1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/proc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/sysctl.h> 88 #include <sys/vmmeter.h> 89 #include <sys/vnode.h> 90 #ifdef KTRACE 91 #include <sys/ktrace.h> 92 #endif 93 94 #include <vm/vm.h> 95 #include <vm/vm_param.h> 96 #include <vm/pmap.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_kern.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_extern.h> 104 105 #define PFBAK 4 106 #define PFFOR 4 107 #define PAGEORDER_SIZE (PFBAK+PFFOR) 108 109 static int prefault_pageorder[] = { 110 -1 * PAGE_SIZE, 1 * PAGE_SIZE, 111 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 112 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 113 -4 * PAGE_SIZE, 4 * PAGE_SIZE 114 }; 115 116 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 117 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t); 118 119 #define VM_FAULT_READ_BEHIND 8 120 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 121 #define VM_FAULT_NINCR (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND) 122 #define VM_FAULT_SUM (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2) 123 #define VM_FAULT_CACHE_BEHIND (VM_FAULT_READ_BEHIND * VM_FAULT_SUM) 124 125 struct faultstate { 126 vm_page_t m; 127 vm_object_t object; 128 vm_pindex_t pindex; 129 vm_page_t first_m; 130 vm_object_t first_object; 131 vm_pindex_t first_pindex; 132 vm_map_t map; 133 vm_map_entry_t entry; 134 int lookup_still_valid; 135 struct vnode *vp; 136 }; 137 138 static void vm_fault_cache_behind(const struct faultstate *fs, int distance); 139 140 static inline void 141 release_page(struct faultstate *fs) 142 { 143 144 vm_page_wakeup(fs->m); 145 vm_page_lock(fs->m); 146 vm_page_deactivate(fs->m); 147 vm_page_unlock(fs->m); 148 fs->m = NULL; 149 } 150 151 static inline void 152 unlock_map(struct faultstate *fs) 153 { 154 155 if (fs->lookup_still_valid) { 156 vm_map_lookup_done(fs->map, fs->entry); 157 fs->lookup_still_valid = FALSE; 158 } 159 } 160 161 static void 162 unlock_and_deallocate(struct faultstate *fs) 163 { 164 165 vm_object_pip_wakeup(fs->object); 166 VM_OBJECT_WUNLOCK(fs->object); 167 if (fs->object != fs->first_object) { 168 VM_OBJECT_WLOCK(fs->first_object); 169 vm_page_lock(fs->first_m); 170 vm_page_free(fs->first_m); 171 vm_page_unlock(fs->first_m); 172 vm_object_pip_wakeup(fs->first_object); 173 VM_OBJECT_WUNLOCK(fs->first_object); 174 fs->first_m = NULL; 175 } 176 vm_object_deallocate(fs->first_object); 177 unlock_map(fs); 178 if (fs->vp != NULL) { 179 vput(fs->vp); 180 fs->vp = NULL; 181 } 182 } 183 184 /* 185 * TRYPAGER - used by vm_fault to calculate whether the pager for the 186 * current object *might* contain the page. 187 * 188 * default objects are zero-fill, there is no real pager. 189 */ 190 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 191 ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired)) 192 193 /* 194 * vm_fault: 195 * 196 * Handle a page fault occurring at the given address, 197 * requiring the given permissions, in the map specified. 198 * If successful, the page is inserted into the 199 * associated physical map. 200 * 201 * NOTE: the given address should be truncated to the 202 * proper page address. 203 * 204 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 205 * a standard error specifying why the fault is fatal is returned. 206 * 207 * The map in question must be referenced, and remains so. 208 * Caller may hold no locks. 209 */ 210 int 211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 212 int fault_flags) 213 { 214 struct thread *td; 215 int result; 216 217 td = curthread; 218 if ((td->td_pflags & TDP_NOFAULTING) != 0) 219 return (KERN_PROTECTION_FAILURE); 220 #ifdef KTRACE 221 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 222 ktrfault(vaddr, fault_type); 223 #endif 224 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 225 NULL); 226 #ifdef KTRACE 227 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 228 ktrfaultend(result); 229 #endif 230 return (result); 231 } 232 233 int 234 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 235 int fault_flags, vm_page_t *m_hold) 236 { 237 vm_prot_t prot; 238 long ahead, behind; 239 int alloc_req, era, faultcount, nera, reqpage, result; 240 boolean_t growstack, is_first_object_locked, wired; 241 int map_generation; 242 vm_object_t next_object; 243 vm_page_t marray[VM_FAULT_READ_MAX]; 244 int hardfault; 245 struct faultstate fs; 246 struct vnode *vp; 247 int locked, error; 248 249 hardfault = 0; 250 growstack = TRUE; 251 PCPU_INC(cnt.v_vm_faults); 252 fs.vp = NULL; 253 faultcount = reqpage = 0; 254 255 RetryFault:; 256 257 /* 258 * Find the backing store object and offset into it to begin the 259 * search. 