xref: /freebsd/sys/vm/vm_fault.c (revision 3f2a60a1371a69d7e9caac43bf457b6f89cdfd48)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107 
108 #define PFBAK 4
109 #define PFFOR 4
110 
111 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113 
114 #define	VM_FAULT_DONTNEED_MIN	1048576
115 
116 struct faultstate {
117 	vm_page_t m;
118 	vm_object_t object;
119 	vm_pindex_t pindex;
120 	vm_page_t first_m;
121 	vm_object_t	first_object;
122 	vm_pindex_t first_pindex;
123 	vm_map_t map;
124 	vm_map_entry_t entry;
125 	int lookup_still_valid;
126 	struct vnode *vp;
127 };
128 
129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
130 	    int ahead);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132 	    int backward, int forward);
133 
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137 
138 	vm_page_xunbusy(fs->m);
139 	vm_page_lock(fs->m);
140 	vm_page_deactivate(fs->m);
141 	vm_page_unlock(fs->m);
142 	fs->m = NULL;
143 }
144 
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148 
149 	if (fs->lookup_still_valid) {
150 		vm_map_lookup_done(fs->map, fs->entry);
151 		fs->lookup_still_valid = FALSE;
152 	}
153 }
154 
155 static void
156 unlock_and_deallocate(struct faultstate *fs)
157 {
158 
159 	vm_object_pip_wakeup(fs->object);
160 	VM_OBJECT_WUNLOCK(fs->object);
161 	if (fs->object != fs->first_object) {
162 		VM_OBJECT_WLOCK(fs->first_object);
163 		vm_page_lock(fs->first_m);
164 		vm_page_free(fs->first_m);
165 		vm_page_unlock(fs->first_m);
166 		vm_object_pip_wakeup(fs->first_object);
167 		VM_OBJECT_WUNLOCK(fs->first_object);
168 		fs->first_m = NULL;
169 	}
170 	vm_object_deallocate(fs->first_object);
171 	unlock_map(fs);
172 	if (fs->vp != NULL) {
173 		vput(fs->vp);
174 		fs->vp = NULL;
175 	}
176 }
177 
178 static void
179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181 {
182 	boolean_t need_dirty;
183 
184 	if (((prot & VM_PROT_WRITE) == 0 &&
185 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
186 	    (m->oflags & VPO_UNMANAGED) != 0)
187 		return;
188 
189 	VM_OBJECT_ASSERT_LOCKED(m->object);
190 
191 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
193 	    (fault_flags & VM_FAULT_DIRTY) != 0;
194 
195 	if (set_wd)
196 		vm_object_set_writeable_dirty(m->object);
197 	else
198 		/*
199 		 * If two callers of vm_fault_dirty() with set_wd ==
200 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201 		 * flag set, other with flag clear, race, it is
202 		 * possible for the no-NOSYNC thread to see m->dirty
203 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204 		 * around manipulation of VPO_NOSYNC and
205 		 * vm_page_dirty() call, to avoid the race and keep
206 		 * m->oflags consistent.
207 		 */
208 		vm_page_lock(m);
209 
210 	/*
211 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212 	 * if the page is already dirty to prevent data written with
213 	 * the expectation of being synced from not being synced.
214 	 * Likewise if this entry does not request NOSYNC then make
215 	 * sure the page isn't marked NOSYNC.  Applications sharing
216 	 * data should use the same flags to avoid ping ponging.
217 	 */
218 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219 		if (m->dirty == 0) {
220 			m->oflags |= VPO_NOSYNC;
221 		}
222 	} else {
223 		m->oflags &= ~VPO_NOSYNC;
224 	}
225 
226 	/*
227 	 * If the fault is a write, we know that this page is being
228 	 * written NOW so dirty it explicitly to save on
229 	 * pmap_is_modified() calls later.
230 	 *
231 	 * Also tell the backing pager, if any, that it should remove
232 	 * any swap backing since the page is now dirty.
233 	 */
234 	if (need_dirty)
235 		vm_page_dirty(m);
236 	if (!set_wd)
237 		vm_page_unlock(m);
238 	if (need_dirty)
239 		vm_pager_page_unswapped(m);
240 }
241 
242 /*
243  *	vm_fault:
244  *
245  *	Handle a page fault occurring at the given address,
246  *	requiring the given permissions, in the map specified.
247  *	If successful, the page is inserted into the
248  *	associated physical map.
249  *
250  *	NOTE: the given address should be truncated to the
251  *	proper page address.
252  *
253  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
254  *	a standard error specifying why the fault is fatal is returned.
255  *
256  *	The map in question must be referenced, and remains so.
257  *	Caller may hold no locks.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261     int fault_flags)
262 {
263 	struct thread *td;
264 	int result;
265 
266 	td = curthread;
267 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
268 		return (KERN_PROTECTION_FAILURE);
269 #ifdef KTRACE
270 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271 		ktrfault(vaddr, fault_type);
272 #endif
273 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274 	    NULL);
275 #ifdef KTRACE
276 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277 		ktrfaultend(result);
278 #endif
279 	return (result);
280 }
281 
282 int
283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284     int fault_flags, vm_page_t *m_hold)
285 {
286 	vm_prot_t prot;
287 	int alloc_req, era, faultcount, nera, result;
288 	boolean_t dead, growstack, is_first_object_locked, wired;
289 	int map_generation;
290 	vm_object_t next_object;
291 	int hardfault;
292 	struct faultstate fs;
293 	struct vnode *vp;
294 	vm_offset_t e_end, e_start;
295 	vm_page_t m;
296 	int ahead, behind, cluster_offset, error, locked, rv;
297 	u_char behavior;
298 
299 	hardfault = 0;
300 	growstack = TRUE;
301 	PCPU_INC(cnt.v_vm_faults);
302 	fs.vp = NULL;
303 	faultcount = 0;
304 	nera = -1;
305 
306 RetryFault:;
307 
308 	/*
309 	 * Find the backing store object and offset into it to begin the
310 	 * search.
