xref: /freebsd/sys/vm/vm_fault.c (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/pctrie.h>
89 #include <sys/proc.h>
90 #include <sys/racct.h>
91 #include <sys/refcount.h>
92 #include <sys/resourcevar.h>
93 #include <sys/rwlock.h>
94 #include <sys/signalvar.h>
95 #include <sys/sysctl.h>
96 #include <sys/sysent.h>
97 #include <sys/vmmeter.h>
98 #include <sys/vnode.h>
99 #ifdef KTRACE
100 #include <sys/ktrace.h>
101 #endif
102 
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/pmap.h>
106 #include <vm/vm_map.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_pageout.h>
110 #include <vm/vm_kern.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/vm_reserv.h>
114 
115 #define PFBAK 4
116 #define PFFOR 4
117 
118 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
119 
120 #define	VM_FAULT_DONTNEED_MIN	1048576
121 
122 struct faultstate {
123 	/* Fault parameters. */
124 	vm_offset_t	vaddr;
125 	vm_page_t	*m_hold;
126 	vm_prot_t	fault_type;
127 	vm_prot_t	prot;
128 	int		fault_flags;
129 	boolean_t	wired;
130 
131 	/* Control state. */
132 	struct timeval	oom_start_time;
133 	bool		oom_started;
134 	int		nera;
135 
136 	/* Page reference for cow. */
137 	vm_page_t m_cow;
138 
139 	/* Current object. */
140 	vm_object_t	object;
141 	vm_pindex_t	pindex;
142 	vm_page_t	m;
143 
144 	/* Top-level map object. */
145 	vm_object_t	first_object;
146 	vm_pindex_t	first_pindex;
147 	vm_page_t	first_m;
148 
149 	/* Map state. */
150 	vm_map_t	map;
151 	vm_map_entry_t	entry;
152 	int		map_generation;
153 	bool		lookup_still_valid;
154 
155 	/* Vnode if locked. */
156 	struct vnode	*vp;
157 };
158 
159 /*
160  * Return codes for internal fault routines.
161  */
162 enum fault_status {
163 	FAULT_SUCCESS = 1,	/* Return success to user. */
164 	FAULT_FAILURE,		/* Return failure to user. */
165 	FAULT_CONTINUE,		/* Continue faulting. */
166 	FAULT_RESTART,		/* Restart fault. */
167 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
168 	FAULT_HARD,		/* Performed I/O. */
169 	FAULT_SOFT,		/* Found valid page. */
170 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
171 };
172 
173 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
174 	    int ahead);
175 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
176 	    int backward, int forward, bool obj_locked);
177 
178 static int vm_pfault_oom_attempts = 3;
179 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
180     &vm_pfault_oom_attempts, 0,
181     "Number of page allocation attempts in page fault handler before it "
182     "triggers OOM handling");
183 
184 static int vm_pfault_oom_wait = 10;
185 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
186     &vm_pfault_oom_wait, 0,
187     "Number of seconds to wait for free pages before retrying "
188     "the page fault handler");
189 
190 static inline void
191 fault_page_release(vm_page_t *mp)
192 {
193 	vm_page_t m;
194 
195 	m = *mp;
196 	if (m != NULL) {
197 		/*
198 		 * We are likely to loop around again and attempt to busy
199 		 * this page.  Deactivating it leaves it available for
200 		 * pageout while optimizing fault restarts.
201 		 */
202 		vm_page_deactivate(m);
203 		vm_page_xunbusy(m);
204 		*mp = NULL;
205 	}
206 }
207 
208 static inline void
209 fault_page_free(vm_page_t *mp)
210 {
211 	vm_page_t m;
212 
213 	m = *mp;
214 	if (m != NULL) {
215 		VM_OBJECT_ASSERT_WLOCKED(m->object);
216 		if (!vm_page_wired(m))
217 			vm_page_free(m);
218 		else
219 			vm_page_xunbusy(m);
220 		*mp = NULL;
221 	}
222 }
223 
224 /*
225  * Return true if a vm_pager_get_pages() call is needed in order to check
226  * whether the pager might have a particular page, false if it can be determined
227  * immediately that the pager can not have a copy.  For swap objects, this can
228  * be checked quickly.
229  */
230 static inline bool
231 fault_object_needs_getpages(vm_object_t object)
232 {
233 	VM_OBJECT_ASSERT_LOCKED(object);
234 
235 	return ((object->flags & OBJ_SWAP) == 0 ||
236 	    !pctrie_is_empty(&object->un_pager.swp.swp_blks));
237 }
238 
239 static inline void
240 unlock_map(struct faultstate *fs)
241 {
242 
243 	if (fs->lookup_still_valid) {
244 		vm_map_lookup_done(fs->map, fs->entry);
245 		fs->lookup_still_valid = false;
246 	}
247 }
248 
249 static void
250 unlock_vp(struct faultstate *fs)
251 {
252 
253 	if (fs->vp != NULL) {
254 		vput(fs->vp);
255 		fs->vp = NULL;
256 	}
257 }
258 
259 static void
260 fault_deallocate(struct faultstate *fs)
261 {
262 
263 	fault_page_release(&fs->m_cow);
264 	fault_page_release(&fs->m);
265 	vm_object_pip_wakeup(fs->object);
266 	if (fs->object != fs->first_object) {
267 		VM_OBJECT_WLOCK(fs->first_object);
268 		fault_page_free(&fs->first_m);
269 		VM_OBJECT_WUNLOCK(fs->first_object);
270 		vm_object_pip_wakeup(fs->first_object);
271 	}
272 	vm_object_deallocate(fs->first_object);
273 	unlock_map(fs);
274 	unlock_vp(fs);
275 }
276 
277 static void
278 unlock_and_deallocate(struct faultstate *fs)
279 {
280 
281 	VM_OBJECT_WUNLOCK(fs->object);
282 	fault_deallocate(fs);
283 }
284 
285 static void
286 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
287 {
288 	bool need_dirty;
289 
290 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
291 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
292 	    (m->oflags & VPO_UNMANAGED) != 0)
293 		return;
294 
295 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
296 
297 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
298 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
299 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
300 
301 	vm_object_set_writeable_dirty(m->object);
302 
303 	/*
304 	 * If the fault is a write, we know that this page is being
305 	 * written NOW so dirty it explicitly to save on
306 	 * pmap_is_modified() calls later.
307 	 *
308 	 * Also, since the page is now dirty, we can possibly tell
309 	 * the pager to release any swap backing the page.
310 	 */
311 	if (need_dirty && vm_page_set_dirty(m) == 0) {
312 		/*
313 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
314 		 * if the page is already dirty to prevent data written with
315 		 * the expectation of being synced from not being synced.
316 		 * Likewise if this entry does not request NOSYNC then make
317 		 * sure the page isn't marked NOSYNC.  Applications sharing
318 		 * data should use the same flags to avoid ping ponging.
319 		 */
320 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
321 			vm_page_aflag_set(m, PGA_NOSYNC);
322 		else
323 			vm_page_aflag_clear(m, PGA_NOSYNC);
324 	}
325 
326 }
327 
328 /*
329  * Unlocks fs.first_object and fs.map on success.
330  */
331 static enum fault_status
332 vm_fault_soft_fast(struct faultstate *fs)
333 {
334 	vm_page_t m, m_map;
335 #if VM_NRESERVLEVEL > 0
336 	vm_page_t m_super;
337 	int flags;
338 #endif
339 	int psind;
340 	vm_offset_t vaddr;
341 
342 	MPASS(fs->vp == NULL);
343 
344 	vaddr = fs->vaddr;
345 	vm_object_busy(fs->first_object);
346 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
347 	/* A busy page can be mapped for read|execute access. */
348 	if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
349 	    vm_page_busied(m)) || !vm_page_all_valid(m))
350 		goto fail;
351 	m_map = m;
352 	psind = 0;
353 #if VM_NRESERVLEVEL > 0
354 	if ((m->flags & PG_FICTITIOUS) == 0 &&
355 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
356 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
357 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
358 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
359 	    (pagesizes[m_super->psind] - 1)) && !fs->wired &&
360 	    pmap_ps_enabled(fs->map->pmap)) {
361 		flags = PS_ALL_VALID;
362 		if ((fs->prot & VM_PROT_WRITE) != 0) {
363 			/*
364 			 * Create a superpage mapping allowing write access
365 			 * only if none of the constituent pages are busy and
366 			 * all of them are already dirty (except possibly for
367 			 * the page that was faulted on).