260 */ 261 fs.map = map; 262 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 263 &fs.first_object, &fs.first_pindex, &prot, &wired); 264 if (result != KERN_SUCCESS) { 265 if (growstack && result == KERN_INVALID_ADDRESS && 266 map != kernel_map) { 267 result = vm_map_growstack(curproc, vaddr); 268 if (result != KERN_SUCCESS) 269 return (KERN_FAILURE); 270 growstack = FALSE; 271 goto RetryFault; 272 } 273 return (result); 274 } 275 276 map_generation = fs.map->timestamp; 277 278 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 279 panic("vm_fault: fault on nofault entry, addr: %lx", 280 (u_long)vaddr); 281 } 282 283 /* 284 * Make a reference to this object to prevent its disposal while we 285 * are messing with it. Once we have the reference, the map is free 286 * to be diddled. Since objects reference their shadows (and copies), 287 * they will stay around as well. 288 * 289 * Bump the paging-in-progress count to prevent size changes (e.g. 290 * truncation operations) during I/O. This must be done after 291 * obtaining the vnode lock in order to avoid possible deadlocks. 292 */ 293 VM_OBJECT_WLOCK(fs.first_object); 294 vm_object_reference_locked(fs.first_object); 295 vm_object_pip_add(fs.first_object, 1); 296 297 fs.lookup_still_valid = TRUE; 298 299 if (wired) 300 fault_type = prot | (fault_type & VM_PROT_COPY); 301 302 fs.first_m = NULL; 303 304 /* 305 * Search for the page at object/offset. 306 */ 307 fs.object = fs.first_object; 308 fs.pindex = fs.first_pindex; 309 while (TRUE) { 310 /* 311 * If the object is dead, we stop here 312 */ 313 if (fs.object->flags & OBJ_DEAD) { 314 unlock_and_deallocate(&fs); 315 return (KERN_PROTECTION_FAILURE); 316 } 317 318 /* 319 * See if page is resident 320 */ 321 fs.m = vm_page_lookup(fs.object, fs.pindex); 322 if (fs.m != NULL) { 323 /* 324 * check for page-based copy on write. 325 * We check fs.object == fs.first_object so 326 * as to ensure the legacy COW mechanism is 327 * used when the page in question is part of 328 * a shadow object. Otherwise, vm_page_cowfault() 329 * removes the page from the backing object, 330 * which is not what we want. 331 */ 332 vm_page_lock(fs.m); 333 if ((fs.m->cow) && 334 (fault_type & VM_PROT_WRITE) && 335 (fs.object == fs.first_object)) { 336 vm_page_cowfault(fs.m); 337 unlock_and_deallocate(&fs); 338 goto RetryFault; 339 } 340 341 /* 342 * Wait/Retry if the page is busy. We have to do this 343 * if the page is busy via either VPO_BUSY or 344 * vm_page_t->busy because the vm_pager may be using 345 * vm_page_t->busy for pageouts ( and even pageins if 346 * it is the vnode pager ), and we could end up trying 347 * to pagein and pageout the same page simultaneously. 348 * 349 * We can theoretically allow the busy case on a read 350 * fault if the page is marked valid, but since such 351 * pages are typically already pmap'd, putting that 352 * special case in might be more effort then it is 353 * worth. We cannot under any circumstances mess 354 * around with a vm_page_t->busy page except, perhaps, 355 * to pmap it. 356 */ 357 if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) { 358 /* 359 * Reference the page before unlocking and 360 * sleeping so that the page daemon is less 361 * likely to reclaim it. 362 */ 363 vm_page_aflag_set(fs.m, PGA_REFERENCED); 364 vm_page_unlock(fs.m); 365 if (fs.object != fs.first_object) { 366 if (!VM_OBJECT_TRYWLOCK( 367 fs.first_object)) { 368 VM_OBJECT_WUNLOCK(fs.object); 369 VM_OBJECT_WLOCK(fs.first_object); 370 VM_OBJECT_WLOCK(fs.object); 371 } 372 vm_page_lock(fs.first_m); 373 vm_page_free(fs.first_m); 374 vm_page_unlock(fs.first_m); 375 vm_object_pip_wakeup(fs.first_object); 376 VM_OBJECT_WUNLOCK(fs.first_object); 377 fs.first_m = NULL; 378 } 379 unlock_map(&fs); 380 if (fs.m == vm_page_lookup(fs.object, 381 fs.pindex)) { 382 vm_page_sleep_if_busy(fs.m, TRUE, 383 "vmpfw"); 384 } 385 vm_object_pip_wakeup(fs.object); 386 VM_OBJECT_WUNLOCK(fs.object); 387 PCPU_INC(cnt.v_intrans); 388 vm_object_deallocate(fs.first_object); 389 goto RetryFault; 390 } 391 vm_page_remque(fs.m); 392 vm_page_unlock(fs.m); 393 394 /* 395 * Mark page busy for other processes, and the 396 * pagedaemon. If it still isn't completely valid 397 * (readable), jump to readrest, else break-out ( we 398 * found the page ). 399 */ 400 vm_page_busy(fs.m); 401 if (fs.m->valid != VM_PAGE_BITS_ALL) 402 goto readrest; 403 break; 404 } 405 406 /* 407 * Page is not resident, If this is the search termination 408 * or the pager might contain the page, allocate a new page. 409 */ 410 if (TRYPAGER || fs.object == fs.first_object) { 411 if (fs.pindex >= fs.object->size) { 412 unlock_and_deallocate(&fs); 413 return (KERN_PROTECTION_FAILURE); 414 } 415 416 /* 417 * Allocate a new page for this object/offset pair. 418 * 419 * Unlocked read of the p_flag is harmless. At 420 * worst, the P_KILLED might be not observed 421 * there, and allocation can fail, causing 422 * restart and new reading of the p_flag. 423 */ 424 fs.m = NULL; 425 if (!vm_page_count_severe() || P_KILLED(curproc)) { 426 #if VM_NRESERVLEVEL > 0 427 if ((fs.object->flags & OBJ_COLORED) == 0) { 428 fs.object->flags |= OBJ_COLORED; 429 fs.object->pg_color = atop(vaddr) - 430 fs.pindex; 431 } 432 #endif 433 alloc_req = P_KILLED(curproc) ? 434 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 435 if (fs.object->type != OBJT_VNODE && 436 fs.object->backing_object == NULL) 437 alloc_req |= VM_ALLOC_ZERO; 438 fs.m = vm_page_alloc(fs.object, fs.pindex, 439 alloc_req); 440 } 441 if (fs.m == NULL) { 442 unlock_and_deallocate(&fs); 443 VM_WAITPFAULT; 444 goto RetryFault; 445 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 446 break; 447 } 448 449 readrest: 450 /* 451 * We have found a valid page or we have allocated a new page. 452 * The page thus may not be valid or may not be entirely 453 * valid. 