311 	 */
312 	fs.map = map;
313 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
314 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
315 	if (result != KERN_SUCCESS) {
316 		if (growstack && result == KERN_INVALID_ADDRESS &&
317 		    map != kernel_map) {
318 			result = vm_map_growstack(curproc, vaddr);
319 			if (result != KERN_SUCCESS)
320 				return (KERN_FAILURE);
321 			growstack = FALSE;
322 			goto RetryFault;
323 		}
324 		return (result);
325 	}
326 
327 	map_generation = fs.map->timestamp;
328 
329 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
330 		panic("vm_fault: fault on nofault entry, addr: %lx",
331 		    (u_long)vaddr);
332 	}
333 
334 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
335 	    fs.entry->wiring_thread != curthread) {
336 		vm_map_unlock_read(fs.map);
337 		vm_map_lock(fs.map);
338 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
339 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
340 			if (fs.vp != NULL) {
341 				vput(fs.vp);
342 				fs.vp = NULL;
343 			}
344 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
345 			vm_map_unlock_and_wait(fs.map, 0);
346 		} else
347 			vm_map_unlock(fs.map);
348 		goto RetryFault;
349 	}
350 
351 	if (wired)
352 		fault_type = prot | (fault_type & VM_PROT_COPY);
353 	else
354 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
355 		    ("!wired && VM_FAULT_WIRE"));
356 
357 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
358 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
359 	    /* avoid calling vm_object_set_writeable_dirty() */
360 	    ((prot & VM_PROT_WRITE) == 0 ||
361 	    (fs.first_object->type != OBJT_VNODE &&
362 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
363 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
364 		VM_OBJECT_RLOCK(fs.first_object);
365 		if ((prot & VM_PROT_WRITE) != 0 &&
366 		    (fs.first_object->type == OBJT_VNODE ||
367 		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
368 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
369 			goto fast_failed;
370 		m = vm_page_lookup(fs.first_object, fs.first_pindex);
371 		/* A busy page can be mapped for read|execute access. */
372 		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
373 		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
374 			goto fast_failed;
375 		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
376 		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
377 		   0), 0);
378 		if (result != KERN_SUCCESS)
379 			goto fast_failed;
380 		if (m_hold != NULL) {
381 			*m_hold = m;
382 			vm_page_lock(m);
383 			vm_page_hold(m);
384 			vm_page_unlock(m);
385 		}
386 		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
387 		    FALSE);
388 		VM_OBJECT_RUNLOCK(fs.first_object);
389 		if (!wired)
390 			vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR);
391 		vm_map_lookup_done(fs.map, fs.entry);
392 		curthread->td_ru.ru_minflt++;
393 		return (KERN_SUCCESS);
394 fast_failed:
395 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
396 			VM_OBJECT_RUNLOCK(fs.first_object);
397 			VM_OBJECT_WLOCK(fs.first_object);
398 		}
399 	} else {
400 		VM_OBJECT_WLOCK(fs.first_object);
401 	}
402 
403 	/*
404 	 * Make a reference to this object to prevent its disposal while we
405 	 * are messing with it.  Once we have the reference, the map is free
406 	 * to be diddled.  Since objects reference their shadows (and copies),
407 	 * they will stay around as well.
408 	 *
409 	 * Bump the paging-in-progress count to prevent size changes (e.g.
410 	 * truncation operations) during I/O.  This must be done after
411 	 * obtaining the vnode lock in order to avoid possible deadlocks.
412 	 */
413 	vm_object_reference_locked(fs.first_object);
414 	vm_object_pip_add(fs.first_object, 1);
415 
416 	fs.lookup_still_valid = TRUE;
417 
418 	fs.first_m = NULL;
419 
420 	/*
421 	 * Search for the page at object/offset.
422 	 */
423 	fs.object = fs.first_object;
424 	fs.pindex = fs.first_pindex;
425 	while (TRUE) {
426 		/*
427 		 * If the object is marked for imminent termination,
428 		 * we retry here, since the collapse pass has raced
429 		 * with us.  Otherwise, if we see terminally dead
430 		 * object, return fail.
431 		 */
432 		if ((fs.object->flags & OBJ_DEAD) != 0) {
433 			dead = fs.object->type == OBJT_DEAD;
434 			unlock_and_deallocate(&fs);
435 			if (dead)
436 				return (KERN_PROTECTION_FAILURE);
437 			pause("vmf_de", 1);
438 			goto RetryFault;
439 		}
440 
441 		/*
442 		 * See if page is resident
443 		 */
444 		fs.m = vm_page_lookup(fs.object, fs.pindex);
445 		if (fs.m != NULL) {
446 			/*
447 			 * Wait/Retry if the page is busy.  We have to do this
448 			 * if the page is either exclusive or shared busy
449 			 * because the vm_pager may be using read busy for
450 			 * pageouts (and even pageins if it is the vnode
451 			 * pager), and we could end up trying to pagein and
452 			 * pageout the same page simultaneously.
453 			 *
454 			 * We can theoretically allow the busy case on a read
455 			 * fault if the page is marked valid, but since such
456 			 * pages are typically already pmap'd, putting that
457 			 * special case in might be more effort then it is
458 			 * worth.  We cannot under any circumstances mess
459 			 * around with a shared busied page except, perhaps,
460 			 * to pmap it.
461 			 */
462 			if (vm_page_busied(fs.m)) {
463 				/*
464 				 * Reference the page before unlocking and
465 				 * sleeping so that the page daemon is less
466 				 * likely to reclaim it.
