xref: /freebsd/sys/vm/vm_fault.c (revision 52ec752989b2e6d4e9a59a8ff25d8ff596d85e62)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #define PFBAK 4
101 #define PFFOR 4
102 #define PAGEORDER_SIZE (PFBAK+PFFOR)
103 
104 static int prefault_pageorder[] = {
105 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
106 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
107 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
108 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
109 };
110 
111 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
112 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
113 
114 #define VM_FAULT_READ_AHEAD 8
115 #define VM_FAULT_READ_BEHIND 7
116 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
117 
118 struct faultstate {
119 	vm_page_t m;
120 	vm_object_t object;
121 	vm_pindex_t pindex;
122 	vm_page_t first_m;
123 	vm_object_t	first_object;
124 	vm_pindex_t first_pindex;
125 	vm_map_t map;
126 	vm_map_entry_t entry;
127 	int lookup_still_valid;
128 	struct vnode *vp;
129 };
130 
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134 	vm_page_lock_queues();
135 	vm_page_wakeup(fs->m);
136 	vm_page_deactivate(fs->m);
137 	vm_page_unlock_queues();
138 	fs->m = NULL;
139 }
140 
141 static __inline void
142 unlock_map(struct faultstate *fs)
143 {
144 	if (fs->lookup_still_valid) {
145 		vm_map_lookup_done(fs->map, fs->entry);
146 		fs->lookup_still_valid = FALSE;
147 	}
148 }
149 
150 static void
151 _unlock_things(struct faultstate *fs, int dealloc)
152 {
153 
154 	vm_object_pip_wakeup(fs->object);
155 	VM_OBJECT_UNLOCK(fs->object);
156 	if (fs->object != fs->first_object) {
157 		VM_OBJECT_LOCK(fs->first_object);
158 		vm_page_lock_queues();
159 		vm_page_free(fs->first_m);
160 		vm_page_unlock_queues();
161 		vm_object_pip_wakeup(fs->first_object);
162 		VM_OBJECT_UNLOCK(fs->first_object);
163 		fs->first_m = NULL;
164 	}
165 	if (dealloc) {
166 		vm_object_deallocate(fs->first_object);
167 	}
168 	unlock_map(fs);
169 	if (fs->vp != NULL) {
170 		vput(fs->vp);
171 		fs->vp = NULL;
172 	}
173 	if (dealloc)
174 		mtx_unlock(&Giant);
175 }
176 
177 #define unlock_things(fs) _unlock_things(fs, 0)
178 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
179 
180 /*
181  * TRYPAGER - used by vm_fault to calculate whether the pager for the
182  *	      current object *might* contain the page.
183  *
184  *	      default objects are zero-fill, there is no real pager.
185  */
186 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
187 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
188 
189 /*
190  *	vm_fault:
191  *
192  *	Handle a page fault occurring at the given address,
193  *	requiring the given permissions, in the map specified.
194  *	If successful, the page is inserted into the
195  *	associated physical map.
196  *
197  *	NOTE: the given address should be truncated to the
198  *	proper page address.
199  *
200  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
201  *	a standard error specifying why the fault is fatal is returned.
202  *
203  *
204  *	The map in question must be referenced, and remains so.
205  *	Caller may hold no locks.
206  */
207 int
208 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
209 	 int fault_flags)
210 {
211 	vm_prot_t prot;
212 	int is_first_object_locked, result;
213 	boolean_t growstack, wired;
214 	int map_generation;
215 	vm_object_t next_object;
216 	vm_page_t marray[VM_FAULT_READ];
217 	int hardfault;
218 	int faultcount;
219 	struct faultstate fs;
220 
221 	hardfault = 0;
222 	growstack = TRUE;
223 	atomic_add_int(&cnt.v_vm_faults, 1);
224 
225 RetryFault:;
226 
227 	/*
228 	 * Find the backing store object and offset into it to begin the
229 	 * search.
230 	 */
231 	fs.map = map;
232 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
233 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
234 	if (result != KERN_SUCCESS) {
235 		if (result != KERN_PROTECTION_FAILURE ||
236 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
237 			if (growstack && result == KERN_INVALID_ADDRESS &&
238 			    map != kernel_map && curproc != NULL) {
239 				mtx_lock(&Giant);
240 				result = vm_map_growstack(curproc, vaddr);
241 				mtx_unlock(&Giant);
242 				if (result != KERN_SUCCESS)
243 					return (KERN_FAILURE);
244 				growstack = FALSE;
245 				goto RetryFault;
246 			}
247 			return (result);
248 		}
249 
250 		/*
251    		 * If we are user-wiring a r/w segment, and it is COW, then
252    		 * we need to do the COW operation.  Note that we don't COW
253    		 * currently RO sections now, because it is NOT desirable
254    		 * to COW .text.  We simply keep .text from ever being COW'ed
255    		 * and take the heat that one cannot debug wired .text sections.
256    		 */
257 		result = vm_map_lookup(&fs.map, vaddr,
258 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
259 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
260 		if (result != KERN_SUCCESS)
261 			return (result);
262 
263 		/*
264 		 * If we don't COW now, on a user wire, the user will never
265 		 * be able to write to the mapping.  If we don't make this
266 		 * restriction, the bookkeeping would be nearly impossible.
