1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 int lookup_still_valid; 126 struct vnode *vp; 127 }; 128 129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 130 int ahead); 131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 132 int backward, int forward); 133 134 static inline void 135 release_page(struct faultstate *fs) 136 { 137 138 vm_page_xunbusy(fs->m); 139 vm_page_lock(fs->m); 140 vm_page_deactivate(fs->m); 141 vm_page_unlock(fs->m); 142 fs->m = NULL; 143 } 144 145 static inline void 146 unlock_map(struct faultstate *fs) 147 { 148 149 if (fs->lookup_still_valid) { 150 vm_map_lookup_done(fs->map, fs->entry); 151 fs->lookup_still_valid = FALSE; 152 } 153 } 154 155 static void 156 unlock_and_deallocate(struct faultstate *fs) 157 { 158 159 vm_object_pip_wakeup(fs->object); 160 VM_OBJECT_WUNLOCK(fs->object); 161 if (fs->object != fs->first_object) { 162 VM_OBJECT_WLOCK(fs->first_object); 163 vm_page_lock(fs->first_m); 164 vm_page_free(fs->first_m); 165 vm_page_unlock(fs->first_m); 166 vm_object_pip_wakeup(fs->first_object); 167 VM_OBJECT_WUNLOCK(fs->first_object); 168 fs->first_m = NULL; 169 } 170 vm_object_deallocate(fs->first_object); 171 unlock_map(fs); 172 if (fs->vp != NULL) { 173 vput(fs->vp); 174 fs->vp = NULL; 175 } 176 } 177 178 static void 179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 180 vm_prot_t fault_type, int fault_flags, boolean_t set_wd) 181 { 182 boolean_t need_dirty; 183 184 if (((prot & VM_PROT_WRITE) == 0 && 185 (fault_flags & VM_FAULT_DIRTY) == 0) || 186 (m->oflags & VPO_UNMANAGED) != 0) 187 return; 188 189 VM_OBJECT_ASSERT_LOCKED(m->object); 190 191 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 192 (fault_flags & VM_FAULT_WIRE) == 0) || 193 (fault_flags & VM_FAULT_DIRTY) != 0; 194 195 if (set_wd) 196 vm_object_set_writeable_dirty(m->object); 197 else 198 /* 199 * If two callers of vm_fault_dirty() with set_wd == 200 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 201 * flag set, other with flag clear, race, it is 202 * possible for the no-NOSYNC thread to see m->dirty 203 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 204 * around manipulation of VPO_NOSYNC and 205 * vm_page_dirty() call, to avoid the race and keep 206 * m->oflags consistent. 207 */ 208 vm_page_lock(m); 209 210 /* 211 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 212 * if the page is already dirty to prevent data written with 213 * the expectation of being synced from not being synced. 214 * Likewise if this entry does not request NOSYNC then make 215 * sure the page isn't marked NOSYNC. Applications sharing 216 * data should use the same flags to avoid ping ponging. 217 */ 218 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 219 if (m->dirty == 0) { 220 m->oflags |= VPO_NOSYNC; 221 } 222 } else { 223 m->oflags &= ~VPO_NOSYNC; 224 } 225 226 /* 227 * If the fault is a write, we know that this page is being 228 * written NOW so dirty it explicitly to save on 229 * pmap_is_modified() calls later. 230 * 231 * Also tell the backing pager, if any, that it should remove 232 * any swap backing since the page is now dirty. 233 */ 234 if (need_dirty) 235 vm_page_dirty(m); 236 if (!set_wd) 237 vm_page_unlock(m); 238 if (need_dirty) 239 vm_pager_page_unswapped(m); 240 } 241 242 /* 243 * vm_fault: 244 * 245 * Handle a page fault occurring at the given address, 246 * requiring the given permissions, in the map specified. 247 * If successful, the page is inserted into the 248 * associated physical map. 249 * 250 * NOTE: the given address should be truncated to the 251 * proper page address. 252 * 253 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 254 * a standard error specifying why the fault is fatal is returned. 255 * 256 * The map in question must be referenced, and remains so. 257 * Caller may hold no locks. 258 */ 259 int 260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 261 int fault_flags) 262 { 263 struct thread *td; 264 int result; 265 266 td = curthread; 267 if ((td->td_pflags & TDP_NOFAULTING) != 0) 268 return (KERN_PROTECTION_FAILURE); 269 #ifdef KTRACE 270 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 271 ktrfault(vaddr, fault_type); 272 #endif 273 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 274 NULL); 275 #ifdef KTRACE 276 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 277 ktrfaultend(result); 278 #endif 279 return (result); 280 } 281 282 int 283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 284 int fault_flags, vm_page_t *m_hold) 285 { 286 vm_prot_t prot; 287 int alloc_req, era, faultcount, nera, result; 288 boolean_t growstack, is_first_object_locked, wired; 289 int map_generation; 290 vm_object_t next_object; 291 int hardfault; 292 struct faultstate fs; 293 struct vnode *vp; 294 vm_page_t m; 295 int ahead, behind, cluster_offset, error, locked; 296 297 hardfault = 0; 298 growstack = TRUE; 299 PCPU_INC(cnt.v_vm_faults); 300 fs.vp = NULL; 301 faultcount = 0; 302 303 RetryFault:; 304 305 /* 306 * Find the backing store object and offset into it to begin the 307 * search. 