467 				 */
468 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
469 				if (fs.object != fs.first_object) {
470 					if (!VM_OBJECT_TRYWLOCK(
471 					    fs.first_object)) {
472 						VM_OBJECT_WUNLOCK(fs.object);
473 						VM_OBJECT_WLOCK(fs.first_object);
474 						VM_OBJECT_WLOCK(fs.object);
475 					}
476 					vm_page_lock(fs.first_m);
477 					vm_page_free(fs.first_m);
478 					vm_page_unlock(fs.first_m);
479 					vm_object_pip_wakeup(fs.first_object);
480 					VM_OBJECT_WUNLOCK(fs.first_object);
481 					fs.first_m = NULL;
482 				}
483 				unlock_map(&fs);
484 				if (fs.m == vm_page_lookup(fs.object,
485 				    fs.pindex)) {
486 					vm_page_sleep_if_busy(fs.m, "vmpfw");
487 				}
488 				vm_object_pip_wakeup(fs.object);
489 				VM_OBJECT_WUNLOCK(fs.object);
490 				PCPU_INC(cnt.v_intrans);
491 				vm_object_deallocate(fs.first_object);
492 				goto RetryFault;
493 			}
494 			vm_page_lock(fs.m);
495 			vm_page_remque(fs.m);
496 			vm_page_unlock(fs.m);
497 
498 			/*
499 			 * Mark page busy for other processes, and the
500 			 * pagedaemon.  If it still isn't completely valid
501 			 * (readable), jump to readrest, else break-out ( we
502 			 * found the page ).
503 			 */
504 			vm_page_xbusy(fs.m);
505 			if (fs.m->valid != VM_PAGE_BITS_ALL)
506 				goto readrest;
507 			break;
508 		}
509 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
510 
511 		/*
512 		 * Page is not resident.  If the pager might contain the page
513 		 * or this is the beginning of the search, allocate a new
514 		 * page.  (Default objects are zero-fill, so there is no real
515 		 * pager for them.)
516 		 */
517 		if (fs.object->type != OBJT_DEFAULT ||
518 		    fs.object == fs.first_object) {
519 			if (fs.pindex >= fs.object->size) {
520 				unlock_and_deallocate(&fs);
521 				return (KERN_PROTECTION_FAILURE);
522 			}
523 
524 			/*
525 			 * Allocate a new page for this object/offset pair.
526 			 *
527 			 * Unlocked read of the p_flag is harmless. At
528 			 * worst, the P_KILLED might be not observed
529 			 * there, and allocation can fail, causing
530 			 * restart and new reading of the p_flag.
531 			 */
532 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
533 #if VM_NRESERVLEVEL > 0
534 				vm_object_color(fs.object, atop(vaddr) -
535 				    fs.pindex);
536 #endif
537 				alloc_req = P_KILLED(curproc) ?
538 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
539 				if (fs.object->type != OBJT_VNODE &&
540 				    fs.object->backing_object == NULL)
541 					alloc_req |= VM_ALLOC_ZERO;
542 				fs.m = vm_page_alloc(fs.object, fs.pindex,
543 				    alloc_req);
544 			}
545 			if (fs.m == NULL) {
546 				unlock_and_deallocate(&fs);
547 				VM_WAITPFAULT;
548 				goto RetryFault;
549 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
550 				break;
551 		}
552 
553 readrest:
554 		/*
555 		 * If the pager for the current object might have the page,
556 		 * then determine the number of additional pages to read and
557 		 * potentially reprioritize previously read pages for earlier
558 		 * reclamation.  These operations should only be performed
559 		 * once per page fault.  Even if the current pager doesn't
560 		 * have the page, the number of additional pages to read will
561 		 * apply to subsequent objects in the shadow chain.
562 		 */
563 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
564 		    !P_KILLED(curproc)) {
565 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
566 			era = fs.entry->read_ahead;
567 			behavior = vm_map_entry_behavior(fs.entry);
568 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
569 				nera = 0;
570 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
571 				nera = VM_FAULT_READ_AHEAD_MAX;
572 				if (vaddr == fs.entry->next_read)
573 					vm_fault_dontneed(&fs, vaddr, nera);
574 			} else if (vaddr == fs.entry->next_read) {
575 				/*
576 				 * This is a sequential fault.  Arithmetically
577 				 * increase the requested number of pages in
578 				 * the read-ahead window.  The requested
579 				 * number of pages is "# of sequential faults
580 				 * x (read ahead min + 1) + read ahead min"
581 				 */
582 				nera = VM_FAULT_READ_AHEAD_MIN;
583 				if (era > 0) {
584 					nera += era + 1;
585 					if (nera > VM_FAULT_READ_AHEAD_MAX)
586 						nera = VM_FAULT_READ_AHEAD_MAX;
587 				}
588 				if (era == VM_FAULT_READ_AHEAD_MAX)
589 					vm_fault_dontneed(&fs, vaddr, nera);
590 			} else {
591 				/*
592 				 * This is a non-sequential fault.
593 				 */
594 				nera = 0;
595 			}
596 			if (era != nera) {
597 				/*
598 				 * A read lock on the map suffices to update
599 				 * the read ahead count safely.
600 				 */
601 				fs.entry->read_ahead = nera;
602 			}
603 
604 			/*
605 			 * Prepare for unlocking the map.  Save the map
606 			 * entry's start and end addresses, which are used to
607 			 * optimize the size of the pager operation below.
608 			 * Even if the map entry's addresses change after
609 			 * unlocking the map, using the saved addresses is
610 			 * safe.
611 			 */
612 			e_start = fs.entry->start;
613 			e_end = fs.entry->end;
614 		}
615 
616 		/*
617 		 * Call the pager to retrieve the page if there is a chance
618 		 * that the pager has it, and potentially retrieve additional
619 		 * pages at the same time.
620 		 */
621 		if (fs.object->type != OBJT_DEFAULT) {
622 			/*
623 			 * We have either allocated a new page or found an
624 			 * existing page that is only partially valid.  We
625 			 * hold a reference on fs.object and the page is
626 			 * exclusive busied.
