955 if (rv == VM_PAGER_ERROR) 956 printf("vm_fault: pager read error, pid %d (%s)\n", 957 curproc->p_pid, curproc->p_comm); 958 959 /* 960 * If an I/O error occurred or the requested page was 961 * outside the range of the pager, clean up and return 962 * an error. 963 */ 964 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 965 vm_page_lock(fs.m); 966 if (fs.m->wire_count == 0) 967 vm_page_free(fs.m); 968 else 969 vm_page_xunbusy_maybelocked(fs.m); 970 vm_page_unlock(fs.m); 971 fs.m = NULL; 972 unlock_and_deallocate(&fs); 973 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 974 KERN_PROTECTION_FAILURE); 975 } 976 977 /* 978 * The requested page does not exist at this object/ 979 * offset. Remove the invalid page from the object, 980 * waking up anyone waiting for it, and continue on to 981 * the next object. However, if this is the top-level 982 * object, we must leave the busy page in place to 983 * prevent another process from rushing past us, and 984 * inserting the page in that object at the same time 985 * that we are. 986 */ 987 if (fs.object != fs.first_object) { 988 vm_page_lock(fs.m); 989 if (fs.m->wire_count == 0) 990 vm_page_free(fs.m); 991 else 992 vm_page_xunbusy_maybelocked(fs.m); 993 vm_page_unlock(fs.m); 994 fs.m = NULL; 995 } 996 } 997 998 /* 999 * We get here if the object has default pager (or unwiring) 1000 * or the pager doesn't have the page. 1001 */ 1002 if (fs.object == fs.first_object) 1003 fs.first_m = fs.m; 1004 1005 /* 1006 * Move on to the next object. Lock the next object before 1007 * unlocking the current one. 1008 */ 1009 next_object = fs.object->backing_object; 1010 if (next_object == NULL) { 1011 /* 1012 * If there's no object left, fill the page in the top 1013 * object with zeros. 1014 */ 1015 if (fs.object != fs.first_object) { 1016 vm_object_pip_wakeup(fs.object); 1017 VM_OBJECT_WUNLOCK(fs.object); 1018 1019 fs.object = fs.first_object; 1020 fs.pindex = fs.first_pindex; 1021 fs.m = fs.first_m; 1022 VM_OBJECT_WLOCK(fs.object); 1023 } 1024 fs.first_m = NULL; 1025 1026 /* 1027 * Zero the page if necessary and mark it valid. 1028 */ 1029 if ((fs.m->flags & PG_ZERO) == 0) { 1030 pmap_zero_page(fs.m); 1031 } else { 1032 VM_CNT_INC(v_ozfod); 1033 } 1034 VM_CNT_INC(v_zfod); 1035 fs.m->valid = VM_PAGE_BITS_ALL; 1036 /* Don't try to prefault neighboring pages. */ 1037 faultcount = 1; 1038 break; /* break to PAGE HAS BEEN FOUND */ 1039 } else { 1040 KASSERT(fs.object != next_object, 1041 ("object loop %p", next_object)); 1042 VM_OBJECT_WLOCK(next_object); 1043 vm_object_pip_add(next_object, 1); 1044 if (fs.object != fs.first_object) 1045 vm_object_pip_wakeup(fs.object); 1046 fs.pindex += 1047 OFF_TO_IDX(fs.object->backing_object_offset); 1048 VM_OBJECT_WUNLOCK(fs.object); 1049 fs.object = next_object; 1050 } 1051 } 1052 1053 vm_page_assert_xbusied(fs.m); 1054 1055 /* 1056 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1057 * is held.] 1058 */ 1059 1060 /* 1061 * If the page is being written, but isn't already owned by the 1062 * top-level object, we have to copy it into a new page owned by the 1063 * top-level object. 1064 */ 1065 if (fs.object != fs.first_object) { 1066 /* 1067 * We only really need to copy if we want to write it. 1068 */ 1069 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1070 /* 1071 * This allows pages to be virtually copied from a 1072 * backing_object into the first_object, where the 1073 * backing object has no other refs to it, and cannot 1074 * gain any more refs. Instead of a bcopy, we just 1075 * move the page from the backing object to the 1076 * first object. Note that we must mark the page 1077 * dirty in the first object so that it will go out 1078 * to swap when needed. 