xref: /freebsd/sys/vm/vm_fault.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/resourcevar.h>
87 #include <sys/sysctl.h>
88 #include <sys/vmmeter.h>
89 #include <sys/vnode.h>
90 #ifdef KTRACE
91 #include <sys/ktrace.h>
92 #endif
93 
94 #include <vm/vm.h>
95 #include <vm/vm_param.h>
96 #include <vm/pmap.h>
97 #include <vm/vm_map.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pageout.h>
101 #include <vm/vm_kern.h>
102 #include <vm/vm_pager.h>
103 #include <vm/vm_extern.h>
104 
105 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
106 
107 #define PFBAK 4
108 #define PFFOR 4
109 #define PAGEORDER_SIZE (PFBAK+PFFOR)
110 
111 static int prefault_pageorder[] = {
112 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
113 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
114 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
115 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
116 };
117 
118 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
119 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
120 
121 #define VM_FAULT_READ_AHEAD 8
122 #define VM_FAULT_READ_BEHIND 7
123 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
124 
125 struct faultstate {
126 	vm_page_t m;
127 	vm_object_t object;
128 	vm_pindex_t pindex;
129 	vm_page_t first_m;
130 	vm_object_t	first_object;
131 	vm_pindex_t first_pindex;
132 	vm_map_t map;
133 	vm_map_entry_t entry;
134 	int lookup_still_valid;
135 	struct vnode *vp;
136 	int vfslocked;
137 };
138 
139 static inline void
140 release_page(struct faultstate *fs)
141 {
142 
143 	vm_page_wakeup(fs->m);
144 	vm_page_lock(fs->m);
145 	vm_page_deactivate(fs->m);
146 	vm_page_unlock(fs->m);
147 	fs->m = NULL;
148 }
149 
150 static inline void
151 unlock_map(struct faultstate *fs)
152 {
153 
154 	if (fs->lookup_still_valid) {
155 		vm_map_lookup_done(fs->map, fs->entry);
156 		fs->lookup_still_valid = FALSE;
157 	}
158 }
159 
160 static void
161 unlock_and_deallocate(struct faultstate *fs)
162 {
163 
164 	vm_object_pip_wakeup(fs->object);
165 	VM_OBJECT_UNLOCK(fs->object);
166 	if (fs->object != fs->first_object) {
167 		VM_OBJECT_LOCK(fs->first_object);
168 		vm_page_lock(fs->first_m);
169 		vm_page_free(fs->first_m);
170 		vm_page_unlock(fs->first_m);
171 		vm_object_pip_wakeup(fs->first_object);
172 		VM_OBJECT_UNLOCK(fs->first_object);
173 		fs->first_m = NULL;
174 	}
175 	vm_object_deallocate(fs->first_object);
176 	unlock_map(fs);
177 	if (fs->vp != NULL) {
178 		vput(fs->vp);
179 		fs->vp = NULL;
180 	}
181 	VFS_UNLOCK_GIANT(fs->vfslocked);
182 	fs->vfslocked = 0;
183 }
184 
185 /*
186  * TRYPAGER - used by vm_fault to calculate whether the pager for the
187  *	      current object *might* contain the page.
188  *
189  *	      default objects are zero-fill, there is no real pager.
190  */
191 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
192 			((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired))
193 
194 /*
195  *	vm_fault:
196  *
197  *	Handle a page fault occurring at the given address,
198  *	requiring the given permissions, in the map specified.
199  *	If successful, the page is inserted into the
200  *	associated physical map.
201  *
202  *	NOTE: the given address should be truncated to the
203  *	proper page address.
204  *
205  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
206  *	a standard error specifying why the fault is fatal is returned.
207  *
208  *	The map in question must be referenced, and remains so.
209  *	Caller may hold no locks.
210  */
211 int
212 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
213     int fault_flags)
214 {
215 	struct thread *td;
216 	int result;
217 
218 	td = curthread;
219 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
220 		return (KERN_PROTECTION_FAILURE);
221 #ifdef KTRACE
222 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
223 		ktrfault(vaddr, fault_type);
224 #endif
225 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
226 	    NULL);
227 #ifdef KTRACE
228 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
229 		ktrfaultend(result);
230 #endif
231 	return (result);
232 }
233 
234 int
235 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
236     int fault_flags, vm_page_t *m_hold)
237 {
238 	vm_prot_t prot;
239 	int is_first_object_locked, result;
240 	boolean_t growstack, wired;
241 	int map_generation;
242 	vm_object_t next_object;
243 	vm_page_t marray[VM_FAULT_READ], mt, mt_prev;
244 	int hardfault;
245 	int faultcount, ahead, behind, alloc_req;
246 	struct faultstate fs;
247 	struct vnode *vp;
248 	int locked, error;
249 
250 	hardfault = 0;
251 	growstack = TRUE;
252 	PCPU_INC(cnt.v_vm_faults);
253 	fs.vp = NULL;
254 	fs.vfslocked = 0;
255 	faultcount = behind = 0;
256 
257 RetryFault:;
258 
259 	/*
260 	 * Find the backing store object and offset into it to begin the
261 	 * search.
262 	 */
263 	fs.map = map;
264 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
265 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
266 	if (result != KERN_SUCCESS) {
267 		if (growstack && result == KERN_INVALID_ADDRESS &&
268 		    map != kernel_map) {
269 			result = vm_map_growstack(curproc, vaddr);
270 			if (result != KERN_SUCCESS)
271 				return (KERN_FAILURE);
272 			growstack = FALSE;
273 			goto RetryFault;
274 		}
275 		return (result);
276 	}
277 
278 	map_generation = fs.map->timestamp;
279 
280 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
281 		panic("vm_fault: fault on nofault entry, addr: %lx",
282 		    (u_long)vaddr);
283 	}
284 
285 	/*
286 	 * Make a reference to this object to prevent its disposal while we
287 	 * are messing with it.  Once we have the reference, the map is free
288 	 * to be diddled.  Since objects reference their shadows (and copies),
289 	 * they will stay around as well.
290 	 *
291 	 * Bump the paging-in-progress count to prevent size changes (e.g.