627 			 */
628 			unlock_map(&fs);
629 
630 			if (fs.object->type == OBJT_VNODE) {
631 				vp = fs.object->handle;
632 				if (vp == fs.vp)
633 					goto vnode_locked;
634 				else if (fs.vp != NULL) {
635 					vput(fs.vp);
636 					fs.vp = NULL;
637 				}
638 				locked = VOP_ISLOCKED(vp);
639 
640 				if (locked != LK_EXCLUSIVE)
641 					locked = LK_SHARED;
642 				/* Do not sleep for vnode lock while fs.m is busy */
643 				error = vget(vp, locked | LK_CANRECURSE |
644 				    LK_NOWAIT, curthread);
645 				if (error != 0) {
646 					vhold(vp);
647 					release_page(&fs);
648 					unlock_and_deallocate(&fs);
649 					error = vget(vp, locked | LK_RETRY |
650 					    LK_CANRECURSE, curthread);
651 					vdrop(vp);
652 					fs.vp = vp;
653 					KASSERT(error == 0,
654 					    ("vm_fault: vget failed"));
655 					goto RetryFault;
656 				}
657 				fs.vp = vp;
658 			}
659 vnode_locked:
660 			KASSERT(fs.vp == NULL || !fs.map->system_map,
661 			    ("vm_fault: vnode-backed object mapped by system map"));
662 
663 			/*
664 			 * Page in the requested page and hint the pager,
665 			 * that it may bring up surrounding pages.
666 			 */
667 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
668 			    P_KILLED(curproc)) {
669 				behind = 0;
670 				ahead = 0;
671 			} else {
672 				/* Is this a sequential fault? */
673 				if (nera > 0) {
674 					behind = 0;
675 					ahead = nera;
676 				} else {
677 					/*
678 					 * Request a cluster of pages that is
679 					 * aligned to a VM_FAULT_READ_DEFAULT
680 					 * page offset boundary within the
681 					 * object.  Alignment to a page offset
682 					 * boundary is more likely to coincide
683 					 * with the underlying file system
684 					 * block than alignment to a virtual
685 					 * address boundary.
686 					 */
687 					cluster_offset = fs.pindex %
688 					    VM_FAULT_READ_DEFAULT;
689 					behind = ulmin(cluster_offset,
690 					    atop(vaddr - e_start));
691 					ahead = VM_FAULT_READ_DEFAULT - 1 -
692 					    cluster_offset;
693 				}
694 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
695 			}
696 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
697 			    &behind, &ahead);
698 			if (rv == VM_PAGER_OK) {
699 				faultcount = behind + 1 + ahead;
700 				hardfault++;
701 				break; /* break to PAGE HAS BEEN FOUND */
702 			}
703 			if (rv == VM_PAGER_ERROR)
704 				printf("vm_fault: pager read error, pid %d (%s)\n",
705 				    curproc->p_pid, curproc->p_comm);
706 
707 			/*
708 			 * If an I/O error occurred or the requested page was
709 			 * outside the range of the pager, clean up and return
710 			 * an error.
711 			 */
712 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
713 				vm_page_lock(fs.m);
714 				vm_page_free(fs.m);
715 				vm_page_unlock(fs.m);
716 				fs.m = NULL;
717 				unlock_and_deallocate(&fs);
718 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
719 				    KERN_PROTECTION_FAILURE);
720 			}
721 
722 			/*
723 			 * The requested page does not exist at this object/
724 			 * offset.  Remove the invalid page from the object,
725 			 * waking up anyone waiting for it, and continue on to
726 			 * the next object.  However, if this is the top-level
727 			 * object, we must leave the busy page in place to
728 			 * prevent another process from rushing past us, and
729 			 * inserting the page in that object at the same time
730 			 * that we are.
731 			 */
732 			if (fs.object != fs.first_object) {
733 				vm_page_lock(fs.m);
734 				vm_page_free(fs.m);
735 				vm_page_unlock(fs.m);
736 				fs.m = NULL;
737 			}
738 		}
739 
740 		/*
741 		 * We get here if the object has default pager (or unwiring)
742 		 * or the pager doesn't have the page.
743 		 */
744 		if (fs.object == fs.first_object)
745 			fs.first_m = fs.m;
746 
747 		/*
748 		 * Move on to the next object.  Lock the next object before
749 		 * unlocking the current one.
750 		 */
751 		next_object = fs.object->backing_object;
752 		if (next_object == NULL) {
753 			/*
754 			 * If there's no object left, fill the page in the top
755 			 * object with zeros.
756 			 */
757 			if (fs.object != fs.first_object) {
758 				vm_object_pip_wakeup(fs.object);
759 				VM_OBJECT_WUNLOCK(fs.object);
760 
761 				fs.object = fs.first_object;
762 				fs.pindex = fs.first_pindex;
763 				fs.m = fs.first_m;
764 				VM_OBJECT_WLOCK(fs.object);
765 			}
766 			fs.first_m = NULL;
767 
768 			/*
769 			 * Zero the page if necessary and mark it valid.
770 			 */
771 			if ((fs.m->flags & PG_ZERO) == 0) {
772 				pmap_zero_page(fs.m);
773 			} else {
774 				PCPU_INC(cnt.v_ozfod);
775 			}
776 			PCPU_INC(cnt.v_zfod);
777 			fs.m->valid = VM_PAGE_BITS_ALL;
778 			/* Don't try to prefault neighboring pages. */
779 			faultcount = 1;
780 			break;	/* break to PAGE HAS BEEN FOUND */
781 		} else {
782 			KASSERT(fs.object != next_object,
783 			    ("object loop %p", next_object));
784 			VM_OBJECT_WLOCK(next_object);
785 			vm_object_pip_add(next_object, 1);
786 			if (fs.object != fs.first_object)
787 				vm_object_pip_wakeup(fs.object);
788 			fs.pindex +=
789 			    OFF_TO_IDX(fs.object->backing_object_offset);
790 			VM_OBJECT_WUNLOCK(fs.object);
791 			fs.object = next_object;
792 		}
793 	}
794 
795 	vm_page_assert_xbusied(fs.m);
796 
797 	/*
798 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
799 	 * is held.]
800 	 */
801 
802 	/*
803 	 * If the page is being written, but isn't already owned by the
804 	 * top-level object, we have to copy it into a new page owned by the
805 	 * top-level object.
806 	 */
807 	if (fs.object != fs.first_object) {
808 		/*
809 		 * We only really need to copy if we want to write it.