454 * 455 * Attempt to fault-in the page if there is a chance that the 456 * pager has it, and potentially fault in additional pages 457 * at the same time. 458 */ 459 if (TRYPAGER) { 460 int rv; 461 u_char behavior = vm_map_entry_behavior(fs.entry); 462 463 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 464 P_KILLED(curproc)) { 465 behind = 0; 466 ahead = 0; 467 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 468 behind = 0; 469 ahead = atop(fs.entry->end - vaddr) - 1; 470 if (ahead > VM_FAULT_READ_AHEAD_MAX) 471 ahead = VM_FAULT_READ_AHEAD_MAX; 472 if (fs.pindex == fs.entry->next_read) 473 vm_fault_cache_behind(&fs, 474 VM_FAULT_READ_MAX); 475 } else { 476 /* 477 * If this is a sequential page fault, then 478 * arithmetically increase the number of pages 479 * in the read-ahead window. Otherwise, reset 480 * the read-ahead window to its smallest size. 481 */ 482 behind = atop(vaddr - fs.entry->start); 483 if (behind > VM_FAULT_READ_BEHIND) 484 behind = VM_FAULT_READ_BEHIND; 485 ahead = atop(fs.entry->end - vaddr) - 1; 486 era = fs.entry->read_ahead; 487 if (fs.pindex == fs.entry->next_read) { 488 nera = era + behind; 489 if (nera > VM_FAULT_READ_AHEAD_MAX) 490 nera = VM_FAULT_READ_AHEAD_MAX; 491 behind = 0; 492 if (ahead > nera) 493 ahead = nera; 494 if (era == VM_FAULT_READ_AHEAD_MAX) 495 vm_fault_cache_behind(&fs, 496 VM_FAULT_CACHE_BEHIND); 497 } else if (ahead > VM_FAULT_READ_AHEAD_MIN) 498 ahead = VM_FAULT_READ_AHEAD_MIN; 499 if (era != ahead) 500 fs.entry->read_ahead = ahead; 501 } 502 503 /* 504 * Call the pager to retrieve the data, if any, after 505 * releasing the lock on the map. We hold a ref on 506 * fs.object and the pages are VPO_BUSY'd. 507 */ 508 unlock_map(&fs); 509 510 if (fs.object->type == OBJT_VNODE) { 511 vp = fs.object->handle; 512 if (vp == fs.vp) 513 goto vnode_locked; 514 else if (fs.vp != NULL) { 515 vput(fs.vp); 516 fs.vp = NULL; 517 } 518 locked = VOP_ISLOCKED(vp); 519 520 if (locked != LK_EXCLUSIVE) 521 locked = LK_SHARED; 522 /* Do not sleep for vnode lock while fs.m is busy */ 523 error = vget(vp, locked | LK_CANRECURSE | 524 LK_NOWAIT, curthread); 525 if (error != 0) { 526 vhold(vp); 527 release_page(&fs); 528 unlock_and_deallocate(&fs); 529 error = vget(vp, locked | LK_RETRY | 530 LK_CANRECURSE, curthread); 531 vdrop(vp); 532 fs.vp = vp; 533 KASSERT(error == 0, 534 ("vm_fault: vget failed")); 535 goto RetryFault; 536 } 537 fs.vp = vp; 538 } 539 vnode_locked: 540 KASSERT(fs.vp == NULL || !fs.map->system_map, 541 ("vm_fault: vnode-backed object mapped by system map")); 542 543 /* 544 * now we find out if any other pages should be paged 545 * in at this time this routine checks to see if the 546 * pages surrounding this fault reside in the same 547 * object as the page for this fault. If they do, 548 * then they are faulted in also into the object. The 549 * array "marray" returned contains an array of 550 * vm_page_t structs where one of them is the 551 * vm_page_t passed to the routine. The reqpage 552 * return value is the index into the marray for the 553 * vm_page_t passed to the routine. 554 * 555 * fs.m plus the additional pages are VPO_BUSY'd. 556 */ 557 faultcount = vm_fault_additional_pages( 558 fs.m, behind, ahead, marray, &reqpage); 559 560 rv = faultcount ? 561 vm_pager_get_pages(fs.object, marray, faultcount, 562 reqpage) : VM_PAGER_FAIL; 563 564 if (rv == VM_PAGER_OK) { 565 /* 566 * Found the page. Leave it busy while we play 567 * with it. 568 */ 569 570 /* 571 * Relookup in case pager changed page. Pager 572 * is responsible for disposition of old page 573 * if moved. 574 */ 575 fs.m = vm_page_lookup(fs.object, fs.pindex); 576 if (!fs.m) { 577 unlock_and_deallocate(&fs); 578 goto RetryFault; 579 } 580 581 hardfault++; 582 break; /* break to PAGE HAS BEEN FOUND */ 583 } 584 /* 585 * Remove the bogus page (which does not exist at this 586 * object/offset); before doing so, we must get back 587 * our object lock to preserve our invariant. 588 * 589 * Also wake up any other process that may want to bring 590 * in this page. 591 * 592 * If this is the top-level object, we must leave the 593 * busy page to prevent another process from rushing 594 * past us, and inserting the page in that object at 595 * the same time that we are. 596 */ 597 if (rv == VM_PAGER_ERROR) 598 printf("vm_fault: pager read error, pid %d (%s)\n", 599 curproc->p_pid, curproc->p_comm); 600 /* 601 * Data outside the range of the pager or an I/O error 602 */ 603 /* 604 * XXX - the check for kernel_map is a kludge to work 605 * around having the machine panic on a kernel space 606 * fault w/ I/O error. 607 */ 608 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 609 (rv == VM_PAGER_BAD)) { 610 vm_page_lock(fs.m); 611 vm_page_free(fs.m); 612 vm_page_unlock(fs.m); 613 fs.m = NULL; 614 unlock_and_deallocate(&fs); 615 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 616 } 617 if (fs.object != fs.first_object) { 618 vm_page_lock(fs.m); 619 vm_page_free(fs.m); 620 vm_page_unlock(fs.m); 621 fs.m = NULL; 622 /* 623 * XXX - we cannot just fall out at this 624 * point, m has been freed and is invalid! 