xref: /freebsd/sys/vm/vm_fault.c (revision 4928135658a9d0eaee37003df6137ab363fcb0b4)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/proc.h>
88 #include <sys/racct.h>
89 #include <sys/resourcevar.h>
90 #include <sys/rwlock.h>
91 #include <sys/sysctl.h>
92 #include <sys/vmmeter.h>
93 #include <sys/vnode.h>
94 #ifdef KTRACE
95 #include <sys/ktrace.h>
96 #endif
97 
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/pmap.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_kern.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_reserv.h>
109 
110 #define PFBAK 4
111 #define PFFOR 4
112 
113 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
114 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
115 
116 #define	VM_FAULT_DONTNEED_MIN	1048576
117 
118 struct faultstate {
119 	vm_page_t m;
120 	vm_object_t object;
121 	vm_pindex_t pindex;
122 	vm_page_t first_m;
123 	vm_object_t	first_object;
124 	vm_pindex_t first_pindex;
125 	vm_map_t map;
126 	vm_map_entry_t entry;
127 	int map_generation;
128 	bool lookup_still_valid;
129 	struct vnode *vp;
130 };
131 
132 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
133 	    int ahead);
134 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
135 	    int backward, int forward, bool obj_locked);
136 
137 static inline void
138 release_page(struct faultstate *fs)
139 {
140 
141 	vm_page_xunbusy(fs->m);
142 	vm_page_lock(fs->m);
143 	vm_page_deactivate(fs->m);
144 	vm_page_unlock(fs->m);
145 	fs->m = NULL;
146 }
147 
148 static inline void
149 unlock_map(struct faultstate *fs)
150 {
151 
152 	if (fs->lookup_still_valid) {
153 		vm_map_lookup_done(fs->map, fs->entry);
154 		fs->lookup_still_valid = false;
155 	}
156 }
157 
158 static void
159 unlock_vp(struct faultstate *fs)
160 {
161 
162 	if (fs->vp != NULL) {
163 		vput(fs->vp);
164 		fs->vp = NULL;
165 	}
166 }
167 
168 static void
169 unlock_and_deallocate(struct faultstate *fs)
170 {
171 
172 	vm_object_pip_wakeup(fs->object);
173 	VM_OBJECT_WUNLOCK(fs->object);
174 	if (fs->object != fs->first_object) {
175 		VM_OBJECT_WLOCK(fs->first_object);
176 		vm_page_lock(fs->first_m);
177 		vm_page_free(fs->first_m);
178 		vm_page_unlock(fs->first_m);
179 		vm_object_pip_wakeup(fs->first_object);
180 		VM_OBJECT_WUNLOCK(fs->first_object);
181 		fs->first_m = NULL;
182 	}
183 	vm_object_deallocate(fs->first_object);
184 	unlock_map(fs);
185 	unlock_vp(fs);
186 }
187 
188 static void
189 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
190     vm_prot_t fault_type, int fault_flags, bool set_wd)
191 {
192 	bool need_dirty;
193 
194 	if (((prot & VM_PROT_WRITE) == 0 &&
195 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
196 	    (m->oflags & VPO_UNMANAGED) != 0)
197 		return;
198 
199 	VM_OBJECT_ASSERT_LOCKED(m->object);
200 
201 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
202 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
203 	    (fault_flags & VM_FAULT_DIRTY) != 0;
204 
205 	if (set_wd)
206 		vm_object_set_writeable_dirty(m->object);
207 	else
208 		/*
209 		 * If two callers of vm_fault_dirty() with set_wd ==
210 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
211 		 * flag set, other with flag clear, race, it is
212 		 * possible for the no-NOSYNC thread to see m->dirty
213 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
214 		 * around manipulation of VPO_NOSYNC and
215 		 * vm_page_dirty() call, to avoid the race and keep
216 		 * m->oflags consistent.
217 		 */
218 		vm_page_lock(m);
219 
220 	/*
221 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
222 	 * if the page is already dirty to prevent data written with
223 	 * the expectation of being synced from not being synced.
224 	 * Likewise if this entry does not request NOSYNC then make
225 	 * sure the page isn't marked NOSYNC.  Applications sharing
226 	 * data should use the same flags to avoid ping ponging.
227 	 */
228 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
229 		if (m->dirty == 0) {
230 			m->oflags |= VPO_NOSYNC;
231 		}
232 	} else {
233 		m->oflags &= ~VPO_NOSYNC;
234 	}
235 
236 	/*
237 	 * If the fault is a write, we know that this page is being
238 	 * written NOW so dirty it explicitly to save on
239 	 * pmap_is_modified() calls later.
240 	 *
241 	 * Also, since the page is now dirty, we can possibly tell
242 	 * the pager to release any swap backing the page.  Calling
243 	 * the pager requires a write lock on the object.
244 	 */
245 	if (need_dirty)
246 		vm_page_dirty(m);
247 	if (!set_wd)
248 		vm_page_unlock(m);
249 	else if (need_dirty)
250 		vm_pager_page_unswapped(m);
251 }
252 
253 static void
254 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m)
255 {
256 
257 	if (m_hold != NULL) {
258 		*m_hold = m;
259 		vm_page_lock(m);
260 		vm_page_hold(m);
261 		vm_page_unlock(m);
262 	}
263 }
264 
265 /*
266  * Unlocks fs.first_object and fs.map on success.
267  */
268 static int
269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot,
270     int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold)
271 {
272 	vm_page_t m, m_map;
273 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
274 	vm_page_t m_super;
275 	int flags;
276 #endif
277 	int psind, rv;
278 
279 	MPASS(fs->vp == NULL);
280 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
281 	/* A busy page can be mapped for read|execute access. */
282 	if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
283 	    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
284 		return (KERN_FAILURE);
285 	m_map = m;
286 	psind = 0;
287 #if defined(__amd64__) && VM_NRESERVLEVEL > 0
288 	if ((m->flags & PG_FICTITIOUS) == 0 &&
289 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
290 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
291 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
292 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
293 	    (pagesizes[m_super->psind] - 1)) &&
294 	    pmap_ps_enabled(fs->map->pmap)) {
295 		flags = PS_ALL_VALID;
296 		if ((prot & VM_PROT_WRITE) != 0) {
297 			/*
298 			 * Create a superpage mapping allowing write access
299 			 * only if none of the constituent pages are busy and
300 			 * all of them are already dirty (except possibly for
301 			 * the page that was faulted on).
302 			 */
303 			flags |= PS_NONE_BUSY;
304 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
305 				flags |= PS_ALL_DIRTY;
306 		}
307 		if (vm_page_ps_test(m_super, flags, m)) {
308 			m_map = m_super;
309 			psind = m_super->psind;
310 			vaddr = rounddown2(vaddr, pagesizes[psind]);
311 			/* Preset the modified bit for dirty superpages. */
312 			if ((flags & PS_ALL_DIRTY) != 0)
313 				fault_type |= VM_PROT_WRITE;
314 		}
315 	}
316 #endif
317 	rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type |
318 	    PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind);
319 	if (rv != KERN_SUCCESS)
320 		return (rv);
321 	vm_fault_fill_hold(m_hold, m);
322 	vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false);
323 	if (psind == 0 && !wired)
324 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
325 	VM_OBJECT_RUNLOCK(fs->first_object);
326 	vm_map_lookup_done(fs->map, fs->entry);
327 	curthread->td_ru.ru_minflt++;
328 	return (KERN_SUCCESS);
329 }
330 
331 static void
332 vm_fault_restore_map_lock(struct faultstate *fs)
333 {
334 
335 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
336 	MPASS(fs->first_object->paging_in_progress > 0);
337 
338 	if (!vm_map_trylock_read(fs->map)) {
339 		VM_OBJECT_WUNLOCK(fs->first_object);
340 		vm_map_lock_read(fs->map);
341 		VM_OBJECT_WLOCK(fs->first_object);
342 	}
343 	fs->lookup_still_valid = true;
344 }
345 
346 static void
347 vm_fault_populate_check_page(vm_page_t m)
348 {
349 
350 	/*
351 	 * Check each page to ensure that the pager is obeying the
352 	 * interface: the page must be installed in the object, fully
353 	 * valid, and exclusively busied.
