xref: /freebsd/sys/vm/vm_fault.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
101 
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105 
106 static int prefault_pageorder[] = {
107 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112 
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115 
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119 
120 struct faultstate {
121 	vm_page_t m;
122 	vm_object_t object;
123 	vm_pindex_t pindex;
124 	vm_page_t first_m;
125 	vm_object_t	first_object;
126 	vm_pindex_t first_pindex;
127 	vm_map_t map;
128 	vm_map_entry_t entry;
129 	int lookup_still_valid;
130 	struct vnode *vp;
131 };
132 
133 static __inline void
134 release_page(struct faultstate *fs)
135 {
136 	vm_page_lock_queues();
137 	vm_page_wakeup(fs->m);
138 	vm_page_deactivate(fs->m);
139 	vm_page_unlock_queues();
140 	fs->m = NULL;
141 }
142 
143 static __inline void
144 unlock_map(struct faultstate *fs)
145 {
146 	if (fs->lookup_still_valid) {
147 		vm_map_lookup_done(fs->map, fs->entry);
148 		fs->lookup_still_valid = FALSE;
149 	}
150 }
151 
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155 
156 	vm_object_pip_wakeup(fs->object);
157 	VM_OBJECT_UNLOCK(fs->object);
158 	if (fs->object != fs->first_object) {
159 		VM_OBJECT_LOCK(fs->first_object);
160 		vm_page_lock_queues();
161 		vm_page_free(fs->first_m);
162 		vm_page_unlock_queues();
163 		vm_object_pip_wakeup(fs->first_object);
164 		VM_OBJECT_UNLOCK(fs->first_object);
165 		fs->first_m = NULL;
166 	}
167 	vm_object_deallocate(fs->first_object);
168 	unlock_map(fs);
169 	if (fs->vp != NULL) {
170 		int vfslocked;
171 
172 		vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173 		vput(fs->vp);
174 		fs->vp = NULL;
175 		VFS_UNLOCK_GIANT(vfslocked);
176 	}
177 	if (!fs->map->system_map)
178 		VM_UNLOCK_GIANT();
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *	The map in question must be referenced, and remains so.
206  *	Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 	 int fault_flags)
211 {
212 	vm_prot_t prot;
213 	int is_first_object_locked, result;
214 	boolean_t growstack, wired;
215 	int map_generation;
216 	vm_object_t next_object;
217 	vm_page_t marray[VM_FAULT_READ];
218 	int hardfault;
219 	int faultcount;
220 	struct faultstate fs;
221 
222 	hardfault = 0;
223 	growstack = TRUE;
224 	atomic_add_int(&cnt.v_vm_faults, 1);
225 
226 RetryFault:;
227 
228 	/*
229 	 * Find the backing store object and offset into it to begin the
230 	 * search.
231 	 */
232 	fs.map = map;
233 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
234 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
235 	if (result != KERN_SUCCESS) {
236 		if (result != KERN_PROTECTION_FAILURE ||
237 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
238 			if (growstack && result == KERN_INVALID_ADDRESS &&
239 			    map != kernel_map && curproc != NULL) {
240 				result = vm_map_growstack(curproc, vaddr);
241 				if (result != KERN_SUCCESS)
242 					return (KERN_FAILURE);
243 				growstack = FALSE;
244 				goto RetryFault;
245 			}
246 			return (result);
247 		}
248 
249 		/*
250    		 * If we are user-wiring a r/w segment, and it is COW, then
251    		 * we need to do the COW operation.  Note that we don't COW
252    		 * currently RO sections now, because it is NOT desirable
253    		 * to COW .text.  We simply keep .text from ever being COW'ed
254    		 * and take the heat that one cannot debug wired .text sections.
255    		 */
256 		result = vm_map_lookup(&fs.map, vaddr,
257 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
258 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
259 		if (result != KERN_SUCCESS)
260 			return (result);
261 
262 		/*
263 		 * If we don't COW now, on a user wire, the user will never
264 		 * be able to write to the mapping.  If we don't make this
265 		 * restriction, the bookkeeping would be nearly impossible.
266 		 *
267 		 * XXX The following assignment modifies the map without
268 		 * holding a write lock on it.
269 		 */
270 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
271 			fs.entry->max_protection &= ~VM_PROT_WRITE;
272 	}
273 
274 	map_generation = fs.map->timestamp;
275 
276 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
277 		panic("vm_fault: fault on nofault entry, addr: %lx",
278 		    (u_long)vaddr);
279 	}
280 
281 	/*
282 	 * Make a reference to this object to prevent its disposal while we
283 	 * are messing with it.  Once we have the reference, the map is free
284 	 * to be diddled.  Since objects reference their shadows (and copies),
285 	 * they will stay around as well.
286 	 *
287 	 * Bump the paging-in-progress count to prevent size changes (e.g.
288 	 * truncation operations) during I/O.  This must be done after
289 	 * obtaining the vnode lock in order to avoid possible deadlocks.
290 	 *
291 	 * XXX vnode_pager_lock() can block without releasing the map lock.
