xref: /freebsd/sys/vm/vm_fault.c (revision 70ed590b393173d4ea697be2a27054ed171f0c1a)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vm_extern.h>
100 
101 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
102 
103 #define PFBAK 4
104 #define PFFOR 4
105 #define PAGEORDER_SIZE (PFBAK+PFFOR)
106 
107 static int prefault_pageorder[] = {
108 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
109 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
110 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
111 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
112 };
113 
114 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
115 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
116 
117 #define VM_FAULT_READ_AHEAD 8
118 #define VM_FAULT_READ_BEHIND 7
119 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
120 
121 struct faultstate {
122 	vm_page_t m;
123 	vm_object_t object;
124 	vm_pindex_t pindex;
125 	vm_page_t first_m;
126 	vm_object_t	first_object;
127 	vm_pindex_t first_pindex;
128 	vm_map_t map;
129 	vm_map_entry_t entry;
130 	int lookup_still_valid;
131 	struct vnode *vp;
132 	int vfslocked;
133 };
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 
139 	vm_page_wakeup(fs->m);
140 	vm_page_lock_queues();
141 	vm_page_deactivate(fs->m);
142 	vm_page_unlock_queues();
143 	fs->m = NULL;
144 }
145 
146 static inline void
147 unlock_map(struct faultstate *fs)
148 {
149 
150 	if (fs->lookup_still_valid) {
151 		vm_map_lookup_done(fs->map, fs->entry);
152 		fs->lookup_still_valid = FALSE;
153 	}
154 }
155 
156 static void
157 unlock_and_deallocate(struct faultstate *fs)
158 {
159 
160 	vm_object_pip_wakeup(fs->object);
161 	VM_OBJECT_UNLOCK(fs->object);
162 	if (fs->object != fs->first_object) {
163 		VM_OBJECT_LOCK(fs->first_object);
164 		vm_page_lock_queues();
165 		vm_page_free(fs->first_m);
166 		vm_page_unlock_queues();
167 		vm_object_pip_wakeup(fs->first_object);
168 		VM_OBJECT_UNLOCK(fs->first_object);
169 		fs->first_m = NULL;
170 	}
171 	vm_object_deallocate(fs->first_object);
172 	unlock_map(fs);
173 	if (fs->vp != NULL) {
174 		vput(fs->vp);
175 		fs->vp = NULL;
176 	}
177 	VFS_UNLOCK_GIANT(fs->vfslocked);
178 	fs->vfslocked = 0;
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *	The map in question must be referenced, and remains so.
206  *	Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 	 int fault_flags)
211 {
212 	vm_prot_t prot;
213 	int is_first_object_locked, result;
214 	boolean_t are_queues_locked, growstack, wired;
215 	int map_generation;
216 	vm_object_t next_object;
217 	vm_page_t marray[VM_FAULT_READ];
218 	int hardfault;
219 	int faultcount, ahead, behind, alloc_req;
220 	struct faultstate fs;
221 	struct vnode *vp;
222 	int locked, error;
223 
224 	hardfault = 0;
225 	growstack = TRUE;
226 	PCPU_INC(cnt.v_vm_faults);
227 	fs.vp = NULL;
228 	fs.vfslocked = 0;
229 	faultcount = behind = 0;
230 
231 RetryFault:;
232 
233 	/*
234 	 * Find the backing store object and offset into it to begin the
235 	 * search.
236 	 */
237 	fs.map = map;
238 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
239 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
240 	if (result != KERN_SUCCESS) {
241 		if (growstack && result == KERN_INVALID_ADDRESS &&
242 		    map != kernel_map) {
243 			result = vm_map_growstack(curproc, vaddr);
244 			if (result != KERN_SUCCESS)
245 				return (KERN_FAILURE);
246 			growstack = FALSE;
247 			goto RetryFault;
248 		}
249 		return (result);
250 	}
251 
252 	map_generation = fs.map->timestamp;
253 
254 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
255 		panic("vm_fault: fault on nofault entry, addr: %lx",
256 		    (u_long)vaddr);
257 	}
258 
259 	/*
260 	 * Make a reference to this object to prevent its disposal while we
261 	 * are messing with it.  Once we have the reference, the map is free
262 	 * to be diddled.  Since objects reference their shadows (and copies),
263 	 * they will stay around as well.
264 	 *
265 	 * Bump the paging-in-progress count to prevent size changes (e.g.
266 	 * truncation operations) during I/O.  This must be done after
267 	 * obtaining the vnode lock in order to avoid possible deadlocks.
268 	 */
269 	VM_OBJECT_LOCK(fs.first_object);
270 	vm_object_reference_locked(fs.first_object);
271 	vm_object_pip_add(fs.first_object, 1);
272 
273 	fs.lookup_still_valid = TRUE;
274 
275 	if (wired)
276 		fault_type = prot | (fault_type & VM_PROT_COPY);
277 
278 	fs.first_m = NULL;
279 
280 	/*
281 	 * Search for the page at object/offset.
282 	 */
283 	fs.object = fs.first_object;
284 	fs.pindex = fs.first_pindex;
285 	while (TRUE) {
286 		/*
287 		 * If the object is dead, we stop here
288 		 */
289 		if (fs.object->flags & OBJ_DEAD) {
290 			unlock_and_deallocate(&fs);
291 			return (KERN_PROTECTION_FAILURE);
292 		}
293 
294 		/*
295 		 * See if page is resident
296 		 */
297 		fs.m = vm_page_lookup(fs.object, fs.pindex);
298 		if (fs.m != NULL) {
299 			/*
300 			 * check for page-based copy on write.
