1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/proc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/sysctl.h> 88 #include <sys/vmmeter.h> 89 #include <sys/vnode.h> 90 #ifdef KTRACE 91 #include <sys/ktrace.h> 92 #endif 93 94 #include <vm/vm.h> 95 #include <vm/vm_param.h> 96 #include <vm/pmap.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_kern.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_extern.h> 104 105 #define PFBAK 4 106 #define PFFOR 4 107 108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 109 110 #define VM_FAULT_READ_BEHIND 8 111 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 112 #define VM_FAULT_NINCR (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND) 113 #define VM_FAULT_SUM (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2) 114 #define VM_FAULT_CACHE_BEHIND (VM_FAULT_READ_BEHIND * VM_FAULT_SUM) 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 int lookup_still_valid; 126 struct vnode *vp; 127 }; 128 129 static void vm_fault_cache_behind(const struct faultstate *fs, int distance); 130 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 131 int faultcount, int reqpage); 132 133 static inline void 134 release_page(struct faultstate *fs) 135 { 136 137 vm_page_xunbusy(fs->m); 138 vm_page_lock(fs->m); 139 vm_page_deactivate(fs->m); 140 vm_page_unlock(fs->m); 141 fs->m = NULL; 142 } 143 144 static inline void 145 unlock_map(struct faultstate *fs) 146 { 147 148 if (fs->lookup_still_valid) { 149 vm_map_lookup_done(fs->map, fs->entry); 150 fs->lookup_still_valid = FALSE; 151 } 152 } 153 154 static void 155 unlock_and_deallocate(struct faultstate *fs) 156 { 157 158 vm_object_pip_wakeup(fs->object); 159 VM_OBJECT_WUNLOCK(fs->object); 160 if (fs->object != fs->first_object) { 161 VM_OBJECT_WLOCK(fs->first_object); 162 vm_page_lock(fs->first_m); 163 vm_page_free(fs->first_m); 164 vm_page_unlock(fs->first_m); 165 vm_object_pip_wakeup(fs->first_object); 166 VM_OBJECT_WUNLOCK(fs->first_object); 167 fs->first_m = NULL; 168 } 169 vm_object_deallocate(fs->first_object); 170 unlock_map(fs); 171 if (fs->vp != NULL) { 172 vput(fs->vp); 173 fs->vp = NULL; 174 } 175 } 176 177 /* 178 * TRYPAGER - used by vm_fault to calculate whether the pager for the 179 * current object *might* contain the page. 180 * 181 * default objects are zero-fill, there is no real pager. 182 */ 183 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 184 ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired)) 185 186 /* 187 * vm_fault: 188 * 189 * Handle a page fault occurring at the given address, 190 * requiring the given permissions, in the map specified. 191 * If successful, the page is inserted into the 192 * associated physical map. 193 * 194 * NOTE: the given address should be truncated to the 195 * proper page address. 196 * 197 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 198 * a standard error specifying why the fault is fatal is returned. 199 * 200 * The map in question must be referenced, and remains so. 201 * Caller may hold no locks. 202 */ 203 int 204 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 205 int fault_flags) 206 { 207 struct thread *td; 208 int result; 209 210 td = curthread; 211 if ((td->td_pflags & TDP_NOFAULTING) != 0) 212 return (KERN_PROTECTION_FAILURE); 213 #ifdef KTRACE 214 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 215 ktrfault(vaddr, fault_type); 216 #endif 217 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 218 NULL); 219 #ifdef KTRACE 220 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 221 ktrfaultend(result); 222 #endif 223 return (result); 224 } 225 226 int 227 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 228 int fault_flags, vm_page_t *m_hold) 229 { 230 vm_prot_t prot; 231 long ahead, behind; 232 int alloc_req, era, faultcount, nera, reqpage, result; 233 boolean_t growstack, is_first_object_locked, wired; 234 int map_generation; 235 vm_object_t next_object; 236 vm_page_t marray[VM_FAULT_READ_MAX]; 237 int hardfault; 238 struct faultstate fs; 239 struct vnode *vp; 240 vm_page_t m; 241 int locked, error; 242 243 hardfault = 0; 244 growstack = TRUE; 245 PCPU_INC(cnt.v_vm_faults); 246 fs.vp = NULL; 247 faultcount = reqpage = 0; 248 249 RetryFault:; 250 251 /* 252 * Find the backing store object and offset into it to begin the 253 * search. 254 */ 255 fs.map = map; 256 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 257 &fs.first_object, &fs.first_pindex, &prot, &wired); 258 if (result != KERN_SUCCESS) { 259 if (growstack && result == KERN_INVALID_ADDRESS && 260 map != kernel_map) { 261 result = vm_map_growstack(curproc, vaddr); 262 if (result != KERN_SUCCESS) 263 return (KERN_FAILURE); 264 growstack = FALSE; 265 goto RetryFault; 266 } 267 return (result); 268 } 269 270 map_generation = fs.map->timestamp; 271 272 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 273 if ((curthread->td_pflags & TDP_DEVMEMIO) != 0) { 274 vm_map_unlock_read(fs.map); 275 return (KERN_FAILURE); 276 } 277 panic("vm_fault: fault on nofault entry, addr: %lx", 278 (u_long)vaddr); 279 } 280 281 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 282 fs.entry->wiring_thread != curthread) { 283 vm_map_unlock_read(fs.map); 284 vm_map_lock(fs.map); 285 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 286 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 