292 	 */
293 	if (!fs.map->system_map)
294 		mtx_lock(&Giant);
295 	VM_OBJECT_LOCK(fs.first_object);
296 	vm_object_reference_locked(fs.first_object);
297 	fs.vp = vnode_pager_lock(fs.first_object);
298 	KASSERT(fs.vp == NULL || !fs.map->system_map,
299 	    ("vm_fault: vnode-backed object mapped by system map"));
300 	if (debug_mpsafevm && !fs.map->system_map)
301 		mtx_unlock(&Giant);
302 	vm_object_pip_add(fs.first_object, 1);
303 
304 	fs.lookup_still_valid = TRUE;
305 
306 	if (wired)
307 		fault_type = prot;
308 
309 	fs.first_m = NULL;
310 
311 	/*
312 	 * Search for the page at object/offset.
313 	 */
314 	fs.object = fs.first_object;
315 	fs.pindex = fs.first_pindex;
316 	while (TRUE) {
317 		/*
318 		 * If the object is dead, we stop here
319 		 */
320 		if (fs.object->flags & OBJ_DEAD) {
321 			unlock_and_deallocate(&fs);
322 			return (KERN_PROTECTION_FAILURE);
323 		}
324 
325 		/*
326 		 * See if page is resident
327 		 */
328 		fs.m = vm_page_lookup(fs.object, fs.pindex);
329 		if (fs.m != NULL) {
330 			int queue;
331 
332 			/*
333 			 * check for page-based copy on write.
334 			 * We check fs.object == fs.first_object so
335 			 * as to ensure the legacy COW mechanism is
336 			 * used when the page in question is part of
337 			 * a shadow object.  Otherwise, vm_page_cowfault()
338 			 * removes the page from the backing object,
339 			 * which is not what we want.
340 			 */
341 			vm_page_lock_queues();
342 			if ((fs.m->cow) &&
343 			    (fault_type & VM_PROT_WRITE) &&
344 			    (fs.object == fs.first_object)) {
345 				vm_page_cowfault(fs.m);
346 				vm_page_unlock_queues();
347 				unlock_and_deallocate(&fs);
348 				goto RetryFault;
349 			}
350 
351 			/*
352 			 * Wait/Retry if the page is busy.  We have to do this
353 			 * if the page is busy via either PG_BUSY or
354 			 * vm_page_t->busy because the vm_pager may be using
355 			 * vm_page_t->busy for pageouts ( and even pageins if
356 			 * it is the vnode pager ), and we could end up trying
357 			 * to pagein and pageout the same page simultaneously.
358 			 *
359 			 * We can theoretically allow the busy case on a read
360 			 * fault if the page is marked valid, but since such
361 			 * pages are typically already pmap'd, putting that
362 			 * special case in might be more effort then it is
363 			 * worth.  We cannot under any circumstances mess
364 			 * around with a vm_page_t->busy page except, perhaps,
365 			 * to pmap it.
366 			 */
367 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
368 				vm_page_unlock_queues();
369 				VM_OBJECT_UNLOCK(fs.object);
370 				if (fs.object != fs.first_object) {
371 					VM_OBJECT_LOCK(fs.first_object);
372 					vm_page_lock_queues();
373 					vm_page_free(fs.first_m);
374 					vm_page_unlock_queues();
375 					vm_object_pip_wakeup(fs.first_object);
376 					VM_OBJECT_UNLOCK(fs.first_object);
377 					fs.first_m = NULL;
378 				}
379 				unlock_map(&fs);
380 				if (fs.vp != NULL) {
381 					mtx_lock(&Giant);
382 					vput(fs.vp);
383 					mtx_unlock(&Giant);
384 					fs.vp = NULL;
385 				}
386 				VM_OBJECT_LOCK(fs.object);
387 				if (fs.m == vm_page_lookup(fs.object,
388 				    fs.pindex)) {
389 					vm_page_lock_queues();
390 					if (!vm_page_sleep_if_busy(fs.m, TRUE,
391 					    "vmpfw"))
392 						vm_page_unlock_queues();
393 				}
394 				vm_object_pip_wakeup(fs.object);
395 				VM_OBJECT_UNLOCK(fs.object);
396 				atomic_add_int(&cnt.v_intrans, 1);
397 				if (!fs.map->system_map)
398 					VM_UNLOCK_GIANT();
399 				vm_object_deallocate(fs.first_object);
400 				goto RetryFault;
401 			}
402 			queue = fs.m->queue;
403 
404 			vm_pageq_remove_nowakeup(fs.m);
405 
406 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
407 				vm_page_activate(fs.m);
408 				vm_page_unlock_queues();
409 				unlock_and_deallocate(&fs);
410 				VM_WAITPFAULT;
411 				goto RetryFault;
412 			}
413 
414 			/*
415 			 * Mark page busy for other processes, and the
416 			 * pagedaemon.  If it still isn't completely valid
417 			 * (readable), jump to readrest, else break-out ( we
418 			 * found the page ).