368 			 */
369 			flags |= PS_NONE_BUSY;
370 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
371 				flags |= PS_ALL_DIRTY;
372 		}
373 		if (vm_page_ps_test(m_super, flags, m)) {
374 			m_map = m_super;
375 			psind = m_super->psind;
376 			vaddr = rounddown2(vaddr, pagesizes[psind]);
377 			/* Preset the modified bit for dirty superpages. */
378 			if ((flags & PS_ALL_DIRTY) != 0)
379 				fs->fault_type |= VM_PROT_WRITE;
380 		}
381 	}
382 #endif
383 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
384 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
385 	    KERN_SUCCESS)
386 		goto fail;
387 	if (fs->m_hold != NULL) {
388 		(*fs->m_hold) = m;
389 		vm_page_wire(m);
390 	}
391 	if (psind == 0 && !fs->wired)
392 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
393 	VM_OBJECT_RUNLOCK(fs->first_object);
394 	vm_fault_dirty(fs, m);
395 	vm_object_unbusy(fs->first_object);
396 	vm_map_lookup_done(fs->map, fs->entry);
397 	curthread->td_ru.ru_minflt++;
398 	return (FAULT_SUCCESS);
399 fail:
400 	vm_object_unbusy(fs->first_object);
401 	return (FAULT_FAILURE);
402 }
403 
404 static void
405 vm_fault_restore_map_lock(struct faultstate *fs)
406 {
407 
408 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
409 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
410 
411 	if (!vm_map_trylock_read(fs->map)) {
412 		VM_OBJECT_WUNLOCK(fs->first_object);
413 		vm_map_lock_read(fs->map);
414 		VM_OBJECT_WLOCK(fs->first_object);
415 	}
416 	fs->lookup_still_valid = true;
417 }
418 
419 static void
420 vm_fault_populate_check_page(vm_page_t m)
421 {
422 
423 	/*
424 	 * Check each page to ensure that the pager is obeying the
425 	 * interface: the page must be installed in the object, fully
426 	 * valid, and exclusively busied.
427 	 */
428 	MPASS(m != NULL);
429 	MPASS(vm_page_all_valid(m));
430 	MPASS(vm_page_xbusied(m));
431 }
432 
433 static void
434 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
435     vm_pindex_t last)
436 {
437 	vm_page_t m;
438 	vm_pindex_t pidx;
439 
440 	VM_OBJECT_ASSERT_WLOCKED(object);
441 	MPASS(first <= last);
442 	for (pidx = first, m = vm_page_lookup(object, pidx);
443 	    pidx <= last; pidx++, m = vm_page_next(m)) {
444 		vm_fault_populate_check_page(m);
445 		vm_page_deactivate(m);
446 		vm_page_xunbusy(m);
447 	}
448 }
449 
450 static enum fault_status
451 vm_fault_populate(struct faultstate *fs)
452 {
453 	vm_offset_t vaddr;
454 	vm_page_t m;
455 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
456 	int bdry_idx, i, npages, psind, rv;
457 	enum fault_status res;
458 
459 	MPASS(fs->object == fs->first_object);
460 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
461 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
462 	MPASS(fs->first_object->backing_object == NULL);
463 	MPASS(fs->lookup_still_valid);
464 
465 	pager_first = OFF_TO_IDX(fs->entry->offset);
466 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
467 	unlock_map(fs);
468 	unlock_vp(fs);
469 
470 	res = FAULT_SUCCESS;
471 
472 	/*
473 	 * Call the pager (driver) populate() method.
474 	 *
475 	 * There is no guarantee that the method will be called again
476 	 * if the current fault is for read, and a future fault is
477 	 * for write.  Report the entry's maximum allowed protection
478 	 * to the driver.
479 	 */
480 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
481 	    fs->fault_type, fs->entry->max_protection, &pager_first,
482 	    &pager_last);
483 
484 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
485 	if (rv == VM_PAGER_BAD) {
486 		/*
487 		 * VM_PAGER_BAD is the backdoor for a pager to request
488 		 * normal fault handling.
489 		 */
490 		vm_fault_restore_map_lock(fs);
491 		if (fs->map->timestamp != fs->map_generation)
492 			return (FAULT_RESTART);
493 		return (FAULT_CONTINUE);
494 	}
495 	if (rv != VM_PAGER_OK)
496 		return (FAULT_FAILURE); /* AKA SIGSEGV */
497 
498 	/* Ensure that the driver is obeying the interface. */
499 	MPASS(pager_first <= pager_last);
500 	MPASS(fs->first_pindex <= pager_last);
501 	MPASS(fs->first_pindex >= pager_first);
502 	MPASS(pager_last < fs->first_object->size);
503 
504 	vm_fault_restore_map_lock(fs);
505 	bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
506 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
507 	if (fs->map->timestamp != fs->map_generation) {
508 		if (bdry_idx == 0) {
509 			vm_fault_populate_cleanup(fs->first_object, pager_first,
510 			    pager_last);
511 		} else {
512 			m = vm_page_lookup(fs->first_object, pager_first);
513 			if (m != fs->m)
514 				vm_page_xunbusy(m);
515 		}
516 		return (FAULT_RESTART);
517 	}
518 
519 	/*
520 	 * The map is unchanged after our last unlock.  Process the fault.
521 	 *
522 	 * First, the special case of largepage mappings, where
523 	 * populate only busies the first page in superpage run.
524 	 */
525 	if (bdry_idx != 0) {
526 		KASSERT(PMAP_HAS_LARGEPAGES,
527 		    ("missing pmap support for large pages"));
528 		m = vm_page_lookup(fs->first_object, pager_first);
529 		vm_fault_populate_check_page(m);
530 		VM_OBJECT_WUNLOCK(fs->first_object);
531 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
532 		    fs->entry->offset;
533 		/* assert alignment for entry */
534 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
535     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
536 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
537 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
538 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
539 		    ("unaligned superpage m %p %#jx", m,
540 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
541 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
542 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
543 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
544 		VM_OBJECT_WLOCK(fs->first_object);
545 		vm_page_xunbusy(m);
546 		if (rv != KERN_SUCCESS) {
547 			res = FAULT_FAILURE;
548 			goto out;
549 		}
550 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
551 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
552 				vm_page_wire(m + i);
553 		}
554 		if (fs->m_hold != NULL) {
555 			*fs->m_hold = m + (fs->first_pindex - pager_first);
556 			vm_page_wire(*fs->m_hold);
557 		}
558 		goto out;
559 	}
560 
561 	/*
562 	 * The range [pager_first, pager_last] that is given to the
563 	 * pager is only a hint.  The pager may populate any range
564 	 * within the object that includes the requested page index.
565 	 * In case the pager expanded the range, clip it to fit into
566 	 * the map entry.
567 	 */
568 	map_first = OFF_TO_IDX(fs->entry->offset);
569 	if (map_first > pager_first) {
570 		vm_fault_populate_cleanup(fs->first_object, pager_first,
571 		    map_first - 1);
572 		pager_first = map_first;
573 	}
574 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
575 	if (map_last < pager_last) {
576 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
577 		    pager_last);
578 		pager_last = map_last;
579 	}
580 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
581 	    pidx <= pager_last;
582 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
583 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
584 
585 		psind = m->psind;
586 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
587 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
588 		    !pmap_ps_enabled(fs->map->pmap) || fs->wired))
589 			psind = 0;
590 
591 		npages = atop(pagesizes[psind]);
592 		for (i = 0; i < npages; i++) {
593 			vm_fault_populate_check_page(&m[i]);
594 			vm_fault_dirty(fs, &m[i]);
595 		}
596 		VM_OBJECT_WUNLOCK(fs->first_object);
597 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
598 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
599 
600 		/*
601 		 * pmap_enter() may fail for a superpage mapping if additional
602 		 * protection policies prevent the full mapping.