292 	 * truncation operations) during I/O.  This must be done after
293 	 * obtaining the vnode lock in order to avoid possible deadlocks.
294 	 */
295 	VM_OBJECT_LOCK(fs.first_object);
296 	vm_object_reference_locked(fs.first_object);
297 	vm_object_pip_add(fs.first_object, 1);
298 
299 	fs.lookup_still_valid = TRUE;
300 
301 	if (wired)
302 		fault_type = prot | (fault_type & VM_PROT_COPY);
303 
304 	fs.first_m = NULL;
305 
306 	/*
307 	 * Search for the page at object/offset.
308 	 */
309 	fs.object = fs.first_object;
310 	fs.pindex = fs.first_pindex;
311 	while (TRUE) {
312 		/*
313 		 * If the object is dead, we stop here
314 		 */
315 		if (fs.object->flags & OBJ_DEAD) {
316 			unlock_and_deallocate(&fs);
317 			return (KERN_PROTECTION_FAILURE);
318 		}
319 
320 		/*
321 		 * See if page is resident
322 		 */
323 		fs.m = vm_page_lookup(fs.object, fs.pindex);
324 		if (fs.m != NULL) {
325 			/*
326 			 * check for page-based copy on write.
327 			 * We check fs.object == fs.first_object so
328 			 * as to ensure the legacy COW mechanism is
329 			 * used when the page in question is part of
330 			 * a shadow object.  Otherwise, vm_page_cowfault()
331 			 * removes the page from the backing object,
332 			 * which is not what we want.
333 			 */
334 			vm_page_lock(fs.m);
335 			if ((fs.m->cow) &&
336 			    (fault_type & VM_PROT_WRITE) &&
337 			    (fs.object == fs.first_object)) {
338 				vm_page_cowfault(fs.m);
339 				unlock_and_deallocate(&fs);
340 				goto RetryFault;
341 			}
342 
343 			/*
344 			 * Wait/Retry if the page is busy.  We have to do this
345 			 * if the page is busy via either VPO_BUSY or
346 			 * vm_page_t->busy because the vm_pager may be using
347 			 * vm_page_t->busy for pageouts ( and even pageins if
348 			 * it is the vnode pager ), and we could end up trying
349 			 * to pagein and pageout the same page simultaneously.
350 			 *
351 			 * We can theoretically allow the busy case on a read
352 			 * fault if the page is marked valid, but since such
353 			 * pages are typically already pmap'd, putting that
354 			 * special case in might be more effort then it is
355 			 * worth.  We cannot under any circumstances mess
356 			 * around with a vm_page_t->busy page except, perhaps,
357 			 * to pmap it.
358 			 */
359 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
360 				/*
361 				 * Reference the page before unlocking and
362 				 * sleeping so that the page daemon is less
363 				 * likely to reclaim it.
364 				 */
365 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
366 				vm_page_unlock(fs.m);
367 				if (fs.object != fs.first_object) {
368 					if (!VM_OBJECT_TRYLOCK(
369 					    fs.first_object)) {
370 						VM_OBJECT_UNLOCK(fs.object);
371 						VM_OBJECT_LOCK(fs.first_object);
372 						VM_OBJECT_LOCK(fs.object);
373 					}
374 					vm_page_lock(fs.first_m);
375 					vm_page_free(fs.first_m);
376 					vm_page_unlock(fs.first_m);
377 					vm_object_pip_wakeup(fs.first_object);
378 					VM_OBJECT_UNLOCK(fs.first_object);
379 					fs.first_m = NULL;
380 				}
381 				unlock_map(&fs);
382 				if (fs.m == vm_page_lookup(fs.object,
383 				    fs.pindex)) {
384 					vm_page_sleep_if_busy(fs.m, TRUE,
385 					    "vmpfw");
386 				}
387 				vm_object_pip_wakeup(fs.object);
388 				VM_OBJECT_UNLOCK(fs.object);
389 				PCPU_INC(cnt.v_intrans);
390 				vm_object_deallocate(fs.first_object);
391 				goto RetryFault;
392 			}
393 			vm_pageq_remove(fs.m);
394 			vm_page_unlock(fs.m);
395 
396 			/*
397 			 * Mark page busy for other processes, and the
398 			 * pagedaemon.  If it still isn't completely valid
399 			 * (readable), jump to readrest, else break-out ( we
400 			 * found the page ).
401 			 */
402 			vm_page_busy(fs.m);
403 			if (fs.m->valid != VM_PAGE_BITS_ALL)
404 				goto readrest;
405 			break;
406 		}
407 
408 		/*
409 		 * Page is not resident, If this is the search termination
410 		 * or the pager might contain the page, allocate a new page.
411 		 */
412 		if (TRYPAGER || fs.object == fs.first_object) {
413 			if (fs.pindex >= fs.object->size) {
414 				unlock_and_deallocate(&fs);
415 				return (KERN_PROTECTION_FAILURE);
416 			}
417 
418 			/*
419 			 * Allocate a new page for this object/offset pair.
420 			 *
421 			 * Unlocked read of the p_flag is harmless. At
422 			 * worst, the P_KILLED might be not observed
423 			 * there, and allocation can fail, causing
424 			 * restart and new reading of the p_flag.
425 			 */
426 			fs.m = NULL;
427 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
428 #if VM_NRESERVLEVEL > 0
429 				if ((fs.object->flags & OBJ_COLORED) == 0) {
430 					fs.object->flags |= OBJ_COLORED;
431 					fs.object->pg_color = atop(vaddr) -
432 					    fs.pindex;
433 				}
434 #endif
435 				alloc_req = P_KILLED(curproc) ?
436 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
437 				if (fs.object->type != OBJT_VNODE &&
438 				    fs.object->backing_object == NULL)
439 					alloc_req |= VM_ALLOC_ZERO;
440 				fs.m = vm_page_alloc(fs.object, fs.pindex,
441 				    alloc_req);
442 			}
443 			if (fs.m == NULL) {
444 				unlock_and_deallocate(&fs);
445 				VM_WAITPFAULT;
446 				goto RetryFault;
447 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
448 				break;
449 		}
450 
451 readrest:
452 		/*
453 		 * We have found a valid page or we have allocated a new page.