267 		 *
268 		 * XXX The following assignment modifies the map without
269 		 * holding a write lock on it.
270 		 */
271 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
272 			fs.entry->max_protection &= ~VM_PROT_WRITE;
273 	}
274 
275 	map_generation = fs.map->timestamp;
276 
277 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
278 		panic("vm_fault: fault on nofault entry, addr: %lx",
279 		    (u_long)vaddr);
280 	}
281 
282 	/*
283 	 * Make a reference to this object to prevent its disposal while we
284 	 * are messing with it.  Once we have the reference, the map is free
285 	 * to be diddled.  Since objects reference their shadows (and copies),
286 	 * they will stay around as well.
287 	 *
288 	 * Bump the paging-in-progress count to prevent size changes (e.g.
289 	 * truncation operations) during I/O.  This must be done after
290 	 * obtaining the vnode lock in order to avoid possible deadlocks.
291 	 *
292 	 * XXX vnode_pager_lock() can block without releasing the map lock.
293 	 */
294 	mtx_lock(&Giant);
295 	VM_OBJECT_LOCK(fs.first_object);
296 	vm_object_reference_locked(fs.first_object);
297 	fs.vp = vnode_pager_lock(fs.first_object);
298 	vm_object_pip_add(fs.first_object, 1);
299 
300 	fs.lookup_still_valid = TRUE;
301 
302 	if (wired)
303 		fault_type = prot;
304 
305 	fs.first_m = NULL;
306 
307 	/*
308 	 * Search for the page at object/offset.
309 	 */
310 	fs.object = fs.first_object;
311 	fs.pindex = fs.first_pindex;
312 	while (TRUE) {
313 		/*
314 		 * If the object is dead, we stop here
315 		 */
316 		if (fs.object->flags & OBJ_DEAD) {
317 			unlock_and_deallocate(&fs);
318 			return (KERN_PROTECTION_FAILURE);
319 		}
320 
321 		/*
322 		 * See if page is resident
323 		 */
324 		fs.m = vm_page_lookup(fs.object, fs.pindex);
325 		if (fs.m != NULL) {
326 			int queue, s;
327 
328 			/*
329 			 * check for page-based copy on write.
330 			 * We check fs.object == fs.first_object so
331 			 * as to ensure the legacy COW mechanism is
332 			 * used when the page in question is part of
333 			 * a shadow object.  Otherwise, vm_page_cowfault()
334 			 * removes the page from the backing object,
335 			 * which is not what we want.
336 			 */
337 			vm_page_lock_queues();
338 			if ((fs.m->cow) &&
339 			    (fault_type & VM_PROT_WRITE) &&
340 			    (fs.object == fs.first_object)) {
341 				s = splvm();
342 				vm_page_cowfault(fs.m);
343 				splx(s);
344 				vm_page_unlock_queues();
345 				unlock_and_deallocate(&fs);
346 				goto RetryFault;
347 			}
348 
349 			/*
350 			 * Wait/Retry if the page is busy.  We have to do this
351 			 * if the page is busy via either PG_BUSY or
352 			 * vm_page_t->busy because the vm_pager may be using
353 			 * vm_page_t->busy for pageouts ( and even pageins if
354 			 * it is the vnode pager ), and we could end up trying
355 			 * to pagein and pageout the same page simultaneously.
356 			 *
357 			 * We can theoretically allow the busy case on a read
358 			 * fault if the page is marked valid, but since such
359 			 * pages are typically already pmap'd, putting that
360 			 * special case in might be more effort then it is
361 			 * worth.  We cannot under any circumstances mess
362 			 * around with a vm_page_t->busy page except, perhaps,
363 			 * to pmap it.
364 			 */
365 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
366 				vm_page_unlock_queues();
367 				unlock_things(&fs);
368 				vm_page_lock_queues();
369 				if (!vm_page_sleep_if_busy(fs.m, TRUE, "vmpfw"))
370 					vm_page_unlock_queues();
371 				cnt.v_intrans++;
372 				mtx_unlock(&Giant);
373 				vm_object_deallocate(fs.first_object);
374 				goto RetryFault;
375 			}
376 			queue = fs.m->queue;
377 
378 			s = splvm();
379 			vm_pageq_remove_nowakeup(fs.m);
380 			splx(s);
381 
382 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
383 				vm_page_activate(fs.m);
384 				vm_page_unlock_queues();
385 				unlock_and_deallocate(&fs);
386 				VM_WAITPFAULT;
387 				goto RetryFault;
388 			}
389 
390 			/*
391 			 * Mark page busy for other processes, and the
392 			 * pagedaemon.  If it still isn't completely valid
393 			 * (readable), jump to readrest, else break-out ( we
394 			 * found the page ).
395 			 */
396 			vm_page_busy(fs.m);
397 			vm_page_unlock_queues();
398 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
399 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
400 				goto readrest;
401 			}
402 
403 			break;
404 		}
405 
406 		/*
407 		 * Page is not resident, If this is the search termination
408 		 * or the pager might contain the page, allocate a new page.