354 	 */
355 	MPASS(m != NULL);
356 	MPASS(m->valid == VM_PAGE_BITS_ALL);
357 	MPASS(vm_page_xbusied(m));
358 }
359 
360 static void
361 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
362     vm_pindex_t last)
363 {
364 	vm_page_t m;
365 	vm_pindex_t pidx;
366 
367 	VM_OBJECT_ASSERT_WLOCKED(object);
368 	MPASS(first <= last);
369 	for (pidx = first, m = vm_page_lookup(object, pidx);
370 	    pidx <= last; pidx++, m = vm_page_next(m)) {
371 		vm_fault_populate_check_page(m);
372 		vm_page_lock(m);
373 		vm_page_deactivate(m);
374 		vm_page_unlock(m);
375 		vm_page_xunbusy(m);
376 	}
377 }
378 
379 static int
380 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type,
381     int fault_flags, boolean_t wired, vm_page_t *m_hold)
382 {
383 	struct mtx *m_mtx;
384 	vm_offset_t vaddr;
385 	vm_page_t m;
386 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
387 	int i, npages, psind, rv;
388 
389 	MPASS(fs->object == fs->first_object);
390 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
391 	MPASS(fs->first_object->paging_in_progress > 0);
392 	MPASS(fs->first_object->backing_object == NULL);
393 	MPASS(fs->lookup_still_valid);
394 
395 	pager_first = OFF_TO_IDX(fs->entry->offset);
396 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
397 	unlock_map(fs);
398 	unlock_vp(fs);
399 
400 	/*
401 	 * Call the pager (driver) populate() method.
402 	 *
403 	 * There is no guarantee that the method will be called again
404 	 * if the current fault is for read, and a future fault is
405 	 * for write.  Report the entry's maximum allowed protection
406 	 * to the driver.
407 	 */
408 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
409 	    fault_type, fs->entry->max_protection, &pager_first, &pager_last);
410 
411 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
412 	if (rv == VM_PAGER_BAD) {
413 		/*
414 		 * VM_PAGER_BAD is the backdoor for a pager to request
415 		 * normal fault handling.
416 		 */
417 		vm_fault_restore_map_lock(fs);
418 		if (fs->map->timestamp != fs->map_generation)
419 			return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
420 		return (KERN_NOT_RECEIVER);
421 	}
422 	if (rv != VM_PAGER_OK)
423 		return (KERN_FAILURE); /* AKA SIGSEGV */
424 
425 	/* Ensure that the driver is obeying the interface. */
426 	MPASS(pager_first <= pager_last);
427 	MPASS(fs->first_pindex <= pager_last);
428 	MPASS(fs->first_pindex >= pager_first);
429 	MPASS(pager_last < fs->first_object->size);
430 
431 	vm_fault_restore_map_lock(fs);
432 	if (fs->map->timestamp != fs->map_generation) {
433 		vm_fault_populate_cleanup(fs->first_object, pager_first,
434 		    pager_last);
435 		return (KERN_RESOURCE_SHORTAGE); /* RetryFault */
436 	}
437 
438 	/*
439 	 * The map is unchanged after our last unlock.  Process the fault.
440 	 *
441 	 * The range [pager_first, pager_last] that is given to the
442 	 * pager is only a hint.  The pager may populate any range
443 	 * within the object that includes the requested page index.
444 	 * In case the pager expanded the range, clip it to fit into
445 	 * the map entry.
446 	 */
447 	map_first = OFF_TO_IDX(fs->entry->offset);
448 	if (map_first > pager_first) {
449 		vm_fault_populate_cleanup(fs->first_object, pager_first,
450 		    map_first - 1);
451 		pager_first = map_first;
452 	}
453 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
454 	if (map_last < pager_last) {
455 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
456 		    pager_last);
457 		pager_last = map_last;
458 	}
459 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
460 	    pidx <= pager_last;
461 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
462 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
463 #if defined(__amd64__)
464 		psind = m->psind;
465 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
466 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
467 		    !pmap_ps_enabled(fs->map->pmap)))
468 			psind = 0;
469 #else
470 		psind = 0;
471 #endif
472 		npages = atop(pagesizes[psind]);
473 		for (i = 0; i < npages; i++) {
474 			vm_fault_populate_check_page(&m[i]);
475 			vm_fault_dirty(fs->entry, &m[i], prot, fault_type,
476 			    fault_flags, true);
477 		}
478 		VM_OBJECT_WUNLOCK(fs->first_object);
479 		pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | (wired ?
480 		    PMAP_ENTER_WIRED : 0), psind);
481 		VM_OBJECT_WLOCK(fs->first_object);
482 		m_mtx = NULL;
483 		for (i = 0; i < npages; i++) {
484 			vm_page_change_lock(&m[i], &m_mtx);
485 			if ((fault_flags & VM_FAULT_WIRE) != 0) {
486 				KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
487 				vm_page_wire(&m[i]);
488 			} else
489 				vm_page_activate(&m[i]);
490 			if (m_hold != NULL && m[i].pindex == fs->first_pindex) {
491 				*m_hold = &m[i];
492 				vm_page_hold(&m[i]);
493 			}
494 			vm_page_xunbusy(&m[i]);
495 		}
496 		if (m_mtx != NULL)
497 			mtx_unlock(m_mtx);
498 	}
499 	curthread->td_ru.ru_majflt++;
500 	return (KERN_SUCCESS);
501 }
502 
503 /*
504  *	vm_fault:
505  *
506  *	Handle a page fault occurring at the given address,
507  *	requiring the given permissions, in the map specified.
508  *	If successful, the page is inserted into the
509  *	associated physical map.
510  *
511  *	NOTE: the given address should be truncated to the
512  *	proper page address.
513  *
514  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
515  *	a standard error specifying why the fault is fatal is returned.
516  *
517  *	The map in question must be referenced, and remains so.
518  *	Caller may hold no locks.
519  */
520 int
521 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
522     int fault_flags)
523 {
524 	struct thread *td;
525 	int result;
526 
527 	td = curthread;
528 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
529 		return (KERN_PROTECTION_FAILURE);
530 #ifdef KTRACE
531 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
532 		ktrfault(vaddr, fault_type);
533 #endif
534 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
535 	    NULL);
536 #ifdef KTRACE
537 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
538 		ktrfaultend(result);
539 #endif
540 	return (result);
541 }
542 
543 int
544 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
545     int fault_flags, vm_page_t *m_hold)
546 {
547 	struct faultstate fs;
548 	struct vnode *vp;
549 	vm_object_t next_object, retry_object;
550 	vm_offset_t e_end, e_start;
551 	vm_pindex_t retry_pindex;
552 	vm_prot_t prot, retry_prot;
553 	int ahead, alloc_req, behind, cluster_offset, error, era, faultcount;
554 	int locked, nera, result, rv;
555 	u_char behavior;
556 	boolean_t wired;	/* Passed by reference. */
557 	bool dead, hardfault, is_first_object_locked;
558 
559 	VM_CNT_INC(v_vm_faults);
560 	fs.vp = NULL;
561 	faultcount = 0;
562 	nera = -1;
563 	hardfault = false;
564 
565 RetryFault:;
566 
567 	/*
568 	 * Find the backing store object and offset into it to begin the
569 	 * search.