1079 */ 1080 is_first_object_locked = false; 1081 if ( 1082 /* 1083 * Only one shadow object 1084 */ 1085 (fs.object->shadow_count == 1) && 1086 /* 1087 * No COW refs, except us 1088 */ 1089 (fs.object->ref_count == 1) && 1090 /* 1091 * No one else can look this object up 1092 */ 1093 (fs.object->handle == NULL) && 1094 /* 1095 * No other ways to look the object up 1096 */ 1097 ((fs.object->type == OBJT_DEFAULT) || 1098 (fs.object->type == OBJT_SWAP)) && 1099 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1100 /* 1101 * We don't chase down the shadow chain 1102 */ 1103 fs.object == fs.first_object->backing_object) { 1104 vm_page_lock(fs.m); 1105 vm_page_remque(fs.m); 1106 vm_page_remove(fs.m); 1107 vm_page_unlock(fs.m); 1108 vm_page_lock(fs.first_m); 1109 vm_page_replace_checked(fs.m, fs.first_object, 1110 fs.first_pindex, fs.first_m); 1111 vm_page_free(fs.first_m); 1112 vm_page_unlock(fs.first_m); 1113 vm_page_dirty(fs.m); 1114 #if VM_NRESERVLEVEL > 0 1115 /* 1116 * Rename the reservation. 1117 */ 1118 vm_reserv_rename(fs.m, fs.first_object, 1119 fs.object, OFF_TO_IDX( 1120 fs.first_object->backing_object_offset)); 1121 #endif 1122 /* 1123 * Removing the page from the backing object 1124 * unbusied it. 1125 */ 1126 vm_page_xbusy(fs.m); 1127 fs.first_m = fs.m; 1128 fs.m = NULL; 1129 VM_CNT_INC(v_cow_optim); 1130 } else { 1131 /* 1132 * Oh, well, lets copy it. 1133 */ 1134 pmap_copy_page(fs.m, fs.first_m); 1135 fs.first_m->valid = VM_PAGE_BITS_ALL; 1136 if ((fault_flags & VM_FAULT_WIRE) == 0) { 1137 prot &= ~VM_PROT_WRITE; 1138 fault_type &= ~VM_PROT_WRITE; 1139 } 1140 if (wired && (fault_flags & 1141 VM_FAULT_WIRE) == 0) { 1142 vm_page_lock(fs.first_m); 1143 vm_page_wire(fs.first_m); 1144 vm_page_unlock(fs.first_m); 1145 1146 vm_page_lock(fs.m); 1147 vm_page_unwire(fs.m, PQ_INACTIVE); 1148 vm_page_unlock(fs.m); 1149 } 1150 /* 1151 * We no longer need the old page or object. 1152 */ 1153 release_page(&fs); 1154 } 1155 /* 1156 * fs.object != fs.first_object due to above 1157 * conditional 1158 */ 1159 vm_object_pip_wakeup(fs.object); 1160 VM_OBJECT_WUNLOCK(fs.object); 1161 /* 1162 * Only use the new page below... 1163 */ 1164 fs.object = fs.first_object; 1165 fs.pindex = fs.first_pindex; 1166 fs.m = fs.first_m; 1167 if (!is_first_object_locked) 1168 VM_OBJECT_WLOCK(fs.object); 1169 VM_CNT_INC(v_cow_faults); 1170 curthread->td_cow++; 1171 } else { 1172 prot &= ~VM_PROT_WRITE; 1173 } 1174 } 1175 1176 /* 1177 * We must verify that the maps have not changed since our last 1178 * lookup. 1179 */ 1180 if (!fs.lookup_still_valid) { 1181 if (!vm_map_trylock_read(fs.map)) { 1182 release_page(&fs); 1183 unlock_and_deallocate(&fs); 1184 goto RetryFault; 1185 } 1186 fs.lookup_still_valid = true; 1187 if (fs.map->timestamp != fs.map_generation) { 1188 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1189 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1190 1191 /* 1192 * If we don't need the page any longer, put it on the inactive 1193 * list (the easiest thing to do here). If no one needs it, 1194 * pageout will grab it eventually. 1195 */ 1196 if (result != KERN_SUCCESS) { 1197 release_page(&fs); 1198 unlock_and_deallocate(&fs); 1199 1200 /* 1201 * If retry of map lookup would have blocked then 1202 * retry fault from start. 