454 		 * The page thus may not be valid or may not be entirely
455 		 * valid.
456 		 *
457 		 * Attempt to fault-in the page if there is a chance that the
458 		 * pager has it, and potentially fault in additional pages
459 		 * at the same time.
460 		 */
461 		if (TRYPAGER) {
462 			int rv;
463 			int reqpage = 0;
464 			u_char behavior = vm_map_entry_behavior(fs.entry);
465 
466 			if (behavior == MAP_ENTRY_BEHAV_RANDOM ||
467 			    P_KILLED(curproc)) {
468 				ahead = 0;
469 				behind = 0;
470 			} else {
471 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
472 				if (behind > VM_FAULT_READ_BEHIND)
473 					behind = VM_FAULT_READ_BEHIND;
474 
475 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
476 				if (ahead > VM_FAULT_READ_AHEAD)
477 					ahead = VM_FAULT_READ_AHEAD;
478 			}
479 			is_first_object_locked = FALSE;
480 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
481 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
482 			      fs.pindex >= fs.entry->lastr &&
483 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
484 			    (fs.first_object == fs.object ||
485 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
486 			    fs.first_object->type != OBJT_DEVICE &&
487 			    fs.first_object->type != OBJT_PHYS &&
488 			    fs.first_object->type != OBJT_SG) {
489 				vm_pindex_t firstpindex;
490 
491 				if (fs.first_pindex < 2 * VM_FAULT_READ)
492 					firstpindex = 0;
493 				else
494 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
495 				mt = fs.first_object != fs.object ?
496 				    fs.first_m : fs.m;
497 				KASSERT(mt != NULL, ("vm_fault: missing mt"));
498 				KASSERT((mt->oflags & VPO_BUSY) != 0,
499 				    ("vm_fault: mt %p not busy", mt));
500 				mt_prev = vm_page_prev(mt);
501 
502 				/*
503 				 * note: partially valid pages cannot be
504 				 * included in the lookahead - NFS piecemeal
505 				 * writes will barf on it badly.
506 				 */
507 				while ((mt = mt_prev) != NULL &&
508 				    mt->pindex >= firstpindex &&
509 				    mt->valid == VM_PAGE_BITS_ALL) {
510 					mt_prev = vm_page_prev(mt);
511 					if (mt->busy ||
512 					    (mt->oflags & VPO_BUSY))
513 						continue;
514 					vm_page_lock(mt);
515 					if (mt->hold_count ||
516 					    mt->wire_count) {
517 						vm_page_unlock(mt);
518 						continue;
519 					}
520 					pmap_remove_all(mt);
521 					if (mt->dirty != 0)
522 						vm_page_deactivate(mt);
523 					else
524 						vm_page_cache(mt);
525 					vm_page_unlock(mt);
526 				}
527 				ahead += behind;
528 				behind = 0;
529 			}
530 			if (is_first_object_locked)
531 				VM_OBJECT_UNLOCK(fs.first_object);
532 
533 			/*
534 			 * Call the pager to retrieve the data, if any, after
535 			 * releasing the lock on the map.  We hold a ref on
536 			 * fs.object and the pages are VPO_BUSY'd.
537 			 */
538 			unlock_map(&fs);
539 
540 vnode_lock:
541 			if (fs.object->type == OBJT_VNODE) {
542 				vp = fs.object->handle;
543 				if (vp == fs.vp)
544 					goto vnode_locked;
545 				else if (fs.vp != NULL) {
546 					vput(fs.vp);
547 					fs.vp = NULL;
548 				}
549 				locked = VOP_ISLOCKED(vp);
550 
551 				if (VFS_NEEDSGIANT(vp->v_mount) && !fs.vfslocked) {
552 					fs.vfslocked = 1;
553 					if (!mtx_trylock(&Giant)) {
554 						VM_OBJECT_UNLOCK(fs.object);
555 						mtx_lock(&Giant);
556 						VM_OBJECT_LOCK(fs.object);
557 						goto vnode_lock;
558 					}
559 				}
560 				if (locked != LK_EXCLUSIVE)
561 					locked = LK_SHARED;
562 				/* Do not sleep for vnode lock while fs.m is busy */
563 				error = vget(vp, locked | LK_CANRECURSE |
564 				    LK_NOWAIT, curthread);
565 				if (error != 0) {
566 					int vfslocked;
567 
568 					vfslocked = fs.vfslocked;
569 					fs.vfslocked = 0; /* Keep Giant */
570 					vhold(vp);
571 					release_page(&fs);
572 					unlock_and_deallocate(&fs);
573 					error = vget(vp, locked | LK_RETRY |
574 					    LK_CANRECURSE, curthread);
575 					vdrop(vp);
576 					fs.vp = vp;
577 					fs.vfslocked = vfslocked;
578 					KASSERT(error == 0,
579 					    ("vm_fault: vget failed"));
580 					goto RetryFault;
581 				}
582 				fs.vp = vp;
583 			}
584 vnode_locked:
585 			KASSERT(fs.vp == NULL || !fs.map->system_map,
586 			    ("vm_fault: vnode-backed object mapped by system map"));
587 
588 			/*
589 			 * now we find out if any other pages should be paged
590 			 * in at this time this routine checks to see if the
591 			 * pages surrounding this fault reside in the same
592 			 * object as the page for this fault.  If they do,
593 			 * then they are faulted in also into the object.  The
594 			 * array "marray" returned contains an array of
595 			 * vm_page_t structs where one of them is the
596 			 * vm_page_t passed to the routine.  The reqpage
597 			 * return value is the index into the marray for the
598 			 * vm_page_t passed to the routine.
599 			 *
600 			 * fs.m plus the additional pages are VPO_BUSY'd.
601 			 */
602 			faultcount = vm_fault_additional_pages(
603 			    fs.m, behind, ahead, marray, &reqpage);
604 
605 			rv = faultcount ?