308 */ 309 fs.map = map; 310 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 311 &fs.first_object, &fs.first_pindex, &prot, &wired); 312 if (result != KERN_SUCCESS) { 313 if (growstack && result == KERN_INVALID_ADDRESS && 314 map != kernel_map) { 315 result = vm_map_growstack(curproc, vaddr); 316 if (result != KERN_SUCCESS) 317 return (KERN_FAILURE); 318 growstack = FALSE; 319 goto RetryFault; 320 } 321 return (result); 322 } 323 324 map_generation = fs.map->timestamp; 325 326 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 327 panic("vm_fault: fault on nofault entry, addr: %lx", 328 (u_long)vaddr); 329 } 330 331 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 332 fs.entry->wiring_thread != curthread) { 333 vm_map_unlock_read(fs.map); 334 vm_map_lock(fs.map); 335 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 336 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 337 if (fs.vp != NULL) { 338 vput(fs.vp); 339 fs.vp = NULL; 340 } 341 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 342 vm_map_unlock_and_wait(fs.map, 0); 343 } else 344 vm_map_unlock(fs.map); 345 goto RetryFault; 346 } 347 348 if (wired) 349 fault_type = prot | (fault_type & VM_PROT_COPY); 350 else 351 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 352 ("!wired && VM_FAULT_WIRE")); 353 354 if (fs.vp == NULL /* avoid locked vnode leak */ && 355 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 356 /* avoid calling vm_object_set_writeable_dirty() */ 357 ((prot & VM_PROT_WRITE) == 0 || 358 (fs.first_object->type != OBJT_VNODE && 359 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 360 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 361 VM_OBJECT_RLOCK(fs.first_object); 362 if ((prot & VM_PROT_WRITE) != 0 && 363 (fs.first_object->type == OBJT_VNODE || 364 (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) && 365 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0) 366 goto fast_failed; 367 m = vm_page_lookup(fs.first_object, fs.first_pindex); 368 /* A busy page can be mapped for read|execute access. */ 369 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 370 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 371 goto fast_failed; 372 result = pmap_enter(fs.map->pmap, vaddr, m, prot, 373 fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 374 0), 0); 375 if (result != KERN_SUCCESS) 376 goto fast_failed; 377 if (m_hold != NULL) { 378 *m_hold = m; 379 vm_page_lock(m); 380 vm_page_hold(m); 381 vm_page_unlock(m); 382 } 383 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags, 384 FALSE); 385 VM_OBJECT_RUNLOCK(fs.first_object); 386 if (!wired) 387 vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR); 388 vm_map_lookup_done(fs.map, fs.entry); 389 curthread->td_ru.ru_minflt++; 390 return (KERN_SUCCESS); 391 fast_failed: 392 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 393 VM_OBJECT_RUNLOCK(fs.first_object); 394 VM_OBJECT_WLOCK(fs.first_object); 395 } 396 } else { 397 VM_OBJECT_WLOCK(fs.first_object); 398 } 399 400 /* 401 * Make a reference to this object to prevent its disposal while we 402 * are messing with it. Once we have the reference, the map is free 403 * to be diddled. Since objects reference their shadows (and copies), 404 * they will stay around as well. 405 * 406 * Bump the paging-in-progress count to prevent size changes (e.g. 407 * truncation operations) during I/O. This must be done after 408 * obtaining the vnode lock in order to avoid possible deadlocks. 409 */ 410 vm_object_reference_locked(fs.first_object); 411 vm_object_pip_add(fs.first_object, 1); 412 413 fs.lookup_still_valid = TRUE; 414 415 fs.first_m = NULL; 416 417 /* 418 * Search for the page at object/offset. 419 */ 420 fs.object = fs.first_object; 421 fs.pindex = fs.first_pindex; 422 while (TRUE) { 423 /* 424 * If the object is dead, we stop here 425 */ 426 if (fs.object->flags & OBJ_DEAD) { 427 unlock_and_deallocate(&fs); 428 return (KERN_PROTECTION_FAILURE); 429 } 430 431 /* 432 * See if page is resident 433 */ 434 fs.m = vm_page_lookup(fs.object, fs.pindex); 435 if (fs.m != NULL) { 436 /* 437 * Wait/Retry if the page is busy. We have to do this 438 * if the page is either exclusive or shared busy 439 * because the vm_pager may be using read busy for 440 * pageouts (and even pageins if it is the vnode 441 * pager), and we could end up trying to pagein and 442 * pageout the same page simultaneously. 