419 			 */
420 			vm_page_busy(fs.m);
421 			vm_page_unlock_queues();
422 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
423 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
424 				goto readrest;
425 			}
426 
427 			break;
428 		}
429 
430 		/*
431 		 * Page is not resident, If this is the search termination
432 		 * or the pager might contain the page, allocate a new page.
433 		 */
434 		if (TRYPAGER || fs.object == fs.first_object) {
435 			if (fs.pindex >= fs.object->size) {
436 				unlock_and_deallocate(&fs);
437 				return (KERN_PROTECTION_FAILURE);
438 			}
439 
440 			/*
441 			 * Allocate a new page for this object/offset pair.
442 			 */
443 			fs.m = NULL;
444 			if (!vm_page_count_severe()) {
445 				fs.m = vm_page_alloc(fs.object, fs.pindex,
446 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
447 			}
448 			if (fs.m == NULL) {
449 				unlock_and_deallocate(&fs);
450 				VM_WAITPFAULT;
451 				goto RetryFault;
452 			}
453 		}
454 
455 readrest:
456 		/*
457 		 * We have found a valid page or we have allocated a new page.
458 		 * The page thus may not be valid or may not be entirely
459 		 * valid.
460 		 *
461 		 * Attempt to fault-in the page if there is a chance that the
462 		 * pager has it, and potentially fault in additional pages
463 		 * at the same time.
464 		 */
465 		if (TRYPAGER) {
466 			int rv;
467 			int reqpage;
468 			int ahead, behind;
469 			u_char behavior = vm_map_entry_behavior(fs.entry);
470 
471 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
472 				ahead = 0;
473 				behind = 0;
474 			} else {
475 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
476 				if (behind > VM_FAULT_READ_BEHIND)
477 					behind = VM_FAULT_READ_BEHIND;
478 
479 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
480 				if (ahead > VM_FAULT_READ_AHEAD)
481 					ahead = VM_FAULT_READ_AHEAD;
482 			}
483 			is_first_object_locked = FALSE;
484 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
485 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
486 			      fs.pindex >= fs.entry->lastr &&
487 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
488 			    (fs.first_object == fs.object ||
489 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
490 			    fs.first_object->type != OBJT_DEVICE) {
491 				vm_pindex_t firstpindex, tmppindex;
492 
493 				if (fs.first_pindex < 2 * VM_FAULT_READ)
494 					firstpindex = 0;
495 				else
496 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
497 
498 				vm_page_lock_queues();
499 				/*
500 				 * note: partially valid pages cannot be
501 				 * included in the lookahead - NFS piecemeal
502 				 * writes will barf on it badly.
503 				 */
504 				for (tmppindex = fs.first_pindex - 1;
505 					tmppindex >= firstpindex;
506 					--tmppindex) {
507 					vm_page_t mt;
508 
509 					mt = vm_page_lookup(fs.first_object, tmppindex);
510 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
511 						break;
512 					if (mt->busy ||
513 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
514 						mt->hold_count ||
515 						mt->wire_count)
516 						continue;
517 					pmap_remove_all(mt);
518 					if (mt->dirty) {
519 						vm_page_deactivate(mt);
520 					} else {
521 						vm_page_cache(mt);
522 					}
523 				}
524 				vm_page_unlock_queues();
525 				ahead += behind;
526 				behind = 0;
527 			}
528 			if (is_first_object_locked)
529 				VM_OBJECT_UNLOCK(fs.first_object);
530 			/*
531 			 * now we find out if any other pages should be paged
532 			 * in at this time this routine checks to see if the
533 			 * pages surrounding this fault reside in the same
534 			 * object as the page for this fault.  If they do,
535 			 * then they are faulted in also into the object.  The
536 			 * array "marray" returned contains an array of
537 			 * vm_page_t structs where one of them is the
538 			 * vm_page_t passed to the routine.  The reqpage
539 			 * return value is the index into the marray for the
540 			 * vm_page_t passed to the routine.
541 			 *
542 			 * fs.m plus the additional pages are PG_BUSY'd.
543 			 *
544 			 * XXX vm_fault_additional_pages() can block
545 			 * without releasing the map lock.
546 			 */
547 			faultcount = vm_fault_additional_pages(
548 			    fs.m, behind, ahead, marray, &reqpage);
549 
550 			/*
551 			 * update lastr imperfectly (we do not know how much
552 			 * getpages will actually read), but good enough.
553 			 *
554 			 * XXX The following assignment modifies the map
555 			 * without holding a write lock on it.
556 			 */
557 			fs.entry->lastr = fs.pindex + faultcount - behind;
558 
559 			/*
560 			 * Call the pager to retrieve the data, if any, after
561 			 * releasing the lock on the map.  We hold a ref on
562 			 * fs.object and the pages are PG_BUSY'd.
563 			 */
564 			unlock_map(&fs);
565 
566 			rv = faultcount ?
567 			    vm_pager_get_pages(fs.object, marray, faultcount,
568 				reqpage) : VM_PAGER_FAIL;
569 
570 			if (rv == VM_PAGER_OK) {
571 				/*
572 				 * Found the page. Leave it busy while we play
573 				 * with it.