301 			 * We check fs.object == fs.first_object so
302 			 * as to ensure the legacy COW mechanism is
303 			 * used when the page in question is part of
304 			 * a shadow object.  Otherwise, vm_page_cowfault()
305 			 * removes the page from the backing object,
306 			 * which is not what we want.
307 			 */
308 			vm_page_lock_queues();
309 			if ((fs.m->cow) &&
310 			    (fault_type & VM_PROT_WRITE) &&
311 			    (fs.object == fs.first_object)) {
312 				vm_page_cowfault(fs.m);
313 				vm_page_unlock_queues();
314 				unlock_and_deallocate(&fs);
315 				goto RetryFault;
316 			}
317 
318 			/*
319 			 * Wait/Retry if the page is busy.  We have to do this
320 			 * if the page is busy via either VPO_BUSY or
321 			 * vm_page_t->busy because the vm_pager may be using
322 			 * vm_page_t->busy for pageouts ( and even pageins if
323 			 * it is the vnode pager ), and we could end up trying
324 			 * to pagein and pageout the same page simultaneously.
325 			 *
326 			 * We can theoretically allow the busy case on a read
327 			 * fault if the page is marked valid, but since such
328 			 * pages are typically already pmap'd, putting that
329 			 * special case in might be more effort then it is
330 			 * worth.  We cannot under any circumstances mess
331 			 * around with a vm_page_t->busy page except, perhaps,
332 			 * to pmap it.
333 			 */
334 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
335 				vm_page_unlock_queues();
336 				VM_OBJECT_UNLOCK(fs.object);
337 				if (fs.object != fs.first_object) {
338 					VM_OBJECT_LOCK(fs.first_object);
339 					vm_page_lock_queues();
340 					vm_page_free(fs.first_m);
341 					vm_page_unlock_queues();
342 					vm_object_pip_wakeup(fs.first_object);
343 					VM_OBJECT_UNLOCK(fs.first_object);
344 					fs.first_m = NULL;
345 				}
346 				unlock_map(&fs);
347 				VM_OBJECT_LOCK(fs.object);
348 				if (fs.m == vm_page_lookup(fs.object,
349 				    fs.pindex)) {
350 					vm_page_sleep_if_busy(fs.m, TRUE,
351 					    "vmpfw");
352 				}
353 				vm_object_pip_wakeup(fs.object);
354 				VM_OBJECT_UNLOCK(fs.object);
355 				PCPU_INC(cnt.v_intrans);
356 				vm_object_deallocate(fs.first_object);
357 				goto RetryFault;
358 			}
359 			vm_pageq_remove(fs.m);
360 			vm_page_unlock_queues();
361 
362 			/*
363 			 * Mark page busy for other processes, and the
364 			 * pagedaemon.  If it still isn't completely valid
365 			 * (readable), jump to readrest, else break-out ( we
366 			 * found the page ).
367 			 */
368 			vm_page_busy(fs.m);
369 			if (fs.m->valid != VM_PAGE_BITS_ALL &&
370 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
371 				goto readrest;
372 			}
373 
374 			break;
375 		}
376 
377 		/*
378 		 * Page is not resident, If this is the search termination
379 		 * or the pager might contain the page, allocate a new page.
380 		 */
381 		if (TRYPAGER || fs.object == fs.first_object) {
382 			if (fs.pindex >= fs.object->size) {
383 				unlock_and_deallocate(&fs);
384 				return (KERN_PROTECTION_FAILURE);
385 			}
386 
387 			/*
388 			 * Allocate a new page for this object/offset pair.
389 			 *
390 			 * Unlocked read of the p_flag is harmless. At
391 			 * worst, the P_KILLED might be not observed
392 			 * there, and allocation can fail, causing
393 			 * restart and new reading of the p_flag.
394 			 */
395 			fs.m = NULL;
396 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
397 #if VM_NRESERVLEVEL > 0
398 				if ((fs.object->flags & OBJ_COLORED) == 0) {
399 					fs.object->flags |= OBJ_COLORED;
400 					fs.object->pg_color = atop(vaddr) -
401 					    fs.pindex;
402 				}
403 #endif
404 				alloc_req = P_KILLED(curproc) ?
405 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
406 				if (fs.object->type != OBJT_VNODE &&
407 				    fs.object->backing_object == NULL)
408 					alloc_req |= VM_ALLOC_ZERO;
409 				fs.m = vm_page_alloc(fs.object, fs.pindex,
410 				    alloc_req);
411 			}
412 			if (fs.m == NULL) {
413 				unlock_and_deallocate(&fs);
414 				VM_WAITPFAULT;
415 				goto RetryFault;
416 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
417 				break;
418 		}
419 
420 readrest:
421 		/*
422 		 * We have found a valid page or we have allocated a new page.
423 		 * The page thus may not be valid or may not be entirely
424 		 * valid.
425 		 *
426 		 * Attempt to fault-in the page if there is a chance that the
427 		 * pager has it, and potentially fault in additional pages
428 		 * at the same time.