287 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 288 vm_map_unlock_and_wait(fs.map, 0); 289 } else 290 vm_map_unlock(fs.map); 291 goto RetryFault; 292 } 293 294 if (wired) 295 fault_type = prot | (fault_type & VM_PROT_COPY); 296 297 if (fs.vp == NULL /* avoid locked vnode leak */ && 298 (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 && 299 /* avoid calling vm_object_set_writeable_dirty() */ 300 ((prot & VM_PROT_WRITE) == 0 || 301 fs.first_object->type != OBJT_VNODE || 302 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 303 VM_OBJECT_RLOCK(fs.first_object); 304 if ((prot & VM_PROT_WRITE) != 0 && 305 fs.first_object->type == OBJT_VNODE && 306 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0) 307 goto fast_failed; 308 m = vm_page_lookup(fs.first_object, fs.first_pindex); 309 if (m == NULL || vm_page_busied(m) || 310 m->valid != VM_PAGE_BITS_ALL) 311 goto fast_failed; 312 result = pmap_enter(fs.map->pmap, vaddr, m, prot, 313 fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 314 0), 0); 315 if (result != KERN_SUCCESS) 316 goto fast_failed; 317 if (m_hold != NULL) { 318 *m_hold = m; 319 vm_page_lock(m); 320 vm_page_hold(m); 321 vm_page_unlock(m); 322 } 323 if ((fault_type & VM_PROT_WRITE) != 0 && 324 (m->oflags & VPO_UNMANAGED) == 0) { 325 vm_page_dirty(m); 326 vm_pager_page_unswapped(m); 327 } 328 VM_OBJECT_RUNLOCK(fs.first_object); 329 if (!wired) 330 vm_fault_prefault(&fs, vaddr, 0, 0); 331 vm_map_lookup_done(fs.map, fs.entry); 332 curthread->td_ru.ru_minflt++; 333 return (KERN_SUCCESS); 334 fast_failed: 335 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 336 VM_OBJECT_RUNLOCK(fs.first_object); 337 VM_OBJECT_WLOCK(fs.first_object); 338 } 339 } else { 340 VM_OBJECT_WLOCK(fs.first_object); 341 } 342 343 /* 344 * Make a reference to this object to prevent its disposal while we 345 * are messing with it. Once we have the reference, the map is free 346 * to be diddled. Since objects reference their shadows (and copies), 347 * they will stay around as well. 348 * 349 * Bump the paging-in-progress count to prevent size changes (e.g. 350 * truncation operations) during I/O. This must be done after 351 * obtaining the vnode lock in order to avoid possible deadlocks. 352 */ 353 vm_object_reference_locked(fs.first_object); 354 vm_object_pip_add(fs.first_object, 1); 355 356 fs.lookup_still_valid = TRUE; 357 358 fs.first_m = NULL; 359 360 /* 361 * Search for the page at object/offset. 362 */ 363 fs.object = fs.first_object; 364 fs.pindex = fs.first_pindex; 365 while (TRUE) { 366 /* 367 * If the object is dead, we stop here 368 */ 369 if (fs.object->flags & OBJ_DEAD) { 370 unlock_and_deallocate(&fs); 371 return (KERN_PROTECTION_FAILURE); 372 } 373 374 /* 375 * See if page is resident 376 */ 377 fs.m = vm_page_lookup(fs.object, fs.pindex); 378 if (fs.m != NULL) { 379 /* 380 * Wait/Retry if the page is busy. We have to do this 381 * if the page is either exclusive or shared busy 382 * because the vm_pager may be using read busy for 383 * pageouts (and even pageins if it is the vnode 384 * pager), and we could end up trying to pagein and 385 * pageout the same page simultaneously. 386 * 387 * We can theoretically allow the busy case on a read 388 * fault if the page is marked valid, but since such 389 * pages are typically already pmap'd, putting that 390 * special case in might be more effort then it is 391 * worth. We cannot under any circumstances mess 392 * around with a shared busied page except, perhaps, 393 * to pmap it. 394 */ 395 if (vm_page_busied(fs.m)) { 396 /* 397 * Reference the page before unlocking and 398 * sleeping so that the page daemon is less 399 * likely to reclaim it. 400 */ 401 vm_page_aflag_set(fs.m, PGA_REFERENCED); 402 if (fs.object != fs.first_object) { 403 if (!VM_OBJECT_TRYWLOCK( 404 fs.first_object)) { 405 VM_OBJECT_WUNLOCK(fs.object); 406 VM_OBJECT_WLOCK(fs.first_object); 407 VM_OBJECT_WLOCK(fs.object); 408 } 409 vm_page_lock(fs.first_m); 410 vm_page_free(fs.first_m); 411 vm_page_unlock(fs.first_m); 412 vm_object_pip_wakeup(fs.first_object); 413 VM_OBJECT_WUNLOCK(fs.first_object); 414 fs.first_m = NULL; 415 } 416 unlock_map(&fs); 417 if (fs.m == vm_page_lookup(fs.object, 418 fs.pindex)) { 419 vm_page_sleep_if_busy(fs.m, "vmpfw"); 420 } 421 vm_object_pip_wakeup(fs.object); 422 VM_OBJECT_WUNLOCK(fs.object); 423 PCPU_INC(cnt.v_intrans); 424 vm_object_deallocate(fs.first_object); 425 goto RetryFault; 426 } 427 vm_page_lock(fs.m); 428 vm_page_remque(fs.m); 429 vm_page_unlock(fs.m); 430 431 /* 432 * Mark page busy for other processes, and the 433 * pagedaemon. If it still isn't completely valid 434 * (readable), jump to readrest, else break-out ( we 435 * found the page ). 436 */ 437 vm_page_xbusy(fs.m); 438 if (fs.m->valid != VM_PAGE_BITS_ALL) 439 goto readrest; 440 break; 441 } 442 443 /* 444 * Page is not resident, If this is the search termination 445 * or the pager might contain the page, allocate a new page. 446 */ 447 if (TRYPAGER || fs.object == fs.first_object) { 448 if (fs.pindex >= fs.object->size) { 449 unlock_and_deallocate(&fs); 450 return (KERN_PROTECTION_FAILURE); 451 } 452 453 /* 454 * Allocate a new page for this object/offset pair. 455 * 456 * Unlocked read of the p_flag is harmless. At 457 * worst, the P_KILLED might be not observed 458 * there, and allocation can fail, causing 459 * restart and new reading of the p_flag. 460 */ 461 fs.m = NULL; 462 if (!vm_page_count_severe() || P_KILLED(curproc)) { 463 #if VM_NRESERVLEVEL > 0 464 if ((fs.object->flags & OBJ_COLORED) == 0) { 465 fs.object->flags |= OBJ_COLORED; 466 fs.object->pg_color = atop(vaddr) - 467 fs.pindex; 468 } 469 #endif 470 alloc_req = P_KILLED(curproc) ? 