625 */ 626 } 627 } 628 629 /* 630 * We get here if the object has default pager (or unwiring) 631 * or the pager doesn't have the page. 632 */ 633 if (fs.object == fs.first_object) 634 fs.first_m = fs.m; 635 636 /* 637 * Move on to the next object. Lock the next object before 638 * unlocking the current one. 639 */ 640 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 641 next_object = fs.object->backing_object; 642 if (next_object == NULL) { 643 /* 644 * If there's no object left, fill the page in the top 645 * object with zeros. 646 */ 647 if (fs.object != fs.first_object) { 648 vm_object_pip_wakeup(fs.object); 649 VM_OBJECT_WUNLOCK(fs.object); 650 651 fs.object = fs.first_object; 652 fs.pindex = fs.first_pindex; 653 fs.m = fs.first_m; 654 VM_OBJECT_WLOCK(fs.object); 655 } 656 fs.first_m = NULL; 657 658 /* 659 * Zero the page if necessary and mark it valid. 660 */ 661 if ((fs.m->flags & PG_ZERO) == 0) { 662 pmap_zero_page(fs.m); 663 } else { 664 PCPU_INC(cnt.v_ozfod); 665 } 666 PCPU_INC(cnt.v_zfod); 667 fs.m->valid = VM_PAGE_BITS_ALL; 668 break; /* break to PAGE HAS BEEN FOUND */ 669 } else { 670 KASSERT(fs.object != next_object, 671 ("object loop %p", next_object)); 672 VM_OBJECT_WLOCK(next_object); 673 vm_object_pip_add(next_object, 1); 674 if (fs.object != fs.first_object) 675 vm_object_pip_wakeup(fs.object); 676 VM_OBJECT_WUNLOCK(fs.object); 677 fs.object = next_object; 678 } 679 } 680 681 KASSERT((fs.m->oflags & VPO_BUSY) != 0, 682 ("vm_fault: not busy after main loop")); 683 684 /* 685 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 686 * is held.] 687 */ 688 689 /* 690 * If the page is being written, but isn't already owned by the 691 * top-level object, we have to copy it into a new page owned by the 692 * top-level object. 693 */ 694 if (fs.object != fs.first_object) { 695 /* 696 * We only really need to copy if we want to write it. 697 */ 698 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 699 /* 700 * This allows pages to be virtually copied from a 701 * backing_object into the first_object, where the 702 * backing object has no other refs to it, and cannot 703 * gain any more refs. Instead of a bcopy, we just 704 * move the page from the backing object to the 705 * first object. Note that we must mark the page 706 * dirty in the first object so that it will go out 707 * to swap when needed. 708 */ 709 is_first_object_locked = FALSE; 710 if ( 711 /* 712 * Only one shadow object 713 */ 714 (fs.object->shadow_count == 1) && 715 /* 716 * No COW refs, except us 717 */ 718 (fs.object->ref_count == 1) && 719 /* 720 * No one else can look this object up 721 */ 722 (fs.object->handle == NULL) && 723 /* 724 * No other ways to look the object up 725 */ 726 ((fs.object->type == OBJT_DEFAULT) || 727 (fs.object->type == OBJT_SWAP)) && 728 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 729 /* 730 * We don't chase down the shadow chain 731 */ 732 fs.object == fs.first_object->backing_object) { 733 /* 734 * get rid of the unnecessary page 735 */ 736 vm_page_lock(fs.first_m); 737 vm_page_free(fs.first_m); 738 vm_page_unlock(fs.first_m); 739 /* 740 * grab the page and put it into the 741 * process'es object. The page is 742 * automatically made dirty. 743 */ 744 vm_page_lock(fs.m); 745 vm_page_rename(fs.m, fs.first_object, fs.first_pindex); 746 vm_page_unlock(fs.m); 747 vm_page_busy(fs.m); 748 fs.first_m = fs.m; 749 fs.m = NULL; 750 PCPU_INC(cnt.v_cow_optim); 751 } else { 752 /* 753 * Oh, well, lets copy it. 754 */ 755 pmap_copy_page(fs.m, fs.first_m); 756 fs.first_m->valid = VM_PAGE_BITS_ALL; 757 if (wired && (fault_flags & 758 VM_FAULT_CHANGE_WIRING) == 0) { 759 vm_page_lock(fs.first_m); 760 vm_page_wire(fs.first_m); 761 vm_page_unlock(fs.first_m); 762 763 vm_page_lock(fs.m); 764 vm_page_unwire(fs.m, FALSE); 765 vm_page_unlock(fs.m); 766 } 767 /* 768 * We no longer need the old page or object. 769 */ 770 release_page(&fs); 771 } 772 /* 773 * fs.object != fs.first_object due to above 774 * conditional 775 */ 776 vm_object_pip_wakeup(fs.object); 777 VM_OBJECT_WUNLOCK(fs.object); 778 /* 779 * Only use the new page below... 780 */ 781 fs.object = fs.first_object; 782 fs.pindex = fs.first_pindex; 783 fs.m = fs.first_m; 784 if (!is_first_object_locked) 785 VM_OBJECT_WLOCK(fs.object); 786 PCPU_INC(cnt.v_cow_faults); 787 curthread->td_cow++; 788 } else { 789 prot &= ~VM_PROT_WRITE; 790 } 791 } 792 793 /* 794 * We must verify that the maps have not changed since our last 795 * lookup. 796 */ 797 if (!fs.lookup_still_valid) { 798 vm_object_t retry_object; 799 vm_pindex_t retry_pindex; 800 vm_prot_t retry_prot; 801 802 if (!vm_map_trylock_read(fs.map)) { 803 release_page(&fs); 804 unlock_and_deallocate(&fs); 805 goto RetryFault; 806 } 807 fs.lookup_still_valid = TRUE; 808 if (fs.map->timestamp != map_generation) { 809 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 810 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 811 812 /* 813 * If we don't need the page any longer, put it on the inactive 814 * list (the easiest thing to do here). If no one needs it, 815 * pageout will grab it eventually. 