429 		 */
430 		if (TRYPAGER) {
431 			int rv;
432 			int reqpage = 0;
433 			u_char behavior = vm_map_entry_behavior(fs.entry);
434 
435 			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
436 			    P_KILLED(curproc)) {
437 				ahead = 0;
438 				behind = 0;
439 			} else {
440 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
441 				if (behind > VM_FAULT_READ_BEHIND)
442 					behind = VM_FAULT_READ_BEHIND;
443 
444 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
445 				if (ahead > VM_FAULT_READ_AHEAD)
446 					ahead = VM_FAULT_READ_AHEAD;
447 			}
448 			is_first_object_locked = FALSE;
449 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
450 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
451 			      fs.pindex >= fs.entry->lastr &&
452 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
453 			    (fs.first_object == fs.object ||
454 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
455 			    fs.first_object->type != OBJT_DEVICE &&
456 			    fs.first_object->type != OBJT_PHYS &&
457 			    fs.first_object->type != OBJT_SG) {
458 				vm_pindex_t firstpindex, tmppindex;
459 
460 				if (fs.first_pindex < 2 * VM_FAULT_READ)
461 					firstpindex = 0;
462 				else
463 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
464 
465 				are_queues_locked = FALSE;
466 				/*
467 				 * note: partially valid pages cannot be
468 				 * included in the lookahead - NFS piecemeal
469 				 * writes will barf on it badly.
470 				 */
471 				for (tmppindex = fs.first_pindex - 1;
472 					tmppindex >= firstpindex;
473 					--tmppindex) {
474 					vm_page_t mt;
475 
476 					mt = vm_page_lookup(fs.first_object, tmppindex);
477 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
478 						break;
479 					if (mt->busy ||
480 					    (mt->oflags & VPO_BUSY))
481 						continue;
482 					if (!are_queues_locked) {
483 						are_queues_locked = TRUE;
484 						vm_page_lock_queues();
485 					}
486 					if (mt->hold_count ||
487 						mt->wire_count)
488 						continue;
489 					pmap_remove_all(mt);
490 					if (mt->dirty) {
491 						vm_page_deactivate(mt);
492 					} else {
493 						vm_page_cache(mt);
494 					}
495 				}
496 				if (are_queues_locked)
497 					vm_page_unlock_queues();
498 				ahead += behind;
499 				behind = 0;
500 			}
501 			if (is_first_object_locked)
502 				VM_OBJECT_UNLOCK(fs.first_object);
503 
504 			/*
505 			 * Call the pager to retrieve the data, if any, after
506 			 * releasing the lock on the map.  We hold a ref on
507 			 * fs.object and the pages are VPO_BUSY'd.
508 			 */
509 			unlock_map(&fs);
510 
511 vnode_lock:
512 			if (fs.object->type == OBJT_VNODE) {
513 				vp = fs.object->handle;
514 				if (vp == fs.vp)
515 					goto vnode_locked;
516 				else if (fs.vp != NULL) {
517 					vput(fs.vp);
518 					fs.vp = NULL;
519 				}
520 				locked = VOP_ISLOCKED(vp);
521 
522 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
523 					fs.vfslocked = 1;
524 					if (!mtx_trylock(&Giant)) {
525 						VM_OBJECT_UNLOCK(fs.object);
526 						mtx_lock(&Giant);
527 						VM_OBJECT_LOCK(fs.object);
528 						goto vnode_lock;
529 					}
530 				}
531 				if (locked != LK_EXCLUSIVE)
532 					locked = LK_SHARED;
533 				/* Do not sleep for vnode lock while fs.m is busy */
534 				error = vget(vp, locked | LK_CANRECURSE |
535 				    LK_NOWAIT, curthread);
536 				if (error != 0) {
537 					int vfslocked;
538 
539 					vfslocked = fs.vfslocked;
540 					fs.vfslocked = 0; /* Keep Giant */
541 					vhold(vp);
542 					release_page(&fs);
543 					unlock_and_deallocate(&fs);
544 					error = vget(vp, locked | LK_RETRY |
545 					    LK_CANRECURSE, curthread);
546 					vdrop(vp);
547 					fs.vp = vp;
548 					fs.vfslocked = vfslocked;
549 					KASSERT(error == 0,
550 					    ("vm_fault: vget failed"));
551 					goto RetryFault;
552 				}
553 				fs.vp = vp;
554 			}
555 vnode_locked:
556 			KASSERT(fs.vp == NULL || !fs.map->system_map,
557 			    ("vm_fault: vnode-backed object mapped by system map"));
558 
559 			/*
560 			 * now we find out if any other pages should be paged
561 			 * in at this time this routine checks to see if the
562 			 * pages surrounding this fault reside in the same
563 			 * object as the page for this fault.  If they do,
564 			 * then they are faulted in also into the object.  The
565 			 * array "marray" returned contains an array of
566 			 * vm_page_t structs where one of them is the
567 			 * vm_page_t passed to the routine.  The reqpage
568 			 * return value is the index into the marray for the
569 			 * vm_page_t passed to the routine.
570 			 *
571 			 * fs.m plus the additional pages are VPO_BUSY'd.
572 			 */
573 			faultcount = vm_fault_additional_pages(
574 			    fs.m, behind, ahead, marray, &reqpage);
575 
576 			rv = faultcount ?
577 			    vm_pager_get_pages(fs.object, marray, faultcount,
578 				reqpage) : VM_PAGER_FAIL;
579 
580 			if (rv == VM_PAGER_OK) {
581 				/*
582 				 * Found the page. Leave it busy while we play
583 				 * with it.