810 		 */
811 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
812 			/*
813 			 * This allows pages to be virtually copied from a
814 			 * backing_object into the first_object, where the
815 			 * backing object has no other refs to it, and cannot
816 			 * gain any more refs.  Instead of a bcopy, we just
817 			 * move the page from the backing object to the
818 			 * first object.  Note that we must mark the page
819 			 * dirty in the first object so that it will go out
820 			 * to swap when needed.
821 			 */
822 			is_first_object_locked = FALSE;
823 			if (
824 				/*
825 				 * Only one shadow object
826 				 */
827 				(fs.object->shadow_count == 1) &&
828 				/*
829 				 * No COW refs, except us
830 				 */
831 				(fs.object->ref_count == 1) &&
832 				/*
833 				 * No one else can look this object up
834 				 */
835 				(fs.object->handle == NULL) &&
836 				/*
837 				 * No other ways to look the object up
838 				 */
839 				((fs.object->type == OBJT_DEFAULT) ||
840 				 (fs.object->type == OBJT_SWAP)) &&
841 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
842 				/*
843 				 * We don't chase down the shadow chain
844 				 */
845 			    fs.object == fs.first_object->backing_object) {
846 				vm_page_lock(fs.m);
847 				vm_page_remove(fs.m);
848 				vm_page_unlock(fs.m);
849 				vm_page_lock(fs.first_m);
850 				vm_page_replace_checked(fs.m, fs.first_object,
851 				    fs.first_pindex, fs.first_m);
852 				vm_page_free(fs.first_m);
853 				vm_page_unlock(fs.first_m);
854 				vm_page_dirty(fs.m);
855 #if VM_NRESERVLEVEL > 0
856 				/*
857 				 * Rename the reservation.
858 				 */
859 				vm_reserv_rename(fs.m, fs.first_object,
860 				    fs.object, OFF_TO_IDX(
861 				    fs.first_object->backing_object_offset));
862 #endif
863 				/*
864 				 * Removing the page from the backing object
865 				 * unbusied it.
866 				 */
867 				vm_page_xbusy(fs.m);
868 				fs.first_m = fs.m;
869 				fs.m = NULL;
870 				PCPU_INC(cnt.v_cow_optim);
871 			} else {
872 				/*
873 				 * Oh, well, lets copy it.
874 				 */
875 				pmap_copy_page(fs.m, fs.first_m);
876 				fs.first_m->valid = VM_PAGE_BITS_ALL;
877 				if (wired && (fault_flags &
878 				    VM_FAULT_WIRE) == 0) {
879 					vm_page_lock(fs.first_m);
880 					vm_page_wire(fs.first_m);
881 					vm_page_unlock(fs.first_m);
882 
883 					vm_page_lock(fs.m);
884 					vm_page_unwire(fs.m, PQ_INACTIVE);
885 					vm_page_unlock(fs.m);
886 				}
887 				/*
888 				 * We no longer need the old page or object.
889 				 */
890 				release_page(&fs);
891 			}
892 			/*
893 			 * fs.object != fs.first_object due to above
894 			 * conditional
895 			 */
896 			vm_object_pip_wakeup(fs.object);
897 			VM_OBJECT_WUNLOCK(fs.object);
898 			/*
899 			 * Only use the new page below...
900 			 */
901 			fs.object = fs.first_object;
902 			fs.pindex = fs.first_pindex;
903 			fs.m = fs.first_m;
904 			if (!is_first_object_locked)
905 				VM_OBJECT_WLOCK(fs.object);
906 			PCPU_INC(cnt.v_cow_faults);
907 			curthread->td_cow++;
908 		} else {
909 			prot &= ~VM_PROT_WRITE;
910 		}
911 	}
912 
913 	/*
914 	 * We must verify that the maps have not changed since our last
915 	 * lookup.
916 	 */
917 	if (!fs.lookup_still_valid) {
918 		vm_object_t retry_object;
919 		vm_pindex_t retry_pindex;
920 		vm_prot_t retry_prot;
921 
922 		if (!vm_map_trylock_read(fs.map)) {
923 			release_page(&fs);
924 			unlock_and_deallocate(&fs);
925 			goto RetryFault;
926 		}
927 		fs.lookup_still_valid = TRUE;
928 		if (fs.map->timestamp != map_generation) {
929 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
930 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
931 
932 			/*
933 			 * If we don't need the page any longer, put it on the inactive
934 			 * list (the easiest thing to do here).  If no one needs it,
935 			 * pageout will grab it eventually.
936 			 */
937 			if (result != KERN_SUCCESS) {
938 				release_page(&fs);
939 				unlock_and_deallocate(&fs);
940 
941 				/*
942 				 * If retry of map lookup would have blocked then
943 				 * retry fault from start.
944 				 */
945 				if (result == KERN_FAILURE)
946 					goto RetryFault;
947 				return (result);
948 			}
949 			if ((retry_object != fs.first_object) ||
950 			    (retry_pindex != fs.first_pindex)) {
951 				release_page(&fs);
952 				unlock_and_deallocate(&fs);
953 				goto RetryFault;
954 			}
955 
956 			/*
957 			 * Check whether the protection has changed or the object has
958 			 * been copied while we left the map unlocked. Changing from
959 			 * read to write permission is OK - we leave the page
960 			 * write-protected, and catch the write fault. Changing from
961 			 * write to read permission means that we can't mark the page
962 			 * write-enabled after all.
963 			 */
964 			prot &= retry_prot;
965 		}
966 	}
967 
968 	/*
969 	 * If the page was filled by a pager, save the virtual address that
970 	 * should be faulted on next under a sequential access pattern to the
971 	 * map entry.  A read lock on the map suffices to update this address
972 	 * safely.
973 	 */
974 	if (hardfault)
975 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
976 
977 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
978 	vm_page_assert_xbusied(fs.m);
979 
980 	/*
981 	 * Page must be completely valid or it is not fit to
982 	 * map into user space.  vm_pager_get_pages() ensures this.