816 */ 817 if (result != KERN_SUCCESS) { 818 release_page(&fs); 819 unlock_and_deallocate(&fs); 820 821 /* 822 * If retry of map lookup would have blocked then 823 * retry fault from start. 824 */ 825 if (result == KERN_FAILURE) 826 goto RetryFault; 827 return (result); 828 } 829 if ((retry_object != fs.first_object) || 830 (retry_pindex != fs.first_pindex)) { 831 release_page(&fs); 832 unlock_and_deallocate(&fs); 833 goto RetryFault; 834 } 835 836 /* 837 * Check whether the protection has changed or the object has 838 * been copied while we left the map unlocked. Changing from 839 * read to write permission is OK - we leave the page 840 * write-protected, and catch the write fault. Changing from 841 * write to read permission means that we can't mark the page 842 * write-enabled after all. 843 */ 844 prot &= retry_prot; 845 } 846 } 847 /* 848 * If the page was filled by a pager, update the map entry's 849 * last read offset. Since the pager does not return the 850 * actual set of pages that it read, this update is based on 851 * the requested set. Typically, the requested and actual 852 * sets are the same. 853 * 854 * XXX The following assignment modifies the map 855 * without holding a write lock on it. 856 */ 857 if (hardfault) 858 fs.entry->next_read = fs.pindex + faultcount - reqpage; 859 860 if ((prot & VM_PROT_WRITE) != 0 || 861 (fault_flags & VM_FAULT_DIRTY) != 0) { 862 vm_object_set_writeable_dirty(fs.object); 863 864 /* 865 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 866 * if the page is already dirty to prevent data written with 867 * the expectation of being synced from not being synced. 868 * Likewise if this entry does not request NOSYNC then make 869 * sure the page isn't marked NOSYNC. Applications sharing 870 * data should use the same flags to avoid ping ponging. 871 */ 872 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) { 873 if (fs.m->dirty == 0) 874 fs.m->oflags |= VPO_NOSYNC; 875 } else { 876 fs.m->oflags &= ~VPO_NOSYNC; 877 } 878 879 /* 880 * If the fault is a write, we know that this page is being 881 * written NOW so dirty it explicitly to save on 882 * pmap_is_modified() calls later. 883 * 884 * Also tell the backing pager, if any, that it should remove 885 * any swap backing since the page is now dirty. 886 */ 887 if (((fault_type & VM_PROT_WRITE) != 0 && 888 (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) || 889 (fault_flags & VM_FAULT_DIRTY) != 0) { 890 vm_page_dirty(fs.m); 891 vm_pager_page_unswapped(fs.m); 892 } 893 } 894 895 /* 896 * Page had better still be busy 897 */ 898 KASSERT(fs.m->oflags & VPO_BUSY, 899 ("vm_fault: page %p not busy!", fs.m)); 900 /* 901 * Page must be completely valid or it is not fit to 902 * map into user space. vm_pager_get_pages() ensures this. 903 */ 904 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 905 ("vm_fault: page %p partially invalid", fs.m)); 906 VM_OBJECT_WUNLOCK(fs.object); 907 908 /* 909 * Put this page into the physical map. We had to do the unlock above 910 * because pmap_enter() may sleep. We don't put the page 911 * back on the active queue until later so that the pageout daemon 912 * won't find it (yet). 913 */ 914 pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired); 915 if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0) 916 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry); 917 VM_OBJECT_WLOCK(fs.object); 918 vm_page_lock(fs.m); 919 920 /* 921 * If the page is not wired down, then put it where the pageout daemon 922 * can find it. 923 */ 924 if (fault_flags & VM_FAULT_CHANGE_WIRING) { 925 if (wired) 926 vm_page_wire(fs.m); 927 else 928 vm_page_unwire(fs.m, 1); 929 } else 930 vm_page_activate(fs.m); 931 if (m_hold != NULL) { 932 *m_hold = fs.m; 933 vm_page_hold(fs.m); 934 } 935 vm_page_unlock(fs.m); 936 vm_page_wakeup(fs.m); 937 938 /* 939 * Unlock everything, and return 940 */ 941 unlock_and_deallocate(&fs); 942 if (hardfault) { 943 PCPU_INC(cnt.v_io_faults); 944 curthread->td_ru.ru_majflt++; 945 } else 946 curthread->td_ru.ru_minflt++; 947 948 return (KERN_SUCCESS); 949 } 950 951 /* 952 * Speed up the reclamation of up to "distance" pages that precede the 953 * faulting pindex within the first object of the shadow chain. 