570 	 */
571 	fs.map = map;
572 	result = vm_map_lookup(&fs.map, vaddr, fault_type |
573 	    VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object,
574 	    &fs.first_pindex, &prot, &wired);
575 	if (result != KERN_SUCCESS) {
576 		unlock_vp(&fs);
577 		return (result);
578 	}
579 
580 	fs.map_generation = fs.map->timestamp;
581 
582 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
583 		panic("%s: fault on nofault entry, addr: %#lx",
584 		    __func__, (u_long)vaddr);
585 	}
586 
587 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
588 	    fs.entry->wiring_thread != curthread) {
589 		vm_map_unlock_read(fs.map);
590 		vm_map_lock(fs.map);
591 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
592 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
593 			unlock_vp(&fs);
594 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
595 			vm_map_unlock_and_wait(fs.map, 0);
596 		} else
597 			vm_map_unlock(fs.map);
598 		goto RetryFault;
599 	}
600 
601 	MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0);
602 
603 	if (wired)
604 		fault_type = prot | (fault_type & VM_PROT_COPY);
605 	else
606 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
607 		    ("!wired && VM_FAULT_WIRE"));
608 
609 	/*
610 	 * Try to avoid lock contention on the top-level object through
611 	 * special-case handling of some types of page faults, specifically,
612 	 * those that are both (1) mapping an existing page from the top-
613 	 * level object and (2) not having to mark that object as containing
614 	 * dirty pages.  Under these conditions, a read lock on the top-level
615 	 * object suffices, allowing multiple page faults of a similar type to
616 	 * run in parallel on the same top-level object.
617 	 */
618 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
619 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
620 	    /* avoid calling vm_object_set_writeable_dirty() */
621 	    ((prot & VM_PROT_WRITE) == 0 ||
622 	    (fs.first_object->type != OBJT_VNODE &&
623 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
624 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
625 		VM_OBJECT_RLOCK(fs.first_object);
626 		if ((prot & VM_PROT_WRITE) == 0 ||
627 		    (fs.first_object->type != OBJT_VNODE &&
628 		    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
629 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) {
630 			rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type,
631 			    fault_flags, wired, m_hold);
632 			if (rv == KERN_SUCCESS)
633 				return (rv);
634 		}
635 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
636 			VM_OBJECT_RUNLOCK(fs.first_object);
637 			VM_OBJECT_WLOCK(fs.first_object);
638 		}
639 	} else {
640 		VM_OBJECT_WLOCK(fs.first_object);
641 	}
642 
643 	/*
644 	 * Make a reference to this object to prevent its disposal while we
645 	 * are messing with it.  Once we have the reference, the map is free
646 	 * to be diddled.  Since objects reference their shadows (and copies),
647 	 * they will stay around as well.
648 	 *
649 	 * Bump the paging-in-progress count to prevent size changes (e.g.
650 	 * truncation operations) during I/O.
651 	 */
652 	vm_object_reference_locked(fs.first_object);
653 	vm_object_pip_add(fs.first_object, 1);
654 
655 	fs.lookup_still_valid = true;
656 
657 	fs.first_m = NULL;
658 
659 	/*
660 	 * Search for the page at object/offset.
661 	 */
662 	fs.object = fs.first_object;
663 	fs.pindex = fs.first_pindex;
664 	while (TRUE) {
665 		/*
666 		 * If the object is marked for imminent termination,
667 		 * we retry here, since the collapse pass has raced
668 		 * with us.  Otherwise, if we see terminally dead
669 		 * object, return fail.
670 		 */
671 		if ((fs.object->flags & OBJ_DEAD) != 0) {
672 			dead = fs.object->type == OBJT_DEAD;
673 			unlock_and_deallocate(&fs);
674 			if (dead)
675 				return (KERN_PROTECTION_FAILURE);
676 			pause("vmf_de", 1);
677 			goto RetryFault;
678 		}
679 
680 		/*
681 		 * See if page is resident
682 		 */
683 		fs.m = vm_page_lookup(fs.object, fs.pindex);
684 		if (fs.m != NULL) {
685 			/*
686 			 * Wait/Retry if the page is busy.  We have to do this
687 			 * if the page is either exclusive or shared busy
688 			 * because the vm_pager may be using read busy for
689 			 * pageouts (and even pageins if it is the vnode
690 			 * pager), and we could end up trying to pagein and
691 			 * pageout the same page simultaneously.
692 			 *
693 			 * We can theoretically allow the busy case on a read
694 			 * fault if the page is marked valid, but since such
695 			 * pages are typically already pmap'd, putting that
696 			 * special case in might be more effort then it is
697 			 * worth.  We cannot under any circumstances mess
698 			 * around with a shared busied page except, perhaps,
699 			 * to pmap it.
700 			 */
701 			if (vm_page_busied(fs.m)) {
702 				/*
703 				 * Reference the page before unlocking and
704 				 * sleeping so that the page daemon is less
705 				 * likely to reclaim it.
706 				 */
707 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
708 				if (fs.object != fs.first_object) {
709 					if (!VM_OBJECT_TRYWLOCK(
710 					    fs.first_object)) {
711 						VM_OBJECT_WUNLOCK(fs.object);
712 						VM_OBJECT_WLOCK(fs.first_object);
713 						VM_OBJECT_WLOCK(fs.object);
714 					}
715 					vm_page_lock(fs.first_m);
716 					vm_page_free(fs.first_m);
717 					vm_page_unlock(fs.first_m);
718 					vm_object_pip_wakeup(fs.first_object);
719 					VM_OBJECT_WUNLOCK(fs.first_object);
720 					fs.first_m = NULL;
721 				}
722 				unlock_map(&fs);
723 				if (fs.m == vm_page_lookup(fs.object,
724 				    fs.pindex)) {
725 					vm_page_sleep_if_busy(fs.m, "vmpfw");
726 				}
727 				vm_object_pip_wakeup(fs.object);
728 				VM_OBJECT_WUNLOCK(fs.object);
729 				VM_CNT_INC(v_intrans);
730 				vm_object_deallocate(fs.first_object);
731 				goto RetryFault;
732 			}
733 
734 			/*
735 			 * Mark page busy for other processes, and the
736 			 * pagedaemon.  If it still isn't completely valid
737 			 * (readable), jump to readrest, else break-out ( we
738 			 * found the page ).
739 			 */
740 			vm_page_xbusy(fs.m);
741 			if (fs.m->valid != VM_PAGE_BITS_ALL)
742 				goto readrest;
743 			break; /* break to PAGE HAS BEEN FOUND */
744 		}
745 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
746 
747 		/*
748 		 * Page is not resident.  If the pager might contain the page
749 		 * or this is the beginning of the search, allocate a new
750 		 * page.  (Default objects are zero-fill, so there is no real
751 		 * pager for them.)