471 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 472 if (fs.object->type != OBJT_VNODE && 473 fs.object->backing_object == NULL) 474 alloc_req |= VM_ALLOC_ZERO; 475 fs.m = vm_page_alloc(fs.object, fs.pindex, 476 alloc_req); 477 } 478 if (fs.m == NULL) { 479 unlock_and_deallocate(&fs); 480 VM_WAITPFAULT; 481 goto RetryFault; 482 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 483 break; 484 } 485 486 readrest: 487 /* 488 * We have found a valid page or we have allocated a new page. 489 * The page thus may not be valid or may not be entirely 490 * valid. 491 * 492 * Attempt to fault-in the page if there is a chance that the 493 * pager has it, and potentially fault in additional pages 494 * at the same time. 495 */ 496 if (TRYPAGER) { 497 int rv; 498 u_char behavior = vm_map_entry_behavior(fs.entry); 499 500 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 501 P_KILLED(curproc)) { 502 behind = 0; 503 ahead = 0; 504 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 505 behind = 0; 506 ahead = atop(fs.entry->end - vaddr) - 1; 507 if (ahead > VM_FAULT_READ_AHEAD_MAX) 508 ahead = VM_FAULT_READ_AHEAD_MAX; 509 if (fs.pindex == fs.entry->next_read) 510 vm_fault_cache_behind(&fs, 511 VM_FAULT_READ_MAX); 512 } else { 513 /* 514 * If this is a sequential page fault, then 515 * arithmetically increase the number of pages 516 * in the read-ahead window. Otherwise, reset 517 * the read-ahead window to its smallest size. 518 */ 519 behind = atop(vaddr - fs.entry->start); 520 if (behind > VM_FAULT_READ_BEHIND) 521 behind = VM_FAULT_READ_BEHIND; 522 ahead = atop(fs.entry->end - vaddr) - 1; 523 era = fs.entry->read_ahead; 524 if (fs.pindex == fs.entry->next_read) { 525 nera = era + behind; 526 if (nera > VM_FAULT_READ_AHEAD_MAX) 527 nera = VM_FAULT_READ_AHEAD_MAX; 528 behind = 0; 529 if (ahead > nera) 530 ahead = nera; 531 if (era == VM_FAULT_READ_AHEAD_MAX) 532 vm_fault_cache_behind(&fs, 533 VM_FAULT_CACHE_BEHIND); 534 } else if (ahead > VM_FAULT_READ_AHEAD_MIN) 535 ahead = VM_FAULT_READ_AHEAD_MIN; 536 if (era != ahead) 537 fs.entry->read_ahead = ahead; 538 } 539 540 /* 541 * Call the pager to retrieve the data, if any, after 542 * releasing the lock on the map. We hold a ref on 543 * fs.object and the pages are exclusive busied. 544 */ 545 unlock_map(&fs); 546 547 if (fs.object->type == OBJT_VNODE) { 548 vp = fs.object->handle; 549 if (vp == fs.vp) 550 goto vnode_locked; 551 else if (fs.vp != NULL) { 552 vput(fs.vp); 553 fs.vp = NULL; 554 } 555 locked = VOP_ISLOCKED(vp); 556 557 if (locked != LK_EXCLUSIVE) 558 locked = LK_SHARED; 559 /* Do not sleep for vnode lock while fs.m is busy */ 560 error = vget(vp, locked | LK_CANRECURSE | 561 LK_NOWAIT, curthread); 562 if (error != 0) { 563 vhold(vp); 564 release_page(&fs); 565 unlock_and_deallocate(&fs); 566 error = vget(vp, locked | LK_RETRY | 567 LK_CANRECURSE, curthread); 568 vdrop(vp); 569 fs.vp = vp; 570 KASSERT(error == 0, 571 ("vm_fault: vget failed")); 572 goto RetryFault; 573 } 574 fs.vp = vp; 575 } 576 vnode_locked: 577 KASSERT(fs.vp == NULL || !fs.map->system_map, 578 ("vm_fault: vnode-backed object mapped by system map")); 579 580 /* 581 * now we find out if any other pages should be paged 582 * in at this time this routine checks to see if the 583 * pages surrounding this fault reside in the same 584 * object as the page for this fault. If they do, 585 * then they are faulted in also into the object. The 586 * array "marray" returned contains an array of 587 * vm_page_t structs where one of them is the 588 * vm_page_t passed to the routine. The reqpage 589 * return value is the index into the marray for the 590 * vm_page_t passed to the routine. 591 * 592 * fs.m plus the additional pages are exclusive busied. 593 */ 594 faultcount = vm_fault_additional_pages( 595 fs.m, behind, ahead, marray, &reqpage); 596 597 rv = faultcount ? 598 vm_pager_get_pages(fs.object, marray, faultcount, 599 reqpage) : VM_PAGER_FAIL; 600 601 if (rv == VM_PAGER_OK) { 602 /* 603 * Found the page. Leave it busy while we play 604 * with it. 605 */ 606 607 /* 608 * Relookup in case pager changed page. Pager 609 * is responsible for disposition of old page 610 * if moved. 611 */ 612 fs.m = vm_page_lookup(fs.object, fs.pindex); 613 if (!fs.m) { 614 unlock_and_deallocate(&fs); 615 goto RetryFault; 616 } 617 618 hardfault++; 619 break; /* break to PAGE HAS BEEN FOUND */ 620 } 621 /* 622 * Remove the bogus page (which does not exist at this 623 * object/offset); before doing so, we must get back 624 * our object lock to preserve our invariant. 625 * 626 * Also wake up any other process that may want to bring 627 * in this page. 628 * 629 * If this is the top-level object, we must leave the 630 * busy page to prevent another process from rushing 631 * past us, and inserting the page in that object at 632 * the same time that we are. 633 */ 634 if (rv == VM_PAGER_ERROR) 635 printf("vm_fault: pager read error, pid %d (%s)\n", 636 curproc->p_pid, curproc->p_comm); 637 /* 638 * Data outside the range of the pager or an I/O error 639 */ 640 /* 641 * XXX - the check for kernel_map is a kludge to work 642 * around having the machine panic on a kernel space 643 * fault w/ I/O error. 