606 			    vm_pager_get_pages(fs.object, marray, faultcount,
607 				reqpage) : VM_PAGER_FAIL;
608 
609 			if (rv == VM_PAGER_OK) {
610 				/*
611 				 * Found the page. Leave it busy while we play
612 				 * with it.
613 				 */
614 
615 				/*
616 				 * Relookup in case pager changed page. Pager
617 				 * is responsible for disposition of old page
618 				 * if moved.
619 				 */
620 				fs.m = vm_page_lookup(fs.object, fs.pindex);
621 				if (!fs.m) {
622 					unlock_and_deallocate(&fs);
623 					goto RetryFault;
624 				}
625 
626 				hardfault++;
627 				break; /* break to PAGE HAS BEEN FOUND */
628 			}
629 			/*
630 			 * Remove the bogus page (which does not exist at this
631 			 * object/offset); before doing so, we must get back
632 			 * our object lock to preserve our invariant.
633 			 *
634 			 * Also wake up any other process that may want to bring
635 			 * in this page.
636 			 *
637 			 * If this is the top-level object, we must leave the
638 			 * busy page to prevent another process from rushing
639 			 * past us, and inserting the page in that object at
640 			 * the same time that we are.
641 			 */
642 			if (rv == VM_PAGER_ERROR)
643 				printf("vm_fault: pager read error, pid %d (%s)\n",
644 				    curproc->p_pid, curproc->p_comm);
645 			/*
646 			 * Data outside the range of the pager or an I/O error
647 			 */
648 			/*
649 			 * XXX - the check for kernel_map is a kludge to work
650 			 * around having the machine panic on a kernel space
651 			 * fault w/ I/O error.
652 			 */
653 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
654 				(rv == VM_PAGER_BAD)) {
655 				vm_page_lock(fs.m);
656 				vm_page_free(fs.m);
657 				vm_page_unlock(fs.m);
658 				fs.m = NULL;
659 				unlock_and_deallocate(&fs);
660 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
661 			}
662 			if (fs.object != fs.first_object) {
663 				vm_page_lock(fs.m);
664 				vm_page_free(fs.m);
665 				vm_page_unlock(fs.m);
666 				fs.m = NULL;
667 				/*
668 				 * XXX - we cannot just fall out at this
669 				 * point, m has been freed and is invalid!
670 				 */
671 			}
672 		}
673 
674 		/*
675 		 * We get here if the object has default pager (or unwiring)
676 		 * or the pager doesn't have the page.
677 		 */
678 		if (fs.object == fs.first_object)
679 			fs.first_m = fs.m;
680 
681 		/*
682 		 * Move on to the next object.  Lock the next object before
683 		 * unlocking the current one.
684 		 */
685 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
686 		next_object = fs.object->backing_object;
687 		if (next_object == NULL) {
688 			/*
689 			 * If there's no object left, fill the page in the top
690 			 * object with zeros.
691 			 */
692 			if (fs.object != fs.first_object) {
693 				vm_object_pip_wakeup(fs.object);
694 				VM_OBJECT_UNLOCK(fs.object);
695 
696 				fs.object = fs.first_object;
697 				fs.pindex = fs.first_pindex;
698 				fs.m = fs.first_m;
699 				VM_OBJECT_LOCK(fs.object);
700 			}
701 			fs.first_m = NULL;
702 
703 			/*
704 			 * Zero the page if necessary and mark it valid.
705 			 */
706 			if ((fs.m->flags & PG_ZERO) == 0) {
707 				pmap_zero_page(fs.m);
708 			} else {
709 				PCPU_INC(cnt.v_ozfod);
710 			}
711 			PCPU_INC(cnt.v_zfod);
712 			fs.m->valid = VM_PAGE_BITS_ALL;
713 			break;	/* break to PAGE HAS BEEN FOUND */
714 		} else {
715 			KASSERT(fs.object != next_object,
716 			    ("object loop %p", next_object));
717 			VM_OBJECT_LOCK(next_object);
718 			vm_object_pip_add(next_object, 1);
719 			if (fs.object != fs.first_object)
720 				vm_object_pip_wakeup(fs.object);
721 			VM_OBJECT_UNLOCK(fs.object);
722 			fs.object = next_object;
723 		}
724 	}
725 
726 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
727 	    ("vm_fault: not busy after main loop"));
728 
729 	/*
730 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
731 	 * is held.]
732 	 */
733 
734 	/*
735 	 * If the page is being written, but isn't already owned by the
736 	 * top-level object, we have to copy it into a new page owned by the
737 	 * top-level object.
738 	 */
739 	if (fs.object != fs.first_object) {
740 		/*
741 		 * We only really need to copy if we want to write it.
742 		 */
743 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
744 			/*
745 			 * This allows pages to be virtually copied from a
746 			 * backing_object into the first_object, where the
747 			 * backing object has no other refs to it, and cannot
748 			 * gain any more refs.  Instead of a bcopy, we just
749 			 * move the page from the backing object to the
750 			 * first object.  Note that we must mark the page
751 			 * dirty in the first object so that it will go out
752 			 * to swap when needed.
753 			 */
754 			is_first_object_locked = FALSE;
755 			if (
756 				/*
757 				 * Only one shadow object
758 				 */
759 				(fs.object->shadow_count == 1) &&
760 				/*
761 				 * No COW refs, except us
762 				 */
763 				(fs.object->ref_count == 1) &&
764 				/*
765 				 * No one else can look this object up
766 				 */
767 				(fs.object->handle == NULL) &&
768 				/*
769 				 * No other ways to look the object up
770 				 */
771 				((fs.object->type == OBJT_DEFAULT) ||
772 				 (fs.object->type == OBJT_SWAP)) &&
773 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
774 				/*
775 				 * We don't chase down the shadow chain
776 				 */
777 			    fs.object == fs.first_object->backing_object) {
778 				/*
779 				 * get rid of the unnecessary page
780 				 */
781 				vm_page_lock(fs.first_m);
782 				vm_page_free(fs.first_m);
783 				vm_page_unlock(fs.first_m);
784 				/*
785 				 * grab the page and put it into the
786 				 * process'es object.  The page is
787 				 * automatically made dirty.