752 		 */
753 		if (fs.object->type != OBJT_DEFAULT ||
754 		    fs.object == fs.first_object) {
755 			if (fs.pindex >= fs.object->size) {
756 				unlock_and_deallocate(&fs);
757 				return (KERN_PROTECTION_FAILURE);
758 			}
759 
760 			if (fs.object == fs.first_object &&
761 			    (fs.first_object->flags & OBJ_POPULATE) != 0 &&
762 			    fs.first_object->shadow_count == 0) {
763 				rv = vm_fault_populate(&fs, prot, fault_type,
764 				    fault_flags, wired, m_hold);
765 				switch (rv) {
766 				case KERN_SUCCESS:
767 				case KERN_FAILURE:
768 					unlock_and_deallocate(&fs);
769 					return (rv);
770 				case KERN_RESOURCE_SHORTAGE:
771 					unlock_and_deallocate(&fs);
772 					goto RetryFault;
773 				case KERN_NOT_RECEIVER:
774 					/*
775 					 * Pager's populate() method
776 					 * returned VM_PAGER_BAD.
777 					 */
778 					break;
779 				default:
780 					panic("inconsistent return codes");
781 				}
782 			}
783 
784 			/*
785 			 * Allocate a new page for this object/offset pair.
786 			 *
787 			 * Unlocked read of the p_flag is harmless. At
788 			 * worst, the P_KILLED might be not observed
789 			 * there, and allocation can fail, causing
790 			 * restart and new reading of the p_flag.
791 			 */
792 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
793 #if VM_NRESERVLEVEL > 0
794 				vm_object_color(fs.object, atop(vaddr) -
795 				    fs.pindex);
796 #endif
797 				alloc_req = P_KILLED(curproc) ?
798 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
799 				if (fs.object->type != OBJT_VNODE &&
800 				    fs.object->backing_object == NULL)
801 					alloc_req |= VM_ALLOC_ZERO;
802 				fs.m = vm_page_alloc(fs.object, fs.pindex,
803 				    alloc_req);
804 			}
805 			if (fs.m == NULL) {
806 				unlock_and_deallocate(&fs);
807 				vm_waitpfault();
808 				goto RetryFault;
809 			}
810 		}
811 
812 readrest:
813 		/*
814 		 * At this point, we have either allocated a new page or found
815 		 * an existing page that is only partially valid.
816 		 *
817 		 * We hold a reference on the current object and the page is
818 		 * exclusive busied.
819 		 */
820 
821 		/*
822 		 * If the pager for the current object might have the page,
823 		 * then determine the number of additional pages to read and
824 		 * potentially reprioritize previously read pages for earlier
825 		 * reclamation.  These operations should only be performed
826 		 * once per page fault.  Even if the current pager doesn't
827 		 * have the page, the number of additional pages to read will
828 		 * apply to subsequent objects in the shadow chain.
829 		 */
830 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
831 		    !P_KILLED(curproc)) {
832 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
833 			era = fs.entry->read_ahead;
834 			behavior = vm_map_entry_behavior(fs.entry);
835 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
836 				nera = 0;
837 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
838 				nera = VM_FAULT_READ_AHEAD_MAX;
839 				if (vaddr == fs.entry->next_read)
840 					vm_fault_dontneed(&fs, vaddr, nera);
841 			} else if (vaddr == fs.entry->next_read) {
842 				/*
843 				 * This is a sequential fault.  Arithmetically
844 				 * increase the requested number of pages in
845 				 * the read-ahead window.  The requested
846 				 * number of pages is "# of sequential faults
847 				 * x (read ahead min + 1) + read ahead min"
848 				 */
849 				nera = VM_FAULT_READ_AHEAD_MIN;
850 				if (era > 0) {
851 					nera += era + 1;
852 					if (nera > VM_FAULT_READ_AHEAD_MAX)
853 						nera = VM_FAULT_READ_AHEAD_MAX;
854 				}
855 				if (era == VM_FAULT_READ_AHEAD_MAX)
856 					vm_fault_dontneed(&fs, vaddr, nera);
857 			} else {
858 				/*
859 				 * This is a non-sequential fault.
860 				 */
861 				nera = 0;
862 			}
863 			if (era != nera) {
864 				/*
865 				 * A read lock on the map suffices to update
866 				 * the read ahead count safely.
867 				 */
868 				fs.entry->read_ahead = nera;
869 			}
870 
871 			/*
872 			 * Prepare for unlocking the map.  Save the map
873 			 * entry's start and end addresses, which are used to
874 			 * optimize the size of the pager operation below.
875 			 * Even if the map entry's addresses change after
876 			 * unlocking the map, using the saved addresses is
877 			 * safe.
878 			 */
879 			e_start = fs.entry->start;
880 			e_end = fs.entry->end;
881 		}
882 
883 		/*
884 		 * Call the pager to retrieve the page if there is a chance
885 		 * that the pager has it, and potentially retrieve additional
886 		 * pages at the same time.
887 		 */
888 		if (fs.object->type != OBJT_DEFAULT) {
889 			/*
890 			 * Release the map lock before locking the vnode or
891 			 * sleeping in the pager.  (If the current object has
892 			 * a shadow, then an earlier iteration of this loop
893 			 * may have already unlocked the map.)
894 			 */
895 			unlock_map(&fs);
896 
897 			if (fs.object->type == OBJT_VNODE &&
898 			    (vp = fs.object->handle) != fs.vp) {
899 				/*
900 				 * Perform an unlock in case the desired vnode
901 				 * changed while the map was unlocked during a
902 				 * retry.
903 				 */
904 				unlock_vp(&fs);
905 
906 				locked = VOP_ISLOCKED(vp);
907 				if (locked != LK_EXCLUSIVE)
908 					locked = LK_SHARED;
909 
910 				/*
911 				 * We must not sleep acquiring the vnode lock
912 				 * while we have the page exclusive busied or
913 				 * the object's paging-in-progress count
914 				 * incremented.  Otherwise, we could deadlock.
915 				 */
916 				error = vget(vp, locked | LK_CANRECURSE |
917 				    LK_NOWAIT, curthread);
918 				if (error != 0) {
919 					vhold(vp);
920 					release_page(&fs);
921 					unlock_and_deallocate(&fs);
922 					error = vget(vp, locked | LK_RETRY |
923 					    LK_CANRECURSE, curthread);
924 					vdrop(vp);
925 					fs.vp = vp;
926 					KASSERT(error == 0,
927 					    ("vm_fault: vget failed"));
928 					goto RetryFault;
929 				}
930 				fs.vp = vp;
931 			}
932 			KASSERT(fs.vp == NULL || !fs.map->system_map,
933 			    ("vm_fault: vnode-backed object mapped by system map"));
934 
935 			/*
936 			 * Page in the requested page and hint the pager,
937 			 * that it may bring up surrounding pages.
938 			 */
939 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
940 			    P_KILLED(curproc)) {
941 				behind = 0;
942 				ahead = 0;
943 			} else {
944 				/* Is this a sequential fault? */
945 				if (nera > 0) {
946 					behind = 0;
947 					ahead = nera;
948 				} else {
949 					/*
950 					 * Request a cluster of pages that is
951 					 * aligned to a VM_FAULT_READ_DEFAULT
952 					 * page offset boundary within the
953 					 * object.  Alignment to a page offset
954 					 * boundary is more likely to coincide
955 					 * with the underlying file system
956 					 * block than alignment to a virtual
957 					 * address boundary.