603 		 * For example, this will happen on amd64 if the entire
604 		 * address range does not share the same userspace protection
605 		 * key.  Revert to single-page mappings if this happens.
606 		 */
607 		MPASS(rv == KERN_SUCCESS ||
608 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
609 		if (__predict_false(psind > 0 &&
610 		    rv == KERN_PROTECTION_FAILURE)) {
611 			MPASS(!fs->wired);
612 			for (i = 0; i < npages; i++) {
613 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
614 				    &m[i], fs->prot, fs->fault_type, 0);
615 				MPASS(rv == KERN_SUCCESS);
616 			}
617 		}
618 
619 		VM_OBJECT_WLOCK(fs->first_object);
620 		for (i = 0; i < npages; i++) {
621 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
622 			    m[i].pindex == fs->first_pindex)
623 				vm_page_wire(&m[i]);
624 			else
625 				vm_page_activate(&m[i]);
626 			if (fs->m_hold != NULL &&
627 			    m[i].pindex == fs->first_pindex) {
628 				(*fs->m_hold) = &m[i];
629 				vm_page_wire(&m[i]);
630 			}
631 			vm_page_xunbusy(&m[i]);
632 		}
633 	}
634 out:
635 	curthread->td_ru.ru_majflt++;
636 	return (res);
637 }
638 
639 static int prot_fault_translation;
640 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
641     &prot_fault_translation, 0,
642     "Control signal to deliver on protection fault");
643 
644 /* compat definition to keep common code for signal translation */
645 #define	UCODE_PAGEFLT	12
646 #ifdef T_PAGEFLT
647 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
648 #endif
649 
650 /*
651  *	vm_fault_trap:
652  *
653  *	Handle a page fault occurring at the given address,
654  *	requiring the given permissions, in the map specified.
655  *	If successful, the page is inserted into the
656  *	associated physical map.
657  *
658  *	NOTE: the given address should be truncated to the
659  *	proper page address.
660  *
661  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
662  *	a standard error specifying why the fault is fatal is returned.
663  *
664  *	The map in question must be referenced, and remains so.
665  *	Caller may hold no locks.
666  */
667 int
668 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
669     int fault_flags, int *signo, int *ucode)
670 {
671 	int result;
672 
673 	MPASS(signo == NULL || ucode != NULL);
674 #ifdef KTRACE
675 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
676 		ktrfault(vaddr, fault_type);
677 #endif
678 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
679 	    NULL);
680 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
681 	    result == KERN_INVALID_ADDRESS ||
682 	    result == KERN_RESOURCE_SHORTAGE ||
683 	    result == KERN_PROTECTION_FAILURE ||
684 	    result == KERN_OUT_OF_BOUNDS,
685 	    ("Unexpected Mach error %d from vm_fault()", result));
686 #ifdef KTRACE
687 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
688 		ktrfaultend(result);
689 #endif
690 	if (result != KERN_SUCCESS && signo != NULL) {
691 		switch (result) {
692 		case KERN_FAILURE:
693 		case KERN_INVALID_ADDRESS:
694 			*signo = SIGSEGV;
695 			*ucode = SEGV_MAPERR;
696 			break;
697 		case KERN_RESOURCE_SHORTAGE:
698 			*signo = SIGBUS;
699 			*ucode = BUS_OOMERR;
700 			break;
701 		case KERN_OUT_OF_BOUNDS:
702 			*signo = SIGBUS;
703 			*ucode = BUS_OBJERR;
704 			break;
705 		case KERN_PROTECTION_FAILURE:
706 			if (prot_fault_translation == 0) {
707 				/*
708 				 * Autodetect.  This check also covers
709 				 * the images without the ABI-tag ELF
710 				 * note.
711 				 */
712 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
713 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
714 					*signo = SIGSEGV;
715 					*ucode = SEGV_ACCERR;
716 				} else {
717 					*signo = SIGBUS;
718 					*ucode = UCODE_PAGEFLT;
719 				}
720 			} else if (prot_fault_translation == 1) {
721 				/* Always compat mode. */
722 				*signo = SIGBUS;
723 				*ucode = UCODE_PAGEFLT;
724 			} else {
725 				/* Always SIGSEGV mode. */
726 				*signo = SIGSEGV;
727 				*ucode = SEGV_ACCERR;
728 			}
729 			break;
730 		default:
731 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
732 			    result));
733 			break;
734 		}
735 	}
736 	return (result);
737 }
738 
739 static enum fault_status
740 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
741 {
742 	struct vnode *vp;
743 	int error, locked;
744 
745 	if (fs->object->type != OBJT_VNODE)
746 		return (FAULT_CONTINUE);
747 	vp = fs->object->handle;
748 	if (vp == fs->vp) {
749 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
750 		return (FAULT_CONTINUE);
751 	}
752 
753 	/*
754 	 * Perform an unlock in case the desired vnode changed while
755 	 * the map was unlocked during a retry.
756 	 */
757 	unlock_vp(fs);
758 
759 	locked = VOP_ISLOCKED(vp);
760 	if (locked != LK_EXCLUSIVE)
761 		locked = LK_SHARED;
762 
763 	/*
764 	 * We must not sleep acquiring the vnode lock while we have
765 	 * the page exclusive busied or the object's
766 	 * paging-in-progress count incremented.  Otherwise, we could
767 	 * deadlock.
768 	 */
769 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
770 	if (error == 0) {
771 		fs->vp = vp;
772 		return (FAULT_CONTINUE);
773 	}
774 
775 	vhold(vp);
776 	if (objlocked)
777 		unlock_and_deallocate(fs);
778 	else
779 		fault_deallocate(fs);
780 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
781 	vdrop(vp);
782 	fs->vp = vp;
783 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
784 	return (FAULT_RESTART);
785 }
786 
787 /*
788  * Calculate the desired readahead.  Handle drop-behind.
789  *
790  * Returns the number of readahead blocks to pass to the pager.
791  */
792 static int
793 vm_fault_readahead(struct faultstate *fs)
794 {
795 	int era, nera;
796 	u_char behavior;
797 
798 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
799 	era = fs->entry->read_ahead;
800 	behavior = vm_map_entry_behavior(fs->entry);
801 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
802 		nera = 0;
803 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
804 		nera = VM_FAULT_READ_AHEAD_MAX;
805 		if (fs->vaddr == fs->entry->next_read)
806 			vm_fault_dontneed(fs, fs->vaddr, nera);
807 	} else if (fs->vaddr == fs->entry->next_read) {
808 		/*
809 		 * This is a sequential fault.  Arithmetically
810 		 * increase the requested number of pages in
811 		 * the read-ahead window.  The requested
812 		 * number of pages is "# of sequential faults
813 		 * x (read ahead min + 1) + read ahead min"
814 		 */
815 		nera = VM_FAULT_READ_AHEAD_MIN;
816 		if (era > 0) {
817 			nera += era + 1;
818 			if (nera > VM_FAULT_READ_AHEAD_MAX)
819 				nera = VM_FAULT_READ_AHEAD_MAX;
820 		}
821 		if (era == VM_FAULT_READ_AHEAD_MAX)
822 			vm_fault_dontneed(fs, fs->vaddr, nera);
823 	} else {
824 		/*
825 		 * This is a non-sequential fault.
826 		 */
827 		nera = 0;
828 	}
829 	if (era != nera) {
830 		/*
831 		 * A read lock on the map suffices to update
832 		 * the read ahead count safely.