644 */ 645 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 646 (rv == VM_PAGER_BAD)) { 647 vm_page_lock(fs.m); 648 vm_page_free(fs.m); 649 vm_page_unlock(fs.m); 650 fs.m = NULL; 651 unlock_and_deallocate(&fs); 652 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 653 } 654 if (fs.object != fs.first_object) { 655 vm_page_lock(fs.m); 656 vm_page_free(fs.m); 657 vm_page_unlock(fs.m); 658 fs.m = NULL; 659 /* 660 * XXX - we cannot just fall out at this 661 * point, m has been freed and is invalid! 662 */ 663 } 664 } 665 666 /* 667 * We get here if the object has default pager (or unwiring) 668 * or the pager doesn't have the page. 669 */ 670 if (fs.object == fs.first_object) 671 fs.first_m = fs.m; 672 673 /* 674 * Move on to the next object. Lock the next object before 675 * unlocking the current one. 676 */ 677 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 678 next_object = fs.object->backing_object; 679 if (next_object == NULL) { 680 /* 681 * If there's no object left, fill the page in the top 682 * object with zeros. 683 */ 684 if (fs.object != fs.first_object) { 685 vm_object_pip_wakeup(fs.object); 686 VM_OBJECT_WUNLOCK(fs.object); 687 688 fs.object = fs.first_object; 689 fs.pindex = fs.first_pindex; 690 fs.m = fs.first_m; 691 VM_OBJECT_WLOCK(fs.object); 692 } 693 fs.first_m = NULL; 694 695 /* 696 * Zero the page if necessary and mark it valid. 697 */ 698 if ((fs.m->flags & PG_ZERO) == 0) { 699 pmap_zero_page(fs.m); 700 } else { 701 PCPU_INC(cnt.v_ozfod); 702 } 703 PCPU_INC(cnt.v_zfod); 704 fs.m->valid = VM_PAGE_BITS_ALL; 705 /* Don't try to prefault neighboring pages. */ 706 faultcount = 1; 707 break; /* break to PAGE HAS BEEN FOUND */ 708 } else { 709 KASSERT(fs.object != next_object, 710 ("object loop %p", next_object)); 711 VM_OBJECT_WLOCK(next_object); 712 vm_object_pip_add(next_object, 1); 713 if (fs.object != fs.first_object) 714 vm_object_pip_wakeup(fs.object); 715 VM_OBJECT_WUNLOCK(fs.object); 716 fs.object = next_object; 717 } 718 } 719 720 vm_page_assert_xbusied(fs.m); 721 722 /* 723 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 724 * is held.] 725 */ 726 727 /* 728 * If the page is being written, but isn't already owned by the 729 * top-level object, we have to copy it into a new page owned by the 730 * top-level object. 731 */ 732 if (fs.object != fs.first_object) { 733 /* 734 * We only really need to copy if we want to write it. 735 */ 736 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 737 /* 738 * This allows pages to be virtually copied from a 739 * backing_object into the first_object, where the 740 * backing object has no other refs to it, and cannot 741 * gain any more refs. Instead of a bcopy, we just 742 * move the page from the backing object to the 743 * first object. Note that we must mark the page 744 * dirty in the first object so that it will go out 745 * to swap when needed. 746 */ 747 is_first_object_locked = FALSE; 748 if ( 749 /* 750 * Only one shadow object 751 */ 752 (fs.object->shadow_count == 1) && 753 /* 754 * No COW refs, except us 755 */ 756 (fs.object->ref_count == 1) && 757 /* 758 * No one else can look this object up 759 */ 760 (fs.object->handle == NULL) && 761 /* 762 * No other ways to look the object up 763 */ 764 ((fs.object->type == OBJT_DEFAULT) || 765 (fs.object->type == OBJT_SWAP)) && 766 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 767 /* 768 * We don't chase down the shadow chain 769 */ 770 fs.object == fs.first_object->backing_object) { 771 /* 772 * get rid of the unnecessary page 773 */ 774 vm_page_lock(fs.first_m); 775 vm_page_free(fs.first_m); 776 vm_page_unlock(fs.first_m); 777 /* 778 * grab the page and put it into the 779 * process'es object. The page is 780 * automatically made dirty. 781 */ 782 if (vm_page_rename(fs.m, fs.first_object, 783 fs.first_pindex)) { 784 unlock_and_deallocate(&fs); 785 goto RetryFault; 786 } 787 vm_page_xbusy(fs.m); 788 fs.first_m = fs.m; 789 fs.m = NULL; 790 PCPU_INC(cnt.v_cow_optim); 791 } else { 792 /* 793 * Oh, well, lets copy it. 794 */ 795 pmap_copy_page(fs.m, fs.first_m); 796 fs.first_m->valid = VM_PAGE_BITS_ALL; 797 if (wired && (fault_flags & 798 VM_FAULT_CHANGE_WIRING) == 0) { 799 vm_page_lock(fs.first_m); 800 vm_page_wire(fs.first_m); 801 vm_page_unlock(fs.first_m); 802 803 vm_page_lock(fs.m); 804 vm_page_unwire(fs.m, PQ_INACTIVE); 805 vm_page_unlock(fs.m); 806 } 807 /* 808 * We no longer need the old page or object. 809 */ 810 release_page(&fs); 811 } 812 /* 813 * fs.object != fs.first_object due to above 814 * conditional 815 */ 816 vm_object_pip_wakeup(fs.object); 817 VM_OBJECT_WUNLOCK(fs.object); 818 /* 819 * Only use the new page below... 820 */ 821 fs.object = fs.first_object; 822 fs.pindex = fs.first_pindex; 823 fs.m = fs.first_m; 824 if (!is_first_object_locked) 825 VM_OBJECT_WLOCK(fs.object); 826 PCPU_INC(cnt.v_cow_faults); 827 curthread->td_cow++; 828 } else { 829 prot &= ~VM_PROT_WRITE; 830 } 831 } 832 833 /* 834 * We must verify that the maps have not changed since our last 835 * lookup. 