788 				 */
789 				vm_page_lock(fs.m);
790 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
791 				vm_page_unlock(fs.m);
792 				vm_page_busy(fs.m);
793 				fs.first_m = fs.m;
794 				fs.m = NULL;
795 				PCPU_INC(cnt.v_cow_optim);
796 			} else {
797 				/*
798 				 * Oh, well, lets copy it.
799 				 */
800 				pmap_copy_page(fs.m, fs.first_m);
801 				fs.first_m->valid = VM_PAGE_BITS_ALL;
802 				if (wired && (fault_flags &
803 				    VM_FAULT_CHANGE_WIRING) == 0) {
804 					vm_page_lock(fs.first_m);
805 					vm_page_wire(fs.first_m);
806 					vm_page_unlock(fs.first_m);
807 
808 					vm_page_lock(fs.m);
809 					vm_page_unwire(fs.m, FALSE);
810 					vm_page_unlock(fs.m);
811 				}
812 				/*
813 				 * We no longer need the old page or object.
814 				 */
815 				release_page(&fs);
816 			}
817 			/*
818 			 * fs.object != fs.first_object due to above
819 			 * conditional
820 			 */
821 			vm_object_pip_wakeup(fs.object);
822 			VM_OBJECT_UNLOCK(fs.object);
823 			/*
824 			 * Only use the new page below...
825 			 */
826 			fs.object = fs.first_object;
827 			fs.pindex = fs.first_pindex;
828 			fs.m = fs.first_m;
829 			if (!is_first_object_locked)
830 				VM_OBJECT_LOCK(fs.object);
831 			PCPU_INC(cnt.v_cow_faults);
832 		} else {
833 			prot &= ~VM_PROT_WRITE;
834 		}
835 	}
836 
837 	/*
838 	 * We must verify that the maps have not changed since our last
839 	 * lookup.
840 	 */
841 	if (!fs.lookup_still_valid) {
842 		vm_object_t retry_object;
843 		vm_pindex_t retry_pindex;
844 		vm_prot_t retry_prot;
845 
846 		if (!vm_map_trylock_read(fs.map)) {
847 			release_page(&fs);
848 			unlock_and_deallocate(&fs);
849 			goto RetryFault;
850 		}
851 		fs.lookup_still_valid = TRUE;
852 		if (fs.map->timestamp != map_generation) {
853 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
854 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
855 
856 			/*
857 			 * If we don't need the page any longer, put it on the inactive
858 			 * list (the easiest thing to do here).  If no one needs it,
859 			 * pageout will grab it eventually.
860 			 */
861 			if (result != KERN_SUCCESS) {
862 				release_page(&fs);
863 				unlock_and_deallocate(&fs);
864 
865 				/*
866 				 * If retry of map lookup would have blocked then
867 				 * retry fault from start.
868 				 */
869 				if (result == KERN_FAILURE)
870 					goto RetryFault;
871 				return (result);
872 			}
873 			if ((retry_object != fs.first_object) ||
874 			    (retry_pindex != fs.first_pindex)) {
875 				release_page(&fs);
876 				unlock_and_deallocate(&fs);
877 				goto RetryFault;
878 			}
879 
880 			/*
881 			 * Check whether the protection has changed or the object has
882 			 * been copied while we left the map unlocked. Changing from
883 			 * read to write permission is OK - we leave the page
884 			 * write-protected, and catch the write fault. Changing from
885 			 * write to read permission means that we can't mark the page
886 			 * write-enabled after all.
887 			 */
888 			prot &= retry_prot;
889 		}
890 	}
891 	/*
892 	 * If the page was filled by a pager, update the map entry's
893 	 * last read offset.  Since the pager does not return the
894 	 * actual set of pages that it read, this update is based on
895 	 * the requested set.  Typically, the requested and actual
896 	 * sets are the same.
897 	 *
898 	 * XXX The following assignment modifies the map
899 	 * without holding a write lock on it.
900 	 */
901 	if (hardfault)
902 		fs.entry->lastr = fs.pindex + faultcount - behind;
903 
904 	if ((prot & VM_PROT_WRITE) != 0 ||
905 	    (fault_flags & VM_FAULT_DIRTY) != 0) {
906 		vm_object_set_writeable_dirty(fs.object);
907 
908 		/*
909 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
910 		 * if the page is already dirty to prevent data written with
911 		 * the expectation of being synced from not being synced.
912 		 * Likewise if this entry does not request NOSYNC then make
913 		 * sure the page isn't marked NOSYNC.  Applications sharing
914 		 * data should use the same flags to avoid ping ponging.
915 		 */
916 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
917 			if (fs.m->dirty == 0)
918 				fs.m->oflags |= VPO_NOSYNC;
919 		} else {
920 			fs.m->oflags &= ~VPO_NOSYNC;
921 		}
922 
923 		/*
924 		 * If the fault is a write, we know that this page is being
925 		 * written NOW so dirty it explicitly to save on
926 		 * pmap_is_modified() calls later.
927 		 *
928 		 * Also tell the backing pager, if any, that it should remove
929 		 * any swap backing since the page is now dirty.
930 		 */
931 		if (((fault_type & VM_PROT_WRITE) != 0 &&
932 		    (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) ||
933 		    (fault_flags & VM_FAULT_DIRTY) != 0) {
934 			vm_page_dirty(fs.m);
935 			vm_pager_page_unswapped(fs.m);
936 		}
937 	}
938 
939 	/*
940 	 * Page had better still be busy
941 	 */
942 	KASSERT(fs.m->oflags & VPO_BUSY,
943 		("vm_fault: page %p not busy!", fs.m));
944 	/*
945 	 * Page must be completely valid or it is not fit to
946 	 * map into user space.  vm_pager_get_pages() ensures this.
947 	 */
948 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
949 	    ("vm_fault: page %p partially invalid", fs.m));
950 	VM_OBJECT_UNLOCK(fs.object);
951 
952 	/*
953 	 * Put this page into the physical map.  We had to do the unlock above
954 	 * because pmap_enter() may sleep.  We don't put the page
955 	 * back on the active queue until later so that the pageout daemon
956 	 * won't find it (yet).
