xref: /freebsd/sys/vm/vm_fault.c (revision 6e0da4f753ed6b5d26395001a6194b4fdea70177)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #define PFBAK 4
101 #define PFFOR 4
102 #define PAGEORDER_SIZE (PFBAK+PFFOR)
103 
104 static int prefault_pageorder[] = {
105 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
106 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
107 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
108 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
109 };
110 
111 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
112 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
113 
114 #define VM_FAULT_READ_AHEAD 8
115 #define VM_FAULT_READ_BEHIND 7
116 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
117 
118 struct faultstate {
119 	vm_page_t m;
120 	vm_object_t object;
121 	vm_pindex_t pindex;
122 	vm_page_t first_m;
123 	vm_object_t	first_object;
124 	vm_pindex_t first_pindex;
125 	vm_map_t map;
126 	vm_map_entry_t entry;
127 	int lookup_still_valid;
128 	struct vnode *vp;
129 };
130 
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134 	vm_page_lock_queues();
135 	vm_page_wakeup(fs->m);
136 	vm_page_deactivate(fs->m);
137 	vm_page_unlock_queues();
138 	fs->m = NULL;
139 }
140 
141 static __inline void
142 unlock_map(struct faultstate *fs)
143 {
144 	if (fs->lookup_still_valid) {
145 		vm_map_lookup_done(fs->map, fs->entry);
146 		fs->lookup_still_valid = FALSE;
147 	}
148 }
149 
150 static void
151 unlock_and_deallocate(struct faultstate *fs)
152 {
153 
154 	vm_object_pip_wakeup(fs->object);
155 	VM_OBJECT_UNLOCK(fs->object);
156 	if (fs->object != fs->first_object) {
157 		VM_OBJECT_LOCK(fs->first_object);
158 		vm_page_lock_queues();
159 		vm_page_free(fs->first_m);
160 		vm_page_unlock_queues();
161 		vm_object_pip_wakeup(fs->first_object);
162 		VM_OBJECT_UNLOCK(fs->first_object);
163 		fs->first_m = NULL;
164 	}
165 	vm_object_deallocate(fs->first_object);
166 	unlock_map(fs);
167 	if (fs->vp != NULL) {
168 		mtx_lock(&Giant);
169 		vput(fs->vp);
170 		mtx_unlock(&Giant);
171 		fs->vp = NULL;
172 	}
173 	if (!fs->map->system_map)
174 		VM_UNLOCK_GIANT();
175 }
176 
177 /*
178  * TRYPAGER - used by vm_fault to calculate whether the pager for the
179  *	      current object *might* contain the page.
180  *
181  *	      default objects are zero-fill, there is no real pager.
182  */
183 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
184 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
185 
186 /*
187  *	vm_fault:
188  *
189  *	Handle a page fault occurring at the given address,
190  *	requiring the given permissions, in the map specified.
191  *	If successful, the page is inserted into the
192  *	associated physical map.
193  *
194  *	NOTE: the given address should be truncated to the
195  *	proper page address.
196  *
197  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
198  *	a standard error specifying why the fault is fatal is returned.
199  *
200  *
201  *	The map in question must be referenced, and remains so.
202  *	Caller may hold no locks.
203  */
204 int
205 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
206 	 int fault_flags)
207 {
208 	vm_prot_t prot;
209 	int is_first_object_locked, result;
210 	boolean_t growstack, wired;
211 	int map_generation;
212 	vm_object_t next_object;
213 	vm_page_t marray[VM_FAULT_READ];
214 	int hardfault;
215 	int faultcount;
216 	struct faultstate fs;
217 
218 	hardfault = 0;
219 	growstack = TRUE;
220 	atomic_add_int(&cnt.v_vm_faults, 1);
221 
222 RetryFault:;
223 
224 	/*
225 	 * Find the backing store object and offset into it to begin the
226 	 * search.
227 	 */
228 	fs.map = map;
229 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
230 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
231 	if (result != KERN_SUCCESS) {
232 		if (result != KERN_PROTECTION_FAILURE ||
233 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
234 			if (growstack && result == KERN_INVALID_ADDRESS &&
235 			    map != kernel_map && curproc != NULL) {
236 				result = vm_map_growstack(curproc, vaddr);
237 				if (result != KERN_SUCCESS)
238 					return (KERN_FAILURE);
239 				growstack = FALSE;
240 				goto RetryFault;
241 			}
242 			return (result);
243 		}
244 
245 		/*
246    		 * If we are user-wiring a r/w segment, and it is COW, then
247    		 * we need to do the COW operation.  Note that we don't COW
248    		 * currently RO sections now, because it is NOT desirable
249    		 * to COW .text.  We simply keep .text from ever being COW'ed
250    		 * and take the heat that one cannot debug wired .text sections.
251    		 */
252 		result = vm_map_lookup(&fs.map, vaddr,
253 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
254 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
255 		if (result != KERN_SUCCESS)
256 			return (result);
257 
258 		/*
259 		 * If we don't COW now, on a user wire, the user will never
260 		 * be able to write to the mapping.  If we don't make this
261 		 * restriction, the bookkeeping would be nearly impossible.
262 		 *
263 		 * XXX The following assignment modifies the map without
264 		 * holding a write lock on it.