443 * 444 * We can theoretically allow the busy case on a read 445 * fault if the page is marked valid, but since such 446 * pages are typically already pmap'd, putting that 447 * special case in might be more effort then it is 448 * worth. We cannot under any circumstances mess 449 * around with a shared busied page except, perhaps, 450 * to pmap it. 451 */ 452 if (vm_page_busied(fs.m)) { 453 /* 454 * Reference the page before unlocking and 455 * sleeping so that the page daemon is less 456 * likely to reclaim it. 457 */ 458 vm_page_aflag_set(fs.m, PGA_REFERENCED); 459 if (fs.object != fs.first_object) { 460 if (!VM_OBJECT_TRYWLOCK( 461 fs.first_object)) { 462 VM_OBJECT_WUNLOCK(fs.object); 463 VM_OBJECT_WLOCK(fs.first_object); 464 VM_OBJECT_WLOCK(fs.object); 465 } 466 vm_page_lock(fs.first_m); 467 vm_page_free(fs.first_m); 468 vm_page_unlock(fs.first_m); 469 vm_object_pip_wakeup(fs.first_object); 470 VM_OBJECT_WUNLOCK(fs.first_object); 471 fs.first_m = NULL; 472 } 473 unlock_map(&fs); 474 if (fs.m == vm_page_lookup(fs.object, 475 fs.pindex)) { 476 vm_page_sleep_if_busy(fs.m, "vmpfw"); 477 } 478 vm_object_pip_wakeup(fs.object); 479 VM_OBJECT_WUNLOCK(fs.object); 480 PCPU_INC(cnt.v_intrans); 481 vm_object_deallocate(fs.first_object); 482 goto RetryFault; 483 } 484 vm_page_lock(fs.m); 485 vm_page_remque(fs.m); 486 vm_page_unlock(fs.m); 487 488 /* 489 * Mark page busy for other processes, and the 490 * pagedaemon. If it still isn't completely valid 491 * (readable), jump to readrest, else break-out ( we 492 * found the page ). 493 */ 494 vm_page_xbusy(fs.m); 495 if (fs.m->valid != VM_PAGE_BITS_ALL) 496 goto readrest; 497 break; 498 } 499 500 /* 501 * Page is not resident. If this is the search termination 502 * or the pager might contain the page, allocate a new page. 503 * Default objects are zero-fill, there is no real pager. 504 */ 505 if (fs.object->type != OBJT_DEFAULT || 506 fs.object == fs.first_object) { 507 if (fs.pindex >= fs.object->size) { 508 unlock_and_deallocate(&fs); 509 return (KERN_PROTECTION_FAILURE); 510 } 511 512 /* 513 * Allocate a new page for this object/offset pair. 514 * 515 * Unlocked read of the p_flag is harmless. At 516 * worst, the P_KILLED might be not observed 517 * there, and allocation can fail, causing 518 * restart and new reading of the p_flag. 519 */ 520 fs.m = NULL; 521 if (!vm_page_count_severe() || P_KILLED(curproc)) { 522 #if VM_NRESERVLEVEL > 0 523 vm_object_color(fs.object, atop(vaddr) - 524 fs.pindex); 525 #endif 526 alloc_req = P_KILLED(curproc) ? 527 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 528 if (fs.object->type != OBJT_VNODE && 529 fs.object->backing_object == NULL) 530 alloc_req |= VM_ALLOC_ZERO; 531 fs.m = vm_page_alloc(fs.object, fs.pindex, 532 alloc_req); 533 } 534 if (fs.m == NULL) { 535 unlock_and_deallocate(&fs); 536 VM_WAITPFAULT; 537 goto RetryFault; 538 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 539 break; 540 } 541 542 readrest: 543 /* 544 * We have found a valid page or we have allocated a new page. 545 * The page thus may not be valid or may not be entirely 546 * valid. 547 * 548 * Attempt to fault-in the page if there is a chance that the 549 * pager has it, and potentially fault in additional pages 550 * at the same time. For default objects simply provide 551 * zero-filled pages. 552 */ 553 if (fs.object->type != OBJT_DEFAULT) { 554 int rv; 555 u_char behavior = vm_map_entry_behavior(fs.entry); 556 557 era = fs.entry->read_ahead; 558 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 559 P_KILLED(curproc)) { 560 behind = 0; 561 nera = 0; 562 ahead = 0; 563 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 564 behind = 0; 565 nera = VM_FAULT_READ_AHEAD_MAX; 566 ahead = nera; 567 if (fs.pindex == fs.entry->next_read) 568 vm_fault_dontneed(&fs, vaddr, ahead); 569 } else if (fs.pindex == fs.entry->next_read) { 570 /* 571 * This is a sequential fault. Arithmetically 572 * increase the requested number of pages in 573 * the read-ahead window. The requested 574 * number of pages is "# of sequential faults 575 * x (read ahead min + 1) + read ahead min" 576 */ 577 behind = 0; 578 nera = VM_FAULT_READ_AHEAD_MIN; 579 if (era > 0) { 580 nera += era + 1; 581 if (nera > VM_FAULT_READ_AHEAD_MAX) 582 nera = VM_FAULT_READ_AHEAD_MAX; 583 } 584 ahead = nera; 585 if (era == VM_FAULT_READ_AHEAD_MAX) 586 vm_fault_dontneed(&fs, vaddr, ahead); 587 } else { 588 /* 589 * This is a non-sequential fault. Request a 590 * cluster of pages that is aligned to a 591 * VM_FAULT_READ_DEFAULT page offset boundary 592 * within the object. Alignment to a page 593 * offset boundary is more likely to coincide 594 * with the underlying file system block than 595 * alignment to a virtual address boundary. 596 */ 597 cluster_offset = fs.pindex % 598 VM_FAULT_READ_DEFAULT; 599 behind = ulmin(cluster_offset, 600 atop(vaddr - fs.entry->start)); 601 nera = 0; 602 ahead = VM_FAULT_READ_DEFAULT - 1 - 603 cluster_offset; 604 } 605 ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1); 606 if (era != nera) 607 fs.entry->read_ahead = nera; 608 609 /* 610 * Call the pager to retrieve the data, if any, after 611 * releasing the lock on the map. We hold a ref on 612 * fs.object and the pages are exclusive busied. 