957 	 */
958 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
959 	if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0)
960 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
961 	VM_OBJECT_LOCK(fs.object);
962 	vm_page_lock(fs.m);
963 
964 	/*
965 	 * If the page is not wired down, then put it where the pageout daemon
966 	 * can find it.
967 	 */
968 	if (fault_flags & VM_FAULT_CHANGE_WIRING) {
969 		if (wired)
970 			vm_page_wire(fs.m);
971 		else
972 			vm_page_unwire(fs.m, 1);
973 	} else
974 		vm_page_activate(fs.m);
975 	if (m_hold != NULL) {
976 		*m_hold = fs.m;
977 		vm_page_hold(fs.m);
978 	}
979 	vm_page_unlock(fs.m);
980 	vm_page_wakeup(fs.m);
981 
982 	/*
983 	 * Unlock everything, and return
984 	 */
985 	unlock_and_deallocate(&fs);
986 	if (hardfault)
987 		curthread->td_ru.ru_majflt++;
988 	else
989 		curthread->td_ru.ru_minflt++;
990 
991 	return (KERN_SUCCESS);
992 }
993 
994 /*
995  * vm_fault_prefault provides a quick way of clustering
996  * pagefaults into a processes address space.  It is a "cousin"
997  * of vm_map_pmap_enter, except it runs at page fault time instead
998  * of mmap time.
999  */
1000 static void
1001 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
1002 {
1003 	int i;
1004 	vm_offset_t addr, starta;
1005 	vm_pindex_t pindex;
1006 	vm_page_t m;
1007 	vm_object_t object;
1008 
1009 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1010 		return;
1011 
1012 	object = entry->object.vm_object;
1013 
1014 	starta = addra - PFBAK * PAGE_SIZE;
1015 	if (starta < entry->start) {
1016 		starta = entry->start;
1017 	} else if (starta > addra) {
1018 		starta = 0;
1019 	}
1020 
1021 	for (i = 0; i < PAGEORDER_SIZE; i++) {
1022 		vm_object_t backing_object, lobject;
1023 
1024 		addr = addra + prefault_pageorder[i];
1025 		if (addr > addra + (PFFOR * PAGE_SIZE))
1026 			addr = 0;
1027 
1028 		if (addr < starta || addr >= entry->end)
1029 			continue;
1030 
1031 		if (!pmap_is_prefaultable(pmap, addr))
1032 			continue;
1033 
1034 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1035 		lobject = object;
1036 		VM_OBJECT_LOCK(lobject);
1037 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1038 		    lobject->type == OBJT_DEFAULT &&
1039 		    (backing_object = lobject->backing_object) != NULL) {
1040 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1041 			    0, ("vm_fault_prefault: unaligned object offset"));
1042 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1043 			VM_OBJECT_LOCK(backing_object);
1044 			VM_OBJECT_UNLOCK(lobject);
1045 			lobject = backing_object;
1046 		}
1047 		/*
1048 		 * give-up when a page is not in memory
1049 		 */
1050 		if (m == NULL) {
1051 			VM_OBJECT_UNLOCK(lobject);
1052 			break;
1053 		}
1054 		if (m->valid == VM_PAGE_BITS_ALL &&
1055 		    (m->flags & PG_FICTITIOUS) == 0)
1056 			pmap_enter_quick(pmap, addr, m, entry->protection);
1057 		VM_OBJECT_UNLOCK(lobject);
1058 	}
1059 }
1060 
1061 /*
1062  * Hold each of the physical pages that are mapped by the specified range of
1063  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1064  * and allow the specified types of access, "prot".  If all of the implied
1065  * pages are successfully held, then the number of held pages is returned
1066  * together with pointers to those pages in the array "ma".  However, if any
1067  * of the pages cannot be held, -1 is returned.
1068  */
1069 int
1070 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1071     vm_prot_t prot, vm_page_t *ma, int max_count)
1072 {
1073 	vm_offset_t end, va;
1074 	vm_page_t *mp;
1075 	int count;
1076 	boolean_t pmap_failed;
1077 
1078 	if (len == 0)
1079 		return (0);
1080 	end = round_page(addr + len);
1081 	addr = trunc_page(addr);
1082 
1083 	/*
1084 	 * Check for illegal addresses.
1085 	 */
1086 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1087 		return (-1);
1088 
1089 	count = howmany(end - addr, PAGE_SIZE);
1090 	if (count > max_count)
1091 		panic("vm_fault_quick_hold_pages: count > max_count");
1092 
1093 	/*
1094 	 * Most likely, the physical pages are resident in the pmap, so it is
1095 	 * faster to try pmap_extract_and_hold() first.
1096 	 */
1097 	pmap_failed = FALSE;
1098 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1099 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1100 		if (*mp == NULL)
1101 			pmap_failed = TRUE;
1102 		else if ((prot & VM_PROT_WRITE) != 0 &&
1103 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1104 			/*
1105 			 * Explicitly dirty the physical page.  Otherwise, the
1106 			 * caller's changes may go unnoticed because they are
1107 			 * performed through an unmanaged mapping or by a DMA
1108 			 * operation.
1109 			 *
1110 			 * The object lock is not held here.
1111 			 * See vm_page_clear_dirty_mask().
1112 			 */
1113 			vm_page_dirty(*mp);
1114 		}
1115 	}
1116 	if (pmap_failed) {
1117 		/*
1118 		 * One or more pages could not be held by the pmap.  Either no
1119 		 * page was mapped at the specified virtual address or that
1120 		 * mapping had insufficient permissions.  Attempt to fault in
1121 		 * and hold these pages.
1122 		 */
1123 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1124 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1125 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1126 				goto error;
1127 	}
1128 	return (count);
1129 error:
1130 	for (mp = ma; mp < ma + count; mp++)
1131 		if (*mp != NULL) {
1132 			vm_page_lock(*mp);
1133 			vm_page_unhold(*mp);
1134 			vm_page_unlock(*mp);
1135 		}
1136 	return (-1);
1137 }
1138 
1139 /*
1140  *	vm_fault_wire:
1141  *
1142  *	Wire down a range of virtual addresses in a map.