954 */ 955 static void 956 vm_fault_cache_behind(const struct faultstate *fs, int distance) 957 { 958 vm_object_t first_object, object; 959 vm_page_t m, m_prev; 960 vm_pindex_t pindex; 961 962 object = fs->object; 963 VM_OBJECT_ASSERT_WLOCKED(object); 964 first_object = fs->first_object; 965 if (first_object != object) { 966 if (!VM_OBJECT_TRYWLOCK(first_object)) { 967 VM_OBJECT_WUNLOCK(object); 968 VM_OBJECT_WLOCK(first_object); 969 VM_OBJECT_WLOCK(object); 970 } 971 } 972 /* Neither fictitious nor unmanaged pages can be cached. */ 973 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 974 if (fs->first_pindex < distance) 975 pindex = 0; 976 else 977 pindex = fs->first_pindex - distance; 978 if (pindex < OFF_TO_IDX(fs->entry->offset)) 979 pindex = OFF_TO_IDX(fs->entry->offset); 980 m = first_object != object ? fs->first_m : fs->m; 981 KASSERT((m->oflags & VPO_BUSY) != 0, 982 ("vm_fault_cache_behind: page %p is not busy", m)); 983 m_prev = vm_page_prev(m); 984 while ((m = m_prev) != NULL && m->pindex >= pindex && 985 m->valid == VM_PAGE_BITS_ALL) { 986 m_prev = vm_page_prev(m); 987 if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) 988 continue; 989 vm_page_lock(m); 990 if (m->hold_count == 0 && m->wire_count == 0) { 991 pmap_remove_all(m); 992 vm_page_aflag_clear(m, PGA_REFERENCED); 993 if (m->dirty != 0) 994 vm_page_deactivate(m); 995 else 996 vm_page_cache(m); 997 } 998 vm_page_unlock(m); 999 } 1000 } 1001 if (first_object != object) 1002 VM_OBJECT_WUNLOCK(first_object); 1003 } 1004 1005 /* 1006 * vm_fault_prefault provides a quick way of clustering 1007 * pagefaults into a processes address space. It is a "cousin" 1008 * of vm_map_pmap_enter, except it runs at page fault time instead 1009 * of mmap time. 1010 */ 1011 static void 1012 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry) 1013 { 1014 int i; 1015 vm_offset_t addr, starta; 1016 vm_pindex_t pindex; 1017 vm_page_t m; 1018 vm_object_t object; 1019 1020 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1021 return; 1022 1023 object = entry->object.vm_object; 1024 1025 starta = addra - PFBAK * PAGE_SIZE; 1026 if (starta < entry->start) { 1027 starta = entry->start; 1028 } else if (starta > addra) { 1029 starta = 0; 1030 } 1031 1032 for (i = 0; i < PAGEORDER_SIZE; i++) { 1033 vm_object_t backing_object, lobject; 1034 1035 addr = addra + prefault_pageorder[i]; 1036 if (addr > addra + (PFFOR * PAGE_SIZE)) 1037 addr = 0; 1038 1039 if (addr < starta || addr >= entry->end) 1040 continue; 1041 1042 if (!pmap_is_prefaultable(pmap, addr)) 1043 continue; 1044 1045 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1046 lobject = object; 1047 VM_OBJECT_RLOCK(lobject); 1048 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1049 lobject->type == OBJT_DEFAULT && 1050 (backing_object = lobject->backing_object) != NULL) { 1051 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1052 0, ("vm_fault_prefault: unaligned object offset")); 1053 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1054 VM_OBJECT_RLOCK(backing_object); 1055 VM_OBJECT_RUNLOCK(lobject); 1056 lobject = backing_object; 1057 } 1058 /* 1059 * give-up when a page is not in memory 1060 */ 1061 if (m == NULL) { 1062 VM_OBJECT_RUNLOCK(lobject); 1063 break; 1064 } 1065 if (m->valid == VM_PAGE_BITS_ALL && 1066 (m->flags & PG_FICTITIOUS) == 0) 1067 pmap_enter_quick(pmap, addr, m, entry->protection); 1068 VM_OBJECT_RUNLOCK(lobject); 1069 } 1070 } 1071 1072 /* 1073 * Hold each of the physical pages that are mapped by the specified range of 1074 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1075 * and allow the specified types of access, "prot". If all of the implied 1076 * pages are successfully held, then the number of held pages is returned 1077 * together with pointers to those pages in the array "ma". However, if any 1078 * of the pages cannot be held, -1 is returned. 1079 */ 1080 int 1081 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1082 vm_prot_t prot, vm_page_t *ma, int max_count) 1083 { 1084 vm_offset_t end, va; 1085 vm_page_t *mp; 1086 int count; 1087 boolean_t pmap_failed; 1088 1089 if (len == 0) 1090 return (0); 1091 end = round_page(addr + len); 1092 addr = trunc_page(addr); 1093 1094 /* 1095 * Check for illegal addresses. 1096 */ 1097 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1098 return (-1); 1099 1100 count = howmany(end - addr, PAGE_SIZE); 1101 if (count > max_count) 1102 panic("vm_fault_quick_hold_pages: count > max_count"); 1103 1104 /* 1105 * Most likely, the physical pages are resident in the pmap, so it is 1106 * faster to try pmap_extract_and_hold() first. 1107 */ 1108 pmap_failed = FALSE; 1109 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1110 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1111 if (*mp == NULL) 1112 pmap_failed = TRUE; 1113 else if ((prot & VM_PROT_WRITE) != 0 && 1114 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1115 /* 1116 * Explicitly dirty the physical page. Otherwise, the 1117 * caller's changes may go unnoticed because they are 1118 * performed through an unmanaged mapping or by a DMA 1119 * operation. 1120 * 1121 * The object lock is not held here. 1122 * See vm_page_clear_dirty_mask(). 1123 */ 1124 vm_page_dirty(*mp); 1125 } 1126 } 1127 if (pmap_failed) { 1128 /* 1129 * One or more pages could not be held by the pmap. Either no 1130 * page was mapped at the specified virtual address or that 1131 * mapping had insufficient permissions. Attempt to fault in 1132 * and hold these pages. 