409 		 */
410 		if (TRYPAGER || fs.object == fs.first_object) {
411 			if (fs.pindex >= fs.object->size) {
412 				unlock_and_deallocate(&fs);
413 				return (KERN_PROTECTION_FAILURE);
414 			}
415 
416 			/*
417 			 * Allocate a new page for this object/offset pair.
418 			 */
419 			fs.m = NULL;
420 			if (!vm_page_count_severe()) {
421 				fs.m = vm_page_alloc(fs.object, fs.pindex,
422 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
423 			}
424 			if (fs.m == NULL) {
425 				unlock_and_deallocate(&fs);
426 				VM_WAITPFAULT;
427 				goto RetryFault;
428 			}
429 		}
430 
431 readrest:
432 		/*
433 		 * We have found a valid page or we have allocated a new page.
434 		 * The page thus may not be valid or may not be entirely
435 		 * valid.
436 		 *
437 		 * Attempt to fault-in the page if there is a chance that the
438 		 * pager has it, and potentially fault in additional pages
439 		 * at the same time.
440 		 */
441 		if (TRYPAGER) {
442 			int rv;
443 			int reqpage;
444 			int ahead, behind;
445 			u_char behavior = vm_map_entry_behavior(fs.entry);
446 
447 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
448 				ahead = 0;
449 				behind = 0;
450 			} else {
451 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
452 				if (behind > VM_FAULT_READ_BEHIND)
453 					behind = VM_FAULT_READ_BEHIND;
454 
455 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
456 				if (ahead > VM_FAULT_READ_AHEAD)
457 					ahead = VM_FAULT_READ_AHEAD;
458 			}
459 			is_first_object_locked = FALSE;
460 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
461 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
462 			      fs.pindex >= fs.entry->lastr &&
463 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
464 			    (fs.first_object == fs.object ||
465 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
466 			    fs.first_object->type != OBJT_DEVICE) {
467 				vm_pindex_t firstpindex, tmppindex;
468 
469 				if (fs.first_pindex < 2 * VM_FAULT_READ)
470 					firstpindex = 0;
471 				else
472 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
473 
474 				vm_page_lock_queues();
475 				/*
476 				 * note: partially valid pages cannot be
477 				 * included in the lookahead - NFS piecemeal
478 				 * writes will barf on it badly.
479 				 */
480 				for (tmppindex = fs.first_pindex - 1;
481 					tmppindex >= firstpindex;
482 					--tmppindex) {
483 					vm_page_t mt;
484 
485 					mt = vm_page_lookup(fs.first_object, tmppindex);
486 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
487 						break;
488 					if (mt->busy ||
489 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
490 						mt->hold_count ||
491 						mt->wire_count)
492 						continue;
493 					if (mt->dirty == 0)
494 						vm_page_test_dirty(mt);
495 					if (mt->dirty) {
496 						pmap_remove_all(mt);
497 						vm_page_deactivate(mt);
498 					} else {
499 						vm_page_cache(mt);
500 					}
501 				}
502 				vm_page_unlock_queues();
503 				ahead += behind;
504 				behind = 0;
505 			}
506 			if (is_first_object_locked)
507 				VM_OBJECT_UNLOCK(fs.first_object);
508 			/*
509 			 * now we find out if any other pages should be paged
510 			 * in at this time this routine checks to see if the
511 			 * pages surrounding this fault reside in the same
512 			 * object as the page for this fault.  If they do,
513 			 * then they are faulted in also into the object.  The
514 			 * array "marray" returned contains an array of
515 			 * vm_page_t structs where one of them is the
516 			 * vm_page_t passed to the routine.  The reqpage
517 			 * return value is the index into the marray for the
518 			 * vm_page_t passed to the routine.
519 			 *
520 			 * fs.m plus the additional pages are PG_BUSY'd.
521 			 *
522 			 * XXX vm_fault_additional_pages() can block
523 			 * without releasing the map lock.
524 			 */
525 			faultcount = vm_fault_additional_pages(
526 			    fs.m, behind, ahead, marray, &reqpage);
527 
528 			/*
529 			 * update lastr imperfectly (we do not know how much
530 			 * getpages will actually read), but good enough.
531 			 *
532 			 * XXX The following assignment modifies the map
533 			 * without holding a write lock on it.
534 			 */
535 			fs.entry->lastr = fs.pindex + faultcount - behind;
536 
537 			/*
538 			 * Call the pager to retrieve the data, if any, after
539 			 * releasing the lock on the map.  We hold a ref on
540 			 * fs.object and the pages are PG_BUSY'd.
541 			 */
542 			unlock_map(&fs);
543 
544 			rv = faultcount ?
545 			    vm_pager_get_pages(fs.object, marray, faultcount,
546 				reqpage) : VM_PAGER_FAIL;
547 
548 			if (rv == VM_PAGER_OK) {
549 				/*
550 				 * Found the page. Leave it busy while we play
551 				 * with it.
552 				 */
553 
554 				/*
555 				 * Relookup in case pager changed page. Pager
556 				 * is responsible for disposition of old page
557 				 * if moved.
558 				 */
559 				fs.m = vm_page_lookup(fs.object, fs.pindex);
560 				if (!fs.m) {
561 					unlock_and_deallocate(&fs);
562 					goto RetryFault;
563 				}
564 
565 				hardfault++;
566 				break; /* break to PAGE HAS BEEN FOUND */
567 			}
568 			/*
569 			 * Remove the bogus page (which does not exist at this
570 			 * object/offset); before doing so, we must get back
571 			 * our object lock to preserve our invariant.