1203 */ 1204 if (result == KERN_FAILURE) 1205 goto RetryFault; 1206 return (result); 1207 } 1208 if ((retry_object != fs.first_object) || 1209 (retry_pindex != fs.first_pindex)) { 1210 release_page(&fs); 1211 unlock_and_deallocate(&fs); 1212 goto RetryFault; 1213 } 1214 1215 /* 1216 * Check whether the protection has changed or the object has 1217 * been copied while we left the map unlocked. Changing from 1218 * read to write permission is OK - we leave the page 1219 * write-protected, and catch the write fault. Changing from 1220 * write to read permission means that we can't mark the page 1221 * write-enabled after all. 1222 */ 1223 prot &= retry_prot; 1224 fault_type &= retry_prot; 1225 if (prot == 0) { 1226 release_page(&fs); 1227 unlock_and_deallocate(&fs); 1228 goto RetryFault; 1229 } 1230 } 1231 } 1232 1233 /* 1234 * If the page was filled by a pager, save the virtual address that 1235 * should be faulted on next under a sequential access pattern to the 1236 * map entry. A read lock on the map suffices to update this address 1237 * safely. 1238 */ 1239 if (hardfault) 1240 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1241 1242 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1243 vm_page_assert_xbusied(fs.m); 1244 1245 /* 1246 * Page must be completely valid or it is not fit to 1247 * map into user space. vm_pager_get_pages() ensures this. 1248 */ 1249 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1250 ("vm_fault: page %p partially invalid", fs.m)); 1251 VM_OBJECT_WUNLOCK(fs.object); 1252 1253 /* 1254 * Put this page into the physical map. We had to do the unlock above 1255 * because pmap_enter() may sleep. We don't put the page 1256 * back on the active queue until later so that the pageout daemon 1257 * won't find it (yet). 1258 */ 1259 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1260 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1261 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1262 wired == 0) 1263 vm_fault_prefault(&fs, vaddr, 1264 faultcount > 0 ? behind : PFBAK, 1265 faultcount > 0 ? ahead : PFFOR); 1266 VM_OBJECT_WLOCK(fs.object); 1267 vm_page_lock(fs.m); 1268 1269 /* 1270 * If the page is not wired down, then put it where the pageout daemon 1271 * can find it. 1272 */ 1273 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1274 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 1275 vm_page_wire(fs.m); 1276 } else 1277 vm_page_activate(fs.m); 1278 if (m_hold != NULL) { 1279 *m_hold = fs.m; 1280 vm_page_hold(fs.m); 1281 } 1282 vm_page_unlock(fs.m); 1283 vm_page_xunbusy(fs.m); 1284 1285 /* 1286 * Unlock everything, and return 1287 */ 1288 unlock_and_deallocate(&fs); 1289 if (hardfault) { 1290 VM_CNT_INC(v_io_faults); 1291 curthread->td_ru.ru_majflt++; 1292 #ifdef RACCT 1293 if (racct_enable && fs.object->type == OBJT_VNODE) { 1294 PROC_LOCK(curproc); 1295 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1296 racct_add_force(curproc, RACCT_WRITEBPS, 1297 PAGE_SIZE + behind * PAGE_SIZE); 1298 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1299 } else { 1300 racct_add_force(curproc, RACCT_READBPS, 1301 PAGE_SIZE + ahead * PAGE_SIZE); 1302 racct_add_force(curproc, RACCT_READIOPS, 1); 1303 } 1304 PROC_UNLOCK(curproc); 1305 } 1306 #endif 1307 } else 1308 curthread->td_ru.ru_minflt++; 1309 1310 return (KERN_SUCCESS); 1311 } 1312 1313 /* 1314 * Speed up the reclamation of pages that precede the faulting pindex within 1315 * the first object of the shadow chain. Essentially, perform the equivalent 1316 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1317 * the faulting pindex by the cluster size when the pages read by vm_fault() 1318 * cross a cluster-size boundary. The cluster size is the greater of the 1319 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1320 * 1321 * When "fs->first_object" is a shadow object, the pages in the backing object 1322 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1323 * function must only be concerned with pages in the first object. 