613 */ 614 unlock_map(&fs); 615 616 if (fs.object->type == OBJT_VNODE) { 617 vp = fs.object->handle; 618 if (vp == fs.vp) 619 goto vnode_locked; 620 else if (fs.vp != NULL) { 621 vput(fs.vp); 622 fs.vp = NULL; 623 } 624 locked = VOP_ISLOCKED(vp); 625 626 if (locked != LK_EXCLUSIVE) 627 locked = LK_SHARED; 628 /* Do not sleep for vnode lock while fs.m is busy */ 629 error = vget(vp, locked | LK_CANRECURSE | 630 LK_NOWAIT, curthread); 631 if (error != 0) { 632 vhold(vp); 633 release_page(&fs); 634 unlock_and_deallocate(&fs); 635 error = vget(vp, locked | LK_RETRY | 636 LK_CANRECURSE, curthread); 637 vdrop(vp); 638 fs.vp = vp; 639 KASSERT(error == 0, 640 ("vm_fault: vget failed")); 641 goto RetryFault; 642 } 643 fs.vp = vp; 644 } 645 vnode_locked: 646 KASSERT(fs.vp == NULL || !fs.map->system_map, 647 ("vm_fault: vnode-backed object mapped by system map")); 648 649 /* 650 * Page in the requested page and hint the pager, 651 * that it may bring up surrounding pages. 652 */ 653 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 654 &behind, &ahead); 655 if (rv == VM_PAGER_OK) { 656 faultcount = behind + 1 + ahead; 657 hardfault++; 658 break; /* break to PAGE HAS BEEN FOUND */ 659 } 660 if (rv == VM_PAGER_ERROR) 661 printf("vm_fault: pager read error, pid %d (%s)\n", 662 curproc->p_pid, curproc->p_comm); 663 664 /* 665 * If an I/O error occurred or the requested page was 666 * outside the range of the pager, clean up and return 667 * an error. 668 */ 669 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 670 vm_page_lock(fs.m); 671 vm_page_free(fs.m); 672 vm_page_unlock(fs.m); 673 fs.m = NULL; 674 unlock_and_deallocate(&fs); 675 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 676 KERN_PROTECTION_FAILURE); 677 } 678 679 /* 680 * The requested page does not exist at this object/ 681 * offset. Remove the invalid page from the object, 682 * waking up anyone waiting for it, and continue on to 683 * the next object. However, if this is the top-level 684 * object, we must leave the busy page in place to 685 * prevent another process from rushing past us, and 686 * inserting the page in that object at the same time 687 * that we are. 688 */ 689 if (fs.object != fs.first_object) { 690 vm_page_lock(fs.m); 691 vm_page_free(fs.m); 692 vm_page_unlock(fs.m); 693 fs.m = NULL; 694 } 695 } 696 697 /* 698 * We get here if the object has default pager (or unwiring) 699 * or the pager doesn't have the page. 700 */ 701 if (fs.object == fs.first_object) 702 fs.first_m = fs.m; 703 704 /* 705 * Move on to the next object. Lock the next object before 706 * unlocking the current one. 707 */ 708 next_object = fs.object->backing_object; 709 if (next_object == NULL) { 710 /* 711 * If there's no object left, fill the page in the top 712 * object with zeros. 713 */ 714 if (fs.object != fs.first_object) { 715 vm_object_pip_wakeup(fs.object); 716 VM_OBJECT_WUNLOCK(fs.object); 717 718 fs.object = fs.first_object; 719 fs.pindex = fs.first_pindex; 720 fs.m = fs.first_m; 721 VM_OBJECT_WLOCK(fs.object); 722 } 723 fs.first_m = NULL; 724 725 /* 726 * Zero the page if necessary and mark it valid. 727 */ 728 if ((fs.m->flags & PG_ZERO) == 0) { 729 pmap_zero_page(fs.m); 730 } else { 731 PCPU_INC(cnt.v_ozfod); 732 } 733 PCPU_INC(cnt.v_zfod); 734 fs.m->valid = VM_PAGE_BITS_ALL; 735 /* Don't try to prefault neighboring pages. */ 736 faultcount = 1; 737 break; /* break to PAGE HAS BEEN FOUND */ 738 } else { 739 KASSERT(fs.object != next_object, 740 ("object loop %p", next_object)); 741 VM_OBJECT_WLOCK(next_object); 742 vm_object_pip_add(next_object, 1); 743 if (fs.object != fs.first_object) 744 vm_object_pip_wakeup(fs.object); 745 fs.pindex += 746 OFF_TO_IDX(fs.object->backing_object_offset); 747 VM_OBJECT_WUNLOCK(fs.object); 748 fs.object = next_object; 749 } 750 } 751 752 vm_page_assert_xbusied(fs.m); 753 754 /* 755 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 756 * is held.] 757 */ 758 759 /* 760 * If the page is being written, but isn't already owned by the 761 * top-level object, we have to copy it into a new page owned by the 762 * top-level object. 763 */ 764 if (fs.object != fs.first_object) { 765 /* 766 * We only really need to copy if we want to write it. 767 */ 768 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 769 /* 770 * This allows pages to be virtually copied from a 771 * backing_object into the first_object, where the 772 * backing object has no other refs to it, and cannot 773 * gain any more refs. Instead of a bcopy, we just 774 * move the page from the backing object to the 775 * first object. Note that we must mark the page 776 * dirty in the first object so that it will go out 777 * to swap when needed. 778 */ 779 is_first_object_locked = FALSE; 780 if ( 781 /* 782 * Only one shadow object 783 */ 784 (fs.object->shadow_count == 1) && 785 /* 786 * No COW refs, except us 787 */ 788 (fs.object->ref_count == 1) && 789 /* 790 * No one else can look this object up 791 */ 792 (fs.object->handle == NULL) && 793 /* 794 * No other ways to look the object up 795 */ 796 ((fs.object->type == OBJT_DEFAULT) || 797 (fs.object->type == OBJT_SWAP)) && 798 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 799 /* 800 * We don't chase down the shadow chain 801 */ 802 fs.object == fs.first_object->backing_object) { 803 /* 804 * get rid of the unnecessary page 805 */ 806 vm_page_lock(fs.first_m); 807 vm_page_remove(fs.first_m); 808 vm_page_unlock(fs.first_m); 809 /* 810 * grab the page and put it into the 811 * process'es object. The page is 812 * automatically made dirty. 