572 			 *
573 			 * Also wake up any other process that may want to bring
574 			 * in this page.
575 			 *
576 			 * If this is the top-level object, we must leave the
577 			 * busy page to prevent another process from rushing
578 			 * past us, and inserting the page in that object at
579 			 * the same time that we are.
580 			 */
581 			if (rv == VM_PAGER_ERROR)
582 				printf("vm_fault: pager read error, pid %d (%s)\n",
583 				    curproc->p_pid, curproc->p_comm);
584 			/*
585 			 * Data outside the range of the pager or an I/O error
586 			 */
587 			/*
588 			 * XXX - the check for kernel_map is a kludge to work
589 			 * around having the machine panic on a kernel space
590 			 * fault w/ I/O error.
591 			 */
592 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
593 				(rv == VM_PAGER_BAD)) {
594 				vm_page_lock_queues();
595 				vm_page_free(fs.m);
596 				vm_page_unlock_queues();
597 				fs.m = NULL;
598 				unlock_and_deallocate(&fs);
599 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
600 			}
601 			if (fs.object != fs.first_object) {
602 				vm_page_lock_queues();
603 				vm_page_free(fs.m);
604 				vm_page_unlock_queues();
605 				fs.m = NULL;
606 				/*
607 				 * XXX - we cannot just fall out at this
608 				 * point, m has been freed and is invalid!
609 				 */
610 			}
611 		}
612 
613 		/*
614 		 * We get here if the object has default pager (or unwiring)
615 		 * or the pager doesn't have the page.
616 		 */
617 		if (fs.object == fs.first_object)
618 			fs.first_m = fs.m;
619 
620 		/*
621 		 * Move on to the next object.  Lock the next object before
622 		 * unlocking the current one.
623 		 */
624 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
625 		next_object = fs.object->backing_object;
626 		if (next_object == NULL) {
627 			/*
628 			 * If there's no object left, fill the page in the top
629 			 * object with zeros.
630 			 */
631 			if (fs.object != fs.first_object) {
632 				vm_object_pip_wakeup(fs.object);
633 				VM_OBJECT_UNLOCK(fs.object);
634 
635 				fs.object = fs.first_object;
636 				fs.pindex = fs.first_pindex;
637 				fs.m = fs.first_m;
638 				VM_OBJECT_LOCK(fs.object);
639 			}
640 			fs.first_m = NULL;
641 
642 			/*
643 			 * Zero the page if necessary and mark it valid.
644 			 */
645 			if ((fs.m->flags & PG_ZERO) == 0) {
646 				pmap_zero_page(fs.m);
647 			} else {
648 				cnt.v_ozfod++;
649 			}
650 			cnt.v_zfod++;
651 			fs.m->valid = VM_PAGE_BITS_ALL;
652 			break;	/* break to PAGE HAS BEEN FOUND */
653 		} else {
654 			KASSERT(fs.object != next_object,
655 			    ("object loop %p", next_object));
656 			VM_OBJECT_LOCK(next_object);
657 			vm_object_pip_add(next_object, 1);
658 			if (fs.object != fs.first_object)
659 				vm_object_pip_wakeup(fs.object);
660 			VM_OBJECT_UNLOCK(fs.object);
661 			fs.object = next_object;
662 		}
663 	}
664 
665 	KASSERT((fs.m->flags & PG_BUSY) != 0,
666 	    ("vm_fault: not busy after main loop"));
667 
668 	/*
669 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
670 	 * is held.]
671 	 */
672 
673 	/*
674 	 * If the page is being written, but isn't already owned by the
675 	 * top-level object, we have to copy it into a new page owned by the
676 	 * top-level object.
677 	 */
678 	if (fs.object != fs.first_object) {
679 		/*
680 		 * We only really need to copy if we want to write it.
681 		 */
682 		if (fault_type & VM_PROT_WRITE) {
683 			/*
684 			 * This allows pages to be virtually copied from a
685 			 * backing_object into the first_object, where the
686 			 * backing object has no other refs to it, and cannot
687 			 * gain any more refs.  Instead of a bcopy, we just
688 			 * move the page from the backing object to the
689 			 * first object.  Note that we must mark the page
690 			 * dirty in the first object so that it will go out
691 			 * to swap when needed.
692 			 */
693 			is_first_object_locked = FALSE;
694 			if (
695 				/*
696 				 * Only one shadow object
697 				 */
698 				(fs.object->shadow_count == 1) &&
699 				/*
700 				 * No COW refs, except us
701 				 */
702 				(fs.object->ref_count == 1) &&
703 				/*
704 				 * No one else can look this object up
705 				 */
706 				(fs.object->handle == NULL) &&
707 				/*
708 				 * No other ways to look the object up
709 				 */
710 				((fs.object->type == OBJT_DEFAULT) ||
711 				 (fs.object->type == OBJT_SWAP)) &&
712 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
713 				/*
714 				 * We don't chase down the shadow chain
715 				 */
716 			    fs.object == fs.first_object->backing_object) {
717 				vm_page_lock_queues();
718 				/*
719 				 * get rid of the unnecessary page
720 				 */
721 				pmap_remove_all(fs.first_m);
722 				vm_page_free(fs.first_m);
723 				/*
724 				 * grab the page and put it into the
725 				 * process'es object.  The page is
726 				 * automatically made dirty.