1143  */
1144 int
1145 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1146     boolean_t fictitious)
1147 {
1148 	vm_offset_t va;
1149 	int rv;
1150 
1151 	/*
1152 	 * We simulate a fault to get the page and enter it in the physical
1153 	 * map.  For user wiring, we only ask for read access on currently
1154 	 * read-only sections.
1155 	 */
1156 	for (va = start; va < end; va += PAGE_SIZE) {
1157 		rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING);
1158 		if (rv) {
1159 			if (va != start)
1160 				vm_fault_unwire(map, start, va, fictitious);
1161 			return (rv);
1162 		}
1163 	}
1164 	return (KERN_SUCCESS);
1165 }
1166 
1167 /*
1168  *	vm_fault_unwire:
1169  *
1170  *	Unwire a range of virtual addresses in a map.
1171  */
1172 void
1173 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1174     boolean_t fictitious)
1175 {
1176 	vm_paddr_t pa;
1177 	vm_offset_t va;
1178 	vm_page_t m;
1179 	pmap_t pmap;
1180 
1181 	pmap = vm_map_pmap(map);
1182 
1183 	/*
1184 	 * Since the pages are wired down, we must be able to get their
1185 	 * mappings from the physical map system.
1186 	 */
1187 	for (va = start; va < end; va += PAGE_SIZE) {
1188 		pa = pmap_extract(pmap, va);
1189 		if (pa != 0) {
1190 			pmap_change_wiring(pmap, va, FALSE);
1191 			if (!fictitious) {
1192 				m = PHYS_TO_VM_PAGE(pa);
1193 				vm_page_lock(m);
1194 				vm_page_unwire(m, TRUE);
1195 				vm_page_unlock(m);
1196 			}
1197 		}
1198 	}
1199 }
1200 
1201 /*
1202  *	Routine:
1203  *		vm_fault_copy_entry
1204  *	Function:
1205  *		Create new shadow object backing dst_entry with private copy of
1206  *		all underlying pages. When src_entry is equal to dst_entry,
1207  *		function implements COW for wired-down map entry. Otherwise,
1208  *		it forks wired entry into dst_map.
1209  *
1210  *	In/out conditions:
1211  *		The source and destination maps must be locked for write.
1212  *		The source map entry must be wired down (or be a sharing map
1213  *		entry corresponding to a main map entry that is wired down).
1214  */
1215 void
1216 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1217     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1218     vm_ooffset_t *fork_charge)
1219 {
1220 	vm_object_t backing_object, dst_object, object, src_object;
1221 	vm_pindex_t dst_pindex, pindex, src_pindex;
1222 	vm_prot_t access, prot;
1223 	vm_offset_t vaddr;
1224 	vm_page_t dst_m;
1225 	vm_page_t src_m;
1226 	boolean_t src_readonly, upgrade;
1227 
1228 #ifdef	lint
1229 	src_map++;
1230 #endif	/* lint */
1231 
1232 	upgrade = src_entry == dst_entry;
1233 
1234 	src_object = src_entry->object.vm_object;
1235 	src_pindex = OFF_TO_IDX(src_entry->offset);
1236 	src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0;
1237 
1238 	/*
1239 	 * Create the top-level object for the destination entry. (Doesn't
1240 	 * actually shadow anything - we copy the pages directly.)
1241 	 */
1242 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1243 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1244 #if VM_NRESERVLEVEL > 0
1245 	dst_object->flags |= OBJ_COLORED;
1246 	dst_object->pg_color = atop(dst_entry->start);
1247 #endif
1248 
1249 	VM_OBJECT_LOCK(dst_object);
1250 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1251 	    ("vm_fault_copy_entry: vm_object not NULL"));
1252 	dst_entry->object.vm_object = dst_object;
1253 	dst_entry->offset = 0;
1254 	dst_object->charge = dst_entry->end - dst_entry->start;
1255 	if (fork_charge != NULL) {
1256 		KASSERT(dst_entry->cred == NULL,
1257 		    ("vm_fault_copy_entry: leaked swp charge"));
1258 		dst_object->cred = curthread->td_ucred;
1259 		crhold(dst_object->cred);
1260 		*fork_charge += dst_object->charge;
1261 	} else {
1262 		dst_object->cred = dst_entry->cred;
1263 		dst_entry->cred = NULL;
1264 	}
1265 	access = prot = dst_entry->protection;
1266 	/*
1267 	 * If not an upgrade, then enter the mappings in the pmap as
1268 	 * read and/or execute accesses.  Otherwise, enter them as
1269 	 * write accesses.
1270 	 *
1271 	 * A writeable large page mapping is only created if all of
1272 	 * the constituent small page mappings are modified. Marking
1273 	 * PTEs as modified on inception allows promotion to happen
1274 	 * without taking potentially large number of soft faults.
1275 	 */
1276 	if (!upgrade)
1277 		access &= ~VM_PROT_WRITE;
1278 
1279 	/*
1280 	 * Loop through all of the pages in the entry's range, copying each
1281 	 * one from the source object (it should be there) to the destination
1282 	 * object.
1283 	 */
1284 	for (vaddr = dst_entry->start, dst_pindex = 0;
1285 	    vaddr < dst_entry->end;
1286 	    vaddr += PAGE_SIZE, dst_pindex++) {
1287 
1288 		/*
1289 		 * Allocate a page in the destination object.
1290 		 */
1291 		do {
1292 			dst_m = vm_page_alloc(dst_object, dst_pindex,
1293 			    VM_ALLOC_NORMAL);
1294 			if (dst_m == NULL) {
1295 				VM_OBJECT_UNLOCK(dst_object);
1296 				VM_WAIT;
1297 				VM_OBJECT_LOCK(dst_object);
1298 			}
1299 		} while (dst_m == NULL);
1300 
1301 		/*
1302 		 * Find the page in the source object, and copy it in.