1324 */ 1325 static void 1326 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1327 { 1328 vm_map_entry_t entry; 1329 vm_object_t first_object, object; 1330 vm_offset_t end, start; 1331 vm_page_t m, m_next; 1332 vm_pindex_t pend, pstart; 1333 vm_size_t size; 1334 1335 object = fs->object; 1336 VM_OBJECT_ASSERT_WLOCKED(object); 1337 first_object = fs->first_object; 1338 if (first_object != object) { 1339 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1340 VM_OBJECT_WUNLOCK(object); 1341 VM_OBJECT_WLOCK(first_object); 1342 VM_OBJECT_WLOCK(object); 1343 } 1344 } 1345 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1346 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1347 size = VM_FAULT_DONTNEED_MIN; 1348 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1349 size = pagesizes[1]; 1350 end = rounddown2(vaddr, size); 1351 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1352 (entry = fs->entry)->start < end) { 1353 if (end - entry->start < size) 1354 start = entry->start; 1355 else 1356 start = end - size; 1357 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1358 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1359 entry->start); 1360 m_next = vm_page_find_least(first_object, pstart); 1361 pend = OFF_TO_IDX(entry->offset) + atop(end - 1362 entry->start); 1363 while ((m = m_next) != NULL && m->pindex < pend) { 1364 m_next = TAILQ_NEXT(m, listq); 1365 if (m->valid != VM_PAGE_BITS_ALL || 1366 vm_page_busied(m)) 1367 continue; 1368 1369 /* 1370 * Don't clear PGA_REFERENCED, since it would 1371 * likely represent a reference by a different 1372 * process. 1373 * 1374 * Typically, at this point, prefetched pages 1375 * are still in the inactive queue. Only 1376 * pages that triggered page faults are in the 1377 * active queue. 1378 */ 1379 vm_page_lock(m); 1380 if (!vm_page_inactive(m)) 1381 vm_page_deactivate(m); 1382 vm_page_unlock(m); 1383 } 1384 } 1385 } 1386 if (first_object != object) 1387 VM_OBJECT_WUNLOCK(first_object); 1388 } 1389 1390 /* 1391 * vm_fault_prefault provides a quick way of clustering 1392 * pagefaults into a processes address space. It is a "cousin" 1393 * of vm_map_pmap_enter, except it runs at page fault time instead 1394 * of mmap time. 1395 */ 1396 static void 1397 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1398 int backward, int forward) 1399 { 1400 pmap_t pmap; 1401 vm_map_entry_t entry; 1402 vm_object_t backing_object, lobject; 1403 vm_offset_t addr, starta; 1404 vm_pindex_t pindex; 1405 vm_page_t m; 1406 int i; 1407 1408 pmap = fs->map->pmap; 1409 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1410 return; 1411 1412 entry = fs->entry; 1413 1414 if (addra < backward * PAGE_SIZE) { 1415 starta = entry->start; 1416 } else { 1417 starta = addra - backward * PAGE_SIZE; 1418 if (starta < entry->start) 1419 starta = entry->start; 1420 } 1421 1422 /* 1423 * Generate the sequence of virtual addresses that are candidates for 1424 * prefaulting in an outward spiral from the faulting virtual address, 1425 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1426 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1427 * If the candidate address doesn't have a backing physical page, then 1428 * the loop immediately terminates. 