958 					 */
959 					cluster_offset = fs.pindex %
960 					    VM_FAULT_READ_DEFAULT;
961 					behind = ulmin(cluster_offset,
962 					    atop(vaddr - e_start));
963 					ahead = VM_FAULT_READ_DEFAULT - 1 -
964 					    cluster_offset;
965 				}
966 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
967 			}
968 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
969 			    &behind, &ahead);
970 			if (rv == VM_PAGER_OK) {
971 				faultcount = behind + 1 + ahead;
972 				hardfault = true;
973 				break; /* break to PAGE HAS BEEN FOUND */
974 			}
975 			if (rv == VM_PAGER_ERROR)
976 				printf("vm_fault: pager read error, pid %d (%s)\n",
977 				    curproc->p_pid, curproc->p_comm);
978 
979 			/*
980 			 * If an I/O error occurred or the requested page was
981 			 * outside the range of the pager, clean up and return
982 			 * an error.
983 			 */
984 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
985 				vm_page_lock(fs.m);
986 				if (fs.m->wire_count == 0)
987 					vm_page_free(fs.m);
988 				else
989 					vm_page_xunbusy_maybelocked(fs.m);
990 				vm_page_unlock(fs.m);
991 				fs.m = NULL;
992 				unlock_and_deallocate(&fs);
993 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
994 				    KERN_PROTECTION_FAILURE);
995 			}
996 
997 			/*
998 			 * The requested page does not exist at this object/
999 			 * offset.  Remove the invalid page from the object,
1000 			 * waking up anyone waiting for it, and continue on to
1001 			 * the next object.  However, if this is the top-level
1002 			 * object, we must leave the busy page in place to
1003 			 * prevent another process from rushing past us, and
1004 			 * inserting the page in that object at the same time
1005 			 * that we are.
1006 			 */
1007 			if (fs.object != fs.first_object) {
1008 				vm_page_lock(fs.m);
1009 				if (fs.m->wire_count == 0)
1010 					vm_page_free(fs.m);
1011 				else
1012 					vm_page_xunbusy_maybelocked(fs.m);
1013 				vm_page_unlock(fs.m);
1014 				fs.m = NULL;
1015 			}
1016 		}
1017 
1018 		/*
1019 		 * We get here if the object has default pager (or unwiring)
1020 		 * or the pager doesn't have the page.
1021 		 */
1022 		if (fs.object == fs.first_object)
1023 			fs.first_m = fs.m;
1024 
1025 		/*
1026 		 * Move on to the next object.  Lock the next object before
1027 		 * unlocking the current one.
1028 		 */
1029 		next_object = fs.object->backing_object;
1030 		if (next_object == NULL) {
1031 			/*
1032 			 * If there's no object left, fill the page in the top
1033 			 * object with zeros.
1034 			 */
1035 			if (fs.object != fs.first_object) {
1036 				vm_object_pip_wakeup(fs.object);
1037 				VM_OBJECT_WUNLOCK(fs.object);
1038 
1039 				fs.object = fs.first_object;
1040 				fs.pindex = fs.first_pindex;
1041 				fs.m = fs.first_m;
1042 				VM_OBJECT_WLOCK(fs.object);
1043 			}
1044 			fs.first_m = NULL;
1045 
1046 			/*
1047 			 * Zero the page if necessary and mark it valid.
1048 			 */
1049 			if ((fs.m->flags & PG_ZERO) == 0) {
1050 				pmap_zero_page(fs.m);
1051 			} else {
1052 				VM_CNT_INC(v_ozfod);
1053 			}
1054 			VM_CNT_INC(v_zfod);
1055 			fs.m->valid = VM_PAGE_BITS_ALL;
1056 			/* Don't try to prefault neighboring pages. */
1057 			faultcount = 1;
1058 			break;	/* break to PAGE HAS BEEN FOUND */
1059 		} else {
1060 			KASSERT(fs.object != next_object,
1061 			    ("object loop %p", next_object));
1062 			VM_OBJECT_WLOCK(next_object);
1063 			vm_object_pip_add(next_object, 1);
1064 			if (fs.object != fs.first_object)
1065 				vm_object_pip_wakeup(fs.object);
1066 			fs.pindex +=
1067 			    OFF_TO_IDX(fs.object->backing_object_offset);
1068 			VM_OBJECT_WUNLOCK(fs.object);
1069 			fs.object = next_object;
1070 		}
1071 	}
1072 
1073 	vm_page_assert_xbusied(fs.m);
1074 
1075 	/*
1076 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1077 	 * is held.]
1078 	 */
1079 
1080 	/*
1081 	 * If the page is being written, but isn't already owned by the
1082 	 * top-level object, we have to copy it into a new page owned by the
1083 	 * top-level object.
1084 	 */
1085 	if (fs.object != fs.first_object) {
1086 		/*
1087 		 * We only really need to copy if we want to write it.
1088 		 */
1089 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1090 			/*
1091 			 * This allows pages to be virtually copied from a
1092 			 * backing_object into the first_object, where the
1093 			 * backing object has no other refs to it, and cannot
1094 			 * gain any more refs.  Instead of a bcopy, we just
1095 			 * move the page from the backing object to the
1096 			 * first object.  Note that we must mark the page
1097 			 * dirty in the first object so that it will go out
1098 			 * to swap when needed.
1099 			 */
1100 			is_first_object_locked = false;
1101 			if (
1102 				/*
1103 				 * Only one shadow object
1104 				 */
1105 				(fs.object->shadow_count == 1) &&
1106 				/*
1107 				 * No COW refs, except us
1108 				 */
1109 				(fs.object->ref_count == 1) &&
1110 				/*
1111 				 * No one else can look this object up
1112 				 */
1113 				(fs.object->handle == NULL) &&
1114 				/*
1115 				 * No other ways to look the object up
1116 				 */
1117 				((fs.object->type == OBJT_DEFAULT) ||
1118 				 (fs.object->type == OBJT_SWAP)) &&
1119 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
1120 				/*
1121 				 * We don't chase down the shadow chain
1122 				 */
1123 			    fs.object == fs.first_object->backing_object) {
1124 				vm_page_lock(fs.m);
1125 				vm_page_remque(fs.m);
1126 				vm_page_remove(fs.m);
1127 				vm_page_unlock(fs.m);
1128 				vm_page_lock(fs.first_m);
1129 				vm_page_replace_checked(fs.m, fs.first_object,
1130 				    fs.first_pindex, fs.first_m);
1131 				vm_page_free(fs.first_m);
1132 				vm_page_unlock(fs.first_m);
1133 				vm_page_dirty(fs.m);
1134 #if VM_NRESERVLEVEL > 0
1135 				/*
1136 				 * Rename the reservation.
1137 				 */
1138 				vm_reserv_rename(fs.m, fs.first_object,
1139 				    fs.object, OFF_TO_IDX(
1140 				    fs.first_object->backing_object_offset));
1141 #endif
1142 				/*
1143 				 * Removing the page from the backing object
1144 				 * unbusied it.
1145 				 */
1146 				vm_page_xbusy(fs.m);
1147 				fs.first_m = fs.m;
1148 				fs.m = NULL;
1149 				VM_CNT_INC(v_cow_optim);
1150 			} else {
1151 				/*
1152 				 * Oh, well, lets copy it.
1153 				 */
1154 				pmap_copy_page(fs.m, fs.first_m);
1155 				fs.first_m->valid = VM_PAGE_BITS_ALL;
1156 				if ((fault_flags & VM_FAULT_WIRE) == 0) {
1157 					prot &= ~VM_PROT_WRITE;
1158 					fault_type &= ~VM_PROT_WRITE;
1159 				}
1160 				if (wired && (fault_flags &
1161 				    VM_FAULT_WIRE) == 0) {
1162 					vm_page_lock(fs.first_m);
1163 					vm_page_wire(fs.first_m);
1164 					vm_page_unlock(fs.first_m);
1165 
1166 					vm_page_lock(fs.m);
1167 					vm_page_unwire(fs.m, PQ_INACTIVE);
1168 					vm_page_unlock(fs.m);
1169 				}
1170 				/*
1171 				 * We no longer need the old page or object.