727 				 */
728 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
729 				vm_page_busy(fs.m);
730 				vm_page_unlock_queues();
731 				fs.first_m = fs.m;
732 				fs.m = NULL;
733 				cnt.v_cow_optim++;
734 			} else {
735 				/*
736 				 * Oh, well, lets copy it.
737 				 */
738 				pmap_copy_page(fs.m, fs.first_m);
739 				fs.first_m->valid = VM_PAGE_BITS_ALL;
740 			}
741 			if (fs.m) {
742 				/*
743 				 * We no longer need the old page or object.
744 				 */
745 				release_page(&fs);
746 			}
747 			/*
748 			 * fs.object != fs.first_object due to above
749 			 * conditional
750 			 */
751 			vm_object_pip_wakeup(fs.object);
752 			VM_OBJECT_UNLOCK(fs.object);
753 			/*
754 			 * Only use the new page below...
755 			 */
756 			fs.object = fs.first_object;
757 			fs.pindex = fs.first_pindex;
758 			fs.m = fs.first_m;
759 			if (!is_first_object_locked)
760 				VM_OBJECT_LOCK(fs.object);
761 			cnt.v_cow_faults++;
762 		} else {
763 			prot &= ~VM_PROT_WRITE;
764 		}
765 	}
766 
767 	/*
768 	 * We must verify that the maps have not changed since our last
769 	 * lookup.
770 	 */
771 	if (!fs.lookup_still_valid &&
772 		(fs.map->timestamp != map_generation)) {
773 		vm_object_t retry_object;
774 		vm_pindex_t retry_pindex;
775 		vm_prot_t retry_prot;
776 
777 		/*
778 		 * Since map entries may be pageable, make sure we can take a
779 		 * page fault on them.
780 		 */
781 
782 		/*
783 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
784 		 * avoid a deadlock between the inode and exec_map that can
785 		 * occur due to locks being obtained in different orders.
786 		 */
787 		if (fs.vp != NULL) {
788 			vput(fs.vp);
789 			fs.vp = NULL;
790 		}
791 
792 		if (fs.map->infork) {
793 			release_page(&fs);
794 			unlock_and_deallocate(&fs);
795 			goto RetryFault;
796 		}
797 		VM_OBJECT_UNLOCK(fs.object);
798 
799 		/*
800 		 * To avoid trying to write_lock the map while another process
801 		 * has it read_locked (in vm_map_wire), we do not try for
802 		 * write permission.  If the page is still writable, we will
803 		 * get write permission.  If it is not, or has been marked
804 		 * needs_copy, we enter the mapping without write permission,
805 		 * and will merely take another fault.
806 		 */
807 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
808 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
809 		map_generation = fs.map->timestamp;
810 
811 		VM_OBJECT_LOCK(fs.object);
812 		/*
813 		 * If we don't need the page any longer, put it on the active
814 		 * list (the easiest thing to do here).  If no one needs it,
815 		 * pageout will grab it eventually.
816 		 */
817 		if (result != KERN_SUCCESS) {
818 			release_page(&fs);
819 			unlock_and_deallocate(&fs);
820 			return (result);
821 		}
822 		fs.lookup_still_valid = TRUE;
823 
824 		if ((retry_object != fs.first_object) ||
825 		    (retry_pindex != fs.first_pindex)) {
826 			release_page(&fs);
827 			unlock_and_deallocate(&fs);
828 			goto RetryFault;
829 		}
830 		/*
831 		 * Check whether the protection has changed or the object has
832 		 * been copied while we left the map unlocked. Changing from
833 		 * read to write permission is OK - we leave the page
834 		 * write-protected, and catch the write fault. Changing from
835 		 * write to read permission means that we can't mark the page
836 		 * write-enabled after all.
837 		 */
838 		prot &= retry_prot;
839 	}
840 
841 	/*
842 	 * Put this page into the physical map. We had to do the unlock above
843 	 * because pmap_enter may cause other faults.   We don't put the page
844 	 * back on the active queue until later so that the page-out daemon
845 	 * won't find us (yet).
846 	 */
847 
848 	if (prot & VM_PROT_WRITE) {
849 		vm_page_lock_queues();
850 		vm_page_flag_set(fs.m, PG_WRITEABLE);
851 		vm_object_set_writeable_dirty(fs.m->object);
852 
853 		/*
854 		 * If the fault is a write, we know that this page is being
855 		 * written NOW so dirty it explicitly to save on
856 		 * pmap_is_modified() calls later.
857 		 *
858 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
859 		 * if the page is already dirty to prevent data written with
860 		 * the expectation of being synced from not being synced.
861 		 * Likewise if this entry does not request NOSYNC then make
862 		 * sure the page isn't marked NOSYNC.  Applications sharing
863 		 * data should use the same flags to avoid ping ponging.
864 		 *
865 		 * Also tell the backing pager, if any, that it should remove
866 		 * any swap backing since the page is now dirty.