1429 */ 1430 for (i = 0; i < 2 * imax(backward, forward); i++) { 1431 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1432 PAGE_SIZE); 1433 if (addr > addra + forward * PAGE_SIZE) 1434 addr = 0; 1435 1436 if (addr < starta || addr >= entry->end) 1437 continue; 1438 1439 if (!pmap_is_prefaultable(pmap, addr)) 1440 continue; 1441 1442 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1443 lobject = entry->object.vm_object; 1444 VM_OBJECT_RLOCK(lobject); 1445 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1446 lobject->type == OBJT_DEFAULT && 1447 (backing_object = lobject->backing_object) != NULL) { 1448 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1449 0, ("vm_fault_prefault: unaligned object offset")); 1450 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1451 VM_OBJECT_RLOCK(backing_object); 1452 VM_OBJECT_RUNLOCK(lobject); 1453 lobject = backing_object; 1454 } 1455 if (m == NULL) { 1456 VM_OBJECT_RUNLOCK(lobject); 1457 break; 1458 } 1459 if (m->valid == VM_PAGE_BITS_ALL && 1460 (m->flags & PG_FICTITIOUS) == 0) 1461 pmap_enter_quick(pmap, addr, m, entry->protection); 1462 VM_OBJECT_RUNLOCK(lobject); 1463 } 1464 } 1465 1466 /* 1467 * Hold each of the physical pages that are mapped by the specified range of 1468 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1469 * and allow the specified types of access, "prot". If all of the implied 1470 * pages are successfully held, then the number of held pages is returned 1471 * together with pointers to those pages in the array "ma". However, if any 1472 * of the pages cannot be held, -1 is returned. 1473 */ 1474 int 1475 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1476 vm_prot_t prot, vm_page_t *ma, int max_count) 1477 { 1478 vm_offset_t end, va; 1479 vm_page_t *mp; 1480 int count; 1481 boolean_t pmap_failed; 1482 1483 if (len == 0) 1484 return (0); 1485 end = round_page(addr + len); 1486 addr = trunc_page(addr); 1487 1488 /* 1489 * Check for illegal addresses. 1490 */ 1491 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1492 return (-1); 1493 1494 if (atop(end - addr) > max_count) 1495 panic("vm_fault_quick_hold_pages: count > max_count"); 1496 count = atop(end - addr); 1497 1498 /* 1499 * Most likely, the physical pages are resident in the pmap, so it is 1500 * faster to try pmap_extract_and_hold() first. 1501 */ 1502 pmap_failed = FALSE; 1503 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1504 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1505 if (*mp == NULL) 1506 pmap_failed = TRUE; 1507 else if ((prot & VM_PROT_WRITE) != 0 && 1508 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1509 /* 1510 * Explicitly dirty the physical page. Otherwise, the 1511 * caller's changes may go unnoticed because they are 1512 * performed through an unmanaged mapping or by a DMA 1513 * operation. 1514 * 1515 * The object lock is not held here. 1516 * See vm_page_clear_dirty_mask(). 1517 */ 1518 vm_page_dirty(*mp); 1519 } 1520 } 1521 if (pmap_failed) { 1522 /* 1523 * One or more pages could not be held by the pmap. Either no 1524 * page was mapped at the specified virtual address or that 1525 * mapping had insufficient permissions. Attempt to fault in 1526 * and hold these pages. 1527 * 1528 * If vm_fault_disable_pagefaults() was called, 1529 * i.e., TDP_NOFAULTING is set, we must not sleep nor 1530 * acquire MD VM locks, which means we must not call 1531 * vm_fault_hold(). Some (out of tree) callers mark 1532 * too wide a code area with vm_fault_disable_pagefaults() 1533 * already, use the VM_PROT_QUICK_NOFAULT flag to request 1534 * the proper behaviour explicitly. 