574 				 */
575 
576 				/*
577 				 * Relookup in case pager changed page. Pager
578 				 * is responsible for disposition of old page
579 				 * if moved.
580 				 */
581 				fs.m = vm_page_lookup(fs.object, fs.pindex);
582 				if (!fs.m) {
583 					unlock_and_deallocate(&fs);
584 					goto RetryFault;
585 				}
586 
587 				hardfault++;
588 				break; /* break to PAGE HAS BEEN FOUND */
589 			}
590 			/*
591 			 * Remove the bogus page (which does not exist at this
592 			 * object/offset); before doing so, we must get back
593 			 * our object lock to preserve our invariant.
594 			 *
595 			 * Also wake up any other process that may want to bring
596 			 * in this page.
597 			 *
598 			 * If this is the top-level object, we must leave the
599 			 * busy page to prevent another process from rushing
600 			 * past us, and inserting the page in that object at
601 			 * the same time that we are.
602 			 */
603 			if (rv == VM_PAGER_ERROR)
604 				printf("vm_fault: pager read error, pid %d (%s)\n",
605 				    curproc->p_pid, curproc->p_comm);
606 			/*
607 			 * Data outside the range of the pager or an I/O error
608 			 */
609 			/*
610 			 * XXX - the check for kernel_map is a kludge to work
611 			 * around having the machine panic on a kernel space
612 			 * fault w/ I/O error.
613 			 */
614 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
615 				(rv == VM_PAGER_BAD)) {
616 				vm_page_lock_queues();
617 				vm_page_free(fs.m);
618 				vm_page_unlock_queues();
619 				fs.m = NULL;
620 				unlock_and_deallocate(&fs);
621 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
622 			}
623 			if (fs.object != fs.first_object) {
624 				vm_page_lock_queues();
625 				vm_page_free(fs.m);
626 				vm_page_unlock_queues();
627 				fs.m = NULL;
628 				/*
629 				 * XXX - we cannot just fall out at this
630 				 * point, m has been freed and is invalid!
631 				 */
632 			}
633 		}
634 
635 		/*
636 		 * We get here if the object has default pager (or unwiring)
637 		 * or the pager doesn't have the page.
638 		 */
639 		if (fs.object == fs.first_object)
640 			fs.first_m = fs.m;
641 
642 		/*
643 		 * Move on to the next object.  Lock the next object before
644 		 * unlocking the current one.
645 		 */
646 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
647 		next_object = fs.object->backing_object;
648 		if (next_object == NULL) {
649 			/*
650 			 * If there's no object left, fill the page in the top
651 			 * object with zeros.
652 			 */
653 			if (fs.object != fs.first_object) {
654 				vm_object_pip_wakeup(fs.object);
655 				VM_OBJECT_UNLOCK(fs.object);
656 
657 				fs.object = fs.first_object;
658 				fs.pindex = fs.first_pindex;
659 				fs.m = fs.first_m;
660 				VM_OBJECT_LOCK(fs.object);
661 			}
662 			fs.first_m = NULL;
663 
664 			/*
665 			 * Zero the page if necessary and mark it valid.
666 			 */
667 			if ((fs.m->flags & PG_ZERO) == 0) {
668 				pmap_zero_page(fs.m);
669 			} else {
670 				atomic_add_int(&cnt.v_ozfod, 1);
671 			}
672 			atomic_add_int(&cnt.v_zfod, 1);
673 			fs.m->valid = VM_PAGE_BITS_ALL;
674 			break;	/* break to PAGE HAS BEEN FOUND */
675 		} else {
676 			KASSERT(fs.object != next_object,
677 			    ("object loop %p", next_object));
678 			VM_OBJECT_LOCK(next_object);
679 			vm_object_pip_add(next_object, 1);
680 			if (fs.object != fs.first_object)
681 				vm_object_pip_wakeup(fs.object);
682 			VM_OBJECT_UNLOCK(fs.object);
683 			fs.object = next_object;
684 		}
685 	}
686 
687 	KASSERT((fs.m->flags & PG_BUSY) != 0,
688 	    ("vm_fault: not busy after main loop"));
689 
690 	/*
691 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
692 	 * is held.]
693 	 */
694 
695 	/*
696 	 * If the page is being written, but isn't already owned by the
697 	 * top-level object, we have to copy it into a new page owned by the
698 	 * top-level object.
699 	 */
700 	if (fs.object != fs.first_object) {
701 		/*
702 		 * We only really need to copy if we want to write it.
703 		 */
704 		if (fault_type & VM_PROT_WRITE) {
705 			/*
706 			 * This allows pages to be virtually copied from a
707 			 * backing_object into the first_object, where the
708 			 * backing object has no other refs to it, and cannot
709 			 * gain any more refs.  Instead of a bcopy, we just
710 			 * move the page from the backing object to the
711 			 * first object.  Note that we must mark the page
712 			 * dirty in the first object so that it will go out
713 			 * to swap when needed.