584 				 */
585 
586 				/*
587 				 * Relookup in case pager changed page. Pager
588 				 * is responsible for disposition of old page
589 				 * if moved.
590 				 */
591 				fs.m = vm_page_lookup(fs.object, fs.pindex);
592 				if (!fs.m) {
593 					unlock_and_deallocate(&fs);
594 					goto RetryFault;
595 				}
596 
597 				hardfault++;
598 				break; /* break to PAGE HAS BEEN FOUND */
599 			}
600 			/*
601 			 * Remove the bogus page (which does not exist at this
602 			 * object/offset); before doing so, we must get back
603 			 * our object lock to preserve our invariant.
604 			 *
605 			 * Also wake up any other process that may want to bring
606 			 * in this page.
607 			 *
608 			 * If this is the top-level object, we must leave the
609 			 * busy page to prevent another process from rushing
610 			 * past us, and inserting the page in that object at
611 			 * the same time that we are.
612 			 */
613 			if (rv == VM_PAGER_ERROR)
614 				printf("vm_fault: pager read error, pid %d (%s)\n",
615 				    curproc->p_pid, curproc->p_comm);
616 			/*
617 			 * Data outside the range of the pager or an I/O error
618 			 */
619 			/*
620 			 * XXX - the check for kernel_map is a kludge to work
621 			 * around having the machine panic on a kernel space
622 			 * fault w/ I/O error.
623 			 */
624 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
625 				(rv == VM_PAGER_BAD)) {
626 				vm_page_lock_queues();
627 				vm_page_free(fs.m);
628 				vm_page_unlock_queues();
629 				fs.m = NULL;
630 				unlock_and_deallocate(&fs);
631 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
632 			}
633 			if (fs.object != fs.first_object) {
634 				vm_page_lock_queues();
635 				vm_page_free(fs.m);
636 				vm_page_unlock_queues();
637 				fs.m = NULL;
638 				/*
639 				 * XXX - we cannot just fall out at this
640 				 * point, m has been freed and is invalid!
641 				 */
642 			}
643 		}
644 
645 		/*
646 		 * We get here if the object has default pager (or unwiring)
647 		 * or the pager doesn't have the page.
648 		 */
649 		if (fs.object == fs.first_object)
650 			fs.first_m = fs.m;
651 
652 		/*
653 		 * Move on to the next object.  Lock the next object before
654 		 * unlocking the current one.
655 		 */
656 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
657 		next_object = fs.object->backing_object;
658 		if (next_object == NULL) {
659 			/*
660 			 * If there's no object left, fill the page in the top
661 			 * object with zeros.
662 			 */
663 			if (fs.object != fs.first_object) {
664 				vm_object_pip_wakeup(fs.object);
665 				VM_OBJECT_UNLOCK(fs.object);
666 
667 				fs.object = fs.first_object;
668 				fs.pindex = fs.first_pindex;
669 				fs.m = fs.first_m;
670 				VM_OBJECT_LOCK(fs.object);
671 			}
672 			fs.first_m = NULL;
673 
674 			/*
675 			 * Zero the page if necessary and mark it valid.
676 			 */
677 			if ((fs.m->flags & PG_ZERO) == 0) {
678 				pmap_zero_page(fs.m);
679 			} else {
680 				PCPU_INC(cnt.v_ozfod);
681 			}
682 			PCPU_INC(cnt.v_zfod);
683 			fs.m->valid = VM_PAGE_BITS_ALL;
684 			break;	/* break to PAGE HAS BEEN FOUND */
685 		} else {
686 			KASSERT(fs.object != next_object,
687 			    ("object loop %p", next_object));
688 			VM_OBJECT_LOCK(next_object);
689 			vm_object_pip_add(next_object, 1);
690 			if (fs.object != fs.first_object)
691 				vm_object_pip_wakeup(fs.object);
692 			VM_OBJECT_UNLOCK(fs.object);
693 			fs.object = next_object;
694 		}
695 	}
696 
697 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
698 	    ("vm_fault: not busy after main loop"));
699 
700 	/*
701 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
702 	 * is held.]
703 	 */
704 
705 	/*
706 	 * If the page is being written, but isn't already owned by the
707 	 * top-level object, we have to copy it into a new page owned by the
708 	 * top-level object.
709 	 */
710 	if (fs.object != fs.first_object) {
711 		/*
712 		 * We only really need to copy if we want to write it.
713 		 */
714 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
715 			/*
716 			 * This allows pages to be virtually copied from a
717 			 * backing_object into the first_object, where the
718 			 * backing object has no other refs to it, and cannot
719 			 * gain any more refs.  Instead of a bcopy, we just
720 			 * move the page from the backing object to the
721 			 * first object.  Note that we must mark the page
722 			 * dirty in the first object so that it will go out
723 			 * to swap when needed.