265 		 */
266 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
267 			fs.entry->max_protection &= ~VM_PROT_WRITE;
268 	}
269 
270 	map_generation = fs.map->timestamp;
271 
272 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
273 		panic("vm_fault: fault on nofault entry, addr: %lx",
274 		    (u_long)vaddr);
275 	}
276 
277 	/*
278 	 * Make a reference to this object to prevent its disposal while we
279 	 * are messing with it.  Once we have the reference, the map is free
280 	 * to be diddled.  Since objects reference their shadows (and copies),
281 	 * they will stay around as well.
282 	 *
283 	 * Bump the paging-in-progress count to prevent size changes (e.g.
284 	 * truncation operations) during I/O.  This must be done after
285 	 * obtaining the vnode lock in order to avoid possible deadlocks.
286 	 *
287 	 * XXX vnode_pager_lock() can block without releasing the map lock.
288 	 */
289 	if (!fs.map->system_map)
290 		mtx_lock(&Giant);
291 	VM_OBJECT_LOCK(fs.first_object);
292 	vm_object_reference_locked(fs.first_object);
293 	fs.vp = vnode_pager_lock(fs.first_object);
294 	KASSERT(fs.vp == NULL || !fs.map->system_map,
295 	    ("vm_fault: vnode-backed object mapped by system map"));
296 	if (debug_mpsafevm && !fs.map->system_map)
297 		mtx_unlock(&Giant);
298 	vm_object_pip_add(fs.first_object, 1);
299 
300 	fs.lookup_still_valid = TRUE;
301 
302 	if (wired)
303 		fault_type = prot;
304 
305 	fs.first_m = NULL;
306 
307 	/*
308 	 * Search for the page at object/offset.
309 	 */
310 	fs.object = fs.first_object;
311 	fs.pindex = fs.first_pindex;
312 	while (TRUE) {
313 		/*
314 		 * If the object is dead, we stop here
315 		 */
316 		if (fs.object->flags & OBJ_DEAD) {
317 			unlock_and_deallocate(&fs);
318 			return (KERN_PROTECTION_FAILURE);
319 		}
320 
321 		/*
322 		 * See if page is resident
323 		 */
324 		fs.m = vm_page_lookup(fs.object, fs.pindex);
325 		if (fs.m != NULL) {
326 			int queue;
327 
328 			/*
329 			 * check for page-based copy on write.
330 			 * We check fs.object == fs.first_object so
331 			 * as to ensure the legacy COW mechanism is
332 			 * used when the page in question is part of
333 			 * a shadow object.  Otherwise, vm_page_cowfault()
334 			 * removes the page from the backing object,
335 			 * which is not what we want.
336 			 */
337 			vm_page_lock_queues();
338 			if ((fs.m->cow) &&
339 			    (fault_type & VM_PROT_WRITE) &&
340 			    (fs.object == fs.first_object)) {
341 				vm_page_cowfault(fs.m);
342 				vm_page_unlock_queues();
343 				unlock_and_deallocate(&fs);
344 				goto RetryFault;
345 			}
346 
347 			/*
348 			 * Wait/Retry if the page is busy.  We have to do this
349 			 * if the page is busy via either PG_BUSY or
350 			 * vm_page_t->busy because the vm_pager may be using
351 			 * vm_page_t->busy for pageouts ( and even pageins if
352 			 * it is the vnode pager ), and we could end up trying
353 			 * to pagein and pageout the same page simultaneously.
354 			 *
355 			 * We can theoretically allow the busy case on a read
356 			 * fault if the page is marked valid, but since such
357 			 * pages are typically already pmap'd, putting that
358 			 * special case in might be more effort then it is
359 			 * worth.  We cannot under any circumstances mess
360 			 * around with a vm_page_t->busy page except, perhaps,
361 			 * to pmap it.
362 			 */
363 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
364 				vm_page_unlock_queues();
365 				VM_OBJECT_UNLOCK(fs.object);
366 				if (fs.object != fs.first_object) {
367 					VM_OBJECT_LOCK(fs.first_object);
368 					vm_page_lock_queues();
369 					vm_page_free(fs.first_m);
370 					vm_page_unlock_queues();
371 					vm_object_pip_wakeup(fs.first_object);
372 					VM_OBJECT_UNLOCK(fs.first_object);
373 					fs.first_m = NULL;
374 				}
375 				unlock_map(&fs);
376 				if (fs.vp != NULL) {
377 					mtx_lock(&Giant);
378 					vput(fs.vp);
379 					mtx_unlock(&Giant);
380 					fs.vp = NULL;
381 				}
382 				VM_OBJECT_LOCK(fs.object);
383 				if (fs.m == vm_page_lookup(fs.object,
384 				    fs.pindex)) {
385 					vm_page_lock_queues();
386 					if (!vm_page_sleep_if_busy(fs.m, TRUE,
387 					    "vmpfw"))
388 						vm_page_unlock_queues();
389 				}
390 				vm_object_pip_wakeup(fs.object);
391 				VM_OBJECT_UNLOCK(fs.object);
392 				atomic_add_int(&cnt.v_intrans, 1);
393 				if (!fs.map->system_map)
394 					VM_UNLOCK_GIANT();
395 				vm_object_deallocate(fs.first_object);
396 				goto RetryFault;
397 			}
398 			queue = fs.m->queue;
399 
400 			vm_pageq_remove_nowakeup(fs.m);
401 
402 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
403 				vm_page_activate(fs.m);
404 				vm_page_unlock_queues();
405 				unlock_and_deallocate(&fs);
406 				VM_WAITPFAULT;
407 				goto RetryFault;
408 			}
409 
410 			/*
411 			 * Mark page busy for other processes, and the
412 			 * pagedaemon.  If it still isn't completely valid
413 			 * (readable), jump to readrest, else break-out ( we
414 			 * found the page ).