836 */ 837 if (!fs.lookup_still_valid) { 838 vm_object_t retry_object; 839 vm_pindex_t retry_pindex; 840 vm_prot_t retry_prot; 841 842 if (!vm_map_trylock_read(fs.map)) { 843 release_page(&fs); 844 unlock_and_deallocate(&fs); 845 goto RetryFault; 846 } 847 fs.lookup_still_valid = TRUE; 848 if (fs.map->timestamp != map_generation) { 849 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 850 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 851 852 /* 853 * If we don't need the page any longer, put it on the inactive 854 * list (the easiest thing to do here). If no one needs it, 855 * pageout will grab it eventually. 856 */ 857 if (result != KERN_SUCCESS) { 858 release_page(&fs); 859 unlock_and_deallocate(&fs); 860 861 /* 862 * If retry of map lookup would have blocked then 863 * retry fault from start. 864 */ 865 if (result == KERN_FAILURE) 866 goto RetryFault; 867 return (result); 868 } 869 if ((retry_object != fs.first_object) || 870 (retry_pindex != fs.first_pindex)) { 871 release_page(&fs); 872 unlock_and_deallocate(&fs); 873 goto RetryFault; 874 } 875 876 /* 877 * Check whether the protection has changed or the object has 878 * been copied while we left the map unlocked. Changing from 879 * read to write permission is OK - we leave the page 880 * write-protected, and catch the write fault. Changing from 881 * write to read permission means that we can't mark the page 882 * write-enabled after all. 883 */ 884 prot &= retry_prot; 885 } 886 } 887 /* 888 * If the page was filled by a pager, update the map entry's 889 * last read offset. Since the pager does not return the 890 * actual set of pages that it read, this update is based on 891 * the requested set. Typically, the requested and actual 892 * sets are the same. 893 * 894 * XXX The following assignment modifies the map 895 * without holding a write lock on it. 896 */ 897 if (hardfault) 898 fs.entry->next_read = fs.pindex + faultcount - reqpage; 899 900 if (((prot & VM_PROT_WRITE) != 0 || 901 (fault_flags & VM_FAULT_DIRTY) != 0) && 902 (fs.m->oflags & VPO_UNMANAGED) == 0) { 903 vm_object_set_writeable_dirty(fs.object); 904 905 /* 906 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 907 * if the page is already dirty to prevent data written with 908 * the expectation of being synced from not being synced. 909 * Likewise if this entry does not request NOSYNC then make 910 * sure the page isn't marked NOSYNC. Applications sharing 911 * data should use the same flags to avoid ping ponging. 912 */ 913 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) { 914 if (fs.m->dirty == 0) 915 fs.m->oflags |= VPO_NOSYNC; 916 } else { 917 fs.m->oflags &= ~VPO_NOSYNC; 918 } 919 920 /* 921 * If the fault is a write, we know that this page is being 922 * written NOW so dirty it explicitly to save on 923 * pmap_is_modified() calls later. 924 * 925 * Also tell the backing pager, if any, that it should remove 926 * any swap backing since the page is now dirty. 927 */ 928 if (((fault_type & VM_PROT_WRITE) != 0 && 929 (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) || 930 (fault_flags & VM_FAULT_DIRTY) != 0) { 931 vm_page_dirty(fs.m); 932 vm_pager_page_unswapped(fs.m); 933 } 934 } 935 936 vm_page_assert_xbusied(fs.m); 937 938 /* 939 * Page must be completely valid or it is not fit to 940 * map into user space. vm_pager_get_pages() ensures this. 941 */ 942 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 943 ("vm_fault: page %p partially invalid", fs.m)); 944 VM_OBJECT_WUNLOCK(fs.object); 945 946 /* 947 * Put this page into the physical map. We had to do the unlock above 948 * because pmap_enter() may sleep. We don't put the page 949 * back on the active queue until later so that the pageout daemon 950 * won't find it (yet). 951 */ 952 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 953 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 954 if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && 955 wired == 0) 956 vm_fault_prefault(&fs, vaddr, faultcount, reqpage); 957 VM_OBJECT_WLOCK(fs.object); 958 vm_page_lock(fs.m); 959 960 /* 961 * If the page is not wired down, then put it where the pageout daemon 962 * can find it. 963 */ 964 if (fault_flags & VM_FAULT_CHANGE_WIRING) { 965 if (wired) 966 vm_page_wire(fs.m); 967 else 968 vm_page_unwire(fs.m, PQ_ACTIVE); 969 } else 970 vm_page_activate(fs.m); 971 if (m_hold != NULL) { 972 *m_hold = fs.m; 973 vm_page_hold(fs.m); 974 } 975 vm_page_unlock(fs.m); 976 vm_page_xunbusy(fs.m); 977 978 /* 979 * Unlock everything, and return 980 */ 981 unlock_and_deallocate(&fs); 982 if (hardfault) { 983 PCPU_INC(cnt.v_io_faults); 984 curthread->td_ru.ru_majflt++; 985 } else 986 curthread->td_ru.ru_minflt++; 987 988 return (KERN_SUCCESS); 989 } 990 991 /* 992 * Speed up the reclamation of up to "distance" pages that precede the 993 * faulting pindex within the first object of the shadow chain. 