983 	 */
984 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
985 	    ("vm_fault: page %p partially invalid", fs.m));
986 	VM_OBJECT_WUNLOCK(fs.object);
987 
988 	/*
989 	 * Put this page into the physical map.  We had to do the unlock above
990 	 * because pmap_enter() may sleep.  We don't put the page
991 	 * back on the active queue until later so that the pageout daemon
992 	 * won't find it (yet).
993 	 */
994 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
995 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
996 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
997 	    wired == 0)
998 		vm_fault_prefault(&fs, vaddr,
999 		    faultcount > 0 ? behind : PFBAK,
1000 		    faultcount > 0 ? ahead : PFFOR);
1001 	VM_OBJECT_WLOCK(fs.object);
1002 	vm_page_lock(fs.m);
1003 
1004 	/*
1005 	 * If the page is not wired down, then put it where the pageout daemon
1006 	 * can find it.
1007 	 */
1008 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1009 		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1010 		vm_page_wire(fs.m);
1011 	} else
1012 		vm_page_activate(fs.m);
1013 	if (m_hold != NULL) {
1014 		*m_hold = fs.m;
1015 		vm_page_hold(fs.m);
1016 	}
1017 	vm_page_unlock(fs.m);
1018 	vm_page_xunbusy(fs.m);
1019 
1020 	/*
1021 	 * Unlock everything, and return
1022 	 */
1023 	unlock_and_deallocate(&fs);
1024 	if (hardfault) {
1025 		PCPU_INC(cnt.v_io_faults);
1026 		curthread->td_ru.ru_majflt++;
1027 #ifdef RACCT
1028 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1029 			PROC_LOCK(curproc);
1030 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1031 				racct_add_force(curproc, RACCT_WRITEBPS,
1032 				    PAGE_SIZE + behind * PAGE_SIZE);
1033 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1034 			} else {
1035 				racct_add_force(curproc, RACCT_READBPS,
1036 				    PAGE_SIZE + ahead * PAGE_SIZE);
1037 				racct_add_force(curproc, RACCT_READIOPS, 1);
1038 			}
1039 			PROC_UNLOCK(curproc);
1040 		}
1041 #endif
1042 	} else
1043 		curthread->td_ru.ru_minflt++;
1044 
1045 	return (KERN_SUCCESS);
1046 }
1047 
1048 /*
1049  * Speed up the reclamation of pages that precede the faulting pindex within
1050  * the first object of the shadow chain.  Essentially, perform the equivalent
1051  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1052  * the faulting pindex by the cluster size when the pages read by vm_fault()
1053  * cross a cluster-size boundary.  The cluster size is the greater of the
1054  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1055  *
1056  * When "fs->first_object" is a shadow object, the pages in the backing object
1057  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1058  * function must only be concerned with pages in the first object.
1059  */
1060 static void
1061 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1062 {
1063 	vm_map_entry_t entry;
1064 	vm_object_t first_object, object;
1065 	vm_offset_t end, start;
1066 	vm_page_t m, m_next;
1067 	vm_pindex_t pend, pstart;
1068 	vm_size_t size;
1069 
1070 	object = fs->object;
1071 	VM_OBJECT_ASSERT_WLOCKED(object);
1072 	first_object = fs->first_object;
1073 	if (first_object != object) {
1074 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1075 			VM_OBJECT_WUNLOCK(object);
1076 			VM_OBJECT_WLOCK(first_object);
1077 			VM_OBJECT_WLOCK(object);
1078 		}
1079 	}
1080 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1081 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1082 		size = VM_FAULT_DONTNEED_MIN;
1083 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1084 			size = pagesizes[1];
1085 		end = rounddown2(vaddr, size);
1086 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1087 		    (entry = fs->entry)->start < end) {
1088 			if (end - entry->start < size)
1089 				start = entry->start;
1090 			else
1091 				start = end - size;
1092 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1093 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1094 			    entry->start);
1095 			m_next = vm_page_find_least(first_object, pstart);
1096 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1097 			    entry->start);
1098 			while ((m = m_next) != NULL && m->pindex < pend) {
1099 				m_next = TAILQ_NEXT(m, listq);
1100 				if (m->valid != VM_PAGE_BITS_ALL ||
1101 				    vm_page_busied(m))
1102 					continue;
1103 
1104 				/*
1105 				 * Don't clear PGA_REFERENCED, since it would
1106 				 * likely represent a reference by a different
1107 				 * process.
1108 				 *
1109 				 * Typically, at this point, prefetched pages
1110 				 * are still in the inactive queue.  Only
1111 				 * pages that triggered page faults are in the
1112 				 * active queue.
1113 				 */
1114 				vm_page_lock(m);
1115 				vm_page_deactivate(m);
1116 				vm_page_unlock(m);
1117 			}
1118 		}
1119 	}
1120 	if (first_object != object)
1121 		VM_OBJECT_WUNLOCK(first_object);
1122 }
1123 
1124 /*
1125  * vm_fault_prefault provides a quick way of clustering
1126  * pagefaults into a processes address space.  It is a "cousin"
1127  * of vm_map_pmap_enter, except it runs at page fault time instead
1128  * of mmap time.
1129  */
1130 static void
1131 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1132     int backward, int forward)
1133 {
1134 	pmap_t pmap;
1135 	vm_map_entry_t entry;
1136 	vm_object_t backing_object, lobject;
1137 	vm_offset_t addr, starta;
1138 	vm_pindex_t pindex;
1139 	vm_page_t m;
1140 	int i;
1141 
1142 	pmap = fs->map->pmap;
1143 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1144 		return;
1145 
1146 	entry = fs->entry;
1147 
1148 	starta = addra - backward * PAGE_SIZE;
1149 	if (starta < entry->start) {
1150 		starta = entry->start;
1151 	} else if (starta > addra) {
1152 		starta = 0;
1153 	}
1154 
1155 	/*
1156 	 * Generate the sequence of virtual addresses that are candidates for
1157 	 * prefaulting in an outward spiral from the faulting virtual address,
1158 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1159 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1160 	 * If the candidate address doesn't have a backing physical page, then
1161 	 * the loop immediately terminates.