415 			 */
416 			vm_page_busy(fs.m);
417 			vm_page_unlock_queues();
418 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
419 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
420 				goto readrest;
421 			}
422 
423 			break;
424 		}
425 
426 		/*
427 		 * Page is not resident, If this is the search termination
428 		 * or the pager might contain the page, allocate a new page.
429 		 */
430 		if (TRYPAGER || fs.object == fs.first_object) {
431 			if (fs.pindex >= fs.object->size) {
432 				unlock_and_deallocate(&fs);
433 				return (KERN_PROTECTION_FAILURE);
434 			}
435 
436 			/*
437 			 * Allocate a new page for this object/offset pair.
438 			 */
439 			fs.m = NULL;
440 			if (!vm_page_count_severe()) {
441 				fs.m = vm_page_alloc(fs.object, fs.pindex,
442 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
443 			}
444 			if (fs.m == NULL) {
445 				unlock_and_deallocate(&fs);
446 				VM_WAITPFAULT;
447 				goto RetryFault;
448 			}
449 		}
450 
451 readrest:
452 		/*
453 		 * We have found a valid page or we have allocated a new page.
454 		 * The page thus may not be valid or may not be entirely
455 		 * valid.
456 		 *
457 		 * Attempt to fault-in the page if there is a chance that the
458 		 * pager has it, and potentially fault in additional pages
459 		 * at the same time.
460 		 */
461 		if (TRYPAGER) {
462 			int rv;
463 			int reqpage;
464 			int ahead, behind;
465 			u_char behavior = vm_map_entry_behavior(fs.entry);
466 
467 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
468 				ahead = 0;
469 				behind = 0;
470 			} else {
471 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
472 				if (behind > VM_FAULT_READ_BEHIND)
473 					behind = VM_FAULT_READ_BEHIND;
474 
475 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
476 				if (ahead > VM_FAULT_READ_AHEAD)
477 					ahead = VM_FAULT_READ_AHEAD;
478 			}
479 			is_first_object_locked = FALSE;
480 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
481 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
482 			      fs.pindex >= fs.entry->lastr &&
483 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
484 			    (fs.first_object == fs.object ||
485 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
486 			    fs.first_object->type != OBJT_DEVICE) {
487 				vm_pindex_t firstpindex, tmppindex;
488 
489 				if (fs.first_pindex < 2 * VM_FAULT_READ)
490 					firstpindex = 0;
491 				else
492 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
493 
494 				vm_page_lock_queues();
495 				/*
496 				 * note: partially valid pages cannot be
497 				 * included in the lookahead - NFS piecemeal
498 				 * writes will barf on it badly.
499 				 */
500 				for (tmppindex = fs.first_pindex - 1;
501 					tmppindex >= firstpindex;
502 					--tmppindex) {
503 					vm_page_t mt;
504 
505 					mt = vm_page_lookup(fs.first_object, tmppindex);
506 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
507 						break;
508 					if (mt->busy ||
509 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
510 						mt->hold_count ||
511 						mt->wire_count)
512 						continue;
513 					pmap_remove_all(mt);
514 					if (mt->dirty) {
515 						vm_page_deactivate(mt);
516 					} else {
517 						vm_page_cache(mt);
518 					}
519 				}
520 				vm_page_unlock_queues();
521 				ahead += behind;
522 				behind = 0;
523 			}
524 			if (is_first_object_locked)
525 				VM_OBJECT_UNLOCK(fs.first_object);
526 			/*
527 			 * now we find out if any other pages should be paged
528 			 * in at this time this routine checks to see if the
529 			 * pages surrounding this fault reside in the same
530 			 * object as the page for this fault.  If they do,
531 			 * then they are faulted in also into the object.  The
532 			 * array "marray" returned contains an array of
533 			 * vm_page_t structs where one of them is the
534 			 * vm_page_t passed to the routine.  The reqpage
535 			 * return value is the index into the marray for the
536 			 * vm_page_t passed to the routine.
537 			 *
538 			 * fs.m plus the additional pages are PG_BUSY'd.
539 			 *
540 			 * XXX vm_fault_additional_pages() can block
541 			 * without releasing the map lock.
542 			 */
543 			faultcount = vm_fault_additional_pages(
544 			    fs.m, behind, ahead, marray, &reqpage);
545 
546 			/*
547 			 * update lastr imperfectly (we do not know how much
548 			 * getpages will actually read), but good enough.
549 			 *
550 			 * XXX The following assignment modifies the map
551 			 * without holding a write lock on it.