833 		 */
834 		fs->entry->read_ahead = nera;
835 	}
836 
837 	return (nera);
838 }
839 
840 static int
841 vm_fault_lookup(struct faultstate *fs)
842 {
843 	int result;
844 
845 	KASSERT(!fs->lookup_still_valid,
846 	   ("vm_fault_lookup: Map already locked."));
847 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
848 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
849 	    &fs->first_pindex, &fs->prot, &fs->wired);
850 	if (result != KERN_SUCCESS) {
851 		unlock_vp(fs);
852 		return (result);
853 	}
854 
855 	fs->map_generation = fs->map->timestamp;
856 
857 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
858 		panic("%s: fault on nofault entry, addr: %#lx",
859 		    __func__, (u_long)fs->vaddr);
860 	}
861 
862 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
863 	    fs->entry->wiring_thread != curthread) {
864 		vm_map_unlock_read(fs->map);
865 		vm_map_lock(fs->map);
866 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
867 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
868 			unlock_vp(fs);
869 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
870 			vm_map_unlock_and_wait(fs->map, 0);
871 		} else
872 			vm_map_unlock(fs->map);
873 		return (KERN_RESOURCE_SHORTAGE);
874 	}
875 
876 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
877 
878 	if (fs->wired)
879 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
880 	else
881 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
882 		    ("!fs->wired && VM_FAULT_WIRE"));
883 	fs->lookup_still_valid = true;
884 
885 	return (KERN_SUCCESS);
886 }
887 
888 static int
889 vm_fault_relookup(struct faultstate *fs)
890 {
891 	vm_object_t retry_object;
892 	vm_pindex_t retry_pindex;
893 	vm_prot_t retry_prot;
894 	int result;
895 
896 	if (!vm_map_trylock_read(fs->map))
897 		return (KERN_RESTART);
898 
899 	fs->lookup_still_valid = true;
900 	if (fs->map->timestamp == fs->map_generation)
901 		return (KERN_SUCCESS);
902 
903 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
904 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
905 	    &fs->wired);
906 	if (result != KERN_SUCCESS) {
907 		/*
908 		 * If retry of map lookup would have blocked then
909 		 * retry fault from start.
910 		 */
911 		if (result == KERN_FAILURE)
912 			return (KERN_RESTART);
913 		return (result);
914 	}
915 	if (retry_object != fs->first_object ||
916 	    retry_pindex != fs->first_pindex)
917 		return (KERN_RESTART);
918 
919 	/*
920 	 * Check whether the protection has changed or the object has
921 	 * been copied while we left the map unlocked. Changing from
922 	 * read to write permission is OK - we leave the page
923 	 * write-protected, and catch the write fault. Changing from
924 	 * write to read permission means that we can't mark the page
925 	 * write-enabled after all.
926 	 */
927 	fs->prot &= retry_prot;
928 	fs->fault_type &= retry_prot;
929 	if (fs->prot == 0)
930 		return (KERN_RESTART);
931 
932 	/* Reassert because wired may have changed. */
933 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
934 	    ("!wired && VM_FAULT_WIRE"));
935 
936 	return (KERN_SUCCESS);
937 }
938 
939 static void
940 vm_fault_cow(struct faultstate *fs)
941 {
942 	bool is_first_object_locked;
943 
944 	KASSERT(fs->object != fs->first_object,
945 	    ("source and target COW objects are identical"));
946 
947 	/*
948 	 * This allows pages to be virtually copied from a backing_object
949 	 * into the first_object, where the backing object has no other
950 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
951 	 * we just move the page from the backing object to the first
952 	 * object.  Note that we must mark the page dirty in the first
953 	 * object so that it will go out to swap when needed.
954 	 */
955 	is_first_object_locked = false;
956 	if (
957 	    /*
958 	     * Only one shadow object and no other refs.
959 	     */
960 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
961 	    /*
962 	     * No other ways to look the object up
963 	     */
964 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
965 	    /*
966 	     * We don't chase down the shadow chain and we can acquire locks.
967 	     */
968 	    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
969 	    fs->object == fs->first_object->backing_object &&
970 	    VM_OBJECT_TRYWLOCK(fs->object)) {
971 		/*
972 		 * Remove but keep xbusy for replace.  fs->m is moved into
973 		 * fs->first_object and left busy while fs->first_m is
974 		 * conditionally freed.
975 		 */
976 		vm_page_remove_xbusy(fs->m);
977 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
978 		    fs->first_m);
979 		vm_page_dirty(fs->m);
980 #if VM_NRESERVLEVEL > 0
981 		/*
982 		 * Rename the reservation.
983 		 */
984 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
985 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
986 #endif
987 		VM_OBJECT_WUNLOCK(fs->object);
988 		VM_OBJECT_WUNLOCK(fs->first_object);
989 		fs->first_m = fs->m;
990 		fs->m = NULL;
991 		VM_CNT_INC(v_cow_optim);
992 	} else {
993 		if (is_first_object_locked)
994 			VM_OBJECT_WUNLOCK(fs->first_object);
995 		/*
996 		 * Oh, well, lets copy it.
997 		 */
998 		pmap_copy_page(fs->m, fs->first_m);
999 		vm_page_valid(fs->first_m);
1000 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
1001 			vm_page_wire(fs->first_m);
1002 			vm_page_unwire(fs->m, PQ_INACTIVE);
1003 		}
1004 		/*
1005 		 * Save the cow page to be released after
1006 		 * pmap_enter is complete.
1007 		 */
1008 		fs->m_cow = fs->m;
1009 		fs->m = NULL;
1010 
1011 		/*
1012 		 * Typically, the shadow object is either private to this
1013 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1014 		 * In the highly unusual case where the pages of a shadow object
1015 		 * are read/write shared between this and other address spaces,
1016 		 * we need to ensure that any pmap-level mappings to the
1017 		 * original, copy-on-write page from the backing object are
1018 		 * removed from those other address spaces.
1019 		 *
1020 		 * The flag check is racy, but this is tolerable: if
1021 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1022 		 * ensures that new mappings of m_cow can't be created.
1023 		 * pmap_enter() will replace an existing mapping in the current
1024 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1025 		 * removing mappings will at worse trigger some unnecessary page
1026 		 * faults.
1027 		 */
1028 		vm_page_assert_xbusied(fs->m_cow);
1029 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1030 			pmap_remove_all(fs->m_cow);
1031 	}
1032 
1033 	vm_object_pip_wakeup(fs->object);
1034 
1035 	/*
1036 	 * Only use the new page below...
1037 	 */
1038 	fs->object = fs->first_object;
1039 	fs->pindex = fs->first_pindex;
1040 	fs->m = fs->first_m;
1041 	VM_CNT_INC(v_cow_faults);
1042 	curthread->td_cow++;
1043 }
1044 
1045 static bool
1046 vm_fault_next(struct faultstate *fs)
1047 {
1048 	vm_object_t next_object;
1049 
1050 	/*
1051 	 * The requested page does not exist at this object/
1052 	 * offset.  Remove the invalid page from the object,
1053 	 * waking up anyone waiting for it, and continue on to
1054 	 * the next object.  However, if this is the top-level
1055 	 * object, we must leave the busy page in place to
1056 	 * prevent another process from rushing past us, and
1057 	 * inserting the page in that object at the same time
1058 	 * that we are.
1059 	 */
1060 	if (fs->object == fs->first_object) {
1061 		fs->first_m = fs->m;
1062 		fs->m = NULL;
1063 	} else
1064 		fault_page_free(&fs->m);
1065 
1066 	/*
1067 	 * Move on to the next object.  Lock the next object before
1068 	 * unlocking the current one.
1069 	 */
1070 	VM_OBJECT_ASSERT_WLOCKED(fs->object);
1071 	next_object = fs->object->backing_object;
1072 	if (next_object == NULL)
1073 		return (false);
1074 	MPASS(fs->first_m != NULL);
1075 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1076 	VM_OBJECT_WLOCK(next_object);
1077 	vm_object_pip_add(next_object, 1);
1078 	if (fs->object != fs->first_object)
1079 		vm_object_pip_wakeup(fs->object);
1080 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1081 	VM_OBJECT_WUNLOCK(fs->object);
1082 	fs->object = next_object;
1083 
1084 	return (true);
1085 }
1086 
1087 static void
1088 vm_fault_zerofill(struct faultstate *fs)
1089 {
1090 
1091 	/*
1092 	 * If there's no object left, fill the page in the top
1093 	 * object with zeros.