724 			 */
725 			is_first_object_locked = FALSE;
726 			if (
727 				/*
728 				 * Only one shadow object
729 				 */
730 				(fs.object->shadow_count == 1) &&
731 				/*
732 				 * No COW refs, except us
733 				 */
734 				(fs.object->ref_count == 1) &&
735 				/*
736 				 * No one else can look this object up
737 				 */
738 				(fs.object->handle == NULL) &&
739 				/*
740 				 * No other ways to look the object up
741 				 */
742 				((fs.object->type == OBJT_DEFAULT) ||
743 				 (fs.object->type == OBJT_SWAP)) &&
744 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
745 				/*
746 				 * We don't chase down the shadow chain
747 				 */
748 			    fs.object == fs.first_object->backing_object) {
749 				vm_page_lock_queues();
750 				/*
751 				 * get rid of the unnecessary page
752 				 */
753 				vm_page_free(fs.first_m);
754 				/*
755 				 * grab the page and put it into the
756 				 * process'es object.  The page is
757 				 * automatically made dirty.
758 				 */
759 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
760 				vm_page_unlock_queues();
761 				vm_page_busy(fs.m);
762 				fs.first_m = fs.m;
763 				fs.m = NULL;
764 				PCPU_INC(cnt.v_cow_optim);
765 			} else {
766 				/*
767 				 * Oh, well, lets copy it.
768 				 */
769 				pmap_copy_page(fs.m, fs.first_m);
770 				fs.first_m->valid = VM_PAGE_BITS_ALL;
771 				if (wired && (fault_flags &
772 				    VM_FAULT_CHANGE_WIRING) == 0) {
773 					vm_page_lock_queues();
774 					vm_page_wire(fs.first_m);
775 					vm_page_unwire(fs.m, FALSE);
776 					vm_page_unlock_queues();
777 				}
778 				/*
779 				 * We no longer need the old page or object.
780 				 */
781 				release_page(&fs);
782 			}
783 			/*
784 			 * fs.object != fs.first_object due to above
785 			 * conditional
786 			 */
787 			vm_object_pip_wakeup(fs.object);
788 			VM_OBJECT_UNLOCK(fs.object);
789 			/*
790 			 * Only use the new page below...
791 			 */
792 			fs.object = fs.first_object;
793 			fs.pindex = fs.first_pindex;
794 			fs.m = fs.first_m;
795 			if (!is_first_object_locked)
796 				VM_OBJECT_LOCK(fs.object);
797 			PCPU_INC(cnt.v_cow_faults);
798 		} else {
799 			prot &= ~VM_PROT_WRITE;
800 		}
801 	}
802 
803 	/*
804 	 * We must verify that the maps have not changed since our last
805 	 * lookup.
806 	 */
807 	if (!fs.lookup_still_valid) {
808 		vm_object_t retry_object;
809 		vm_pindex_t retry_pindex;
810 		vm_prot_t retry_prot;
811 
812 		if (!vm_map_trylock_read(fs.map)) {
813 			release_page(&fs);
814 			unlock_and_deallocate(&fs);
815 			goto RetryFault;
816 		}
817 		fs.lookup_still_valid = TRUE;
818 		if (fs.map->timestamp != map_generation) {
819 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
820 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
821 
822 			/*
823 			 * If we don't need the page any longer, put it on the inactive
824 			 * list (the easiest thing to do here).  If no one needs it,
825 			 * pageout will grab it eventually.
826 			 */
827 			if (result != KERN_SUCCESS) {
828 				release_page(&fs);
829 				unlock_and_deallocate(&fs);
830 
831 				/*
832 				 * If retry of map lookup would have blocked then
833 				 * retry fault from start.
834 				 */
835 				if (result == KERN_FAILURE)
836 					goto RetryFault;
837 				return (result);
838 			}
839 			if ((retry_object != fs.first_object) ||
840 			    (retry_pindex != fs.first_pindex)) {
841 				release_page(&fs);
842 				unlock_and_deallocate(&fs);
843 				goto RetryFault;
844 			}
845 
846 			/*
847 			 * Check whether the protection has changed or the object has
848 			 * been copied while we left the map unlocked. Changing from
849 			 * read to write permission is OK - we leave the page
850 			 * write-protected, and catch the write fault. Changing from
851 			 * write to read permission means that we can't mark the page
852 			 * write-enabled after all.
853 			 */
854 			prot &= retry_prot;
855 		}
856 	}
857 	/*
858 	 * If the page was filled by a pager, update the map entry's
859 	 * last read offset.  Since the pager does not return the
860 	 * actual set of pages that it read, this update is based on
861 	 * the requested set.  Typically, the requested and actual
862 	 * sets are the same.
863 	 *
864 	 * XXX The following assignment modifies the map
865 	 * without holding a write lock on it.
866 	 */
867 	if (hardfault)
868 		fs.entry->lastr = fs.pindex + faultcount - behind;
869 
870 	if (prot & VM_PROT_WRITE) {
871 		vm_object_set_writeable_dirty(fs.object);
872 
873 		/*
874 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
875 		 * if the page is already dirty to prevent data written with
876 		 * the expectation of being synced from not being synced.
877 		 * Likewise if this entry does not request NOSYNC then make
878 		 * sure the page isn't marked NOSYNC.  Applications sharing
879 		 * data should use the same flags to avoid ping ponging.
880 		 */
881 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
882 			if (fs.m->dirty == 0)
883 				fs.m->oflags |= VPO_NOSYNC;
884 		} else {
885 			fs.m->oflags &= ~VPO_NOSYNC;
886 		}
887 
888 		/*
889 		 * If the fault is a write, we know that this page is being
890 		 * written NOW so dirty it explicitly to save on
891 		 * pmap_is_modified() calls later.
892 		 *
893 		 * Also tell the backing pager, if any, that it should remove
894 		 * any swap backing since the page is now dirty.