552 			 */
553 			fs.entry->lastr = fs.pindex + faultcount - behind;
554 
555 			/*
556 			 * Call the pager to retrieve the data, if any, after
557 			 * releasing the lock on the map.  We hold a ref on
558 			 * fs.object and the pages are PG_BUSY'd.
559 			 */
560 			unlock_map(&fs);
561 
562 			rv = faultcount ?
563 			    vm_pager_get_pages(fs.object, marray, faultcount,
564 				reqpage) : VM_PAGER_FAIL;
565 
566 			if (rv == VM_PAGER_OK) {
567 				/*
568 				 * Found the page. Leave it busy while we play
569 				 * with it.
570 				 */
571 
572 				/*
573 				 * Relookup in case pager changed page. Pager
574 				 * is responsible for disposition of old page
575 				 * if moved.
576 				 */
577 				fs.m = vm_page_lookup(fs.object, fs.pindex);
578 				if (!fs.m) {
579 					unlock_and_deallocate(&fs);
580 					goto RetryFault;
581 				}
582 
583 				hardfault++;
584 				break; /* break to PAGE HAS BEEN FOUND */
585 			}
586 			/*
587 			 * Remove the bogus page (which does not exist at this
588 			 * object/offset); before doing so, we must get back
589 			 * our object lock to preserve our invariant.
590 			 *
591 			 * Also wake up any other process that may want to bring
592 			 * in this page.
593 			 *
594 			 * If this is the top-level object, we must leave the
595 			 * busy page to prevent another process from rushing
596 			 * past us, and inserting the page in that object at
597 			 * the same time that we are.
598 			 */
599 			if (rv == VM_PAGER_ERROR)
600 				printf("vm_fault: pager read error, pid %d (%s)\n",
601 				    curproc->p_pid, curproc->p_comm);
602 			/*
603 			 * Data outside the range of the pager or an I/O error
604 			 */
605 			/*
606 			 * XXX - the check for kernel_map is a kludge to work
607 			 * around having the machine panic on a kernel space
608 			 * fault w/ I/O error.
609 			 */
610 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
611 				(rv == VM_PAGER_BAD)) {
612 				vm_page_lock_queues();
613 				vm_page_free(fs.m);
614 				vm_page_unlock_queues();
615 				fs.m = NULL;
616 				unlock_and_deallocate(&fs);
617 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
618 			}
619 			if (fs.object != fs.first_object) {
620 				vm_page_lock_queues();
621 				vm_page_free(fs.m);
622 				vm_page_unlock_queues();
623 				fs.m = NULL;
624 				/*
625 				 * XXX - we cannot just fall out at this
626 				 * point, m has been freed and is invalid!
627 				 */
628 			}
629 		}
630 
631 		/*
632 		 * We get here if the object has default pager (or unwiring)
633 		 * or the pager doesn't have the page.
634 		 */
635 		if (fs.object == fs.first_object)
636 			fs.first_m = fs.m;
637 
638 		/*
639 		 * Move on to the next object.  Lock the next object before
640 		 * unlocking the current one.
641 		 */
642 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
643 		next_object = fs.object->backing_object;
644 		if (next_object == NULL) {
645 			/*
646 			 * If there's no object left, fill the page in the top
647 			 * object with zeros.
648 			 */
649 			if (fs.object != fs.first_object) {
650 				vm_object_pip_wakeup(fs.object);
651 				VM_OBJECT_UNLOCK(fs.object);
652 
653 				fs.object = fs.first_object;
654 				fs.pindex = fs.first_pindex;
655 				fs.m = fs.first_m;
656 				VM_OBJECT_LOCK(fs.object);
657 			}
658 			fs.first_m = NULL;
659 
660 			/*
661 			 * Zero the page if necessary and mark it valid.
662 			 */
663 			if ((fs.m->flags & PG_ZERO) == 0) {
664 				pmap_zero_page(fs.m);
665 			} else {
666 				atomic_add_int(&cnt.v_ozfod, 1);
667 			}
668 			atomic_add_int(&cnt.v_zfod, 1);
669 			fs.m->valid = VM_PAGE_BITS_ALL;
670 			break;	/* break to PAGE HAS BEEN FOUND */
671 		} else {
672 			KASSERT(fs.object != next_object,
673 			    ("object loop %p", next_object));
674 			VM_OBJECT_LOCK(next_object);
675 			vm_object_pip_add(next_object, 1);
676 			if (fs.object != fs.first_object)
677 				vm_object_pip_wakeup(fs.object);
678 			VM_OBJECT_UNLOCK(fs.object);
679 			fs.object = next_object;
680 		}
681 	}
682 
683 	KASSERT((fs.m->flags & PG_BUSY) != 0,
684 	    ("vm_fault: not busy after main loop"));
685 
686 	/*
687 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
688 	 * is held.]
689 	 */
690 
691 	/*
692 	 * If the page is being written, but isn't already owned by the
693 	 * top-level object, we have to copy it into a new page owned by the
694 	 * top-level object.
695 	 */
696 	if (fs.object != fs.first_object) {
697 		/*
698 		 * We only really need to copy if we want to write it.