1094 	 */
1095 	if (fs->object != fs->first_object) {
1096 		vm_object_pip_wakeup(fs->object);
1097 		fs->object = fs->first_object;
1098 		fs->pindex = fs->first_pindex;
1099 	}
1100 	MPASS(fs->first_m != NULL);
1101 	MPASS(fs->m == NULL);
1102 	fs->m = fs->first_m;
1103 	fs->first_m = NULL;
1104 
1105 	/*
1106 	 * Zero the page if necessary and mark it valid.
1107 	 */
1108 	if ((fs->m->flags & PG_ZERO) == 0) {
1109 		pmap_zero_page(fs->m);
1110 	} else {
1111 		VM_CNT_INC(v_ozfod);
1112 	}
1113 	VM_CNT_INC(v_zfod);
1114 	vm_page_valid(fs->m);
1115 }
1116 
1117 /*
1118  * Initiate page fault after timeout.  Returns true if caller should
1119  * do vm_waitpfault() after the call.
1120  */
1121 static bool
1122 vm_fault_allocate_oom(struct faultstate *fs)
1123 {
1124 	struct timeval now;
1125 
1126 	unlock_and_deallocate(fs);
1127 	if (vm_pfault_oom_attempts < 0)
1128 		return (true);
1129 	if (!fs->oom_started) {
1130 		fs->oom_started = true;
1131 		getmicrotime(&fs->oom_start_time);
1132 		return (true);
1133 	}
1134 
1135 	getmicrotime(&now);
1136 	timevalsub(&now, &fs->oom_start_time);
1137 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1138 		return (true);
1139 
1140 	if (bootverbose)
1141 		printf(
1142 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1143 		    curproc->p_pid, curproc->p_comm);
1144 	vm_pageout_oom(VM_OOM_MEM_PF);
1145 	fs->oom_started = false;
1146 	return (false);
1147 }
1148 
1149 /*
1150  * Allocate a page directly or via the object populate method.
1151  */
1152 static enum fault_status
1153 vm_fault_allocate(struct faultstate *fs)
1154 {
1155 	struct domainset *dset;
1156 	enum fault_status res;
1157 
1158 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1159 		res = vm_fault_lock_vnode(fs, true);
1160 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1161 		if (res == FAULT_RESTART)
1162 			return (res);
1163 	}
1164 
1165 	if (fs->pindex >= fs->object->size) {
1166 		unlock_and_deallocate(fs);
1167 		return (FAULT_OUT_OF_BOUNDS);
1168 	}
1169 
1170 	if (fs->object == fs->first_object &&
1171 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1172 	    fs->first_object->shadow_count == 0) {
1173 		res = vm_fault_populate(fs);
1174 		switch (res) {
1175 		case FAULT_SUCCESS:
1176 		case FAULT_FAILURE:
1177 		case FAULT_RESTART:
1178 			unlock_and_deallocate(fs);
1179 			return (res);
1180 		case FAULT_CONTINUE:
1181 			/*
1182 			 * Pager's populate() method
1183 			 * returned VM_PAGER_BAD.
1184 			 */
1185 			break;
1186 		default:
1187 			panic("inconsistent return codes");
1188 		}
1189 	}
1190 
1191 	/*
1192 	 * Allocate a new page for this object/offset pair.
1193 	 *
1194 	 * If the process has a fatal signal pending, prioritize the allocation
1195 	 * with the expectation that the process will exit shortly and free some
1196 	 * pages.  In particular, the signal may have been posted by the page
1197 	 * daemon in an attempt to resolve an out-of-memory condition.
1198 	 *
1199 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1200 	 * might be not observed here, and allocation fails, causing a restart
1201 	 * and new reading of the p_flag.
1202 	 */
1203 	dset = fs->object->domain.dr_policy;
1204 	if (dset == NULL)
1205 		dset = curthread->td_domain.dr_policy;
1206 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1207 #if VM_NRESERVLEVEL > 0
1208 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1209 #endif
1210 		if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) {
1211 			unlock_and_deallocate(fs);
1212 			return (FAULT_FAILURE);
1213 		}
1214 		fs->m = vm_page_alloc(fs->object, fs->pindex,
1215 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1216 	}
1217 	if (fs->m == NULL) {
1218 		if (vm_fault_allocate_oom(fs))
1219 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1220 		return (FAULT_RESTART);
1221 	}
1222 	fs->oom_started = false;
1223 
1224 	return (FAULT_CONTINUE);
1225 }
1226 
1227 /*
1228  * Call the pager to retrieve the page if there is a chance
1229  * that the pager has it, and potentially retrieve additional
1230  * pages at the same time.
1231  */
1232 static enum fault_status
1233 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1234 {
1235 	vm_offset_t e_end, e_start;
1236 	int ahead, behind, cluster_offset, rv;
1237 	enum fault_status status;
1238 	u_char behavior;
1239 
1240 	/*
1241 	 * Prepare for unlocking the map.  Save the map
1242 	 * entry's start and end addresses, which are used to
1243 	 * optimize the size of the pager operation below.
1244 	 * Even if the map entry's addresses change after
1245 	 * unlocking the map, using the saved addresses is
1246 	 * safe.
1247 	 */
1248 	e_start = fs->entry->start;
1249 	e_end = fs->entry->end;
1250 	behavior = vm_map_entry_behavior(fs->entry);
1251 
1252 	/*
1253 	 * If the pager for the current object might have
1254 	 * the page, then determine the number of additional
1255 	 * pages to read and potentially reprioritize
1256 	 * previously read pages for earlier reclamation.
1257 	 * These operations should only be performed once per
1258 	 * page fault.  Even if the current pager doesn't
1259 	 * have the page, the number of additional pages to
1260 	 * read will apply to subsequent objects in the
1261 	 * shadow chain.
1262 	 */
1263 	if (fs->nera == -1 && !P_KILLED(curproc))
1264 		fs->nera = vm_fault_readahead(fs);
1265 
1266 	/*
1267 	 * Release the map lock before locking the vnode or
1268 	 * sleeping in the pager.  (If the current object has
1269 	 * a shadow, then an earlier iteration of this loop
1270 	 * may have already unlocked the map.)
1271 	 */
1272 	unlock_map(fs);
1273 
1274 	status = vm_fault_lock_vnode(fs, false);
1275 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1276 	if (status == FAULT_RESTART)
1277 		return (status);
1278 	KASSERT(fs->vp == NULL || !fs->map->system_map,
1279 	    ("vm_fault: vnode-backed object mapped by system map"));
1280 
1281 	/*
1282 	 * Page in the requested page and hint the pager,
1283 	 * that it may bring up surrounding pages.
1284 	 */
1285 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1286 	    P_KILLED(curproc)) {
1287 		behind = 0;
1288 		ahead = 0;
1289 	} else {
1290 		/* Is this a sequential fault? */
1291 		if (fs->nera > 0) {
1292 			behind = 0;
1293 			ahead = fs->nera;
1294 		} else {
1295 			/*
1296 			 * Request a cluster of pages that is
1297 			 * aligned to a VM_FAULT_READ_DEFAULT
1298 			 * page offset boundary within the
1299 			 * object.  Alignment to a page offset
1300 			 * boundary is more likely to coincide
1301 			 * with the underlying file system
1302 			 * block than alignment to a virtual
1303 			 * address boundary.
1304 			 */
1305 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1306 			behind = ulmin(cluster_offset,
1307 			    atop(fs->vaddr - e_start));
1308 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1309 		}
1310 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1311 	}
1312 	*behindp = behind;
1313 	*aheadp = ahead;
1314 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1315 	if (rv == VM_PAGER_OK)
1316 		return (FAULT_HARD);
1317 	if (rv == VM_PAGER_ERROR)
1318 		printf("vm_fault: pager read error, pid %d (%s)\n",
1319 		    curproc->p_pid, curproc->p_comm);
1320 	/*
1321 	 * If an I/O error occurred or the requested page was
1322 	 * outside the range of the pager, clean up and return
1323 	 * an error.