867 		 */
868 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
869 			if (fs.m->dirty == 0)
870 				vm_page_flag_set(fs.m, PG_NOSYNC);
871 		} else {
872 			vm_page_flag_clear(fs.m, PG_NOSYNC);
873 		}
874 		vm_page_unlock_queues();
875 		if (fault_flags & VM_FAULT_DIRTY) {
876 			int s;
877 			vm_page_dirty(fs.m);
878 			s = splvm();
879 			vm_pager_page_unswapped(fs.m);
880 			splx(s);
881 		}
882 	}
883 
884 	/*
885 	 * Page had better still be busy
886 	 */
887 	KASSERT(fs.m->flags & PG_BUSY,
888 		("vm_fault: page %p not busy!", fs.m));
889 	/*
890 	 * Sanity check: page must be completely valid or it is not fit to
891 	 * map into user space.  vm_pager_get_pages() ensures this.
892 	 */
893 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
894 		vm_page_zero_invalid(fs.m, TRUE);
895 		printf("Warning: page %p partially invalid on fault\n", fs.m);
896 	}
897 	unlock_things(&fs);
898 
899 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
900 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
901 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
902 	}
903 	mtx_unlock(&Giant);
904 	vm_page_lock_queues();
905 	vm_page_flag_clear(fs.m, PG_ZERO);
906 	vm_page_flag_set(fs.m, PG_REFERENCED);
907 
908 	/*
909 	 * If the page is not wired down, then put it where the pageout daemon
910 	 * can find it.
911 	 */
912 	if (fault_flags & VM_FAULT_WIRE_MASK) {
913 		if (wired)
914 			vm_page_wire(fs.m);
915 		else
916 			vm_page_unwire(fs.m, 1);
917 	} else {
918 		vm_page_activate(fs.m);
919 	}
920 	vm_page_wakeup(fs.m);
921 	vm_page_unlock_queues();
922 
923 	PROC_LOCK(curproc);
924 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
925 		if (hardfault) {
926 			curproc->p_stats->p_ru.ru_majflt++;
927 		} else {
928 			curproc->p_stats->p_ru.ru_minflt++;
929 		}
930 	}
931 	PROC_UNLOCK(curproc);
932 
933 	/*
934 	 * Unlock everything, and return
935 	 */
936 	vm_object_deallocate(fs.first_object);
937 	return (KERN_SUCCESS);
938 }
939 
940 /*
941  * vm_fault_prefault provides a quick way of clustering
942  * pagefaults into a processes address space.  It is a "cousin"
943  * of vm_map_pmap_enter, except it runs at page fault time instead
944  * of mmap time.
945  */
946 static void
947 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
948 {
949 	int i;
950 	vm_offset_t addr, starta;
951 	vm_pindex_t pindex;
952 	vm_page_t m, mpte;
953 	vm_object_t object;
954 
955 	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
956 		return;
957 
958 	object = entry->object.vm_object;
959 
960 	starta = addra - PFBAK * PAGE_SIZE;
961 	if (starta < entry->start) {
962 		starta = entry->start;
963 	} else if (starta > addra) {
964 		starta = 0;
965 	}
966 
967 	mpte = NULL;
968 	for (i = 0; i < PAGEORDER_SIZE; i++) {
969 		vm_object_t backing_object, lobject;
970 
971 		addr = addra + prefault_pageorder[i];
972 		if (addr > addra + (PFFOR * PAGE_SIZE))
973 			addr = 0;
974 
975 		if (addr < starta || addr >= entry->end)
976 			continue;
977 
978 		if (!pmap_is_prefaultable(pmap, addr))
979 			continue;
980 
981 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
982 		lobject = object;
983 		VM_OBJECT_LOCK(lobject);
984 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
985 		    lobject->type == OBJT_DEFAULT &&
986 		    (backing_object = lobject->backing_object) != NULL) {
987 			if (lobject->backing_object_offset & PAGE_MASK)
988 				break;
989 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
990 			VM_OBJECT_LOCK(backing_object);
991 			VM_OBJECT_UNLOCK(lobject);
992 			lobject = backing_object;
993 		}
994 		/*
995 		 * give-up when a page is not in memory
996 		 */
997 		if (m == NULL) {
998 			VM_OBJECT_UNLOCK(lobject);
999 			break;
1000 		}
1001 		vm_page_lock_queues();
1002 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1003 			(m->busy == 0) &&
1004 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1005 
1006 			if ((m->queue - m->pc) == PQ_CACHE) {
1007 				vm_page_deactivate(m);
1008 			}
1009 			vm_page_busy(m);
1010 			vm_page_unlock_queues();
1011 			VM_OBJECT_UNLOCK(lobject);
1012 			mpte = pmap_enter_quick(pmap, addr, m, mpte);
1013 			VM_OBJECT_LOCK(lobject);
1014 			vm_page_lock_queues();
1015 			vm_page_wakeup(m);
1016 		}
1017 		vm_page_unlock_queues();
1018 		VM_OBJECT_UNLOCK(lobject);
1019 	}
1020 }
1021 
1022 /*
1023  *	vm_fault_quick:
1024  *
1025  *	Ensure that the requested virtual address, which may be in userland,
1026  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1027  */
1028 int
1029 vm_fault_quick(caddr_t v, int prot)
1030 {
1031 	int r;
1032 
1033 	if (prot & VM_PROT_WRITE)
1034 		r = subyte(v, fubyte(v));
1035 	else
1036 		r = fubyte(v);
1037 	return(r);
1038 }
1039 
1040 /*
1041  *	vm_fault_wire:
1042  *
1043  *	Wire down a range of virtual addresses in a map.