1133 */ 1134 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1135 if (*mp == NULL && vm_fault_hold(map, va, prot, 1136 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1137 goto error; 1138 } 1139 return (count); 1140 error: 1141 for (mp = ma; mp < ma + count; mp++) 1142 if (*mp != NULL) { 1143 vm_page_lock(*mp); 1144 vm_page_unhold(*mp); 1145 vm_page_unlock(*mp); 1146 } 1147 return (-1); 1148 } 1149 1150 /* 1151 * vm_fault_wire: 1152 * 1153 * Wire down a range of virtual addresses in a map. 1154 */ 1155 int 1156 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1157 boolean_t fictitious) 1158 { 1159 vm_offset_t va; 1160 int rv; 1161 1162 /* 1163 * We simulate a fault to get the page and enter it in the physical 1164 * map. For user wiring, we only ask for read access on currently 1165 * read-only sections. 1166 */ 1167 for (va = start; va < end; va += PAGE_SIZE) { 1168 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING); 1169 if (rv) { 1170 if (va != start) 1171 vm_fault_unwire(map, start, va, fictitious); 1172 return (rv); 1173 } 1174 } 1175 return (KERN_SUCCESS); 1176 } 1177 1178 /* 1179 * vm_fault_unwire: 1180 * 1181 * Unwire a range of virtual addresses in a map. 1182 */ 1183 void 1184 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1185 boolean_t fictitious) 1186 { 1187 vm_paddr_t pa; 1188 vm_offset_t va; 1189 vm_page_t m; 1190 pmap_t pmap; 1191 1192 pmap = vm_map_pmap(map); 1193 1194 /* 1195 * Since the pages are wired down, we must be able to get their 1196 * mappings from the physical map system. 1197 */ 1198 for (va = start; va < end; va += PAGE_SIZE) { 1199 pa = pmap_extract(pmap, va); 1200 if (pa != 0) { 1201 pmap_change_wiring(pmap, va, FALSE); 1202 if (!fictitious) { 1203 m = PHYS_TO_VM_PAGE(pa); 1204 vm_page_lock(m); 1205 vm_page_unwire(m, TRUE); 1206 vm_page_unlock(m); 1207 } 1208 } 1209 } 1210 } 1211 1212 /* 1213 * Routine: 1214 * vm_fault_copy_entry 1215 * Function: 1216 * Create new shadow object backing dst_entry with private copy of 1217 * all underlying pages. When src_entry is equal to dst_entry, 1218 * function implements COW for wired-down map entry. Otherwise, 1219 * it forks wired entry into dst_map. 1220 * 1221 * In/out conditions: 1222 * The source and destination maps must be locked for write. 1223 * The source map entry must be wired down (or be a sharing map 1224 * entry corresponding to a main map entry that is wired down). 1225 */ 1226 void 1227 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1228 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1229 vm_ooffset_t *fork_charge) 1230 { 1231 vm_object_t backing_object, dst_object, object, src_object; 1232 vm_pindex_t dst_pindex, pindex, src_pindex; 1233 vm_prot_t access, prot; 1234 vm_offset_t vaddr; 1235 vm_page_t dst_m; 1236 vm_page_t src_m; 1237 boolean_t src_readonly, upgrade; 1238 1239 #ifdef lint 1240 src_map++; 1241 #endif /* lint */ 1242 1243 upgrade = src_entry == dst_entry; 1244 1245 src_object = src_entry->object.vm_object; 1246 src_pindex = OFF_TO_IDX(src_entry->offset); 1247 src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0; 1248 1249 /* 1250 * Create the top-level object for the destination entry. (Doesn't 1251 * actually shadow anything - we copy the pages directly.) 1252 */ 1253 dst_object = vm_object_allocate(OBJT_DEFAULT, 1254 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1255 #if VM_NRESERVLEVEL > 0 1256 dst_object->flags |= OBJ_COLORED; 1257 dst_object->pg_color = atop(dst_entry->start); 1258 #endif 1259 1260 VM_OBJECT_WLOCK(dst_object); 1261 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1262 ("vm_fault_copy_entry: vm_object not NULL")); 1263 dst_entry->object.vm_object = dst_object; 1264 dst_entry->offset = 0; 1265 dst_object->charge = dst_entry->end - dst_entry->start; 1266 if (fork_charge != NULL) { 1267 KASSERT(dst_entry->cred == NULL, 1268 ("vm_fault_copy_entry: leaked swp charge")); 1269 dst_object->cred = curthread->td_ucred; 1270 crhold(dst_object->cred); 1271 *fork_charge += dst_object->charge; 1272 } else { 1273 dst_object->cred = dst_entry->cred; 1274 dst_entry->cred = NULL; 1275 } 1276 access = prot = dst_entry->protection; 1277 /* 1278 * If not an upgrade, then enter the mappings in the pmap as 1279 * read and/or execute accesses. Otherwise, enter them as 1280 * write accesses. 1281 * 1282 * A writeable large page mapping is only created if all of 1283 * the constituent small page mappings are modified. Marking 1284 * PTEs as modified on inception allows promotion to happen 1285 * without taking potentially large number of soft faults. 1286 */ 1287 if (!upgrade) 1288 access &= ~VM_PROT_WRITE; 1289 1290 /* 1291 * Loop through all of the virtual pages within the entry's 1292 * range, copying each page from the source object to the 1293 * destination object. Since the source is wired, those pages 1294 * must exist. In contrast, the destination is pageable. 1295 * Since the destination object does share any backing storage 1296 * with the source object, all of its pages must be dirtied, 1297 * regardless of whether they can be written. 1298 */ 1299 for (vaddr = dst_entry->start, dst_pindex = 0; 1300 vaddr < dst_entry->end; 1301 vaddr += PAGE_SIZE, dst_pindex++) { 1302 1303 /* 1304 * Allocate a page in the destination object. 1305 */ 1306 do { 1307 dst_m = vm_page_alloc(dst_object, dst_pindex, 1308 VM_ALLOC_NORMAL); 1309 if (dst_m == NULL) { 1310 VM_OBJECT_WUNLOCK(dst_object); 1311 VM_WAIT; 1312 VM_OBJECT_WLOCK(dst_object); 1313 } 1314 } while (dst_m == NULL); 1315 1316 /* 1317 * Find the page in the source object, and copy it in. 1318 * (Because the source is wired down, the page will be in 1319 * memory.) 