699 		 */
700 		if (fault_type & VM_PROT_WRITE) {
701 			/*
702 			 * This allows pages to be virtually copied from a
703 			 * backing_object into the first_object, where the
704 			 * backing object has no other refs to it, and cannot
705 			 * gain any more refs.  Instead of a bcopy, we just
706 			 * move the page from the backing object to the
707 			 * first object.  Note that we must mark the page
708 			 * dirty in the first object so that it will go out
709 			 * to swap when needed.
710 			 */
711 			is_first_object_locked = FALSE;
712 			if (
713 				/*
714 				 * Only one shadow object
715 				 */
716 				(fs.object->shadow_count == 1) &&
717 				/*
718 				 * No COW refs, except us
719 				 */
720 				(fs.object->ref_count == 1) &&
721 				/*
722 				 * No one else can look this object up
723 				 */
724 				(fs.object->handle == NULL) &&
725 				/*
726 				 * No other ways to look the object up
727 				 */
728 				((fs.object->type == OBJT_DEFAULT) ||
729 				 (fs.object->type == OBJT_SWAP)) &&
730 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
731 				/*
732 				 * We don't chase down the shadow chain
733 				 */
734 			    fs.object == fs.first_object->backing_object) {
735 				vm_page_lock_queues();
736 				/*
737 				 * get rid of the unnecessary page
738 				 */
739 				pmap_remove_all(fs.first_m);
740 				vm_page_free(fs.first_m);
741 				/*
742 				 * grab the page and put it into the
743 				 * process'es object.  The page is
744 				 * automatically made dirty.
745 				 */
746 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
747 				vm_page_busy(fs.m);
748 				vm_page_unlock_queues();
749 				fs.first_m = fs.m;
750 				fs.m = NULL;
751 				atomic_add_int(&cnt.v_cow_optim, 1);
752 			} else {
753 				/*
754 				 * Oh, well, lets copy it.
755 				 */
756 				pmap_copy_page(fs.m, fs.first_m);
757 				fs.first_m->valid = VM_PAGE_BITS_ALL;
758 			}
759 			if (fs.m) {
760 				/*
761 				 * We no longer need the old page or object.
762 				 */
763 				release_page(&fs);
764 			}
765 			/*
766 			 * fs.object != fs.first_object due to above
767 			 * conditional
768 			 */
769 			vm_object_pip_wakeup(fs.object);
770 			VM_OBJECT_UNLOCK(fs.object);
771 			/*
772 			 * Only use the new page below...
773 			 */
774 			fs.object = fs.first_object;
775 			fs.pindex = fs.first_pindex;
776 			fs.m = fs.first_m;
777 			if (!is_first_object_locked)
778 				VM_OBJECT_LOCK(fs.object);
779 			atomic_add_int(&cnt.v_cow_faults, 1);
780 		} else {
781 			prot &= ~VM_PROT_WRITE;
782 		}
783 	}
784 
785 	/*
786 	 * We must verify that the maps have not changed since our last
787 	 * lookup.
788 	 */
789 	if (!fs.lookup_still_valid) {
790 		vm_object_t retry_object;
791 		vm_pindex_t retry_pindex;
792 		vm_prot_t retry_prot;
793 
794 		if (!vm_map_trylock_read(fs.map)) {
795 			release_page(&fs);
796 			unlock_and_deallocate(&fs);
797 			goto RetryFault;
798 		}
799 		fs.lookup_still_valid = TRUE;
800 		if (fs.map->timestamp != map_generation) {
801 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
802 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
803 
804 			/*
805 			 * If we don't need the page any longer, put it on the active
806 			 * list (the easiest thing to do here).  If no one needs it,
807 			 * pageout will grab it eventually.
808 			 */
809 			if (result != KERN_SUCCESS) {
810 				release_page(&fs);
811 				unlock_and_deallocate(&fs);
812 
813 				/*
814 				 * If retry of map lookup would have blocked then
815 				 * retry fault from start.
816 				 */
817 				if (result == KERN_FAILURE)
818 					goto RetryFault;
819 				return (result);
820 			}
821 			if ((retry_object != fs.first_object) ||
822 			    (retry_pindex != fs.first_pindex)) {
823 				release_page(&fs);
824 				unlock_and_deallocate(&fs);
825 				goto RetryFault;
826 			}
827 
828 			/*
829 			 * Check whether the protection has changed or the object has
830 			 * been copied while we left the map unlocked. Changing from
831 			 * read to write permission is OK - we leave the page
832 			 * write-protected, and catch the write fault. Changing from
833 			 * write to read permission means that we can't mark the page
834 			 * write-enabled after all.
835 			 */
836 			prot &= retry_prot;
837 		}
838 	}
839 	if (prot & VM_PROT_WRITE) {
840 		vm_page_lock_queues();
841 		vm_page_flag_set(fs.m, PG_WRITEABLE);
842 		vm_object_set_writeable_dirty(fs.m->object);
843 
844 		/*
845 		 * If the fault is a write, we know that this page is being
846 		 * written NOW so dirty it explicitly to save on
847 		 * pmap_is_modified() calls later.
848 		 *
849 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
850 		 * if the page is already dirty to prevent data written with
851 		 * the expectation of being synced from not being synced.