1535 */ 1536 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 1537 (curthread->td_pflags & TDP_NOFAULTING) != 0) 1538 goto error; 1539 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1540 if (*mp == NULL && vm_fault_hold(map, va, prot, 1541 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1542 goto error; 1543 } 1544 return (count); 1545 error: 1546 for (mp = ma; mp < ma + count; mp++) 1547 if (*mp != NULL) { 1548 vm_page_lock(*mp); 1549 vm_page_unhold(*mp); 1550 vm_page_unlock(*mp); 1551 } 1552 return (-1); 1553 } 1554 1555 /* 1556 * Routine: 1557 * vm_fault_copy_entry 1558 * Function: 1559 * Create new shadow object backing dst_entry with private copy of 1560 * all underlying pages. When src_entry is equal to dst_entry, 1561 * function implements COW for wired-down map entry. Otherwise, 1562 * it forks wired entry into dst_map. 1563 * 1564 * In/out conditions: 1565 * The source and destination maps must be locked for write. 1566 * The source map entry must be wired down (or be a sharing map 1567 * entry corresponding to a main map entry that is wired down). 1568 */ 1569 void 1570 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1571 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1572 vm_ooffset_t *fork_charge) 1573 { 1574 vm_object_t backing_object, dst_object, object, src_object; 1575 vm_pindex_t dst_pindex, pindex, src_pindex; 1576 vm_prot_t access, prot; 1577 vm_offset_t vaddr; 1578 vm_page_t dst_m; 1579 vm_page_t src_m; 1580 boolean_t upgrade; 1581 1582 #ifdef lint 1583 src_map++; 1584 #endif /* lint */ 1585 1586 upgrade = src_entry == dst_entry; 1587 access = prot = dst_entry->protection; 1588 1589 src_object = src_entry->object.vm_object; 1590 src_pindex = OFF_TO_IDX(src_entry->offset); 1591 1592 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1593 dst_object = src_object; 1594 vm_object_reference(dst_object); 1595 } else { 1596 /* 1597 * Create the top-level object for the destination entry. (Doesn't 1598 * actually shadow anything - we copy the pages directly.) 1599 */ 1600 dst_object = vm_object_allocate(OBJT_DEFAULT, 1601 atop(dst_entry->end - dst_entry->start)); 1602 #if VM_NRESERVLEVEL > 0 1603 dst_object->flags |= OBJ_COLORED; 1604 dst_object->pg_color = atop(dst_entry->start); 1605 #endif 1606 } 1607 1608 VM_OBJECT_WLOCK(dst_object); 1609 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1610 ("vm_fault_copy_entry: vm_object not NULL")); 1611 if (src_object != dst_object) { 1612 dst_object->domain = src_object->domain; 1613 dst_entry->object.vm_object = dst_object; 1614 dst_entry->offset = 0; 1615 dst_object->charge = dst_entry->end - dst_entry->start; 1616 } 1617 if (fork_charge != NULL) { 1618 KASSERT(dst_entry->cred == NULL, 1619 ("vm_fault_copy_entry: leaked swp charge")); 1620 dst_object->cred = curthread->td_ucred; 1621 crhold(dst_object->cred); 1622 *fork_charge += dst_object->charge; 1623 } else if (dst_object->cred == NULL) { 1624 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1625 dst_entry)); 1626 dst_object->cred = dst_entry->cred; 1627 dst_entry->cred = NULL; 1628 } 1629 1630 /* 1631 * If not an upgrade, then enter the mappings in the pmap as 1632 * read and/or execute accesses. Otherwise, enter them as 1633 * write accesses. 1634 * 1635 * A writeable large page mapping is only created if all of 1636 * the constituent small page mappings are modified. Marking 1637 * PTEs as modified on inception allows promotion to happen 1638 * without taking potentially large number of soft faults. 1639 */ 1640 if (!upgrade) 1641 access &= ~VM_PROT_WRITE; 1642 1643 /* 1644 * Loop through all of the virtual pages within the entry's 1645 * range, copying each page from the source object to the 1646 * destination object. Since the source is wired, those pages 1647 * must exist. In contrast, the destination is pageable. 1648 * Since the destination object does share any backing storage 1649 * with the source object, all of its pages must be dirtied, 1650 * regardless of whether they can be written. 