1320 */ 1321 VM_OBJECT_RLOCK(src_object); 1322 object = src_object; 1323 pindex = src_pindex + dst_pindex; 1324 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1325 src_readonly && 1326 (backing_object = object->backing_object) != NULL) { 1327 /* 1328 * Allow fallback to backing objects if we are reading. 1329 */ 1330 VM_OBJECT_RLOCK(backing_object); 1331 pindex += OFF_TO_IDX(object->backing_object_offset); 1332 VM_OBJECT_RUNLOCK(object); 1333 object = backing_object; 1334 } 1335 if (src_m == NULL) 1336 panic("vm_fault_copy_wired: page missing"); 1337 pmap_copy_page(src_m, dst_m); 1338 VM_OBJECT_RUNLOCK(object); 1339 dst_m->valid = VM_PAGE_BITS_ALL; 1340 dst_m->dirty = VM_PAGE_BITS_ALL; 1341 VM_OBJECT_WUNLOCK(dst_object); 1342 1343 /* 1344 * Enter it in the pmap. If a wired, copy-on-write 1345 * mapping is being replaced by a write-enabled 1346 * mapping, then wire that new mapping. 1347 */ 1348 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade); 1349 1350 /* 1351 * Mark it no longer busy, and put it on the active list. 1352 */ 1353 VM_OBJECT_WLOCK(dst_object); 1354 1355 if (upgrade) { 1356 vm_page_lock(src_m); 1357 vm_page_unwire(src_m, 0); 1358 vm_page_unlock(src_m); 1359 1360 vm_page_lock(dst_m); 1361 vm_page_wire(dst_m); 1362 vm_page_unlock(dst_m); 1363 } else { 1364 vm_page_lock(dst_m); 1365 vm_page_activate(dst_m); 1366 vm_page_unlock(dst_m); 1367 } 1368 vm_page_wakeup(dst_m); 1369 } 1370 VM_OBJECT_WUNLOCK(dst_object); 1371 if (upgrade) { 1372 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1373 vm_object_deallocate(src_object); 1374 } 1375 } 1376 1377 1378 /* 1379 * This routine checks around the requested page for other pages that 1380 * might be able to be faulted in. This routine brackets the viable 1381 * pages for the pages to be paged in. 1382 * 1383 * Inputs: 1384 * m, rbehind, rahead 1385 * 1386 * Outputs: 1387 * marray (array of vm_page_t), reqpage (index of requested page) 1388 * 1389 * Return value: 1390 * number of pages in marray 1391 */ 1392 static int 1393 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1394 vm_page_t m; 1395 int rbehind; 1396 int rahead; 1397 vm_page_t *marray; 1398 int *reqpage; 1399 { 1400 int i,j; 1401 vm_object_t object; 1402 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1403 vm_page_t rtm; 1404 int cbehind, cahead; 1405 1406 VM_OBJECT_ASSERT_WLOCKED(m->object); 1407 1408 object = m->object; 1409 pindex = m->pindex; 1410 cbehind = cahead = 0; 1411 1412 /* 1413 * if the requested page is not available, then give up now 1414 */ 1415 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1416 return 0; 1417 } 1418 1419 if ((cbehind == 0) && (cahead == 0)) { 1420 *reqpage = 0; 1421 marray[0] = m; 1422 return 1; 1423 } 1424 1425 if (rahead > cahead) { 1426 rahead = cahead; 1427 } 1428 1429 if (rbehind > cbehind) { 1430 rbehind = cbehind; 1431 } 1432 1433 /* 1434 * scan backward for the read behind pages -- in memory 1435 */ 1436 if (pindex > 0) { 1437 if (rbehind > pindex) { 1438 rbehind = pindex; 1439 startpindex = 0; 1440 } else { 1441 startpindex = pindex - rbehind; 1442 } 1443 1444 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL && 1445 rtm->pindex >= startpindex) 1446 startpindex = rtm->pindex + 1; 1447 1448 /* tpindex is unsigned; beware of numeric underflow. */ 1449 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex && 1450 tpindex < pindex; i++, tpindex--) { 1451 1452 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1453 VM_ALLOC_IFNOTCACHED); 1454 if (rtm == NULL) { 1455 /* 1456 * Shift the allocated pages to the 1457 * beginning of the array. 1458 */ 1459 for (j = 0; j < i; j++) { 1460 marray[j] = marray[j + tpindex + 1 - 1461 startpindex]; 1462 } 1463 break; 1464 } 1465 1466 marray[tpindex - startpindex] = rtm; 1467 } 1468 } else { 1469 startpindex = 0; 1470 i = 0; 1471 } 1472 1473 marray[i] = m; 1474 /* page offset of the required page */ 1475 *reqpage = i; 1476 1477 tpindex = pindex + 1; 1478 i++; 1479 1480 /* 1481 * scan forward for the read ahead pages 1482 */ 1483 endpindex = tpindex + rahead; 1484 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex) 1485 endpindex = rtm->pindex; 1486 if (endpindex > object->size) 1487 endpindex = object->size; 1488 1489 for (; tpindex < endpindex; i++, tpindex++) { 1490 1491 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1492 VM_ALLOC_IFNOTCACHED); 1493 if (rtm == NULL) { 1494 break; 1495 } 1496 1497 marray[i] = rtm; 1498 } 1499 1500 /* return number of pages */ 1501 return i; 1502 } 1503 1504 /* 1505 * Block entry into the machine-independent layer's page fault handler by 1506 * the calling thread. Subsequent calls to vm_fault() by that thread will 1507 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1508 * spurious page faults. 1509 */ 1510 int 1511 vm_fault_disable_pagefaults(void) 1512 { 1513 1514 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1515 } 1516 1517 void 1518 vm_fault_enable_pagefaults(int save) 1519 { 1520 1521 curthread_pflags_restore(save); 1522 } 1523