994 */ 995 static void 996 vm_fault_cache_behind(const struct faultstate *fs, int distance) 997 { 998 vm_object_t first_object, object; 999 vm_page_t m, m_prev; 1000 vm_pindex_t pindex; 1001 1002 object = fs->object; 1003 VM_OBJECT_ASSERT_WLOCKED(object); 1004 first_object = fs->first_object; 1005 if (first_object != object) { 1006 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1007 VM_OBJECT_WUNLOCK(object); 1008 VM_OBJECT_WLOCK(first_object); 1009 VM_OBJECT_WLOCK(object); 1010 } 1011 } 1012 /* Neither fictitious nor unmanaged pages can be cached. */ 1013 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1014 if (fs->first_pindex < distance) 1015 pindex = 0; 1016 else 1017 pindex = fs->first_pindex - distance; 1018 if (pindex < OFF_TO_IDX(fs->entry->offset)) 1019 pindex = OFF_TO_IDX(fs->entry->offset); 1020 m = first_object != object ? fs->first_m : fs->m; 1021 vm_page_assert_xbusied(m); 1022 m_prev = vm_page_prev(m); 1023 while ((m = m_prev) != NULL && m->pindex >= pindex && 1024 m->valid == VM_PAGE_BITS_ALL) { 1025 m_prev = vm_page_prev(m); 1026 if (vm_page_busied(m)) 1027 continue; 1028 vm_page_lock(m); 1029 if (m->hold_count == 0 && m->wire_count == 0) { 1030 pmap_remove_all(m); 1031 vm_page_aflag_clear(m, PGA_REFERENCED); 1032 if (m->dirty != 0) 1033 vm_page_deactivate(m); 1034 else 1035 vm_page_cache(m); 1036 } 1037 vm_page_unlock(m); 1038 } 1039 } 1040 if (first_object != object) 1041 VM_OBJECT_WUNLOCK(first_object); 1042 } 1043 1044 /* 1045 * vm_fault_prefault provides a quick way of clustering 1046 * pagefaults into a processes address space. It is a "cousin" 1047 * of vm_map_pmap_enter, except it runs at page fault time instead 1048 * of mmap time. 1049 */ 1050 static void 1051 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1052 int faultcount, int reqpage) 1053 { 1054 pmap_t pmap; 1055 vm_map_entry_t entry; 1056 vm_object_t backing_object, lobject; 1057 vm_offset_t addr, starta; 1058 vm_pindex_t pindex; 1059 vm_page_t m; 1060 int backward, forward, i; 1061 1062 pmap = fs->map->pmap; 1063 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1064 return; 1065 1066 if (faultcount > 0) { 1067 backward = reqpage; 1068 forward = faultcount - reqpage - 1; 1069 } else { 1070 backward = PFBAK; 1071 forward = PFFOR; 1072 } 1073 entry = fs->entry; 1074 1075 starta = addra - backward * PAGE_SIZE; 1076 if (starta < entry->start) { 1077 starta = entry->start; 1078 } else if (starta > addra) { 1079 starta = 0; 1080 } 1081 1082 /* 1083 * Generate the sequence of virtual addresses that are candidates for 1084 * prefaulting in an outward spiral from the faulting virtual address, 1085 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1086 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1087 * If the candidate address doesn't have a backing physical page, then 1088 * the loop immediately terminates. 1089 */ 1090 for (i = 0; i < 2 * imax(backward, forward); i++) { 1091 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1092 PAGE_SIZE); 1093 if (addr > addra + forward * PAGE_SIZE) 1094 addr = 0; 1095 1096 if (addr < starta || addr >= entry->end) 1097 continue; 1098 1099 if (!pmap_is_prefaultable(pmap, addr)) 1100 continue; 1101 1102 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1103 lobject = entry->object.vm_object; 1104 VM_OBJECT_RLOCK(lobject); 1105 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1106 lobject->type == OBJT_DEFAULT && 1107 (backing_object = lobject->backing_object) != NULL) { 1108 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1109 0, ("vm_fault_prefault: unaligned object offset")); 1110 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1111 VM_OBJECT_RLOCK(backing_object); 1112 VM_OBJECT_RUNLOCK(lobject); 1113 lobject = backing_object; 1114 } 1115 if (m == NULL) { 1116 VM_OBJECT_RUNLOCK(lobject); 1117 break; 1118 } 1119 if (m->valid == VM_PAGE_BITS_ALL && 1120 (m->flags & PG_FICTITIOUS) == 0) 1121 pmap_enter_quick(pmap, addr, m, entry->protection); 1122 VM_OBJECT_RUNLOCK(lobject); 1123 } 1124 } 1125 1126 /* 1127 * Hold each of the physical pages that are mapped by the specified range of 1128 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1129 * and allow the specified types of access, "prot". If all of the implied 1130 * pages are successfully held, then the number of held pages is returned 1131 * together with pointers to those pages in the array "ma". However, if any 1132 * of the pages cannot be held, -1 is returned. 1133 */ 1134 int 1135 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1136 vm_prot_t prot, vm_page_t *ma, int max_count) 1137 { 1138 vm_offset_t end, va; 1139 vm_page_t *mp; 1140 int count; 1141 boolean_t pmap_failed; 1142 1143 if (len == 0) 1144 return (0); 1145 end = round_page(addr + len); 1146 addr = trunc_page(addr); 1147 1148 /* 1149 * Check for illegal addresses. 1150 */ 1151 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1152 return (-1); 1153 1154 if (atop(end - addr) > max_count) 1155 panic("vm_fault_quick_hold_pages: count > max_count"); 1156 count = atop(end - addr); 1157 1158 /* 1159 * Most likely, the physical pages are resident in the pmap, so it is 1160 * faster to try pmap_extract_and_hold() first. 1161 */ 1162 pmap_failed = FALSE; 1163 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1164 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1165 if (*mp == NULL) 1166 pmap_failed = TRUE; 1167 else if ((prot & VM_PROT_WRITE) != 0 && 1168 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1169 /* 1170 * Explicitly dirty the physical page. Otherwise, the 1171 * caller's changes may go unnoticed because they are 1172 * performed through an unmanaged mapping or by a DMA 1173 * operation. 1174 * 1175 * The object lock is not held here. 1176 * See vm_page_clear_dirty_mask(). 