813 */ 814 if (vm_page_rename(fs.m, fs.first_object, 815 fs.first_pindex)) { 816 VM_OBJECT_WUNLOCK(fs.first_object); 817 unlock_and_deallocate(&fs); 818 goto RetryFault; 819 } 820 vm_page_lock(fs.first_m); 821 vm_page_free(fs.first_m); 822 vm_page_unlock(fs.first_m); 823 #if VM_NRESERVLEVEL > 0 824 /* 825 * Rename the reservation. 826 */ 827 vm_reserv_rename(fs.m, fs.first_object, 828 fs.object, OFF_TO_IDX( 829 fs.first_object->backing_object_offset)); 830 #endif 831 vm_page_xbusy(fs.m); 832 fs.first_m = fs.m; 833 fs.m = NULL; 834 PCPU_INC(cnt.v_cow_optim); 835 } else { 836 /* 837 * Oh, well, lets copy it. 838 */ 839 pmap_copy_page(fs.m, fs.first_m); 840 fs.first_m->valid = VM_PAGE_BITS_ALL; 841 if (wired && (fault_flags & 842 VM_FAULT_WIRE) == 0) { 843 vm_page_lock(fs.first_m); 844 vm_page_wire(fs.first_m); 845 vm_page_unlock(fs.first_m); 846 847 vm_page_lock(fs.m); 848 vm_page_unwire(fs.m, PQ_INACTIVE); 849 vm_page_unlock(fs.m); 850 } 851 /* 852 * We no longer need the old page or object. 853 */ 854 release_page(&fs); 855 } 856 /* 857 * fs.object != fs.first_object due to above 858 * conditional 859 */ 860 vm_object_pip_wakeup(fs.object); 861 VM_OBJECT_WUNLOCK(fs.object); 862 /* 863 * Only use the new page below... 864 */ 865 fs.object = fs.first_object; 866 fs.pindex = fs.first_pindex; 867 fs.m = fs.first_m; 868 if (!is_first_object_locked) 869 VM_OBJECT_WLOCK(fs.object); 870 PCPU_INC(cnt.v_cow_faults); 871 curthread->td_cow++; 872 } else { 873 prot &= ~VM_PROT_WRITE; 874 } 875 } 876 877 /* 878 * We must verify that the maps have not changed since our last 879 * lookup. 880 */ 881 if (!fs.lookup_still_valid) { 882 vm_object_t retry_object; 883 vm_pindex_t retry_pindex; 884 vm_prot_t retry_prot; 885 886 if (!vm_map_trylock_read(fs.map)) { 887 release_page(&fs); 888 unlock_and_deallocate(&fs); 889 goto RetryFault; 890 } 891 fs.lookup_still_valid = TRUE; 892 if (fs.map->timestamp != map_generation) { 893 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 894 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 895 896 /* 897 * If we don't need the page any longer, put it on the inactive 898 * list (the easiest thing to do here). If no one needs it, 899 * pageout will grab it eventually. 900 */ 901 if (result != KERN_SUCCESS) { 902 release_page(&fs); 903 unlock_and_deallocate(&fs); 904 905 /* 906 * If retry of map lookup would have blocked then 907 * retry fault from start. 908 */ 909 if (result == KERN_FAILURE) 910 goto RetryFault; 911 return (result); 912 } 913 if ((retry_object != fs.first_object) || 914 (retry_pindex != fs.first_pindex)) { 915 release_page(&fs); 916 unlock_and_deallocate(&fs); 917 goto RetryFault; 918 } 919 920 /* 921 * Check whether the protection has changed or the object has 922 * been copied while we left the map unlocked. Changing from 923 * read to write permission is OK - we leave the page 924 * write-protected, and catch the write fault. Changing from 925 * write to read permission means that we can't mark the page 926 * write-enabled after all. 927 */ 928 prot &= retry_prot; 929 } 930 } 931 /* 932 * If the page was filled by a pager, update the map entry's 933 * last read offset. 934 * 935 * XXX The following assignment modifies the map 936 * without holding a write lock on it. 937 */ 938 if (hardfault) 939 fs.entry->next_read = fs.pindex + ahead + 1; 940 941 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE); 942 vm_page_assert_xbusied(fs.m); 943 944 /* 945 * Page must be completely valid or it is not fit to 946 * map into user space. vm_pager_get_pages() ensures this. 947 */ 948 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 949 ("vm_fault: page %p partially invalid", fs.m)); 950 VM_OBJECT_WUNLOCK(fs.object); 951 952 /* 953 * Put this page into the physical map. We had to do the unlock above 954 * because pmap_enter() may sleep. We don't put the page 955 * back on the active queue until later so that the pageout daemon 956 * won't find it (yet). 957 */ 958 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 959 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 960 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 961 wired == 0) 962 vm_fault_prefault(&fs, vaddr, 963 faultcount > 0 ? behind : PFBAK, 964 faultcount > 0 ? ahead : PFFOR); 965 VM_OBJECT_WLOCK(fs.object); 966 vm_page_lock(fs.m); 967 968 /* 969 * If the page is not wired down, then put it where the pageout daemon 970 * can find it. 971 */ 972 if ((fault_flags & VM_FAULT_WIRE) != 0) { 973 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 974 vm_page_wire(fs.m); 975 } else 976 vm_page_activate(fs.m); 977 if (m_hold != NULL) { 978 *m_hold = fs.m; 979 vm_page_hold(fs.m); 980 } 981 vm_page_unlock(fs.m); 982 vm_page_xunbusy(fs.m); 983 984 /* 985 * Unlock everything, and return 986 */ 987 unlock_and_deallocate(&fs); 988 if (hardfault) { 989 PCPU_INC(cnt.v_io_faults); 990 curthread->td_ru.ru_majflt++; 991 #ifdef RACCT 