1172 				 */
1173 				release_page(&fs);
1174 			}
1175 			/*
1176 			 * fs.object != fs.first_object due to above
1177 			 * conditional
1178 			 */
1179 			vm_object_pip_wakeup(fs.object);
1180 			VM_OBJECT_WUNLOCK(fs.object);
1181 			/*
1182 			 * Only use the new page below...
1183 			 */
1184 			fs.object = fs.first_object;
1185 			fs.pindex = fs.first_pindex;
1186 			fs.m = fs.first_m;
1187 			if (!is_first_object_locked)
1188 				VM_OBJECT_WLOCK(fs.object);
1189 			VM_CNT_INC(v_cow_faults);
1190 			curthread->td_cow++;
1191 		} else {
1192 			prot &= ~VM_PROT_WRITE;
1193 		}
1194 	}
1195 
1196 	/*
1197 	 * We must verify that the maps have not changed since our last
1198 	 * lookup.
1199 	 */
1200 	if (!fs.lookup_still_valid) {
1201 		if (!vm_map_trylock_read(fs.map)) {
1202 			release_page(&fs);
1203 			unlock_and_deallocate(&fs);
1204 			goto RetryFault;
1205 		}
1206 		fs.lookup_still_valid = true;
1207 		if (fs.map->timestamp != fs.map_generation) {
1208 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
1209 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
1210 
1211 			/*
1212 			 * If we don't need the page any longer, put it on the inactive
1213 			 * list (the easiest thing to do here).  If no one needs it,
1214 			 * pageout will grab it eventually.
1215 			 */
1216 			if (result != KERN_SUCCESS) {
1217 				release_page(&fs);
1218 				unlock_and_deallocate(&fs);
1219 
1220 				/*
1221 				 * If retry of map lookup would have blocked then
1222 				 * retry fault from start.
1223 				 */
1224 				if (result == KERN_FAILURE)
1225 					goto RetryFault;
1226 				return (result);
1227 			}
1228 			if ((retry_object != fs.first_object) ||
1229 			    (retry_pindex != fs.first_pindex)) {
1230 				release_page(&fs);
1231 				unlock_and_deallocate(&fs);
1232 				goto RetryFault;
1233 			}
1234 
1235 			/*
1236 			 * Check whether the protection has changed or the object has
1237 			 * been copied while we left the map unlocked. Changing from
1238 			 * read to write permission is OK - we leave the page
1239 			 * write-protected, and catch the write fault. Changing from
1240 			 * write to read permission means that we can't mark the page
1241 			 * write-enabled after all.
1242 			 */
1243 			prot &= retry_prot;
1244 			fault_type &= retry_prot;
1245 			if (prot == 0) {
1246 				release_page(&fs);
1247 				unlock_and_deallocate(&fs);
1248 				goto RetryFault;
1249 			}
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * If the page was filled by a pager, save the virtual address that
1255 	 * should be faulted on next under a sequential access pattern to the
1256 	 * map entry.  A read lock on the map suffices to update this address
1257 	 * safely.
1258 	 */
1259 	if (hardfault)
1260 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1261 
1262 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true);
1263 	vm_page_assert_xbusied(fs.m);
1264 
1265 	/*
1266 	 * Page must be completely valid or it is not fit to
1267 	 * map into user space.  vm_pager_get_pages() ensures this.
1268 	 */
1269 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
1270 	    ("vm_fault: page %p partially invalid", fs.m));
1271 	VM_OBJECT_WUNLOCK(fs.object);
1272 
1273 	/*
1274 	 * Put this page into the physical map.  We had to do the unlock above
1275 	 * because pmap_enter() may sleep.  We don't put the page
1276 	 * back on the active queue until later so that the pageout daemon
1277 	 * won't find it (yet).
1278 	 */
1279 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1280 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1281 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1282 	    wired == 0)
1283 		vm_fault_prefault(&fs, vaddr,
1284 		    faultcount > 0 ? behind : PFBAK,
1285 		    faultcount > 0 ? ahead : PFFOR, false);
1286 	VM_OBJECT_WLOCK(fs.object);
1287 	vm_page_lock(fs.m);
1288 
1289 	/*
1290 	 * If the page is not wired down, then put it where the pageout daemon
1291 	 * can find it.
1292 	 */
1293 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1294 		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1295 		vm_page_wire(fs.m);
1296 	} else
1297 		vm_page_activate(fs.m);
1298 	if (m_hold != NULL) {
1299 		*m_hold = fs.m;
1300 		vm_page_hold(fs.m);
1301 	}
1302 	vm_page_unlock(fs.m);
1303 	vm_page_xunbusy(fs.m);
1304 
1305 	/*
1306 	 * Unlock everything, and return
1307 	 */
1308 	unlock_and_deallocate(&fs);
1309 	if (hardfault) {
1310 		VM_CNT_INC(v_io_faults);
1311 		curthread->td_ru.ru_majflt++;
1312 #ifdef RACCT
1313 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1314 			PROC_LOCK(curproc);
1315 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1316 				racct_add_force(curproc, RACCT_WRITEBPS,
1317 				    PAGE_SIZE + behind * PAGE_SIZE);
1318 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1319 			} else {
1320 				racct_add_force(curproc, RACCT_READBPS,
1321 				    PAGE_SIZE + ahead * PAGE_SIZE);
1322 				racct_add_force(curproc, RACCT_READIOPS, 1);
1323 			}
1324 			PROC_UNLOCK(curproc);
1325 		}
1326 #endif
1327 	} else
1328 		curthread->td_ru.ru_minflt++;
1329 
1330 	return (KERN_SUCCESS);
1331 }
1332 
1333 /*
1334  * Speed up the reclamation of pages that precede the faulting pindex within
1335  * the first object of the shadow chain.  Essentially, perform the equivalent
1336  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1337  * the faulting pindex by the cluster size when the pages read by vm_fault()
1338  * cross a cluster-size boundary.  The cluster size is the greater of the
1339  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1340  *
1341  * When "fs->first_object" is a shadow object, the pages in the backing object
1342  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1343  * function must only be concerned with pages in the first object.
1344  */
1345 static void
1346 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1347 {
1348 	vm_map_entry_t entry;
1349 	vm_object_t first_object, object;
1350 	vm_offset_t end, start;
1351 	vm_page_t m, m_next;
1352 	vm_pindex_t pend, pstart;
1353 	vm_size_t size;
1354 
1355 	object = fs->object;
1356 	VM_OBJECT_ASSERT_WLOCKED(object);
1357 	first_object = fs->first_object;
1358 	if (first_object != object) {
1359 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1360 			VM_OBJECT_WUNLOCK(object);
1361 			VM_OBJECT_WLOCK(first_object);
1362 			VM_OBJECT_WLOCK(object);
1363 		}
1364 	}
1365 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1366 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1367 		size = VM_FAULT_DONTNEED_MIN;
1368 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1369 			size = pagesizes[1];
1370 		end = rounddown2(vaddr, size);
1371 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1372 		    (entry = fs->entry)->start < end) {
1373 			if (end - entry->start < size)
1374 				start = entry->start;
1375 			else
1376 				start = end - size;
1377 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1378 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1379 			    entry->start);
1380 			m_next = vm_page_find_least(first_object, pstart);
1381 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1382 			    entry->start);
1383 			while ((m = m_next) != NULL && m->pindex < pend) {
1384 				m_next = TAILQ_NEXT(m, listq);
1385 				if (m->valid != VM_PAGE_BITS_ALL ||
1386 				    vm_page_busied(m))
1387 					continue;
1388 
1389 				/*
1390 				 * Don't clear PGA_REFERENCED, since it would
1391 				 * likely represent a reference by a different
1392 				 * process.