1324 	 */
1325 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1326 		VM_OBJECT_WLOCK(fs->object);
1327 		fault_page_free(&fs->m);
1328 		unlock_and_deallocate(fs);
1329 		return (FAULT_OUT_OF_BOUNDS);
1330 	}
1331 	KASSERT(rv == VM_PAGER_FAIL,
1332 	    ("%s: unexpected pager error %d", __func__, rv));
1333 	return (FAULT_CONTINUE);
1334 }
1335 
1336 /*
1337  * Wait/Retry if the page is busy.  We have to do this if the page is
1338  * either exclusive or shared busy because the vm_pager may be using
1339  * read busy for pageouts (and even pageins if it is the vnode pager),
1340  * and we could end up trying to pagein and pageout the same page
1341  * simultaneously.
1342  *
1343  * We can theoretically allow the busy case on a read fault if the page
1344  * is marked valid, but since such pages are typically already pmap'd,
1345  * putting that special case in might be more effort then it is worth.
1346  * We cannot under any circumstances mess around with a shared busied
1347  * page except, perhaps, to pmap it.
1348  */
1349 static void
1350 vm_fault_busy_sleep(struct faultstate *fs)
1351 {
1352 	/*
1353 	 * Reference the page before unlocking and
1354 	 * sleeping so that the page daemon is less
1355 	 * likely to reclaim it.
1356 	 */
1357 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1358 	if (fs->object != fs->first_object) {
1359 		fault_page_release(&fs->first_m);
1360 		vm_object_pip_wakeup(fs->first_object);
1361 	}
1362 	vm_object_pip_wakeup(fs->object);
1363 	unlock_map(fs);
1364 	if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1365 	    !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1366 		VM_OBJECT_WUNLOCK(fs->object);
1367 	VM_CNT_INC(v_intrans);
1368 	vm_object_deallocate(fs->first_object);
1369 }
1370 
1371 /*
1372  * Handle page lookup, populate, allocate, page-in for the current
1373  * object.
1374  *
1375  * The object is locked on entry and will remain locked with a return
1376  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1377  * Otherwise, the object will be unlocked upon return.
1378  */
1379 static enum fault_status
1380 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1381 {
1382 	enum fault_status res;
1383 	bool dead;
1384 
1385 	/*
1386 	 * If the object is marked for imminent termination, we retry
1387 	 * here, since the collapse pass has raced with us.  Otherwise,
1388 	 * if we see terminally dead object, return fail.
1389 	 */
1390 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1391 		dead = fs->object->type == OBJT_DEAD;
1392 		unlock_and_deallocate(fs);
1393 		if (dead)
1394 			return (FAULT_PROTECTION_FAILURE);
1395 		pause("vmf_de", 1);
1396 		return (FAULT_RESTART);
1397 	}
1398 
1399 	/*
1400 	 * See if the page is resident.
1401 	 */
1402 	fs->m = vm_page_lookup(fs->object, fs->pindex);
1403 	if (fs->m != NULL) {
1404 		if (!vm_page_tryxbusy(fs->m)) {
1405 			vm_fault_busy_sleep(fs);
1406 			return (FAULT_RESTART);
1407 		}
1408 
1409 		/*
1410 		 * The page is marked busy for other processes and the
1411 		 * pagedaemon.  If it is still completely valid we are
1412 		 * done.
1413 		 */
1414 		if (vm_page_all_valid(fs->m)) {
1415 			VM_OBJECT_WUNLOCK(fs->object);
1416 			return (FAULT_SOFT);
1417 		}
1418 	}
1419 	VM_OBJECT_ASSERT_WLOCKED(fs->object);
1420 
1421 	/*
1422 	 * Page is not resident.  If the pager might contain the page
1423 	 * or this is the beginning of the search, allocate a new
1424 	 * page.
1425 	 */
1426 	if (fs->m == NULL && (fault_object_needs_getpages(fs->object) ||
1427 	    fs->object == fs->first_object)) {
1428 		res = vm_fault_allocate(fs);
1429 		if (res != FAULT_CONTINUE)
1430 			return (res);
1431 	}
1432 
1433 	/*
1434 	 * Default objects have no pager so no exclusive busy exists
1435 	 * to protect this page in the chain.  Skip to the next
1436 	 * object without dropping the lock to preserve atomicity of
1437 	 * shadow faults.
1438 	 */
1439 	if (fault_object_needs_getpages(fs->object)) {
1440 		/*
1441 		 * At this point, we have either allocated a new page
1442 		 * or found an existing page that is only partially
1443 		 * valid.
1444 		 *
1445 		 * We hold a reference on the current object and the
1446 		 * page is exclusive busied.  The exclusive busy
1447 		 * prevents simultaneous faults and collapses while
1448 		 * the object lock is dropped.
1449 		 */
1450 		VM_OBJECT_WUNLOCK(fs->object);
1451 		res = vm_fault_getpages(fs, behindp, aheadp);
1452 		if (res == FAULT_CONTINUE)
1453 			VM_OBJECT_WLOCK(fs->object);
1454 	} else {
1455 		res = FAULT_CONTINUE;
1456 	}
1457 	return (res);
1458 }
1459 
1460 int
1461 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1462     int fault_flags, vm_page_t *m_hold)
1463 {
1464 	struct faultstate fs;
1465 	int ahead, behind, faultcount, rv;
1466 	enum fault_status res;
1467 	bool hardfault;
1468 
1469 	VM_CNT_INC(v_vm_faults);
1470 
1471 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1472 		return (KERN_PROTECTION_FAILURE);
1473 
1474 	fs.vp = NULL;
1475 	fs.vaddr = vaddr;
1476 	fs.m_hold = m_hold;
1477 	fs.fault_flags = fault_flags;
1478 	fs.map = map;
1479 	fs.lookup_still_valid = false;
1480 	fs.oom_started = false;
1481 	fs.nera = -1;
1482 	faultcount = 0;
1483 	hardfault = false;
1484 
1485 RetryFault:
1486 	fs.fault_type = fault_type;
1487 
1488 	/*
1489 	 * Find the backing store object and offset into it to begin the
1490 	 * search.
1491 	 */
1492 	rv = vm_fault_lookup(&fs);
1493 	if (rv != KERN_SUCCESS) {
1494 		if (rv == KERN_RESOURCE_SHORTAGE)
1495 			goto RetryFault;
1496 		return (rv);
1497 	}
1498 
1499 	/*
1500 	 * Try to avoid lock contention on the top-level object through
1501 	 * special-case handling of some types of page faults, specifically,
1502 	 * those that are mapping an existing page from the top-level object.
1503 	 * Under this condition, a read lock on the object suffices, allowing
1504 	 * multiple page faults of a similar type to run in parallel.
1505 	 */
1506 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1507 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1508 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1509 		VM_OBJECT_RLOCK(fs.first_object);
1510 		res = vm_fault_soft_fast(&fs);
1511 		if (res == FAULT_SUCCESS)
1512 			return (KERN_SUCCESS);
1513 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1514 			VM_OBJECT_RUNLOCK(fs.first_object);
1515 			VM_OBJECT_WLOCK(fs.first_object);
1516 		}
1517 	} else {
1518 		VM_OBJECT_WLOCK(fs.first_object);
1519 	}
1520 
1521 	/*
1522 	 * Make a reference to this object to prevent its disposal while we
1523 	 * are messing with it.  Once we have the reference, the map is free
1524 	 * to be diddled.  Since objects reference their shadows (and copies),
1525 	 * they will stay around as well.
1526 	 *
1527 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1528 	 * truncation operations) during I/O.
1529 	 */
1530 	vm_object_reference_locked(fs.first_object);
1531 	vm_object_pip_add(fs.first_object, 1);
1532 
1533 	fs.m_cow = fs.m = fs.first_m = NULL;
1534 
1535 	/*
1536 	 * Search for the page at object/offset.