852 		 * Likewise if this entry does not request NOSYNC then make
853 		 * sure the page isn't marked NOSYNC.  Applications sharing
854 		 * data should use the same flags to avoid ping ponging.
855 		 *
856 		 * Also tell the backing pager, if any, that it should remove
857 		 * any swap backing since the page is now dirty.
858 		 */
859 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
860 			if (fs.m->dirty == 0)
861 				vm_page_flag_set(fs.m, PG_NOSYNC);
862 		} else {
863 			vm_page_flag_clear(fs.m, PG_NOSYNC);
864 		}
865 		vm_page_unlock_queues();
866 		if (fault_flags & VM_FAULT_DIRTY) {
867 			vm_page_dirty(fs.m);
868 			vm_pager_page_unswapped(fs.m);
869 		}
870 	}
871 
872 	/*
873 	 * Page had better still be busy
874 	 */
875 	KASSERT(fs.m->flags & PG_BUSY,
876 		("vm_fault: page %p not busy!", fs.m));
877 	/*
878 	 * Sanity check: page must be completely valid or it is not fit to
879 	 * map into user space.  vm_pager_get_pages() ensures this.
880 	 */
881 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
882 		vm_page_zero_invalid(fs.m, TRUE);
883 		printf("Warning: page %p partially invalid on fault\n", fs.m);
884 	}
885 	VM_OBJECT_UNLOCK(fs.object);
886 
887 	/*
888 	 * Put this page into the physical map.  We had to do the unlock above
889 	 * because pmap_enter() may sleep.  We don't put the page
890 	 * back on the active queue until later so that the pageout daemon
891 	 * won't find it (yet).
892 	 */
893 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
894 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
895 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
896 	}
897 	VM_OBJECT_LOCK(fs.object);
898 	vm_page_lock_queues();
899 	vm_page_flag_set(fs.m, PG_REFERENCED);
900 
901 	/*
902 	 * If the page is not wired down, then put it where the pageout daemon
903 	 * can find it.
904 	 */
905 	if (fault_flags & VM_FAULT_WIRE_MASK) {
906 		if (wired)
907 			vm_page_wire(fs.m);
908 		else
909 			vm_page_unwire(fs.m, 1);
910 	} else {
911 		vm_page_activate(fs.m);
912 	}
913 	vm_page_wakeup(fs.m);
914 	vm_page_unlock_queues();
915 
916 	/*
917 	 * Unlock everything, and return
918 	 */
919 	unlock_and_deallocate(&fs);
920 	PROC_LOCK(curproc);
921 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
922 		if (hardfault) {
923 			curproc->p_stats->p_ru.ru_majflt++;
924 		} else {
925 			curproc->p_stats->p_ru.ru_minflt++;
926 		}
927 	}
928 	PROC_UNLOCK(curproc);
929 
930 	return (KERN_SUCCESS);
931 }
932 
933 /*
934  * vm_fault_prefault provides a quick way of clustering
935  * pagefaults into a processes address space.  It is a "cousin"
936  * of vm_map_pmap_enter, except it runs at page fault time instead
937  * of mmap time.
938  */
939 static void
940 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
941 {
942 	int i;
943 	vm_offset_t addr, starta;
944 	vm_pindex_t pindex;
945 	vm_page_t m, mpte;
946 	vm_object_t object;
947 
948 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
949 		return;
950 
951 	object = entry->object.vm_object;
952 
953 	starta = addra - PFBAK * PAGE_SIZE;
954 	if (starta < entry->start) {
955 		starta = entry->start;
956 	} else if (starta > addra) {
957 		starta = 0;
958 	}
959 
960 	mpte = NULL;
961 	for (i = 0; i < PAGEORDER_SIZE; i++) {
962 		vm_object_t backing_object, lobject;
963 
964 		addr = addra + prefault_pageorder[i];
965 		if (addr > addra + (PFFOR * PAGE_SIZE))
966 			addr = 0;
967 
968 		if (addr < starta || addr >= entry->end)
969 			continue;
970 
971 		if (!pmap_is_prefaultable(pmap, addr))
972 			continue;
973 
974 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
975 		lobject = object;
976 		VM_OBJECT_LOCK(lobject);
977 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
978 		    lobject->type == OBJT_DEFAULT &&
979 		    (backing_object = lobject->backing_object) != NULL) {
980 			if (lobject->backing_object_offset & PAGE_MASK)
981 				break;
982 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
983 			VM_OBJECT_LOCK(backing_object);
984 			VM_OBJECT_UNLOCK(lobject);
985 			lobject = backing_object;
986 		}
987 		/*
988 		 * give-up when a page is not in memory
989 		 */
990 		if (m == NULL) {
991 			VM_OBJECT_UNLOCK(lobject);
992 			break;
993 		}
994 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
995 			(m->busy == 0) &&
996 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
997 
998 			vm_page_lock_queues();
999 			if ((m->queue - m->pc) == PQ_CACHE)
1000 				vm_page_deactivate(m);
1001 			mpte = pmap_enter_quick(pmap, addr, m, mpte);
1002 			vm_page_unlock_queues();
1003 		}
1004 		VM_OBJECT_UNLOCK(lobject);
1005 	}
1006 }
1007 
1008 /*
1009  *	vm_fault_quick:
1010  *
1011  *	Ensure that the requested virtual address, which may be in userland,
1012  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1013  */
1014 int
1015 vm_fault_quick(caddr_t v, int prot)
1016 {
1017 	int r;
1018 
1019 	if (prot & VM_PROT_WRITE)
1020 		r = subyte(v, fubyte(v));
1021 	else
1022 		r = fubyte(v);
1023 	return(r);
1024 }
1025 
1026 /*
1027  *	vm_fault_wire:
1028  *
1029  *	Wire down a range of virtual addresses in a map.