895 		 */
896 		if ((fault_type & VM_PROT_WRITE) != 0 &&
897 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) {
898 			vm_page_dirty(fs.m);
899 			vm_pager_page_unswapped(fs.m);
900 		}
901 	}
902 
903 	/*
904 	 * Page had better still be busy
905 	 */
906 	KASSERT(fs.m->oflags & VPO_BUSY,
907 		("vm_fault: page %p not busy!", fs.m));
908 	/*
909 	 * Page must be completely valid or it is not fit to
910 	 * map into user space.  vm_pager_get_pages() ensures this.
911 	 */
912 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
913 	    ("vm_fault: page %p partially invalid", fs.m));
914 	VM_OBJECT_UNLOCK(fs.object);
915 
916 	/*
917 	 * Put this page into the physical map.  We had to do the unlock above
918 	 * because pmap_enter() may sleep.  We don't put the page
919 	 * back on the active queue until later so that the pageout daemon
920 	 * won't find it (yet).
921 	 */
922 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
923 	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
924 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
925 	VM_OBJECT_LOCK(fs.object);
926 	vm_page_lock_queues();
927 	vm_page_flag_set(fs.m, PG_REFERENCED);
928 
929 	/*
930 	 * If the page is not wired down, then put it where the pageout daemon
931 	 * can find it.
932 	 */
933 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
934 		if (wired)
935 			vm_page_wire(fs.m);
936 		else
937 			vm_page_unwire(fs.m, 1);
938 	} else {
939 		vm_page_activate(fs.m);
940 	}
941 	vm_page_unlock_queues();
942 	vm_page_wakeup(fs.m);
943 
944 	/*
945 	 * Unlock everything, and return
946 	 */
947 	unlock_and_deallocate(&fs);
948 	if (hardfault)
949 		curthread->td_ru.ru_majflt++;
950 	else
951 		curthread->td_ru.ru_minflt++;
952 
953 	return (KERN_SUCCESS);
954 }
955 
956 /*
957  * vm_fault_prefault provides a quick way of clustering
958  * pagefaults into a processes address space.  It is a "cousin"
959  * of vm_map_pmap_enter, except it runs at page fault time instead
960  * of mmap time.
961  */
962 static void
963 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
964 {
965 	int i;
966 	vm_offset_t addr, starta;
967 	vm_pindex_t pindex;
968 	vm_page_t m;
969 	vm_object_t object;
970 
971 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
972 		return;
973 
974 	object = entry->object.vm_object;
975 
976 	starta = addra - PFBAK * PAGE_SIZE;
977 	if (starta < entry->start) {
978 		starta = entry->start;
979 	} else if (starta > addra) {
980 		starta = 0;
981 	}
982 
983 	for (i = 0; i < PAGEORDER_SIZE; i++) {
984 		vm_object_t backing_object, lobject;
985 
986 		addr = addra + prefault_pageorder[i];
987 		if (addr > addra + (PFFOR * PAGE_SIZE))
988 			addr = 0;
989 
990 		if (addr < starta || addr >= entry->end)
991 			continue;
992 
993 		if (!pmap_is_prefaultable(pmap, addr))
994 			continue;
995 
996 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
997 		lobject = object;
998 		VM_OBJECT_LOCK(lobject);
999 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1000 		    lobject->type == OBJT_DEFAULT &&
1001 		    (backing_object = lobject->backing_object) != NULL) {
1002 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1003 			    0, ("vm_fault_prefault: unaligned object offset"));
1004 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1005 			VM_OBJECT_LOCK(backing_object);
1006 			VM_OBJECT_UNLOCK(lobject);
1007 			lobject = backing_object;
1008 		}
1009 		/*
1010 		 * give-up when a page is not in memory
1011 		 */
1012 		if (m == NULL) {
1013 			VM_OBJECT_UNLOCK(lobject);
1014 			break;
1015 		}
1016 		if (m->valid == VM_PAGE_BITS_ALL &&
1017 		    (m->flags & PG_FICTITIOUS) == 0) {
1018 			vm_page_lock_queues();
1019 			pmap_enter_quick(pmap, addr, m, entry->protection);
1020 			vm_page_unlock_queues();
1021 		}
1022 		VM_OBJECT_UNLOCK(lobject);
1023 	}
1024 }
1025 
1026 /*
1027  *	vm_fault_quick:
1028  *
1029  *	Ensure that the requested virtual address, which may be in userland,
1030  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1031  */
1032 int
1033 vm_fault_quick(caddr_t v, int prot)
1034 {
1035 	int r;
1036 
1037 	if (prot & VM_PROT_WRITE)
1038 		r = subyte(v, fubyte(v));
1039 	else
1040 		r = fubyte(v);
1041 	return(r);
1042 }
1043 
1044 /*
1045  *	vm_fault_wire:
1046  *
1047  *	Wire down a range of virtual addresses in a map.
1048  */
1049 int
1050 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1051     boolean_t fictitious)
1052 {
1053 	vm_offset_t va;
1054 	int rv;
1055 
1056 	/*
1057 	 * We simulate a fault to get the page and enter it in the physical
1058 	 * map.  For user wiring, we only ask for read access on currently
1059 	 * read-only sections.