1177 */ 1178 vm_page_dirty(*mp); 1179 } 1180 } 1181 if (pmap_failed) { 1182 /* 1183 * One or more pages could not be held by the pmap. Either no 1184 * page was mapped at the specified virtual address or that 1185 * mapping had insufficient permissions. Attempt to fault in 1186 * and hold these pages. 1187 */ 1188 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1189 if (*mp == NULL && vm_fault_hold(map, va, prot, 1190 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1191 goto error; 1192 } 1193 return (count); 1194 error: 1195 for (mp = ma; mp < ma + count; mp++) 1196 if (*mp != NULL) { 1197 vm_page_lock(*mp); 1198 vm_page_unhold(*mp); 1199 vm_page_unlock(*mp); 1200 } 1201 return (-1); 1202 } 1203 1204 /* 1205 * Routine: 1206 * vm_fault_copy_entry 1207 * Function: 1208 * Create new shadow object backing dst_entry with private copy of 1209 * all underlying pages. When src_entry is equal to dst_entry, 1210 * function implements COW for wired-down map entry. Otherwise, 1211 * it forks wired entry into dst_map. 1212 * 1213 * In/out conditions: 1214 * The source and destination maps must be locked for write. 1215 * The source map entry must be wired down (or be a sharing map 1216 * entry corresponding to a main map entry that is wired down). 1217 */ 1218 void 1219 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1220 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1221 vm_ooffset_t *fork_charge) 1222 { 1223 vm_object_t backing_object, dst_object, object, src_object; 1224 vm_pindex_t dst_pindex, pindex, src_pindex; 1225 vm_prot_t access, prot; 1226 vm_offset_t vaddr; 1227 vm_page_t dst_m; 1228 vm_page_t src_m; 1229 boolean_t upgrade; 1230 1231 #ifdef lint 1232 src_map++; 1233 #endif /* lint */ 1234 1235 upgrade = src_entry == dst_entry; 1236 access = prot = dst_entry->protection; 1237 1238 src_object = src_entry->object.vm_object; 1239 src_pindex = OFF_TO_IDX(src_entry->offset); 1240 1241 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1242 dst_object = src_object; 1243 vm_object_reference(dst_object); 1244 } else { 1245 /* 1246 * Create the top-level object for the destination entry. (Doesn't 1247 * actually shadow anything - we copy the pages directly.) 1248 */ 1249 dst_object = vm_object_allocate(OBJT_DEFAULT, 1250 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1251 #if VM_NRESERVLEVEL > 0 1252 dst_object->flags |= OBJ_COLORED; 1253 dst_object->pg_color = atop(dst_entry->start); 1254 #endif 1255 } 1256 1257 VM_OBJECT_WLOCK(dst_object); 1258 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1259 ("vm_fault_copy_entry: vm_object not NULL")); 1260 if (src_object != dst_object) { 1261 dst_entry->object.vm_object = dst_object; 1262 dst_entry->offset = 0; 1263 dst_object->charge = dst_entry->end - dst_entry->start; 1264 } 1265 if (fork_charge != NULL) { 1266 KASSERT(dst_entry->cred == NULL, 1267 ("vm_fault_copy_entry: leaked swp charge")); 1268 dst_object->cred = curthread->td_ucred; 1269 crhold(dst_object->cred); 1270 *fork_charge += dst_object->charge; 1271 } else if (dst_object->cred == NULL) { 1272 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1273 dst_entry)); 1274 dst_object->cred = dst_entry->cred; 1275 dst_entry->cred = NULL; 1276 } 1277 1278 /* 1279 * If not an upgrade, then enter the mappings in the pmap as 1280 * read and/or execute accesses. Otherwise, enter them as 1281 * write accesses. 1282 * 1283 * A writeable large page mapping is only created if all of 1284 * the constituent small page mappings are modified. Marking 1285 * PTEs as modified on inception allows promotion to happen 1286 * without taking potentially large number of soft faults. 1287 */ 1288 if (!upgrade) 1289 access &= ~VM_PROT_WRITE; 1290 1291 /* 1292 * Loop through all of the virtual pages within the entry's 1293 * range, copying each page from the source object to the 1294 * destination object. Since the source is wired, those pages 1295 * must exist. In contrast, the destination is pageable. 1296 * Since the destination object does share any backing storage 1297 * with the source object, all of its pages must be dirtied, 1298 * regardless of whether they can be written. 1299 */ 1300 for (vaddr = dst_entry->start, dst_pindex = 0; 1301 vaddr < dst_entry->end; 1302 vaddr += PAGE_SIZE, dst_pindex++) { 1303 again: 1304 /* 1305 * Find the page in the source object, and copy it in. 1306 * Because the source is wired down, the page will be 1307 * in memory. 1308 */ 1309 if (src_object != dst_object) 1310 VM_OBJECT_RLOCK(src_object); 1311 object = src_object; 1312 pindex = src_pindex + dst_pindex; 1313 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1314 (backing_object = object->backing_object) != NULL) { 1315 /* 1316 * Unless the source mapping is read-only or 1317 * it is presently being upgraded from 1318 * read-only, the first object in the shadow 1319 * chain should provide all of the pages. In 1320 * other words, this loop body should never be 1321 * executed when the source mapping is already 1322 * read/write. 1323 */ 1324 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1325 upgrade, 1326 ("vm_fault_copy_entry: main object missing page")); 1327 1328 VM_OBJECT_RLOCK(backing_object); 1329 pindex += OFF_TO_IDX(object->backing_object_offset); 1330 if (object != dst_object) 1331 VM_OBJECT_RUNLOCK(object); 1332 object = backing_object; 1333 } 1334 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1335 1336 if (object != dst_object) { 1337 /* 1338 * Allocate a page in the destination object. 