1393 				 *
1394 				 * Typically, at this point, prefetched pages
1395 				 * are still in the inactive queue.  Only
1396 				 * pages that triggered page faults are in the
1397 				 * active queue.
1398 				 */
1399 				vm_page_lock(m);
1400 				if (!vm_page_inactive(m))
1401 					vm_page_deactivate(m);
1402 				vm_page_unlock(m);
1403 			}
1404 		}
1405 	}
1406 	if (first_object != object)
1407 		VM_OBJECT_WUNLOCK(first_object);
1408 }
1409 
1410 /*
1411  * vm_fault_prefault provides a quick way of clustering
1412  * pagefaults into a processes address space.  It is a "cousin"
1413  * of vm_map_pmap_enter, except it runs at page fault time instead
1414  * of mmap time.
1415  */
1416 static void
1417 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1418     int backward, int forward, bool obj_locked)
1419 {
1420 	pmap_t pmap;
1421 	vm_map_entry_t entry;
1422 	vm_object_t backing_object, lobject;
1423 	vm_offset_t addr, starta;
1424 	vm_pindex_t pindex;
1425 	vm_page_t m;
1426 	int i;
1427 
1428 	pmap = fs->map->pmap;
1429 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1430 		return;
1431 
1432 	entry = fs->entry;
1433 
1434 	if (addra < backward * PAGE_SIZE) {
1435 		starta = entry->start;
1436 	} else {
1437 		starta = addra - backward * PAGE_SIZE;
1438 		if (starta < entry->start)
1439 			starta = entry->start;
1440 	}
1441 
1442 	/*
1443 	 * Generate the sequence of virtual addresses that are candidates for
1444 	 * prefaulting in an outward spiral from the faulting virtual address,
1445 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1446 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1447 	 * If the candidate address doesn't have a backing physical page, then
1448 	 * the loop immediately terminates.
1449 	 */
1450 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1451 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1452 		    PAGE_SIZE);
1453 		if (addr > addra + forward * PAGE_SIZE)
1454 			addr = 0;
1455 
1456 		if (addr < starta || addr >= entry->end)
1457 			continue;
1458 
1459 		if (!pmap_is_prefaultable(pmap, addr))
1460 			continue;
1461 
1462 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1463 		lobject = entry->object.vm_object;
1464 		if (!obj_locked)
1465 			VM_OBJECT_RLOCK(lobject);
1466 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1467 		    lobject->type == OBJT_DEFAULT &&
1468 		    (backing_object = lobject->backing_object) != NULL) {
1469 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1470 			    0, ("vm_fault_prefault: unaligned object offset"));
1471 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1472 			VM_OBJECT_RLOCK(backing_object);
1473 			if (!obj_locked || lobject != entry->object.vm_object)
1474 				VM_OBJECT_RUNLOCK(lobject);
1475 			lobject = backing_object;
1476 		}
1477 		if (m == NULL) {
1478 			if (!obj_locked || lobject != entry->object.vm_object)
1479 				VM_OBJECT_RUNLOCK(lobject);
1480 			break;
1481 		}
1482 		if (m->valid == VM_PAGE_BITS_ALL &&
1483 		    (m->flags & PG_FICTITIOUS) == 0)
1484 			pmap_enter_quick(pmap, addr, m, entry->protection);
1485 		if (!obj_locked || lobject != entry->object.vm_object)
1486 			VM_OBJECT_RUNLOCK(lobject);
1487 	}
1488 }
1489 
1490 /*
1491  * Hold each of the physical pages that are mapped by the specified range of
1492  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1493  * and allow the specified types of access, "prot".  If all of the implied
1494  * pages are successfully held, then the number of held pages is returned
1495  * together with pointers to those pages in the array "ma".  However, if any
1496  * of the pages cannot be held, -1 is returned.
1497  */
1498 int
1499 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1500     vm_prot_t prot, vm_page_t *ma, int max_count)
1501 {
1502 	vm_offset_t end, va;
1503 	vm_page_t *mp;
1504 	int count;
1505 	boolean_t pmap_failed;
1506 
1507 	if (len == 0)
1508 		return (0);
1509 	end = round_page(addr + len);
1510 	addr = trunc_page(addr);
1511 
1512 	/*
1513 	 * Check for illegal addresses.
1514 	 */
1515 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1516 		return (-1);
1517 
1518 	if (atop(end - addr) > max_count)
1519 		panic("vm_fault_quick_hold_pages: count > max_count");
1520 	count = atop(end - addr);
1521 
1522 	/*
1523 	 * Most likely, the physical pages are resident in the pmap, so it is
1524 	 * faster to try pmap_extract_and_hold() first.
1525 	 */
1526 	pmap_failed = FALSE;
1527 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1528 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1529 		if (*mp == NULL)
1530 			pmap_failed = TRUE;
1531 		else if ((prot & VM_PROT_WRITE) != 0 &&
1532 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1533 			/*
1534 			 * Explicitly dirty the physical page.  Otherwise, the
1535 			 * caller's changes may go unnoticed because they are
1536 			 * performed through an unmanaged mapping or by a DMA
1537 			 * operation.
1538 			 *
1539 			 * The object lock is not held here.
1540 			 * See vm_page_clear_dirty_mask().
1541 			 */
1542 			vm_page_dirty(*mp);
1543 		}
1544 	}
1545 	if (pmap_failed) {
1546 		/*
1547 		 * One or more pages could not be held by the pmap.  Either no
1548 		 * page was mapped at the specified virtual address or that
1549 		 * mapping had insufficient permissions.  Attempt to fault in
1550 		 * and hold these pages.
1551 		 *
1552 		 * If vm_fault_disable_pagefaults() was called,
1553 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1554 		 * acquire MD VM locks, which means we must not call
1555 		 * vm_fault_hold().  Some (out of tree) callers mark
1556 		 * too wide a code area with vm_fault_disable_pagefaults()
1557 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1558 		 * the proper behaviour explicitly.
1559 		 */
1560 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1561 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1562 			goto error;
1563 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1564 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1565 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1566 				goto error;
1567 	}
1568 	return (count);
1569 error:
1570 	for (mp = ma; mp < ma + count; mp++)
1571 		if (*mp != NULL) {
1572 			vm_page_lock(*mp);
1573 			vm_page_unhold(*mp);
1574 			vm_page_unlock(*mp);
1575 		}
1576 	return (-1);
1577 }
1578 
1579 /*
1580  *	Routine:
1581  *		vm_fault_copy_entry
1582  *	Function:
1583  *		Create new shadow object backing dst_entry with private copy of
1584  *		all underlying pages. When src_entry is equal to dst_entry,
1585  *		function implements COW for wired-down map entry. Otherwise,
1586  *		it forks wired entry into dst_map.
1587  *
1588  *	In/out conditions:
1589  *		The source and destination maps must be locked for write.
1590  *		The source map entry must be wired down (or be a sharing map
1591  *		entry corresponding to a main map entry that is wired down).