1060 	 */
1061 	for (va = start; va < end; va += PAGE_SIZE) {
1062 		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1063 		if (rv) {
1064 			if (va != start)
1065 				vm_fault_unwire(map, start, va, fictitious);
1066 			return (rv);
1067 		}
1068 	}
1069 	return (KERN_SUCCESS);
1070 }
1071 
1072 /*
1073  *	vm_fault_unwire:
1074  *
1075  *	Unwire a range of virtual addresses in a map.
1076  */
1077 void
1078 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1079     boolean_t fictitious)
1080 {
1081 	vm_paddr_t pa;
1082 	vm_offset_t va;
1083 	pmap_t pmap;
1084 
1085 	pmap = vm_map_pmap(map);
1086 
1087 	/*
1088 	 * Since the pages are wired down, we must be able to get their
1089 	 * mappings from the physical map system.
1090 	 */
1091 	for (va = start; va < end; va += PAGE_SIZE) {
1092 		pa = pmap_extract(pmap, va);
1093 		if (pa != 0) {
1094 			pmap_change_wiring(pmap, va, FALSE);
1095 			if (!fictitious) {
1096 				vm_page_lock_queues();
1097 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1098 				vm_page_unlock_queues();
1099 			}
1100 		}
1101 	}
1102 }
1103 
1104 /*
1105  *	Routine:
1106  *		vm_fault_copy_entry
1107  *	Function:
1108  *		Create new shadow object backing dst_entry with private copy of
1109  *		all underlying pages. When src_entry is equal to dst_entry,
1110  *		function implements COW for wired-down map entry. Otherwise,
1111  *		it forks wired entry into dst_map.
1112  *
1113  *	In/out conditions:
1114  *		The source and destination maps must be locked for write.
1115  *		The source map entry must be wired down (or be a sharing map
1116  *		entry corresponding to a main map entry that is wired down).
1117  */
1118 void
1119 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1120     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1121     vm_ooffset_t *fork_charge)
1122 {
1123 	vm_object_t backing_object, dst_object, object, src_object;
1124 	vm_pindex_t dst_pindex, pindex, src_pindex;
1125 	vm_prot_t access, prot;
1126 	vm_offset_t vaddr;
1127 	vm_page_t dst_m;
1128 	vm_page_t src_m;
1129 	boolean_t src_readonly, upgrade;
1130 
1131 #ifdef	lint
1132 	src_map++;
1133 #endif	/* lint */
1134 
1135 	upgrade = src_entry == dst_entry;
1136 
1137 	src_object = src_entry->object.vm_object;
1138 	src_pindex = OFF_TO_IDX(src_entry->offset);
1139 	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1140 
1141 	/*
1142 	 * Create the top-level object for the destination entry. (Doesn't
1143 	 * actually shadow anything - we copy the pages directly.)
1144 	 */
1145 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1146 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1147 #if VM_NRESERVLEVEL > 0
1148 	dst_object->flags |= OBJ_COLORED;
1149 	dst_object->pg_color = atop(dst_entry->start);
1150 #endif
1151 
1152 	VM_OBJECT_LOCK(dst_object);
1153 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1154 	    ("vm_fault_copy_entry: vm_object not NULL"));
1155 	dst_entry->object.vm_object = dst_object;
1156 	dst_entry->offset = 0;
1157 	dst_object->charge = dst_entry->end - dst_entry->start;
1158 	if (fork_charge != NULL) {
1159 		KASSERT(dst_entry->uip == NULL,
1160 		    ("vm_fault_copy_entry: leaked swp charge"));
1161 		dst_object->uip = curthread->td_ucred->cr_ruidinfo;
1162 		uihold(dst_object->uip);
1163 		*fork_charge += dst_object->charge;
1164 	} else {
1165 		dst_object->uip = dst_entry->uip;
1166 		dst_entry->uip = NULL;
1167 	}
1168 	access = prot = dst_entry->protection;
1169 	/*
1170 	 * If not an upgrade, then enter the mappings in the pmap as
1171 	 * read and/or execute accesses.  Otherwise, enter them as
1172 	 * write accesses.
1173 	 *
1174 	 * A writeable large page mapping is only created if all of
1175 	 * the constituent small page mappings are modified. Marking
1176 	 * PTEs as modified on inception allows promotion to happen
1177 	 * without taking potentially large number of soft faults.
1178 	 */
1179 	if (!upgrade)
1180 		access &= ~VM_PROT_WRITE;
1181 
1182 	/*
1183 	 * Loop through all of the pages in the entry's range, copying each
1184 	 * one from the source object (it should be there) to the destination
1185 	 * object.
1186 	 */
1187 	for (vaddr = dst_entry->start, dst_pindex = 0;
1188 	    vaddr < dst_entry->end;
1189 	    vaddr += PAGE_SIZE, dst_pindex++) {
1190 
1191 		/*
1192 		 * Allocate a page in the destination object.
1193 		 */
1194 		do {
1195 			dst_m = vm_page_alloc(dst_object, dst_pindex,
1196 			    VM_ALLOC_NORMAL);
1197 			if (dst_m == NULL) {
1198 				VM_OBJECT_UNLOCK(dst_object);
1199 				VM_WAIT;
1200 				VM_OBJECT_LOCK(dst_object);
1201 			}
1202 		} while (dst_m == NULL);
1203 
1204 		/*
1205 		 * Find the page in the source object, and copy it in.
1206 		 * (Because the source is wired down, the page will be in
1207 		 * memory.)