714 			 */
715 			is_first_object_locked = FALSE;
716 			if (
717 				/*
718 				 * Only one shadow object
719 				 */
720 				(fs.object->shadow_count == 1) &&
721 				/*
722 				 * No COW refs, except us
723 				 */
724 				(fs.object->ref_count == 1) &&
725 				/*
726 				 * No one else can look this object up
727 				 */
728 				(fs.object->handle == NULL) &&
729 				/*
730 				 * No other ways to look the object up
731 				 */
732 				((fs.object->type == OBJT_DEFAULT) ||
733 				 (fs.object->type == OBJT_SWAP)) &&
734 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
735 				/*
736 				 * We don't chase down the shadow chain
737 				 */
738 			    fs.object == fs.first_object->backing_object) {
739 				vm_page_lock_queues();
740 				/*
741 				 * get rid of the unnecessary page
742 				 */
743 				pmap_remove_all(fs.first_m);
744 				vm_page_free(fs.first_m);
745 				/*
746 				 * grab the page and put it into the
747 				 * process'es object.  The page is
748 				 * automatically made dirty.
749 				 */
750 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
751 				vm_page_busy(fs.m);
752 				vm_page_unlock_queues();
753 				fs.first_m = fs.m;
754 				fs.m = NULL;
755 				atomic_add_int(&cnt.v_cow_optim, 1);
756 			} else {
757 				/*
758 				 * Oh, well, lets copy it.
759 				 */
760 				pmap_copy_page(fs.m, fs.first_m);
761 				fs.first_m->valid = VM_PAGE_BITS_ALL;
762 			}
763 			if (fs.m) {
764 				/*
765 				 * We no longer need the old page or object.
766 				 */
767 				release_page(&fs);
768 			}
769 			/*
770 			 * fs.object != fs.first_object due to above
771 			 * conditional
772 			 */
773 			vm_object_pip_wakeup(fs.object);
774 			VM_OBJECT_UNLOCK(fs.object);
775 			/*
776 			 * Only use the new page below...
777 			 */
778 			fs.object = fs.first_object;
779 			fs.pindex = fs.first_pindex;
780 			fs.m = fs.first_m;
781 			if (!is_first_object_locked)
782 				VM_OBJECT_LOCK(fs.object);
783 			atomic_add_int(&cnt.v_cow_faults, 1);
784 		} else {
785 			prot &= ~VM_PROT_WRITE;
786 		}
787 	}
788 
789 	/*
790 	 * We must verify that the maps have not changed since our last
791 	 * lookup.
792 	 */
793 	if (!fs.lookup_still_valid) {
794 		vm_object_t retry_object;
795 		vm_pindex_t retry_pindex;
796 		vm_prot_t retry_prot;
797 
798 		if (!vm_map_trylock_read(fs.map)) {
799 			release_page(&fs);
800 			unlock_and_deallocate(&fs);
801 			goto RetryFault;
802 		}
803 		fs.lookup_still_valid = TRUE;
804 		if (fs.map->timestamp != map_generation) {
805 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
806 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
807 
808 			/*
809 			 * If we don't need the page any longer, put it on the active
810 			 * list (the easiest thing to do here).  If no one needs it,
811 			 * pageout will grab it eventually.
812 			 */
813 			if (result != KERN_SUCCESS) {
814 				release_page(&fs);
815 				unlock_and_deallocate(&fs);
816 
817 				/*
818 				 * If retry of map lookup would have blocked then
819 				 * retry fault from start.
820 				 */
821 				if (result == KERN_FAILURE)
822 					goto RetryFault;
823 				return (result);
824 			}
825 			if ((retry_object != fs.first_object) ||
826 			    (retry_pindex != fs.first_pindex)) {
827 				release_page(&fs);
828 				unlock_and_deallocate(&fs);
829 				goto RetryFault;
830 			}
831 
832 			/*
833 			 * Check whether the protection has changed or the object has
834 			 * been copied while we left the map unlocked. Changing from
835 			 * read to write permission is OK - we leave the page
836 			 * write-protected, and catch the write fault. Changing from
837 			 * write to read permission means that we can't mark the page
838 			 * write-enabled after all.
839 			 */
840 			prot &= retry_prot;
841 		}
842 	}
843 	if (prot & VM_PROT_WRITE) {
844 		vm_page_lock_queues();
845 		vm_page_flag_set(fs.m, PG_WRITEABLE);
846 		vm_object_set_writeable_dirty(fs.m->object);
847 
848 		/*
849 		 * If the fault is a write, we know that this page is being
850 		 * written NOW so dirty it explicitly to save on
851 		 * pmap_is_modified() calls later.
852 		 *
853 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
854 		 * if the page is already dirty to prevent data written with
855 		 * the expectation of being synced from not being synced.
856 		 * Likewise if this entry does not request NOSYNC then make
857 		 * sure the page isn't marked NOSYNC.  Applications sharing
858 		 * data should use the same flags to avoid ping ponging.
859 		 *
860 		 * Also tell the backing pager, if any, that it should remove
861 		 * any swap backing since the page is now dirty.