1651 */ 1652 for (vaddr = dst_entry->start, dst_pindex = 0; 1653 vaddr < dst_entry->end; 1654 vaddr += PAGE_SIZE, dst_pindex++) { 1655 again: 1656 /* 1657 * Find the page in the source object, and copy it in. 1658 * Because the source is wired down, the page will be 1659 * in memory. 1660 */ 1661 if (src_object != dst_object) 1662 VM_OBJECT_RLOCK(src_object); 1663 object = src_object; 1664 pindex = src_pindex + dst_pindex; 1665 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1666 (backing_object = object->backing_object) != NULL) { 1667 /* 1668 * Unless the source mapping is read-only or 1669 * it is presently being upgraded from 1670 * read-only, the first object in the shadow 1671 * chain should provide all of the pages. In 1672 * other words, this loop body should never be 1673 * executed when the source mapping is already 1674 * read/write. 1675 */ 1676 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1677 upgrade, 1678 ("vm_fault_copy_entry: main object missing page")); 1679 1680 VM_OBJECT_RLOCK(backing_object); 1681 pindex += OFF_TO_IDX(object->backing_object_offset); 1682 if (object != dst_object) 1683 VM_OBJECT_RUNLOCK(object); 1684 object = backing_object; 1685 } 1686 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1687 1688 if (object != dst_object) { 1689 /* 1690 * Allocate a page in the destination object. 1691 */ 1692 dst_m = vm_page_alloc(dst_object, (src_object == 1693 dst_object ? src_pindex : 0) + dst_pindex, 1694 VM_ALLOC_NORMAL); 1695 if (dst_m == NULL) { 1696 VM_OBJECT_WUNLOCK(dst_object); 1697 VM_OBJECT_RUNLOCK(object); 1698 vm_wait(dst_object); 1699 VM_OBJECT_WLOCK(dst_object); 1700 goto again; 1701 } 1702 pmap_copy_page(src_m, dst_m); 1703 VM_OBJECT_RUNLOCK(object); 1704 dst_m->valid = VM_PAGE_BITS_ALL; 1705 dst_m->dirty = VM_PAGE_BITS_ALL; 1706 } else { 1707 dst_m = src_m; 1708 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1709 goto again; 1710 vm_page_xbusy(dst_m); 1711 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1712 ("invalid dst page %p", dst_m)); 1713 } 1714 VM_OBJECT_WUNLOCK(dst_object); 1715 1716 /* 1717 * Enter it in the pmap. If a wired, copy-on-write 1718 * mapping is being replaced by a write-enabled 1719 * mapping, then wire that new mapping. 1720 */ 1721 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1722 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1723 1724 /* 1725 * Mark it no longer busy, and put it on the active list. 1726 */ 1727 VM_OBJECT_WLOCK(dst_object); 1728 1729 if (upgrade) { 1730 if (src_m != dst_m) { 1731 vm_page_lock(src_m); 1732 vm_page_unwire(src_m, PQ_INACTIVE); 1733 vm_page_unlock(src_m); 1734 vm_page_lock(dst_m); 1735 vm_page_wire(dst_m); 1736 vm_page_unlock(dst_m); 1737 } else { 1738 KASSERT(dst_m->wire_count > 0, 1739 ("dst_m %p is not wired", dst_m)); 1740 } 1741 } else { 1742 vm_page_lock(dst_m); 1743 vm_page_activate(dst_m); 1744 vm_page_unlock(dst_m); 1745 } 1746 vm_page_xunbusy(dst_m); 1747 } 1748 VM_OBJECT_WUNLOCK(dst_object); 1749 if (upgrade) { 1750 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1751 vm_object_deallocate(src_object); 1752 } 1753 } 1754 1755 /* 1756 * Block entry into the machine-independent layer's page fault handler by 1757 * the calling thread. Subsequent calls to vm_fault() by that thread will 1758 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1759 * spurious page faults. 1760 */ 1761 int 1762 vm_fault_disable_pagefaults(void) 1763 { 1764 1765 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1766 } 1767 1768 void 1769 vm_fault_enable_pagefaults(int save) 1770 { 1771 1772 curthread_pflags_restore(save); 1773 } 1774