992 if (racct_enable && fs.object->type == OBJT_VNODE) { 993 PROC_LOCK(curproc); 994 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 995 racct_add_force(curproc, RACCT_WRITEBPS, 996 PAGE_SIZE + behind * PAGE_SIZE); 997 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 998 } else { 999 racct_add_force(curproc, RACCT_READBPS, 1000 PAGE_SIZE + ahead * PAGE_SIZE); 1001 racct_add_force(curproc, RACCT_READIOPS, 1); 1002 } 1003 PROC_UNLOCK(curproc); 1004 } 1005 #endif 1006 } else 1007 curthread->td_ru.ru_minflt++; 1008 1009 return (KERN_SUCCESS); 1010 } 1011 1012 /* 1013 * Speed up the reclamation of pages that precede the faulting pindex within 1014 * the first object of the shadow chain. Essentially, perform the equivalent 1015 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1016 * the faulting pindex by the cluster size when the pages read by vm_fault() 1017 * cross a cluster-size boundary. The cluster size is the greater of the 1018 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1019 * 1020 * When "fs->first_object" is a shadow object, the pages in the backing object 1021 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1022 * function must only be concerned with pages in the first object. 1023 */ 1024 static void 1025 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1026 { 1027 vm_map_entry_t entry; 1028 vm_object_t first_object, object; 1029 vm_offset_t end, start; 1030 vm_page_t m, m_next; 1031 vm_pindex_t pend, pstart; 1032 vm_size_t size; 1033 1034 object = fs->object; 1035 VM_OBJECT_ASSERT_WLOCKED(object); 1036 first_object = fs->first_object; 1037 if (first_object != object) { 1038 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1039 VM_OBJECT_WUNLOCK(object); 1040 VM_OBJECT_WLOCK(first_object); 1041 VM_OBJECT_WLOCK(object); 1042 } 1043 } 1044 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1045 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1046 size = VM_FAULT_DONTNEED_MIN; 1047 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1048 size = pagesizes[1]; 1049 end = rounddown2(vaddr, size); 1050 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1051 (entry = fs->entry)->start < end) { 1052 if (end - entry->start < size) 1053 start = entry->start; 1054 else 1055 start = end - size; 1056 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1057 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1058 entry->start); 1059 m_next = vm_page_find_least(first_object, pstart); 1060 pend = OFF_TO_IDX(entry->offset) + atop(end - 1061 entry->start); 1062 while ((m = m_next) != NULL && m->pindex < pend) { 1063 m_next = TAILQ_NEXT(m, listq); 1064 if (m->valid != VM_PAGE_BITS_ALL || 1065 vm_page_busied(m)) 1066 continue; 1067 1068 /* 1069 * Don't clear PGA_REFERENCED, since it would 1070 * likely represent a reference by a different 1071 * process. 1072 * 1073 * Typically, at this point, prefetched pages 1074 * are still in the inactive queue. Only 1075 * pages that triggered page faults are in the 1076 * active queue. 1077 */ 1078 vm_page_lock(m); 1079 vm_page_deactivate(m); 1080 vm_page_unlock(m); 1081 } 1082 } 1083 } 1084 if (first_object != object) 1085 VM_OBJECT_WUNLOCK(first_object); 1086 } 1087 1088 /* 1089 * vm_fault_prefault provides a quick way of clustering 1090 * pagefaults into a processes address space. It is a "cousin" 1091 * of vm_map_pmap_enter, except it runs at page fault time instead 1092 * of mmap time. 1093 */ 1094 static void 1095 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1096 int backward, int forward) 1097 { 1098 pmap_t pmap; 1099 vm_map_entry_t entry; 1100 vm_object_t backing_object, lobject; 1101 vm_offset_t addr, starta; 1102 vm_pindex_t pindex; 1103 vm_page_t m; 1104 int i; 1105 1106 pmap = fs->map->pmap; 1107 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1108 return; 1109 1110 entry = fs->entry; 1111 1112 starta = addra - backward * PAGE_SIZE; 1113 if (starta < entry->start) { 1114 starta = entry->start; 1115 } else if (starta > addra) { 1116 starta = 0; 1117 } 1118 1119 /* 1120 * Generate the sequence of virtual addresses that are candidates for 1121 * prefaulting in an outward spiral from the faulting virtual address, 1122 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1123 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1124 * If the candidate address doesn't have a backing physical page, then 1125 * the loop immediately terminates. 