1339 */ 1340 dst_m = vm_page_alloc(dst_object, (src_object == 1341 dst_object ? src_pindex : 0) + dst_pindex, 1342 VM_ALLOC_NORMAL); 1343 if (dst_m == NULL) { 1344 VM_OBJECT_WUNLOCK(dst_object); 1345 VM_OBJECT_RUNLOCK(object); 1346 VM_WAIT; 1347 VM_OBJECT_WLOCK(dst_object); 1348 goto again; 1349 } 1350 pmap_copy_page(src_m, dst_m); 1351 VM_OBJECT_RUNLOCK(object); 1352 dst_m->valid = VM_PAGE_BITS_ALL; 1353 dst_m->dirty = VM_PAGE_BITS_ALL; 1354 } else { 1355 dst_m = src_m; 1356 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1357 goto again; 1358 vm_page_xbusy(dst_m); 1359 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1360 ("invalid dst page %p", dst_m)); 1361 } 1362 VM_OBJECT_WUNLOCK(dst_object); 1363 1364 /* 1365 * Enter it in the pmap. If a wired, copy-on-write 1366 * mapping is being replaced by a write-enabled 1367 * mapping, then wire that new mapping. 1368 */ 1369 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1370 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1371 1372 /* 1373 * Mark it no longer busy, and put it on the active list. 1374 */ 1375 VM_OBJECT_WLOCK(dst_object); 1376 1377 if (upgrade) { 1378 if (src_m != dst_m) { 1379 vm_page_lock(src_m); 1380 vm_page_unwire(src_m, PQ_INACTIVE); 1381 vm_page_unlock(src_m); 1382 vm_page_lock(dst_m); 1383 vm_page_wire(dst_m); 1384 vm_page_unlock(dst_m); 1385 } else { 1386 KASSERT(dst_m->wire_count > 0, 1387 ("dst_m %p is not wired", dst_m)); 1388 } 1389 } else { 1390 vm_page_lock(dst_m); 1391 vm_page_activate(dst_m); 1392 vm_page_unlock(dst_m); 1393 } 1394 vm_page_xunbusy(dst_m); 1395 } 1396 VM_OBJECT_WUNLOCK(dst_object); 1397 if (upgrade) { 1398 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1399 vm_object_deallocate(src_object); 1400 } 1401 } 1402 1403 1404 /* 1405 * This routine checks around the requested page for other pages that 1406 * might be able to be faulted in. This routine brackets the viable 1407 * pages for the pages to be paged in. 1408 * 1409 * Inputs: 1410 * m, rbehind, rahead 1411 * 1412 * Outputs: 1413 * marray (array of vm_page_t), reqpage (index of requested page) 1414 * 1415 * Return value: 1416 * number of pages in marray 1417 */ 1418 static int 1419 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1420 vm_page_t m; 1421 int rbehind; 1422 int rahead; 1423 vm_page_t *marray; 1424 int *reqpage; 1425 { 1426 int i,j; 1427 vm_object_t object; 1428 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1429 vm_page_t rtm; 1430 int cbehind, cahead; 1431 1432 VM_OBJECT_ASSERT_WLOCKED(m->object); 1433 1434 object = m->object; 1435 pindex = m->pindex; 1436 cbehind = cahead = 0; 1437 1438 /* 1439 * if the requested page is not available, then give up now 1440 */ 1441 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1442 return 0; 1443 } 1444 1445 if ((cbehind == 0) && (cahead == 0)) { 1446 *reqpage = 0; 1447 marray[0] = m; 1448 return 1; 1449 } 1450 1451 if (rahead > cahead) { 1452 rahead = cahead; 1453 } 1454 1455 if (rbehind > cbehind) { 1456 rbehind = cbehind; 1457 } 1458 1459 /* 1460 * scan backward for the read behind pages -- in memory 1461 */ 1462 if (pindex > 0) { 1463 if (rbehind > pindex) { 1464 rbehind = pindex; 1465 startpindex = 0; 1466 } else { 1467 startpindex = pindex - rbehind; 1468 } 1469 1470 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL && 1471 rtm->pindex >= startpindex) 1472 startpindex = rtm->pindex + 1; 1473 1474 /* tpindex is unsigned; beware of numeric underflow. */ 1475 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex && 1476 tpindex < pindex; i++, tpindex--) { 1477 1478 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1479 VM_ALLOC_IFNOTCACHED); 1480 if (rtm == NULL) { 1481 /* 1482 * Shift the allocated pages to the 1483 * beginning of the array. 1484 */ 1485 for (j = 0; j < i; j++) { 1486 marray[j] = marray[j + tpindex + 1 - 1487 startpindex]; 1488 } 1489 break; 1490 } 1491 1492 marray[tpindex - startpindex] = rtm; 1493 } 1494 } else { 1495 startpindex = 0; 1496 i = 0; 1497 } 1498 1499 marray[i] = m; 1500 /* page offset of the required page */ 1501 *reqpage = i; 1502 1503 tpindex = pindex + 1; 1504 i++; 1505 1506 /* 1507 * scan forward for the read ahead pages 1508 */ 1509 endpindex = tpindex + rahead; 1510 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex) 1511 endpindex = rtm->pindex; 1512 if (endpindex > object->size) 1513 endpindex = object->size; 1514 1515 for (; tpindex < endpindex; i++, tpindex++) { 1516 1517 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1518 VM_ALLOC_IFNOTCACHED); 1519 if (rtm == NULL) { 1520 break; 1521 } 1522 1523 marray[i] = rtm; 1524 } 1525 1526 /* return number of pages */ 1527 return i; 1528 } 1529 1530 /* 1531 * Block entry into the machine-independent layer's page fault handler by 1532 * the calling thread. Subsequent calls to vm_fault() by that thread will 1533 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1534 * spurious page faults. 1535 */ 1536 int 1537 vm_fault_disable_pagefaults(void) 1538 { 1539 1540 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1541 } 1542 1543 void 1544 vm_fault_enable_pagefaults(int save) 1545 { 1546 1547 curthread_pflags_restore(save); 1548 } 1549