1162 	 */
1163 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1164 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1165 		    PAGE_SIZE);
1166 		if (addr > addra + forward * PAGE_SIZE)
1167 			addr = 0;
1168 
1169 		if (addr < starta || addr >= entry->end)
1170 			continue;
1171 
1172 		if (!pmap_is_prefaultable(pmap, addr))
1173 			continue;
1174 
1175 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1176 		lobject = entry->object.vm_object;
1177 		VM_OBJECT_RLOCK(lobject);
1178 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1179 		    lobject->type == OBJT_DEFAULT &&
1180 		    (backing_object = lobject->backing_object) != NULL) {
1181 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1182 			    0, ("vm_fault_prefault: unaligned object offset"));
1183 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1184 			VM_OBJECT_RLOCK(backing_object);
1185 			VM_OBJECT_RUNLOCK(lobject);
1186 			lobject = backing_object;
1187 		}
1188 		if (m == NULL) {
1189 			VM_OBJECT_RUNLOCK(lobject);
1190 			break;
1191 		}
1192 		if (m->valid == VM_PAGE_BITS_ALL &&
1193 		    (m->flags & PG_FICTITIOUS) == 0)
1194 			pmap_enter_quick(pmap, addr, m, entry->protection);
1195 		VM_OBJECT_RUNLOCK(lobject);
1196 	}
1197 }
1198 
1199 /*
1200  * Hold each of the physical pages that are mapped by the specified range of
1201  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1202  * and allow the specified types of access, "prot".  If all of the implied
1203  * pages are successfully held, then the number of held pages is returned
1204  * together with pointers to those pages in the array "ma".  However, if any
1205  * of the pages cannot be held, -1 is returned.
1206  */
1207 int
1208 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1209     vm_prot_t prot, vm_page_t *ma, int max_count)
1210 {
1211 	vm_offset_t end, va;
1212 	vm_page_t *mp;
1213 	int count;
1214 	boolean_t pmap_failed;
1215 
1216 	if (len == 0)
1217 		return (0);
1218 	end = round_page(addr + len);
1219 	addr = trunc_page(addr);
1220 
1221 	/*
1222 	 * Check for illegal addresses.
1223 	 */
1224 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1225 		return (-1);
1226 
1227 	if (atop(end - addr) > max_count)
1228 		panic("vm_fault_quick_hold_pages: count > max_count");
1229 	count = atop(end - addr);
1230 
1231 	/*
1232 	 * Most likely, the physical pages are resident in the pmap, so it is
1233 	 * faster to try pmap_extract_and_hold() first.
1234 	 */
1235 	pmap_failed = FALSE;
1236 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1237 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1238 		if (*mp == NULL)
1239 			pmap_failed = TRUE;
1240 		else if ((prot & VM_PROT_WRITE) != 0 &&
1241 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1242 			/*
1243 			 * Explicitly dirty the physical page.  Otherwise, the
1244 			 * caller's changes may go unnoticed because they are
1245 			 * performed through an unmanaged mapping or by a DMA
1246 			 * operation.
1247 			 *
1248 			 * The object lock is not held here.
1249 			 * See vm_page_clear_dirty_mask().
1250 			 */
1251 			vm_page_dirty(*mp);
1252 		}
1253 	}
1254 	if (pmap_failed) {
1255 		/*
1256 		 * One or more pages could not be held by the pmap.  Either no
1257 		 * page was mapped at the specified virtual address or that
1258 		 * mapping had insufficient permissions.  Attempt to fault in
1259 		 * and hold these pages.
1260 		 */
1261 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1262 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1263 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1264 				goto error;
1265 	}
1266 	return (count);
1267 error:
1268 	for (mp = ma; mp < ma + count; mp++)
1269 		if (*mp != NULL) {
1270 			vm_page_lock(*mp);
1271 			vm_page_unhold(*mp);
1272 			vm_page_unlock(*mp);
1273 		}
1274 	return (-1);
1275 }
1276 
1277 /*
1278  *	Routine:
1279  *		vm_fault_copy_entry
1280  *	Function:
1281  *		Create new shadow object backing dst_entry with private copy of
1282  *		all underlying pages. When src_entry is equal to dst_entry,
1283  *		function implements COW for wired-down map entry. Otherwise,
1284  *		it forks wired entry into dst_map.
1285  *
1286  *	In/out conditions:
1287  *		The source and destination maps must be locked for write.
1288  *		The source map entry must be wired down (or be a sharing map
1289  *		entry corresponding to a main map entry that is wired down).
1290  */
1291 void
1292 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1293     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1294     vm_ooffset_t *fork_charge)
1295 {
1296 	vm_object_t backing_object, dst_object, object, src_object;
1297 	vm_pindex_t dst_pindex, pindex, src_pindex;
1298 	vm_prot_t access, prot;
1299 	vm_offset_t vaddr;
1300 	vm_page_t dst_m;
1301 	vm_page_t src_m;
1302 	boolean_t upgrade;
1303 
1304 #ifdef	lint
1305 	src_map++;
1306 #endif	/* lint */
1307 
1308 	upgrade = src_entry == dst_entry;
1309 	access = prot = dst_entry->protection;
1310 
1311 	src_object = src_entry->object.vm_object;
1312 	src_pindex = OFF_TO_IDX(src_entry->offset);
1313 
1314 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1315 		dst_object = src_object;
1316 		vm_object_reference(dst_object);
1317 	} else {
1318 		/*
1319 		 * Create the top-level object for the destination entry. (Doesn't
1320 		 * actually shadow anything - we copy the pages directly.)