1592  */
1593 void
1594 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1595     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1596     vm_ooffset_t *fork_charge)
1597 {
1598 	vm_object_t backing_object, dst_object, object, src_object;
1599 	vm_pindex_t dst_pindex, pindex, src_pindex;
1600 	vm_prot_t access, prot;
1601 	vm_offset_t vaddr;
1602 	vm_page_t dst_m;
1603 	vm_page_t src_m;
1604 	boolean_t upgrade;
1605 
1606 #ifdef	lint
1607 	src_map++;
1608 #endif	/* lint */
1609 
1610 	upgrade = src_entry == dst_entry;
1611 	access = prot = dst_entry->protection;
1612 
1613 	src_object = src_entry->object.vm_object;
1614 	src_pindex = OFF_TO_IDX(src_entry->offset);
1615 
1616 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1617 		dst_object = src_object;
1618 		vm_object_reference(dst_object);
1619 	} else {
1620 		/*
1621 		 * Create the top-level object for the destination entry. (Doesn't
1622 		 * actually shadow anything - we copy the pages directly.)
1623 		 */
1624 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1625 		    atop(dst_entry->end - dst_entry->start));
1626 #if VM_NRESERVLEVEL > 0
1627 		dst_object->flags |= OBJ_COLORED;
1628 		dst_object->pg_color = atop(dst_entry->start);
1629 #endif
1630 	}
1631 
1632 	VM_OBJECT_WLOCK(dst_object);
1633 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1634 	    ("vm_fault_copy_entry: vm_object not NULL"));
1635 	if (src_object != dst_object) {
1636 		dst_object->domain = src_object->domain;
1637 		dst_entry->object.vm_object = dst_object;
1638 		dst_entry->offset = 0;
1639 		dst_object->charge = dst_entry->end - dst_entry->start;
1640 	}
1641 	if (fork_charge != NULL) {
1642 		KASSERT(dst_entry->cred == NULL,
1643 		    ("vm_fault_copy_entry: leaked swp charge"));
1644 		dst_object->cred = curthread->td_ucred;
1645 		crhold(dst_object->cred);
1646 		*fork_charge += dst_object->charge;
1647 	} else if (dst_object->cred == NULL) {
1648 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1649 		    dst_entry));
1650 		dst_object->cred = dst_entry->cred;
1651 		dst_entry->cred = NULL;
1652 	}
1653 
1654 	/*
1655 	 * If not an upgrade, then enter the mappings in the pmap as
1656 	 * read and/or execute accesses.  Otherwise, enter them as
1657 	 * write accesses.
1658 	 *
1659 	 * A writeable large page mapping is only created if all of
1660 	 * the constituent small page mappings are modified. Marking
1661 	 * PTEs as modified on inception allows promotion to happen
1662 	 * without taking potentially large number of soft faults.
1663 	 */
1664 	if (!upgrade)
1665 		access &= ~VM_PROT_WRITE;
1666 
1667 	/*
1668 	 * Loop through all of the virtual pages within the entry's
1669 	 * range, copying each page from the source object to the
1670 	 * destination object.  Since the source is wired, those pages
1671 	 * must exist.  In contrast, the destination is pageable.
1672 	 * Since the destination object does share any backing storage
1673 	 * with the source object, all of its pages must be dirtied,
1674 	 * regardless of whether they can be written.
1675 	 */
1676 	for (vaddr = dst_entry->start, dst_pindex = 0;
1677 	    vaddr < dst_entry->end;
1678 	    vaddr += PAGE_SIZE, dst_pindex++) {
1679 again:
1680 		/*
1681 		 * Find the page in the source object, and copy it in.
1682 		 * Because the source is wired down, the page will be
1683 		 * in memory.
1684 		 */
1685 		if (src_object != dst_object)
1686 			VM_OBJECT_RLOCK(src_object);
1687 		object = src_object;
1688 		pindex = src_pindex + dst_pindex;
1689 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1690 		    (backing_object = object->backing_object) != NULL) {
1691 			/*
1692 			 * Unless the source mapping is read-only or
1693 			 * it is presently being upgraded from
1694 			 * read-only, the first object in the shadow
1695 			 * chain should provide all of the pages.  In
1696 			 * other words, this loop body should never be
1697 			 * executed when the source mapping is already
1698 			 * read/write.
1699 			 */
1700 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1701 			    upgrade,
1702 			    ("vm_fault_copy_entry: main object missing page"));
1703 
1704 			VM_OBJECT_RLOCK(backing_object);
1705 			pindex += OFF_TO_IDX(object->backing_object_offset);
1706 			if (object != dst_object)
1707 				VM_OBJECT_RUNLOCK(object);
1708 			object = backing_object;
1709 		}
1710 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1711 
1712 		if (object != dst_object) {
1713 			/*
1714 			 * Allocate a page in the destination object.
1715 			 */
1716 			dst_m = vm_page_alloc(dst_object, (src_object ==
1717 			    dst_object ? src_pindex : 0) + dst_pindex,
1718 			    VM_ALLOC_NORMAL);
1719 			if (dst_m == NULL) {
1720 				VM_OBJECT_WUNLOCK(dst_object);
1721 				VM_OBJECT_RUNLOCK(object);
1722 				vm_wait(dst_object);
1723 				VM_OBJECT_WLOCK(dst_object);
1724 				goto again;
1725 			}
1726 			pmap_copy_page(src_m, dst_m);
1727 			VM_OBJECT_RUNLOCK(object);
1728 			dst_m->valid = VM_PAGE_BITS_ALL;
1729 			dst_m->dirty = VM_PAGE_BITS_ALL;
1730 		} else {
1731 			dst_m = src_m;
1732 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1733 				goto again;
1734 			vm_page_xbusy(dst_m);
1735 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1736 			    ("invalid dst page %p", dst_m));
1737 		}
1738 		VM_OBJECT_WUNLOCK(dst_object);
1739 
1740 		/*
1741 		 * Enter it in the pmap. If a wired, copy-on-write
1742 		 * mapping is being replaced by a write-enabled
1743 		 * mapping, then wire that new mapping.
1744 		 */
1745 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1746 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1747 
1748 		/*
1749 		 * Mark it no longer busy, and put it on the active list.
1750 		 */
1751 		VM_OBJECT_WLOCK(dst_object);
1752 
1753 		if (upgrade) {
1754 			if (src_m != dst_m) {
1755 				vm_page_lock(src_m);
1756 				vm_page_unwire(src_m, PQ_INACTIVE);
1757 				vm_page_unlock(src_m);
1758 				vm_page_lock(dst_m);
1759 				vm_page_wire(dst_m);
1760 				vm_page_unlock(dst_m);
1761 			} else {
1762 				KASSERT(dst_m->wire_count > 0,
1763 				    ("dst_m %p is not wired", dst_m));
1764 			}
1765 		} else {
1766 			vm_page_lock(dst_m);
1767 			vm_page_activate(dst_m);
1768 			vm_page_unlock(dst_m);
1769 		}
1770 		vm_page_xunbusy(dst_m);
1771 	}
1772 	VM_OBJECT_WUNLOCK(dst_object);
1773 	if (upgrade) {
1774 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1775 		vm_object_deallocate(src_object);
1776 	}
1777 }
1778 
1779 /*
1780  * Block entry into the machine-independent layer's page fault handler by
1781  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1782  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1783  * spurious page faults.
1784  */
1785 int
1786 vm_fault_disable_pagefaults(void)
1787 {
1788 
1789 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1790 }
1791 
1792 void
1793 vm_fault_enable_pagefaults(int save)
1794 {
1795 
1796 	curthread_pflags_restore(save);
1797 }
1798