1044  */
1045 int
1046 vm_fault_wire(map, start, end, user_wire)
1047 	vm_map_t map;
1048 	vm_offset_t start, end;
1049 	boolean_t user_wire;
1050 {
1051 	vm_offset_t va;
1052 	int rv;
1053 
1054 	/*
1055 	 * We simulate a fault to get the page and enter it in the physical
1056 	 * map.  For user wiring, we only ask for read access on currently
1057 	 * read-only sections.
1058 	 */
1059 	for (va = start; va < end; va += PAGE_SIZE) {
1060 		rv = vm_fault(map, va,
1061 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1062 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1063 		if (rv) {
1064 			if (va != start)
1065 				vm_fault_unwire(map, start, va);
1066 			return (rv);
1067 		}
1068 	}
1069 	return (KERN_SUCCESS);
1070 }
1071 
1072 /*
1073  *	vm_fault_unwire:
1074  *
1075  *	Unwire a range of virtual addresses in a map.
1076  */
1077 void
1078 vm_fault_unwire(map, start, end)
1079 	vm_map_t map;
1080 	vm_offset_t start, end;
1081 {
1082 	vm_paddr_t pa;
1083 	vm_offset_t va;
1084 	pmap_t pmap;
1085 
1086 	pmap = vm_map_pmap(map);
1087 
1088 	mtx_lock(&Giant);
1089 	/*
1090 	 * Since the pages are wired down, we must be able to get their
1091 	 * mappings from the physical map system.
1092 	 */
1093 	for (va = start; va < end; va += PAGE_SIZE) {
1094 		pa = pmap_extract(pmap, va);
1095 		if (pa != 0) {
1096 			pmap_change_wiring(pmap, va, FALSE);
1097 			vm_page_lock_queues();
1098 			vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1099 			vm_page_unlock_queues();
1100 		}
1101 	}
1102 	mtx_unlock(&Giant);
1103 }
1104 
1105 /*
1106  *	Routine:
1107  *		vm_fault_copy_entry
1108  *	Function:
1109  *		Copy all of the pages from a wired-down map entry to another.
1110  *
1111  *	In/out conditions:
1112  *		The source and destination maps must be locked for write.
1113  *		The source map entry must be wired down (or be a sharing map
1114  *		entry corresponding to a main map entry that is wired down).
1115  */
1116 void
1117 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1118 	vm_map_t dst_map;
1119 	vm_map_t src_map;
1120 	vm_map_entry_t dst_entry;
1121 	vm_map_entry_t src_entry;
1122 {
1123 	vm_object_t backing_object, dst_object, object;
1124 	vm_object_t src_object;
1125 	vm_ooffset_t dst_offset;
1126 	vm_ooffset_t src_offset;
1127 	vm_pindex_t pindex;
1128 	vm_prot_t prot;
1129 	vm_offset_t vaddr;
1130 	vm_page_t dst_m;
1131 	vm_page_t src_m;
1132 
1133 #ifdef	lint
1134 	src_map++;
1135 #endif	/* lint */
1136 
1137 	src_object = src_entry->object.vm_object;
1138 	src_offset = src_entry->offset;
1139 
1140 	/*
1141 	 * Create the top-level object for the destination entry. (Doesn't
1142 	 * actually shadow anything - we copy the pages directly.)
1143 	 */
1144 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1145 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1146 
1147 	VM_OBJECT_LOCK(dst_object);
1148 	dst_entry->object.vm_object = dst_object;
1149 	dst_entry->offset = 0;
1150 
1151 	prot = dst_entry->max_protection;
1152 
1153 	/*
1154 	 * Loop through all of the pages in the entry's range, copying each
1155 	 * one from the source object (it should be there) to the destination
1156 	 * object.
1157 	 */
1158 	for (vaddr = dst_entry->start, dst_offset = 0;
1159 	    vaddr < dst_entry->end;
1160 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1161 
1162 		/*
1163 		 * Allocate a page in the destination object
1164 		 */
1165 		do {
1166 			dst_m = vm_page_alloc(dst_object,
1167 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1168 			if (dst_m == NULL) {
1169 				VM_OBJECT_UNLOCK(dst_object);
1170 				VM_WAIT;
1171 				VM_OBJECT_LOCK(dst_object);
1172 			}
1173 		} while (dst_m == NULL);
1174 
1175 		/*
1176 		 * Find the page in the source object, and copy it in.
1177 		 * (Because the source is wired down, the page will be in
1178 		 * memory.)
1179 		 */
1180 		VM_OBJECT_LOCK(src_object);
1181 		object = src_object;
1182 		pindex = 0;
1183 		while ((src_m = vm_page_lookup(object, pindex +
1184 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1185 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1186 		    (backing_object = object->backing_object) != NULL) {
1187 			/*
1188 			 * Allow fallback to backing objects if we are reading.