1321 		 */
1322 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1323 		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1324 #if VM_NRESERVLEVEL > 0
1325 		dst_object->flags |= OBJ_COLORED;
1326 		dst_object->pg_color = atop(dst_entry->start);
1327 #endif
1328 	}
1329 
1330 	VM_OBJECT_WLOCK(dst_object);
1331 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1332 	    ("vm_fault_copy_entry: vm_object not NULL"));
1333 	if (src_object != dst_object) {
1334 		dst_entry->object.vm_object = dst_object;
1335 		dst_entry->offset = 0;
1336 		dst_object->charge = dst_entry->end - dst_entry->start;
1337 	}
1338 	if (fork_charge != NULL) {
1339 		KASSERT(dst_entry->cred == NULL,
1340 		    ("vm_fault_copy_entry: leaked swp charge"));
1341 		dst_object->cred = curthread->td_ucred;
1342 		crhold(dst_object->cred);
1343 		*fork_charge += dst_object->charge;
1344 	} else if (dst_object->cred == NULL) {
1345 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1346 		    dst_entry));
1347 		dst_object->cred = dst_entry->cred;
1348 		dst_entry->cred = NULL;
1349 	}
1350 
1351 	/*
1352 	 * If not an upgrade, then enter the mappings in the pmap as
1353 	 * read and/or execute accesses.  Otherwise, enter them as
1354 	 * write accesses.
1355 	 *
1356 	 * A writeable large page mapping is only created if all of
1357 	 * the constituent small page mappings are modified. Marking
1358 	 * PTEs as modified on inception allows promotion to happen
1359 	 * without taking potentially large number of soft faults.
1360 	 */
1361 	if (!upgrade)
1362 		access &= ~VM_PROT_WRITE;
1363 
1364 	/*
1365 	 * Loop through all of the virtual pages within the entry's
1366 	 * range, copying each page from the source object to the
1367 	 * destination object.  Since the source is wired, those pages
1368 	 * must exist.  In contrast, the destination is pageable.
1369 	 * Since the destination object does share any backing storage
1370 	 * with the source object, all of its pages must be dirtied,
1371 	 * regardless of whether they can be written.
1372 	 */
1373 	for (vaddr = dst_entry->start, dst_pindex = 0;
1374 	    vaddr < dst_entry->end;
1375 	    vaddr += PAGE_SIZE, dst_pindex++) {
1376 again:
1377 		/*
1378 		 * Find the page in the source object, and copy it in.
1379 		 * Because the source is wired down, the page will be
1380 		 * in memory.
1381 		 */
1382 		if (src_object != dst_object)
1383 			VM_OBJECT_RLOCK(src_object);
1384 		object = src_object;
1385 		pindex = src_pindex + dst_pindex;
1386 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1387 		    (backing_object = object->backing_object) != NULL) {
1388 			/*
1389 			 * Unless the source mapping is read-only or
1390 			 * it is presently being upgraded from
1391 			 * read-only, the first object in the shadow
1392 			 * chain should provide all of the pages.  In
1393 			 * other words, this loop body should never be
1394 			 * executed when the source mapping is already
1395 			 * read/write.
1396 			 */
1397 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1398 			    upgrade,
1399 			    ("vm_fault_copy_entry: main object missing page"));
1400 
1401 			VM_OBJECT_RLOCK(backing_object);
1402 			pindex += OFF_TO_IDX(object->backing_object_offset);
1403 			if (object != dst_object)
1404 				VM_OBJECT_RUNLOCK(object);
1405 			object = backing_object;
1406 		}
1407 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1408 
1409 		if (object != dst_object) {
1410 			/*
1411 			 * Allocate a page in the destination object.
1412 			 */
1413 			dst_m = vm_page_alloc(dst_object, (src_object ==
1414 			    dst_object ? src_pindex : 0) + dst_pindex,
1415 			    VM_ALLOC_NORMAL);
1416 			if (dst_m == NULL) {
1417 				VM_OBJECT_WUNLOCK(dst_object);
1418 				VM_OBJECT_RUNLOCK(object);
1419 				VM_WAIT;
1420 				VM_OBJECT_WLOCK(dst_object);
1421 				goto again;
1422 			}
1423 			pmap_copy_page(src_m, dst_m);
1424 			VM_OBJECT_RUNLOCK(object);
1425 			dst_m->valid = VM_PAGE_BITS_ALL;
1426 			dst_m->dirty = VM_PAGE_BITS_ALL;
1427 		} else {
1428 			dst_m = src_m;
1429 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1430 				goto again;
1431 			vm_page_xbusy(dst_m);
1432 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1433 			    ("invalid dst page %p", dst_m));
1434 		}
1435 		VM_OBJECT_WUNLOCK(dst_object);
1436 
1437 		/*
1438 		 * Enter it in the pmap. If a wired, copy-on-write
1439 		 * mapping is being replaced by a write-enabled
1440 		 * mapping, then wire that new mapping.
1441 		 */
1442 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1443 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1444 
1445 		/*
1446 		 * Mark it no longer busy, and put it on the active list.
1447 		 */
1448 		VM_OBJECT_WLOCK(dst_object);
1449 
1450 		if (upgrade) {
1451 			if (src_m != dst_m) {
1452 				vm_page_lock(src_m);
1453 				vm_page_unwire(src_m, PQ_INACTIVE);
1454 				vm_page_unlock(src_m);
1455 				vm_page_lock(dst_m);
1456 				vm_page_wire(dst_m);
1457 				vm_page_unlock(dst_m);
1458 			} else {
1459 				KASSERT(dst_m->wire_count > 0,
1460 				    ("dst_m %p is not wired", dst_m));
1461 			}
1462 		} else {
1463 			vm_page_lock(dst_m);
1464 			vm_page_activate(dst_m);
1465 			vm_page_unlock(dst_m);
1466 		}
1467 		vm_page_xunbusy(dst_m);
1468 	}
1469 	VM_OBJECT_WUNLOCK(dst_object);
1470 	if (upgrade) {
1471 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1472 		vm_object_deallocate(src_object);
1473 	}
1474 }
1475 
1476 /*
1477  * Block entry into the machine-independent layer's page fault handler by
1478  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1479  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1480  * spurious page faults.
1481  */
1482 int
1483 vm_fault_disable_pagefaults(void)
1484 {
1485 
1486 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1487 }
1488 
1489 void
1490 vm_fault_enable_pagefaults(int save)
1491 {
1492 
1493 	curthread_pflags_restore(save);
1494 }
1495