862 		 */
863 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
864 			if (fs.m->dirty == 0)
865 				vm_page_flag_set(fs.m, PG_NOSYNC);
866 		} else {
867 			vm_page_flag_clear(fs.m, PG_NOSYNC);
868 		}
869 		vm_page_unlock_queues();
870 		if (fault_flags & VM_FAULT_DIRTY) {
871 			vm_page_dirty(fs.m);
872 			vm_pager_page_unswapped(fs.m);
873 		}
874 	}
875 
876 	/*
877 	 * Page had better still be busy
878 	 */
879 	KASSERT(fs.m->flags & PG_BUSY,
880 		("vm_fault: page %p not busy!", fs.m));
881 	/*
882 	 * Sanity check: page must be completely valid or it is not fit to
883 	 * map into user space.  vm_pager_get_pages() ensures this.
884 	 */
885 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
886 		vm_page_zero_invalid(fs.m, TRUE);
887 		printf("Warning: page %p partially invalid on fault\n", fs.m);
888 	}
889 	VM_OBJECT_UNLOCK(fs.object);
890 
891 	/*
892 	 * Put this page into the physical map.  We had to do the unlock above
893 	 * because pmap_enter() may sleep.  We don't put the page
894 	 * back on the active queue until later so that the pageout daemon
895 	 * won't find it (yet).
896 	 */
897 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
898 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
899 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
900 	}
901 	VM_OBJECT_LOCK(fs.object);
902 	vm_page_lock_queues();
903 	vm_page_flag_set(fs.m, PG_REFERENCED);
904 
905 	/*
906 	 * If the page is not wired down, then put it where the pageout daemon
907 	 * can find it.
908 	 */
909 	if (fault_flags & VM_FAULT_WIRE_MASK) {
910 		if (wired)
911 			vm_page_wire(fs.m);
912 		else
913 			vm_page_unwire(fs.m, 1);
914 	} else {
915 		vm_page_activate(fs.m);
916 	}
917 	vm_page_wakeup(fs.m);
918 	vm_page_unlock_queues();
919 
920 	/*
921 	 * Unlock everything, and return
922 	 */
923 	unlock_and_deallocate(&fs);
924 	PROC_LOCK(curproc);
925 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
926 		if (hardfault) {
927 			curproc->p_stats->p_ru.ru_majflt++;
928 		} else {
929 			curproc->p_stats->p_ru.ru_minflt++;
930 		}
931 	}
932 	PROC_UNLOCK(curproc);
933 
934 	return (KERN_SUCCESS);
935 }
936 
937 /*
938  * vm_fault_prefault provides a quick way of clustering
939  * pagefaults into a processes address space.  It is a "cousin"
940  * of vm_map_pmap_enter, except it runs at page fault time instead
941  * of mmap time.
942  */
943 static void
944 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
945 {
946 	int i;
947 	vm_offset_t addr, starta;
948 	vm_pindex_t pindex;
949 	vm_page_t m, mpte;
950 	vm_object_t object;
951 
952 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
953 		return;
954 
955 	object = entry->object.vm_object;
956 
957 	starta = addra - PFBAK * PAGE_SIZE;
958 	if (starta < entry->start) {
959 		starta = entry->start;
960 	} else if (starta > addra) {
961 		starta = 0;
962 	}
963 
964 	mpte = NULL;
965 	for (i = 0; i < PAGEORDER_SIZE; i++) {
966 		vm_object_t backing_object, lobject;
967 
968 		addr = addra + prefault_pageorder[i];
969 		if (addr > addra + (PFFOR * PAGE_SIZE))
970 			addr = 0;
971 
972 		if (addr < starta || addr >= entry->end)
973 			continue;
974 
975 		if (!pmap_is_prefaultable(pmap, addr))
976 			continue;
977 
978 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
979 		lobject = object;
980 		VM_OBJECT_LOCK(lobject);
981 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
982 		    lobject->type == OBJT_DEFAULT &&
983 		    (backing_object = lobject->backing_object) != NULL) {
984 			if (lobject->backing_object_offset & PAGE_MASK)
985 				break;
986 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
987 			VM_OBJECT_LOCK(backing_object);
988 			VM_OBJECT_UNLOCK(lobject);
989 			lobject = backing_object;
990 		}
991 		/*
992 		 * give-up when a page is not in memory
993 		 */
994 		if (m == NULL) {
995 			VM_OBJECT_UNLOCK(lobject);
996 			break;
997 		}
998 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
999 			(m->busy == 0) &&
1000 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1001 
1002 			vm_page_lock_queues();
1003 			if ((m->queue - m->pc) == PQ_CACHE)
1004 				vm_page_deactivate(m);
1005 			mpte = pmap_enter_quick(pmap, addr, m, mpte);
1006 			vm_page_unlock_queues();
1007 		}
1008 		VM_OBJECT_UNLOCK(lobject);
1009 	}
1010 }
1011 
1012 /*
1013  *	vm_fault_quick:
1014  *
1015  *	Ensure that the requested virtual address, which may be in userland,
1016  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1017  */
1018 int
1019 vm_fault_quick(caddr_t v, int prot)
1020 {
1021 	int r;
1022 
1023 	if (prot & VM_PROT_WRITE)
1024 		r = subyte(v, fubyte(v));
1025 	else
1026 		r = fubyte(v);
1027 	return(r);
1028 }
1029 
1030 /*
1031  *	vm_fault_wire:
1032  *
1033  *	Wire down a range of virtual addresses in a map.