1030  */
1031 int
1032 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1033     boolean_t user_wire, boolean_t fictitious)
1034 {
1035 	vm_offset_t va;
1036 	int rv;
1037 
1038 	/*
1039 	 * We simulate a fault to get the page and enter it in the physical
1040 	 * map.  For user wiring, we only ask for read access on currently
1041 	 * read-only sections.
1042 	 */
1043 	for (va = start; va < end; va += PAGE_SIZE) {
1044 		rv = vm_fault(map, va,
1045 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1046 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1047 		if (rv) {
1048 			if (va != start)
1049 				vm_fault_unwire(map, start, va, fictitious);
1050 			return (rv);
1051 		}
1052 	}
1053 	return (KERN_SUCCESS);
1054 }
1055 
1056 /*
1057  *	vm_fault_unwire:
1058  *
1059  *	Unwire a range of virtual addresses in a map.
1060  */
1061 void
1062 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1063     boolean_t fictitious)
1064 {
1065 	vm_paddr_t pa;
1066 	vm_offset_t va;
1067 	pmap_t pmap;
1068 
1069 	pmap = vm_map_pmap(map);
1070 
1071 	/*
1072 	 * Since the pages are wired down, we must be able to get their
1073 	 * mappings from the physical map system.
1074 	 */
1075 	for (va = start; va < end; va += PAGE_SIZE) {
1076 		pa = pmap_extract(pmap, va);
1077 		if (pa != 0) {
1078 			pmap_change_wiring(pmap, va, FALSE);
1079 			if (!fictitious) {
1080 				vm_page_lock_queues();
1081 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1082 				vm_page_unlock_queues();
1083 			}
1084 		}
1085 	}
1086 }
1087 
1088 /*
1089  *	Routine:
1090  *		vm_fault_copy_entry
1091  *	Function:
1092  *		Copy all of the pages from a wired-down map entry to another.
1093  *
1094  *	In/out conditions:
1095  *		The source and destination maps must be locked for write.
1096  *		The source map entry must be wired down (or be a sharing map
1097  *		entry corresponding to a main map entry that is wired down).
1098  */
1099 void
1100 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1101 	vm_map_t dst_map;
1102 	vm_map_t src_map;
1103 	vm_map_entry_t dst_entry;
1104 	vm_map_entry_t src_entry;
1105 {
1106 	vm_object_t backing_object, dst_object, object;
1107 	vm_object_t src_object;
1108 	vm_ooffset_t dst_offset;
1109 	vm_ooffset_t src_offset;
1110 	vm_pindex_t pindex;
1111 	vm_prot_t prot;
1112 	vm_offset_t vaddr;
1113 	vm_page_t dst_m;
1114 	vm_page_t src_m;
1115 
1116 #ifdef	lint
1117 	src_map++;
1118 #endif	/* lint */
1119 
1120 	src_object = src_entry->object.vm_object;
1121 	src_offset = src_entry->offset;
1122 
1123 	/*
1124 	 * Create the top-level object for the destination entry. (Doesn't
1125 	 * actually shadow anything - we copy the pages directly.)
1126 	 */
1127 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1128 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1129 
1130 	VM_OBJECT_LOCK(dst_object);
1131 	dst_entry->object.vm_object = dst_object;
1132 	dst_entry->offset = 0;
1133 
1134 	prot = dst_entry->max_protection;
1135 
1136 	/*
1137 	 * Loop through all of the pages in the entry's range, copying each
1138 	 * one from the source object (it should be there) to the destination
1139 	 * object.
1140 	 */
1141 	for (vaddr = dst_entry->start, dst_offset = 0;
1142 	    vaddr < dst_entry->end;
1143 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1144 
1145 		/*
1146 		 * Allocate a page in the destination object
1147 		 */
1148 		do {
1149 			dst_m = vm_page_alloc(dst_object,
1150 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1151 			if (dst_m == NULL) {
1152 				VM_OBJECT_UNLOCK(dst_object);
1153 				VM_WAIT;
1154 				VM_OBJECT_LOCK(dst_object);
1155 			}
1156 		} while (dst_m == NULL);
1157 
1158 		/*
1159 		 * Find the page in the source object, and copy it in.
1160 		 * (Because the source is wired down, the page will be in
1161 		 * memory.)
1162 		 */
1163 		VM_OBJECT_LOCK(src_object);
1164 		object = src_object;
1165 		pindex = 0;
1166 		while ((src_m = vm_page_lookup(object, pindex +
1167 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1168 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1169 		    (backing_object = object->backing_object) != NULL) {
1170 			/*
1171 			 * Allow fallback to backing objects if we are reading.