1189 			 */
1190 			VM_OBJECT_LOCK(backing_object);
1191 			pindex += OFF_TO_IDX(object->backing_object_offset);
1192 			VM_OBJECT_UNLOCK(object);
1193 			object = backing_object;
1194 		}
1195 		if (src_m == NULL)
1196 			panic("vm_fault_copy_wired: page missing");
1197 		pmap_copy_page(src_m, dst_m);
1198 		VM_OBJECT_UNLOCK(object);
1199 		dst_m->valid = VM_PAGE_BITS_ALL;
1200 		VM_OBJECT_UNLOCK(dst_object);
1201 
1202 		/*
1203 		 * Enter it in the pmap...
1204 		 */
1205 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1206 		VM_OBJECT_LOCK(dst_object);
1207 		vm_page_lock_queues();
1208 		if ((prot & VM_PROT_WRITE) != 0)
1209 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1210 
1211 		/*
1212 		 * Mark it no longer busy, and put it on the active list.
1213 		 */
1214 		vm_page_activate(dst_m);
1215 		vm_page_wakeup(dst_m);
1216 		vm_page_unlock_queues();
1217 	}
1218 	VM_OBJECT_UNLOCK(dst_object);
1219 }
1220 
1221 
1222 /*
1223  * This routine checks around the requested page for other pages that
1224  * might be able to be faulted in.  This routine brackets the viable
1225  * pages for the pages to be paged in.
1226  *
1227  * Inputs:
1228  *	m, rbehind, rahead
1229  *
1230  * Outputs:
1231  *  marray (array of vm_page_t), reqpage (index of requested page)
1232  *
1233  * Return value:
1234  *  number of pages in marray
1235  *
1236  * This routine can't block.
1237  */
1238 static int
1239 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1240 	vm_page_t m;
1241 	int rbehind;
1242 	int rahead;
1243 	vm_page_t *marray;
1244 	int *reqpage;
1245 {
1246 	int i,j;
1247 	vm_object_t object;
1248 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1249 	vm_page_t rtm;
1250 	int cbehind, cahead;
1251 
1252 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1253 
1254 	object = m->object;
1255 	pindex = m->pindex;
1256 
1257 	/*
1258 	 * we don't fault-ahead for device pager
1259 	 */
1260 	if (object->type == OBJT_DEVICE) {
1261 		*reqpage = 0;
1262 		marray[0] = m;
1263 		return 1;
1264 	}
1265 
1266 	/*
1267 	 * if the requested page is not available, then give up now
1268 	 */
1269 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1270 		return 0;
1271 	}
1272 
1273 	if ((cbehind == 0) && (cahead == 0)) {
1274 		*reqpage = 0;
1275 		marray[0] = m;
1276 		return 1;
1277 	}
1278 
1279 	if (rahead > cahead) {
1280 		rahead = cahead;
1281 	}
1282 
1283 	if (rbehind > cbehind) {
1284 		rbehind = cbehind;
1285 	}
1286 
1287 	/*
1288 	 * try to do any readahead that we might have free pages for.
1289 	 */
1290 	if ((rahead + rbehind) >
1291 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1292 		pagedaemon_wakeup();
1293 		marray[0] = m;
1294 		*reqpage = 0;
1295 		return 1;
1296 	}
1297 
1298 	/*
1299 	 * scan backward for the read behind pages -- in memory
1300 	 */
1301 	if (pindex > 0) {
1302 		if (rbehind > pindex) {
1303 			rbehind = pindex;
1304 			startpindex = 0;
1305 		} else {
1306 			startpindex = pindex - rbehind;
1307 		}
1308 
1309 		for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1310 			if (vm_page_lookup(object, tpindex)) {
1311 				startpindex = tpindex + 1;
1312 				break;
1313 			}
1314 			if (tpindex == 0)
1315 				break;
1316 		}
1317 
1318 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1319 
1320 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1321 			if (rtm == NULL) {
1322 				vm_page_lock_queues();
1323 				for (j = 0; j < i; j++) {
1324 					vm_page_free(marray[j]);
1325 				}
1326 				vm_page_unlock_queues();
1327 				marray[0] = m;
1328 				*reqpage = 0;
1329 				return 1;
1330 			}
1331 
1332 			marray[i] = rtm;
1333 		}
1334 	} else {
1335 		startpindex = 0;
1336 		i = 0;
1337 	}
1338 
1339 	marray[i] = m;
1340 	/* page offset of the required page */
1341 	*reqpage = i;
1342 
1343 	tpindex = pindex + 1;
1344 	i++;
1345 
1346 	/*
1347 	 * scan forward for the read ahead pages
1348 	 */
1349 	endpindex = tpindex + rahead;
1350 	if (endpindex > object->size)
1351 		endpindex = object->size;
1352 
1353 	for (; tpindex < endpindex; i++, tpindex++) {
1354 
1355 		if (vm_page_lookup(object, tpindex)) {
1356 			break;
1357 		}
1358 
1359 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1360 		if (rtm == NULL) {
1361 			break;
1362 		}
1363 
1364 		marray[i] = rtm;
1365 	}
1366 
1367 	/* return number of bytes of pages */
1368 	return i;
1369 }
1370