1537 	 */
1538 	fs.object = fs.first_object;
1539 	fs.pindex = fs.first_pindex;
1540 
1541 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1542 		res = vm_fault_allocate(&fs);
1543 		switch (res) {
1544 		case FAULT_RESTART:
1545 			goto RetryFault;
1546 		case FAULT_SUCCESS:
1547 			return (KERN_SUCCESS);
1548 		case FAULT_FAILURE:
1549 			return (KERN_FAILURE);
1550 		case FAULT_OUT_OF_BOUNDS:
1551 			return (KERN_OUT_OF_BOUNDS);
1552 		case FAULT_CONTINUE:
1553 			break;
1554 		default:
1555 			panic("vm_fault: Unhandled status %d", res);
1556 		}
1557 	}
1558 
1559 	while (TRUE) {
1560 		KASSERT(fs.m == NULL,
1561 		    ("page still set %p at loop start", fs.m));
1562 
1563 		res = vm_fault_object(&fs, &behind, &ahead);
1564 		switch (res) {
1565 		case FAULT_SOFT:
1566 			goto found;
1567 		case FAULT_HARD:
1568 			faultcount = behind + 1 + ahead;
1569 			hardfault = true;
1570 			goto found;
1571 		case FAULT_RESTART:
1572 			goto RetryFault;
1573 		case FAULT_SUCCESS:
1574 			return (KERN_SUCCESS);
1575 		case FAULT_FAILURE:
1576 			return (KERN_FAILURE);
1577 		case FAULT_OUT_OF_BOUNDS:
1578 			return (KERN_OUT_OF_BOUNDS);
1579 		case FAULT_PROTECTION_FAILURE:
1580 			return (KERN_PROTECTION_FAILURE);
1581 		case FAULT_CONTINUE:
1582 			break;
1583 		default:
1584 			panic("vm_fault: Unhandled status %d", res);
1585 		}
1586 
1587 		/*
1588 		 * The page was not found in the current object.  Try to
1589 		 * traverse into a backing object or zero fill if none is
1590 		 * found.
1591 		 */
1592 		if (vm_fault_next(&fs))
1593 			continue;
1594 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1595 			if (fs.first_object == fs.object)
1596 				fault_page_free(&fs.first_m);
1597 			unlock_and_deallocate(&fs);
1598 			return (KERN_OUT_OF_BOUNDS);
1599 		}
1600 		VM_OBJECT_WUNLOCK(fs.object);
1601 		vm_fault_zerofill(&fs);
1602 		/* Don't try to prefault neighboring pages. */
1603 		faultcount = 1;
1604 		break;
1605 	}
1606 
1607 found:
1608 	/*
1609 	 * A valid page has been found and exclusively busied.  The
1610 	 * object lock must no longer be held.
1611 	 */
1612 	vm_page_assert_xbusied(fs.m);
1613 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1614 
1615 	/*
1616 	 * If the page is being written, but isn't already owned by the
1617 	 * top-level object, we have to copy it into a new page owned by the
1618 	 * top-level object.
1619 	 */
1620 	if (fs.object != fs.first_object) {
1621 		/*
1622 		 * We only really need to copy if we want to write it.
1623 		 */
1624 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1625 			vm_fault_cow(&fs);
1626 			/*
1627 			 * We only try to prefault read-only mappings to the
1628 			 * neighboring pages when this copy-on-write fault is
1629 			 * a hard fault.  In other cases, trying to prefault
1630 			 * is typically wasted effort.
1631 			 */
1632 			if (faultcount == 0)
1633 				faultcount = 1;
1634 
1635 		} else {
1636 			fs.prot &= ~VM_PROT_WRITE;
1637 		}
1638 	}
1639 
1640 	/*
1641 	 * We must verify that the maps have not changed since our last
1642 	 * lookup.
1643 	 */
1644 	if (!fs.lookup_still_valid) {
1645 		rv = vm_fault_relookup(&fs);
1646 		if (rv != KERN_SUCCESS) {
1647 			fault_deallocate(&fs);
1648 			if (rv == KERN_RESTART)
1649 				goto RetryFault;
1650 			return (rv);
1651 		}
1652 	}
1653 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1654 
1655 	/*
1656 	 * If the page was filled by a pager, save the virtual address that
1657 	 * should be faulted on next under a sequential access pattern to the
1658 	 * map entry.  A read lock on the map suffices to update this address
1659 	 * safely.
1660 	 */
1661 	if (hardfault)
1662 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1663 
1664 	/*
1665 	 * Page must be completely valid or it is not fit to
1666 	 * map into user space.  vm_pager_get_pages() ensures this.
1667 	 */
1668 	vm_page_assert_xbusied(fs.m);
1669 	KASSERT(vm_page_all_valid(fs.m),
1670 	    ("vm_fault: page %p partially invalid", fs.m));
1671 
1672 	vm_fault_dirty(&fs, fs.m);
1673 
1674 	/*
1675 	 * Put this page into the physical map.  We had to do the unlock above
1676 	 * because pmap_enter() may sleep.  We don't put the page
1677 	 * back on the active queue until later so that the pageout daemon
1678 	 * won't find it (yet).
1679 	 */
1680 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1681 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1682 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1683 	    fs.wired == 0)
1684 		vm_fault_prefault(&fs, vaddr,
1685 		    faultcount > 0 ? behind : PFBAK,
1686 		    faultcount > 0 ? ahead : PFFOR, false);
1687 
1688 	/*
1689 	 * If the page is not wired down, then put it where the pageout daemon
1690 	 * can find it.
1691 	 */
1692 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1693 		vm_page_wire(fs.m);
1694 	else
1695 		vm_page_activate(fs.m);
1696 	if (fs.m_hold != NULL) {
1697 		(*fs.m_hold) = fs.m;
1698 		vm_page_wire(fs.m);
1699 	}
1700 	vm_page_xunbusy(fs.m);
1701 	fs.m = NULL;
1702 
1703 	/*
1704 	 * Unlock everything, and return
1705 	 */
1706 	fault_deallocate(&fs);
1707 	if (hardfault) {
1708 		VM_CNT_INC(v_io_faults);
1709 		curthread->td_ru.ru_majflt++;
1710 #ifdef RACCT
1711 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1712 			PROC_LOCK(curproc);
1713 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1714 				racct_add_force(curproc, RACCT_WRITEBPS,
1715 				    PAGE_SIZE + behind * PAGE_SIZE);
1716 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1717 			} else {
1718 				racct_add_force(curproc, RACCT_READBPS,
1719 				    PAGE_SIZE + ahead * PAGE_SIZE);
1720 				racct_add_force(curproc, RACCT_READIOPS, 1);
1721 			}
1722 			PROC_UNLOCK(curproc);
1723 		}
1724 #endif
1725 	} else
1726 		curthread->td_ru.ru_minflt++;
1727 
1728 	return (KERN_SUCCESS);
1729 }
1730 
1731 /*
1732  * Speed up the reclamation of pages that precede the faulting pindex within
1733  * the first object of the shadow chain.  Essentially, perform the equivalent
1734  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1735  * the faulting pindex by the cluster size when the pages read by vm_fault()
1736  * cross a cluster-size boundary.  The cluster size is the greater of the
1737  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1738  *
1739  * When "fs->first_object" is a shadow object, the pages in the backing object
1740  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1741  * function must only be concerned with pages in the first object.
1742  */
1743 static void
1744 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1745 {
1746 	vm_map_entry_t entry;
1747 	vm_object_t first_object;
1748 	vm_offset_t end, start;
1749 	vm_page_t m, m_next;
1750 	vm_pindex_t pend, pstart;
1751 	vm_size_t size;
1752 
1753 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1754 	first_object = fs->first_object;
1755 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1756 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1757 		VM_OBJECT_RLOCK(first_object);
1758 		size = VM_FAULT_DONTNEED_MIN;
1759 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1760 			size = pagesizes[1];
1761 		end = rounddown2(vaddr, size);
1762 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1763 		    (entry = fs->entry)->start < end) {
1764 			if (end - entry->start < size)
1765 				start = entry->start;
1766 			else
1767 				start = end - size;
1768 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1769 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1770 			    entry->start);
1771 			m_next = vm_page_find_least(first_object, pstart);
1772 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1773 			    entry->start);
1774 			while ((m = m_next) != NULL && m->pindex < pend) {
1775 				m_next = TAILQ_NEXT(m, listq);
1776 				if (!vm_page_all_valid(m) ||
1777 				    vm_page_busied(m))
1778 					continue;
1779 
1780 				/*
1781 				 * Don't clear PGA_REFERENCED, since it would
1782 				 * likely represent a reference by a different
1783 				 * process.