1208 		 */
1209 		VM_OBJECT_LOCK(src_object);
1210 		object = src_object;
1211 		pindex = src_pindex + dst_pindex;
1212 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1213 		    src_readonly &&
1214 		    (backing_object = object->backing_object) != NULL) {
1215 			/*
1216 			 * Allow fallback to backing objects if we are reading.
1217 			 */
1218 			VM_OBJECT_LOCK(backing_object);
1219 			pindex += OFF_TO_IDX(object->backing_object_offset);
1220 			VM_OBJECT_UNLOCK(object);
1221 			object = backing_object;
1222 		}
1223 		if (src_m == NULL)
1224 			panic("vm_fault_copy_wired: page missing");
1225 		pmap_copy_page(src_m, dst_m);
1226 		VM_OBJECT_UNLOCK(object);
1227 		dst_m->valid = VM_PAGE_BITS_ALL;
1228 		VM_OBJECT_UNLOCK(dst_object);
1229 
1230 		/*
1231 		 * Enter it in the pmap. If a wired, copy-on-write
1232 		 * mapping is being replaced by a write-enabled
1233 		 * mapping, then wire that new mapping.
1234 		 */
1235 		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1236 
1237 		/*
1238 		 * Mark it no longer busy, and put it on the active list.
1239 		 */
1240 		VM_OBJECT_LOCK(dst_object);
1241 		vm_page_lock_queues();
1242 		if (upgrade) {
1243 			vm_page_unwire(src_m, 0);
1244 			vm_page_wire(dst_m);
1245 		} else
1246 			vm_page_activate(dst_m);
1247 		vm_page_unlock_queues();
1248 		vm_page_wakeup(dst_m);
1249 	}
1250 	VM_OBJECT_UNLOCK(dst_object);
1251 	if (upgrade) {
1252 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1253 		vm_object_deallocate(src_object);
1254 	}
1255 }
1256 
1257 
1258 /*
1259  * This routine checks around the requested page for other pages that
1260  * might be able to be faulted in.  This routine brackets the viable
1261  * pages for the pages to be paged in.
1262  *
1263  * Inputs:
1264  *	m, rbehind, rahead
1265  *
1266  * Outputs:
1267  *  marray (array of vm_page_t), reqpage (index of requested page)
1268  *
1269  * Return value:
1270  *  number of pages in marray
1271  */
1272 static int
1273 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1274 	vm_page_t m;
1275 	int rbehind;
1276 	int rahead;
1277 	vm_page_t *marray;
1278 	int *reqpage;
1279 {
1280 	int i,j;
1281 	vm_object_t object;
1282 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1283 	vm_page_t rtm;
1284 	int cbehind, cahead;
1285 
1286 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1287 
1288 	object = m->object;
1289 	pindex = m->pindex;
1290 	cbehind = cahead = 0;
1291 
1292 	/*
1293 	 * if the requested page is not available, then give up now
1294 	 */
1295 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1296 		return 0;
1297 	}
1298 
1299 	if ((cbehind == 0) && (cahead == 0)) {
1300 		*reqpage = 0;
1301 		marray[0] = m;
1302 		return 1;
1303 	}
1304 
1305 	if (rahead > cahead) {
1306 		rahead = cahead;
1307 	}
1308 
1309 	if (rbehind > cbehind) {
1310 		rbehind = cbehind;
1311 	}
1312 
1313 	/*
1314 	 * scan backward for the read behind pages -- in memory
1315 	 */
1316 	if (pindex > 0) {
1317 		if (rbehind > pindex) {
1318 			rbehind = pindex;
1319 			startpindex = 0;
1320 		} else {
1321 			startpindex = pindex - rbehind;
1322 		}
1323 
1324 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1325 		    rtm->pindex >= startpindex)
1326 			startpindex = rtm->pindex + 1;
1327 
1328 		/* tpindex is unsigned; beware of numeric underflow. */
1329 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1330 		    tpindex < pindex; i++, tpindex--) {
1331 
1332 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1333 			    VM_ALLOC_IFNOTCACHED);
1334 			if (rtm == NULL) {
1335 				/*
1336 				 * Shift the allocated pages to the
1337 				 * beginning of the array.
1338 				 */
1339 				for (j = 0; j < i; j++) {
1340 					marray[j] = marray[j + tpindex + 1 -
1341 					    startpindex];
1342 				}
1343 				break;
1344 			}
1345 
1346 			marray[tpindex - startpindex] = rtm;
1347 		}
1348 	} else {
1349 		startpindex = 0;
1350 		i = 0;
1351 	}
1352 
1353 	marray[i] = m;
1354 	/* page offset of the required page */
1355 	*reqpage = i;
1356 
1357 	tpindex = pindex + 1;
1358 	i++;
1359 
1360 	/*
1361 	 * scan forward for the read ahead pages
1362 	 */
1363 	endpindex = tpindex + rahead;
1364 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1365 		endpindex = rtm->pindex;
1366 	if (endpindex > object->size)
1367 		endpindex = object->size;
1368 
1369 	for (; tpindex < endpindex; i++, tpindex++) {
1370 
1371 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1372 		    VM_ALLOC_IFNOTCACHED);
1373 		if (rtm == NULL) {
1374 			break;
1375 		}
1376 
1377 		marray[i] = rtm;
1378 	}
1379 
1380 	/* return number of pages */
1381 	return i;
1382 }
1383