1034  */
1035 int
1036 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1037     boolean_t user_wire, boolean_t fictitious)
1038 {
1039 	vm_offset_t va;
1040 	int rv;
1041 
1042 	/*
1043 	 * We simulate a fault to get the page and enter it in the physical
1044 	 * map.  For user wiring, we only ask for read access on currently
1045 	 * read-only sections.
1046 	 */
1047 	for (va = start; va < end; va += PAGE_SIZE) {
1048 		rv = vm_fault(map, va,
1049 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1050 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1051 		if (rv) {
1052 			if (va != start)
1053 				vm_fault_unwire(map, start, va, fictitious);
1054 			return (rv);
1055 		}
1056 	}
1057 	return (KERN_SUCCESS);
1058 }
1059 
1060 /*
1061  *	vm_fault_unwire:
1062  *
1063  *	Unwire a range of virtual addresses in a map.
1064  */
1065 void
1066 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1067     boolean_t fictitious)
1068 {
1069 	vm_paddr_t pa;
1070 	vm_offset_t va;
1071 	pmap_t pmap;
1072 
1073 	pmap = vm_map_pmap(map);
1074 
1075 	/*
1076 	 * Since the pages are wired down, we must be able to get their
1077 	 * mappings from the physical map system.
1078 	 */
1079 	for (va = start; va < end; va += PAGE_SIZE) {
1080 		pa = pmap_extract(pmap, va);
1081 		if (pa != 0) {
1082 			pmap_change_wiring(pmap, va, FALSE);
1083 			if (!fictitious) {
1084 				vm_page_lock_queues();
1085 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1086 				vm_page_unlock_queues();
1087 			}
1088 		}
1089 	}
1090 }
1091 
1092 /*
1093  *	Routine:
1094  *		vm_fault_copy_entry
1095  *	Function:
1096  *		Copy all of the pages from a wired-down map entry to another.
1097  *
1098  *	In/out conditions:
1099  *		The source and destination maps must be locked for write.
1100  *		The source map entry must be wired down (or be a sharing map
1101  *		entry corresponding to a main map entry that is wired down).
1102  */
1103 void
1104 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1105 	vm_map_t dst_map;
1106 	vm_map_t src_map;
1107 	vm_map_entry_t dst_entry;
1108 	vm_map_entry_t src_entry;
1109 {
1110 	vm_object_t backing_object, dst_object, object;
1111 	vm_object_t src_object;
1112 	vm_ooffset_t dst_offset;
1113 	vm_ooffset_t src_offset;
1114 	vm_pindex_t pindex;
1115 	vm_prot_t prot;
1116 	vm_offset_t vaddr;
1117 	vm_page_t dst_m;
1118 	vm_page_t src_m;
1119 
1120 #ifdef	lint
1121 	src_map++;
1122 #endif	/* lint */
1123 
1124 	src_object = src_entry->object.vm_object;
1125 	src_offset = src_entry->offset;
1126 
1127 	/*
1128 	 * Create the top-level object for the destination entry. (Doesn't
1129 	 * actually shadow anything - we copy the pages directly.)
1130 	 */
1131 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1132 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1133 
1134 	VM_OBJECT_LOCK(dst_object);
1135 	dst_entry->object.vm_object = dst_object;
1136 	dst_entry->offset = 0;
1137 
1138 	prot = dst_entry->max_protection;
1139 
1140 	/*
1141 	 * Loop through all of the pages in the entry's range, copying each
1142 	 * one from the source object (it should be there) to the destination
1143 	 * object.
1144 	 */
1145 	for (vaddr = dst_entry->start, dst_offset = 0;
1146 	    vaddr < dst_entry->end;
1147 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1148 
1149 		/*
1150 		 * Allocate a page in the destination object
1151 		 */
1152 		do {
1153 			dst_m = vm_page_alloc(dst_object,
1154 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1155 			if (dst_m == NULL) {
1156 				VM_OBJECT_UNLOCK(dst_object);
1157 				VM_WAIT;
1158 				VM_OBJECT_LOCK(dst_object);
1159 			}
1160 		} while (dst_m == NULL);
1161 
1162 		/*
1163 		 * Find the page in the source object, and copy it in.
1164 		 * (Because the source is wired down, the page will be in
1165 		 * memory.)
1166 		 */
1167 		VM_OBJECT_LOCK(src_object);
1168 		object = src_object;
1169 		pindex = 0;
1170 		while ((src_m = vm_page_lookup(object, pindex +
1171 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1172 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1173 		    (backing_object = object->backing_object) != NULL) {
1174 			/*
1175 			 * Allow fallback to backing objects if we are reading.