1126 */ 1127 for (i = 0; i < 2 * imax(backward, forward); i++) { 1128 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1129 PAGE_SIZE); 1130 if (addr > addra + forward * PAGE_SIZE) 1131 addr = 0; 1132 1133 if (addr < starta || addr >= entry->end) 1134 continue; 1135 1136 if (!pmap_is_prefaultable(pmap, addr)) 1137 continue; 1138 1139 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1140 lobject = entry->object.vm_object; 1141 VM_OBJECT_RLOCK(lobject); 1142 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1143 lobject->type == OBJT_DEFAULT && 1144 (backing_object = lobject->backing_object) != NULL) { 1145 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1146 0, ("vm_fault_prefault: unaligned object offset")); 1147 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1148 VM_OBJECT_RLOCK(backing_object); 1149 VM_OBJECT_RUNLOCK(lobject); 1150 lobject = backing_object; 1151 } 1152 if (m == NULL) { 1153 VM_OBJECT_RUNLOCK(lobject); 1154 break; 1155 } 1156 if (m->valid == VM_PAGE_BITS_ALL && 1157 (m->flags & PG_FICTITIOUS) == 0) 1158 pmap_enter_quick(pmap, addr, m, entry->protection); 1159 VM_OBJECT_RUNLOCK(lobject); 1160 } 1161 } 1162 1163 /* 1164 * Hold each of the physical pages that are mapped by the specified range of 1165 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1166 * and allow the specified types of access, "prot". If all of the implied 1167 * pages are successfully held, then the number of held pages is returned 1168 * together with pointers to those pages in the array "ma". However, if any 1169 * of the pages cannot be held, -1 is returned. 1170 */ 1171 int 1172 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1173 vm_prot_t prot, vm_page_t *ma, int max_count) 1174 { 1175 vm_offset_t end, va; 1176 vm_page_t *mp; 1177 int count; 1178 boolean_t pmap_failed; 1179 1180 if (len == 0) 1181 return (0); 1182 end = round_page(addr + len); 1183 addr = trunc_page(addr); 1184 1185 /* 1186 * Check for illegal addresses. 1187 */ 1188 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1189 return (-1); 1190 1191 if (atop(end - addr) > max_count) 1192 panic("vm_fault_quick_hold_pages: count > max_count"); 1193 count = atop(end - addr); 1194 1195 /* 1196 * Most likely, the physical pages are resident in the pmap, so it is 1197 * faster to try pmap_extract_and_hold() first. 1198 */ 1199 pmap_failed = FALSE; 1200 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1201 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1202 if (*mp == NULL) 1203 pmap_failed = TRUE; 1204 else if ((prot & VM_PROT_WRITE) != 0 && 1205 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1206 /* 1207 * Explicitly dirty the physical page. Otherwise, the 1208 * caller's changes may go unnoticed because they are 1209 * performed through an unmanaged mapping or by a DMA 1210 * operation. 1211 * 1212 * The object lock is not held here. 1213 * See vm_page_clear_dirty_mask(). 1214 */ 1215 vm_page_dirty(*mp); 1216 } 1217 } 1218 if (pmap_failed) { 1219 /* 1220 * One or more pages could not be held by the pmap. Either no 1221 * page was mapped at the specified virtual address or that 1222 * mapping had insufficient permissions. Attempt to fault in 1223 * and hold these pages. 1224 */ 1225 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1226 if (*mp == NULL && vm_fault_hold(map, va, prot, 1227 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1228 goto error; 1229 } 1230 return (count); 1231 error: 1232 for (mp = ma; mp < ma + count; mp++) 1233 if (*mp != NULL) { 1234 vm_page_lock(*mp); 1235 vm_page_unhold(*mp); 1236 vm_page_unlock(*mp); 1237 } 1238 return (-1); 1239 } 1240 1241 /* 1242 * Routine: 1243 * vm_fault_copy_entry 1244 * Function: 1245 * Create new shadow object backing dst_entry with private copy of 1246 * all underlying pages. When src_entry is equal to dst_entry, 1247 * function implements COW for wired-down map entry. Otherwise, 1248 * it forks wired entry into dst_map. 1249 * 1250 * In/out conditions: 1251 * The source and destination maps must be locked for write. 1252 * The source map entry must be wired down (or be a sharing map 1253 * entry corresponding to a main map entry that is wired down). 1254 */ 1255 void 1256 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1257 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1258 vm_ooffset_t *fork_charge) 1259 { 1260 vm_object_t backing_object, dst_object, object, src_object; 1261 vm_pindex_t dst_pindex, pindex, src_pindex; 1262 vm_prot_t access, prot; 1263 vm_offset_t vaddr; 1264 vm_page_t dst_m; 1265 vm_page_t src_m; 1266 boolean_t upgrade; 1267 1268 #ifdef lint 1269 src_map++; 1270 #endif /* lint */ 1271 1272 upgrade = src_entry == dst_entry; 1273 access = prot = dst_entry->protection; 1274 1275 src_object = src_entry->object.vm_object; 1276 src_pindex = OFF_TO_IDX(src_entry->offset); 1277 1278 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1279 dst_object = src_object; 1280 vm_object_reference(dst_object); 1281 } else { 1282 /* 1283 * Create the top-level object for the destination entry. (Doesn't 1284 * actually shadow anything - we copy the pages directly.) 