1303 		 * (Because the source is wired down, the page will be in
1304 		 * memory.)
1305 		 */
1306 		VM_OBJECT_LOCK(src_object);
1307 		object = src_object;
1308 		pindex = src_pindex + dst_pindex;
1309 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1310 		    src_readonly &&
1311 		    (backing_object = object->backing_object) != NULL) {
1312 			/*
1313 			 * Allow fallback to backing objects if we are reading.
1314 			 */
1315 			VM_OBJECT_LOCK(backing_object);
1316 			pindex += OFF_TO_IDX(object->backing_object_offset);
1317 			VM_OBJECT_UNLOCK(object);
1318 			object = backing_object;
1319 		}
1320 		if (src_m == NULL)
1321 			panic("vm_fault_copy_wired: page missing");
1322 		pmap_copy_page(src_m, dst_m);
1323 		VM_OBJECT_UNLOCK(object);
1324 		dst_m->valid = VM_PAGE_BITS_ALL;
1325 		VM_OBJECT_UNLOCK(dst_object);
1326 
1327 		/*
1328 		 * Enter it in the pmap. If a wired, copy-on-write
1329 		 * mapping is being replaced by a write-enabled
1330 		 * mapping, then wire that new mapping.
1331 		 */
1332 		pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade);
1333 
1334 		/*
1335 		 * Mark it no longer busy, and put it on the active list.
1336 		 */
1337 		VM_OBJECT_LOCK(dst_object);
1338 
1339 		if (upgrade) {
1340 			vm_page_lock(src_m);
1341 			vm_page_unwire(src_m, 0);
1342 			vm_page_unlock(src_m);
1343 
1344 			vm_page_lock(dst_m);
1345 			vm_page_wire(dst_m);
1346 			vm_page_unlock(dst_m);
1347 		} else {
1348 			vm_page_lock(dst_m);
1349 			vm_page_activate(dst_m);
1350 			vm_page_unlock(dst_m);
1351 		}
1352 		vm_page_wakeup(dst_m);
1353 	}
1354 	VM_OBJECT_UNLOCK(dst_object);
1355 	if (upgrade) {
1356 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1357 		vm_object_deallocate(src_object);
1358 	}
1359 }
1360 
1361 
1362 /*
1363  * This routine checks around the requested page for other pages that
1364  * might be able to be faulted in.  This routine brackets the viable
1365  * pages for the pages to be paged in.
1366  *
1367  * Inputs:
1368  *	m, rbehind, rahead
1369  *
1370  * Outputs:
1371  *  marray (array of vm_page_t), reqpage (index of requested page)
1372  *
1373  * Return value:
1374  *  number of pages in marray
1375  */
1376 static int
1377 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1378 	vm_page_t m;
1379 	int rbehind;
1380 	int rahead;
1381 	vm_page_t *marray;
1382 	int *reqpage;
1383 {
1384 	int i,j;
1385 	vm_object_t object;
1386 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1387 	vm_page_t rtm;
1388 	int cbehind, cahead;
1389 
1390 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1391 
1392 	object = m->object;
1393 	pindex = m->pindex;
1394 	cbehind = cahead = 0;
1395 
1396 	/*
1397 	 * if the requested page is not available, then give up now
1398 	 */
1399 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1400 		return 0;
1401 	}
1402 
1403 	if ((cbehind == 0) && (cahead == 0)) {
1404 		*reqpage = 0;
1405 		marray[0] = m;
1406 		return 1;
1407 	}
1408 
1409 	if (rahead > cahead) {
1410 		rahead = cahead;
1411 	}
1412 
1413 	if (rbehind > cbehind) {
1414 		rbehind = cbehind;
1415 	}
1416 
1417 	/*
1418 	 * scan backward for the read behind pages -- in memory
1419 	 */
1420 	if (pindex > 0) {
1421 		if (rbehind > pindex) {
1422 			rbehind = pindex;
1423 			startpindex = 0;
1424 		} else {
1425 			startpindex = pindex - rbehind;
1426 		}
1427 
1428 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1429 		    rtm->pindex >= startpindex)
1430 			startpindex = rtm->pindex + 1;
1431 
1432 		/* tpindex is unsigned; beware of numeric underflow. */
1433 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1434 		    tpindex < pindex; i++, tpindex--) {
1435 
1436 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1437 			    VM_ALLOC_IFNOTCACHED);
1438 			if (rtm == NULL) {
1439 				/*
1440 				 * Shift the allocated pages to the
1441 				 * beginning of the array.
1442 				 */
1443 				for (j = 0; j < i; j++) {
1444 					marray[j] = marray[j + tpindex + 1 -
1445 					    startpindex];
1446 				}
1447 				break;
1448 			}
1449 
1450 			marray[tpindex - startpindex] = rtm;
1451 		}
1452 	} else {
1453 		startpindex = 0;
1454 		i = 0;
1455 	}
1456 
1457 	marray[i] = m;
1458 	/* page offset of the required page */
1459 	*reqpage = i;
1460 
1461 	tpindex = pindex + 1;
1462 	i++;
1463 
1464 	/*
1465 	 * scan forward for the read ahead pages
1466 	 */
1467 	endpindex = tpindex + rahead;
1468 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1469 		endpindex = rtm->pindex;
1470 	if (endpindex > object->size)
1471 		endpindex = object->size;
1472 
1473 	for (; tpindex < endpindex; i++, tpindex++) {
1474 
1475 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1476 		    VM_ALLOC_IFNOTCACHED);
1477 		if (rtm == NULL) {
1478 			break;
1479 		}
1480 
1481 		marray[i] = rtm;
1482 	}
1483 
1484 	/* return number of pages */
1485 	return i;
1486 }
1487 
1488 /*
1489  * Block entry into the machine-independent layer's page fault handler by
1490  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1491  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1492  * spurious page faults.
1493  */
1494 int
1495 vm_fault_disable_pagefaults(void)
1496 {
1497 
1498 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1499 }
1500 
1501 void
1502 vm_fault_enable_pagefaults(int save)
1503 {
1504 
1505 	curthread_pflags_restore(save);
1506 }
1507