1176 			 */
1177 			VM_OBJECT_LOCK(backing_object);
1178 			pindex += OFF_TO_IDX(object->backing_object_offset);
1179 			VM_OBJECT_UNLOCK(object);
1180 			object = backing_object;
1181 		}
1182 		if (src_m == NULL)
1183 			panic("vm_fault_copy_wired: page missing");
1184 		pmap_copy_page(src_m, dst_m);
1185 		VM_OBJECT_UNLOCK(object);
1186 		dst_m->valid = VM_PAGE_BITS_ALL;
1187 		VM_OBJECT_UNLOCK(dst_object);
1188 
1189 		/*
1190 		 * Enter it in the pmap...
1191 		 */
1192 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1193 		VM_OBJECT_LOCK(dst_object);
1194 		vm_page_lock_queues();
1195 		if ((prot & VM_PROT_WRITE) != 0)
1196 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1197 
1198 		/*
1199 		 * Mark it no longer busy, and put it on the active list.
1200 		 */
1201 		vm_page_activate(dst_m);
1202 		vm_page_wakeup(dst_m);
1203 		vm_page_unlock_queues();
1204 	}
1205 	VM_OBJECT_UNLOCK(dst_object);
1206 }
1207 
1208 
1209 /*
1210  * This routine checks around the requested page for other pages that
1211  * might be able to be faulted in.  This routine brackets the viable
1212  * pages for the pages to be paged in.
1213  *
1214  * Inputs:
1215  *	m, rbehind, rahead
1216  *
1217  * Outputs:
1218  *  marray (array of vm_page_t), reqpage (index of requested page)
1219  *
1220  * Return value:
1221  *  number of pages in marray
1222  *
1223  * This routine can't block.
1224  */
1225 static int
1226 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1227 	vm_page_t m;
1228 	int rbehind;
1229 	int rahead;
1230 	vm_page_t *marray;
1231 	int *reqpage;
1232 {
1233 	int i,j;
1234 	vm_object_t object;
1235 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1236 	vm_page_t rtm;
1237 	int cbehind, cahead;
1238 
1239 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1240 
1241 	object = m->object;
1242 	pindex = m->pindex;
1243 
1244 	/*
1245 	 * we don't fault-ahead for device pager
1246 	 */
1247 	if (object->type == OBJT_DEVICE) {
1248 		*reqpage = 0;
1249 		marray[0] = m;
1250 		return 1;
1251 	}
1252 
1253 	/*
1254 	 * if the requested page is not available, then give up now
1255 	 */
1256 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1257 		return 0;
1258 	}
1259 
1260 	if ((cbehind == 0) && (cahead == 0)) {
1261 		*reqpage = 0;
1262 		marray[0] = m;
1263 		return 1;
1264 	}
1265 
1266 	if (rahead > cahead) {
1267 		rahead = cahead;
1268 	}
1269 
1270 	if (rbehind > cbehind) {
1271 		rbehind = cbehind;
1272 	}
1273 
1274 	/*
1275 	 * try to do any readahead that we might have free pages for.
1276 	 */
1277 	if ((rahead + rbehind) >
1278 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1279 		pagedaemon_wakeup();
1280 		marray[0] = m;
1281 		*reqpage = 0;
1282 		return 1;
1283 	}
1284 
1285 	/*
1286 	 * scan backward for the read behind pages -- in memory
1287 	 */
1288 	if (pindex > 0) {
1289 		if (rbehind > pindex) {
1290 			rbehind = pindex;
1291 			startpindex = 0;
1292 		} else {
1293 			startpindex = pindex - rbehind;
1294 		}
1295 
1296 		for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1297 			if (vm_page_lookup(object, tpindex)) {
1298 				startpindex = tpindex + 1;
1299 				break;
1300 			}
1301 			if (tpindex == 0)
1302 				break;
1303 		}
1304 
1305 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1306 
1307 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1308 			if (rtm == NULL) {
1309 				vm_page_lock_queues();
1310 				for (j = 0; j < i; j++) {
1311 					vm_page_free(marray[j]);
1312 				}
1313 				vm_page_unlock_queues();
1314 				marray[0] = m;
1315 				*reqpage = 0;
1316 				return 1;
1317 			}
1318 
1319 			marray[i] = rtm;
1320 		}
1321 	} else {
1322 		startpindex = 0;
1323 		i = 0;
1324 	}
1325 
1326 	marray[i] = m;
1327 	/* page offset of the required page */
1328 	*reqpage = i;
1329 
1330 	tpindex = pindex + 1;
1331 	i++;
1332 
1333 	/*
1334 	 * scan forward for the read ahead pages
1335 	 */
1336 	endpindex = tpindex + rahead;
1337 	if (endpindex > object->size)
1338 		endpindex = object->size;
1339 
1340 	for (; tpindex < endpindex; i++, tpindex++) {
1341 
1342 		if (vm_page_lookup(object, tpindex)) {
1343 			break;
1344 		}
1345 
1346 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1347 		if (rtm == NULL) {
1348 			break;
1349 		}
1350 
1351 		marray[i] = rtm;
1352 	}
1353 
1354 	/* return number of bytes of pages */
1355 	return i;
1356 }
1357