1285 */ 1286 dst_object = vm_object_allocate(OBJT_DEFAULT, 1287 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1288 #if VM_NRESERVLEVEL > 0 1289 dst_object->flags |= OBJ_COLORED; 1290 dst_object->pg_color = atop(dst_entry->start); 1291 #endif 1292 } 1293 1294 VM_OBJECT_WLOCK(dst_object); 1295 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1296 ("vm_fault_copy_entry: vm_object not NULL")); 1297 if (src_object != dst_object) { 1298 dst_entry->object.vm_object = dst_object; 1299 dst_entry->offset = 0; 1300 dst_object->charge = dst_entry->end - dst_entry->start; 1301 } 1302 if (fork_charge != NULL) { 1303 KASSERT(dst_entry->cred == NULL, 1304 ("vm_fault_copy_entry: leaked swp charge")); 1305 dst_object->cred = curthread->td_ucred; 1306 crhold(dst_object->cred); 1307 *fork_charge += dst_object->charge; 1308 } else if (dst_object->cred == NULL) { 1309 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1310 dst_entry)); 1311 dst_object->cred = dst_entry->cred; 1312 dst_entry->cred = NULL; 1313 } 1314 1315 /* 1316 * If not an upgrade, then enter the mappings in the pmap as 1317 * read and/or execute accesses. Otherwise, enter them as 1318 * write accesses. 1319 * 1320 * A writeable large page mapping is only created if all of 1321 * the constituent small page mappings are modified. Marking 1322 * PTEs as modified on inception allows promotion to happen 1323 * without taking potentially large number of soft faults. 1324 */ 1325 if (!upgrade) 1326 access &= ~VM_PROT_WRITE; 1327 1328 /* 1329 * Loop through all of the virtual pages within the entry's 1330 * range, copying each page from the source object to the 1331 * destination object. Since the source is wired, those pages 1332 * must exist. In contrast, the destination is pageable. 1333 * Since the destination object does share any backing storage 1334 * with the source object, all of its pages must be dirtied, 1335 * regardless of whether they can be written. 1336 */ 1337 for (vaddr = dst_entry->start, dst_pindex = 0; 1338 vaddr < dst_entry->end; 1339 vaddr += PAGE_SIZE, dst_pindex++) { 1340 again: 1341 /* 1342 * Find the page in the source object, and copy it in. 1343 * Because the source is wired down, the page will be 1344 * in memory. 1345 */ 1346 if (src_object != dst_object) 1347 VM_OBJECT_RLOCK(src_object); 1348 object = src_object; 1349 pindex = src_pindex + dst_pindex; 1350 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1351 (backing_object = object->backing_object) != NULL) { 1352 /* 1353 * Unless the source mapping is read-only or 1354 * it is presently being upgraded from 1355 * read-only, the first object in the shadow 1356 * chain should provide all of the pages. In 1357 * other words, this loop body should never be 1358 * executed when the source mapping is already 1359 * read/write. 1360 */ 1361 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1362 upgrade, 1363 ("vm_fault_copy_entry: main object missing page")); 1364 1365 VM_OBJECT_RLOCK(backing_object); 1366 pindex += OFF_TO_IDX(object->backing_object_offset); 1367 if (object != dst_object) 1368 VM_OBJECT_RUNLOCK(object); 1369 object = backing_object; 1370 } 1371 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1372 1373 if (object != dst_object) { 1374 /* 1375 * Allocate a page in the destination object. 1376 */ 1377 dst_m = vm_page_alloc(dst_object, (src_object == 1378 dst_object ? src_pindex : 0) + dst_pindex, 1379 VM_ALLOC_NORMAL); 1380 if (dst_m == NULL) { 1381 VM_OBJECT_WUNLOCK(dst_object); 1382 VM_OBJECT_RUNLOCK(object); 1383 VM_WAIT; 1384 VM_OBJECT_WLOCK(dst_object); 1385 goto again; 1386 } 1387 pmap_copy_page(src_m, dst_m); 1388 VM_OBJECT_RUNLOCK(object); 1389 dst_m->valid = VM_PAGE_BITS_ALL; 1390 dst_m->dirty = VM_PAGE_BITS_ALL; 1391 } else { 1392 dst_m = src_m; 1393 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1394 goto again; 1395 vm_page_xbusy(dst_m); 1396 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1397 ("invalid dst page %p", dst_m)); 1398 } 1399 VM_OBJECT_WUNLOCK(dst_object); 1400 1401 /* 1402 * Enter it in the pmap. If a wired, copy-on-write 1403 * mapping is being replaced by a write-enabled 1404 * mapping, then wire that new mapping. 1405 */ 1406 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1407 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1408 1409 /* 1410 * Mark it no longer busy, and put it on the active list. 1411 */ 1412 VM_OBJECT_WLOCK(dst_object); 1413 1414 if (upgrade) { 1415 if (src_m != dst_m) { 1416 vm_page_lock(src_m); 1417 vm_page_unwire(src_m, PQ_INACTIVE); 1418 vm_page_unlock(src_m); 1419 vm_page_lock(dst_m); 1420 vm_page_wire(dst_m); 1421 vm_page_unlock(dst_m); 1422 } else { 1423 KASSERT(dst_m->wire_count > 0, 1424 ("dst_m %p is not wired", dst_m)); 1425 } 1426 } else { 1427 vm_page_lock(dst_m); 1428 vm_page_activate(dst_m); 1429 vm_page_unlock(dst_m); 1430 } 1431 vm_page_xunbusy(dst_m); 1432 } 1433 VM_OBJECT_WUNLOCK(dst_object); 1434 if (upgrade) { 1435 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1436 vm_object_deallocate(src_object); 1437 } 1438 } 1439 1440 /* 1441 * Block entry into the machine-independent layer's page fault handler by 1442 * the calling thread. Subsequent calls to vm_fault() by that thread will 1443 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1444 * spurious page faults. 1445 */ 1446 int 1447 vm_fault_disable_pagefaults(void) 1448 { 1449 1450 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1451 } 1452 1453 void 1454 vm_fault_enable_pagefaults(int save) 1455 { 1456 1457 curthread_pflags_restore(save); 1458 } 1459