1172 			 */
1173 			VM_OBJECT_LOCK(backing_object);
1174 			pindex += OFF_TO_IDX(object->backing_object_offset);
1175 			VM_OBJECT_UNLOCK(object);
1176 			object = backing_object;
1177 		}
1178 		if (src_m == NULL)
1179 			panic("vm_fault_copy_wired: page missing");
1180 		pmap_copy_page(src_m, dst_m);
1181 		VM_OBJECT_UNLOCK(object);
1182 		dst_m->valid = VM_PAGE_BITS_ALL;
1183 		VM_OBJECT_UNLOCK(dst_object);
1184 
1185 		/*
1186 		 * Enter it in the pmap...
1187 		 */
1188 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1189 		VM_OBJECT_LOCK(dst_object);
1190 		vm_page_lock_queues();
1191 		if ((prot & VM_PROT_WRITE) != 0)
1192 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1193 
1194 		/*
1195 		 * Mark it no longer busy, and put it on the active list.
1196 		 */
1197 		vm_page_activate(dst_m);
1198 		vm_page_wakeup(dst_m);
1199 		vm_page_unlock_queues();
1200 	}
1201 	VM_OBJECT_UNLOCK(dst_object);
1202 }
1203 
1204 
1205 /*
1206  * This routine checks around the requested page for other pages that
1207  * might be able to be faulted in.  This routine brackets the viable
1208  * pages for the pages to be paged in.
1209  *
1210  * Inputs:
1211  *	m, rbehind, rahead
1212  *
1213  * Outputs:
1214  *  marray (array of vm_page_t), reqpage (index of requested page)
1215  *
1216  * Return value:
1217  *  number of pages in marray
1218  *
1219  * This routine can't block.
1220  */
1221 static int
1222 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1223 	vm_page_t m;
1224 	int rbehind;
1225 	int rahead;
1226 	vm_page_t *marray;
1227 	int *reqpage;
1228 {
1229 	int i,j;
1230 	vm_object_t object;
1231 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1232 	vm_page_t rtm;
1233 	int cbehind, cahead;
1234 
1235 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1236 
1237 	object = m->object;
1238 	pindex = m->pindex;
1239 
1240 	/*
1241 	 * we don't fault-ahead for device pager
1242 	 */
1243 	if (object->type == OBJT_DEVICE) {
1244 		*reqpage = 0;
1245 		marray[0] = m;
1246 		return 1;
1247 	}
1248 
1249 	/*
1250 	 * if the requested page is not available, then give up now
1251 	 */
1252 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1253 		return 0;
1254 	}
1255 
1256 	if ((cbehind == 0) && (cahead == 0)) {
1257 		*reqpage = 0;
1258 		marray[0] = m;
1259 		return 1;
1260 	}
1261 
1262 	if (rahead > cahead) {
1263 		rahead = cahead;
1264 	}
1265 
1266 	if (rbehind > cbehind) {
1267 		rbehind = cbehind;
1268 	}
1269 
1270 	/*
1271 	 * try to do any readahead that we might have free pages for.
1272 	 */
1273 	if ((rahead + rbehind) >
1274 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1275 		pagedaemon_wakeup();
1276 		marray[0] = m;
1277 		*reqpage = 0;
1278 		return 1;
1279 	}
1280 
1281 	/*
1282 	 * scan backward for the read behind pages -- in memory
1283 	 */
1284 	if (pindex > 0) {
1285 		if (rbehind > pindex) {
1286 			rbehind = pindex;
1287 			startpindex = 0;
1288 		} else {
1289 			startpindex = pindex - rbehind;
1290 		}
1291 
1292 		for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1293 			if (vm_page_lookup(object, tpindex)) {
1294 				startpindex = tpindex + 1;
1295 				break;
1296 			}
1297 			if (tpindex == 0)
1298 				break;
1299 		}
1300 
1301 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1302 
1303 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1304 			if (rtm == NULL) {
1305 				vm_page_lock_queues();
1306 				for (j = 0; j < i; j++) {
1307 					vm_page_free(marray[j]);
1308 				}
1309 				vm_page_unlock_queues();
1310 				marray[0] = m;
1311 				*reqpage = 0;
1312 				return 1;
1313 			}
1314 
1315 			marray[i] = rtm;
1316 		}
1317 	} else {
1318 		startpindex = 0;
1319 		i = 0;
1320 	}
1321 
1322 	marray[i] = m;
1323 	/* page offset of the required page */
1324 	*reqpage = i;
1325 
1326 	tpindex = pindex + 1;
1327 	i++;
1328 
1329 	/*
1330 	 * scan forward for the read ahead pages
1331 	 */
1332 	endpindex = tpindex + rahead;
1333 	if (endpindex > object->size)
1334 		endpindex = object->size;
1335 
1336 	for (; tpindex < endpindex; i++, tpindex++) {
1337 
1338 		if (vm_page_lookup(object, tpindex)) {
1339 			break;
1340 		}
1341 
1342 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1343 		if (rtm == NULL) {
1344 			break;
1345 		}
1346 
1347 		marray[i] = rtm;
1348 	}
1349 
1350 	/* return number of bytes of pages */
1351 	return i;
1352 }
1353