1784 				 *
1785 				 * Typically, at this point, prefetched pages
1786 				 * are still in the inactive queue.  Only
1787 				 * pages that triggered page faults are in the
1788 				 * active queue.  The test for whether the page
1789 				 * is in the inactive queue is racy; in the
1790 				 * worst case we will requeue the page
1791 				 * unnecessarily.
1792 				 */
1793 				if (!vm_page_inactive(m))
1794 					vm_page_deactivate(m);
1795 			}
1796 		}
1797 		VM_OBJECT_RUNLOCK(first_object);
1798 	}
1799 }
1800 
1801 /*
1802  * vm_fault_prefault provides a quick way of clustering
1803  * pagefaults into a processes address space.  It is a "cousin"
1804  * of vm_map_pmap_enter, except it runs at page fault time instead
1805  * of mmap time.
1806  */
1807 static void
1808 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1809     int backward, int forward, bool obj_locked)
1810 {
1811 	pmap_t pmap;
1812 	vm_map_entry_t entry;
1813 	vm_object_t backing_object, lobject;
1814 	vm_offset_t addr, starta;
1815 	vm_pindex_t pindex;
1816 	vm_page_t m;
1817 	int i;
1818 
1819 	pmap = fs->map->pmap;
1820 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1821 		return;
1822 
1823 	entry = fs->entry;
1824 
1825 	if (addra < backward * PAGE_SIZE) {
1826 		starta = entry->start;
1827 	} else {
1828 		starta = addra - backward * PAGE_SIZE;
1829 		if (starta < entry->start)
1830 			starta = entry->start;
1831 	}
1832 
1833 	/*
1834 	 * Generate the sequence of virtual addresses that are candidates for
1835 	 * prefaulting in an outward spiral from the faulting virtual address,
1836 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1837 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1838 	 * If the candidate address doesn't have a backing physical page, then
1839 	 * the loop immediately terminates.
1840 	 */
1841 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1842 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1843 		    PAGE_SIZE);
1844 		if (addr > addra + forward * PAGE_SIZE)
1845 			addr = 0;
1846 
1847 		if (addr < starta || addr >= entry->end)
1848 			continue;
1849 
1850 		if (!pmap_is_prefaultable(pmap, addr))
1851 			continue;
1852 
1853 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1854 		lobject = entry->object.vm_object;
1855 		if (!obj_locked)
1856 			VM_OBJECT_RLOCK(lobject);
1857 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1858 		    !fault_object_needs_getpages(lobject) &&
1859 		    (backing_object = lobject->backing_object) != NULL) {
1860 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1861 			    0, ("vm_fault_prefault: unaligned object offset"));
1862 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1863 			VM_OBJECT_RLOCK(backing_object);
1864 			if (!obj_locked || lobject != entry->object.vm_object)
1865 				VM_OBJECT_RUNLOCK(lobject);
1866 			lobject = backing_object;
1867 		}
1868 		if (m == NULL) {
1869 			if (!obj_locked || lobject != entry->object.vm_object)
1870 				VM_OBJECT_RUNLOCK(lobject);
1871 			break;
1872 		}
1873 		if (vm_page_all_valid(m) &&
1874 		    (m->flags & PG_FICTITIOUS) == 0)
1875 			pmap_enter_quick(pmap, addr, m, entry->protection);
1876 		if (!obj_locked || lobject != entry->object.vm_object)
1877 			VM_OBJECT_RUNLOCK(lobject);
1878 	}
1879 }
1880 
1881 /*
1882  * Hold each of the physical pages that are mapped by the specified range of
1883  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1884  * and allow the specified types of access, "prot".  If all of the implied
1885  * pages are successfully held, then the number of held pages is returned
1886  * together with pointers to those pages in the array "ma".  However, if any
1887  * of the pages cannot be held, -1 is returned.
1888  */
1889 int
1890 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1891     vm_prot_t prot, vm_page_t *ma, int max_count)
1892 {
1893 	vm_offset_t end, va;
1894 	vm_page_t *mp;
1895 	int count;
1896 	boolean_t pmap_failed;
1897 
1898 	if (len == 0)
1899 		return (0);
1900 	end = round_page(addr + len);
1901 	addr = trunc_page(addr);
1902 
1903 	if (!vm_map_range_valid(map, addr, end))
1904 		return (-1);
1905 
1906 	if (atop(end - addr) > max_count)
1907 		panic("vm_fault_quick_hold_pages: count > max_count");
1908 	count = atop(end - addr);
1909 
1910 	/*
1911 	 * Most likely, the physical pages are resident in the pmap, so it is
1912 	 * faster to try pmap_extract_and_hold() first.
1913 	 */
1914 	pmap_failed = FALSE;
1915 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1916 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1917 		if (*mp == NULL)
1918 			pmap_failed = TRUE;
1919 		else if ((prot & VM_PROT_WRITE) != 0 &&
1920 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1921 			/*
1922 			 * Explicitly dirty the physical page.  Otherwise, the
1923 			 * caller's changes may go unnoticed because they are
1924 			 * performed through an unmanaged mapping or by a DMA
1925 			 * operation.
1926 			 *
1927 			 * The object lock is not held here.
1928 			 * See vm_page_clear_dirty_mask().
1929 			 */
1930 			vm_page_dirty(*mp);
1931 		}
1932 	}
1933 	if (pmap_failed) {
1934 		/*
1935 		 * One or more pages could not be held by the pmap.  Either no
1936 		 * page was mapped at the specified virtual address or that
1937 		 * mapping had insufficient permissions.  Attempt to fault in
1938 		 * and hold these pages.
1939 		 *
1940 		 * If vm_fault_disable_pagefaults() was called,
1941 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1942 		 * acquire MD VM locks, which means we must not call
1943 		 * vm_fault().  Some (out of tree) callers mark
1944 		 * too wide a code area with vm_fault_disable_pagefaults()
1945 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1946 		 * the proper behaviour explicitly.
1947 		 */
1948 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1949 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1950 			goto error;
1951 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1952 			if (*mp == NULL && vm_fault(map, va, prot,
1953 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1954 				goto error;
1955 	}
1956 	return (count);
1957 error:
1958 	for (mp = ma; mp < ma + count; mp++)
1959 		if (*mp != NULL)
1960 			vm_page_unwire(*mp, PQ_INACTIVE);
1961 	return (-1);
1962 }
1963 
1964 /*
1965  *	Routine:
1966  *		vm_fault_copy_entry
1967  *	Function:
1968  *		Create new object backing dst_entry with private copy of all
1969  *		underlying pages. When src_entry is equal to dst_entry, function
1970  *		implements COW for wired-down map entry. Otherwise, it forks
1971  *		wired entry into dst_map.
1972  *
1973  *	In/out conditions:
1974  *		The source and destination maps must be locked for write.
1975  *		The source map entry must be wired down (or be a sharing map
1976  *		entry corresponding to a main map entry that is wired down).
1977  */
1978 void
1979 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused,
1980     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1981     vm_ooffset_t *fork_charge)
1982 {
1983 	vm_object_t backing_object, dst_object, object, src_object;
1984 	vm_pindex_t dst_pindex, pindex, src_pindex;
1985 	vm_prot_t access, prot;
1986 	vm_offset_t vaddr;
1987 	vm_page_t dst_m;
1988 	vm_page_t src_m;
1989 	bool upgrade;
1990 
1991 	upgrade = src_entry == dst_entry;
1992 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1993 	    ("vm_fault_copy_entry: vm_object not NULL"));
1994 
1995 	/*
1996 	 * If not an upgrade, then enter the mappings in the pmap as
1997 	 * read and/or execute accesses.  Otherwise, enter them as
1998 	 * write accesses.
1999 	 *
2000 	 * A writeable large page mapping is only created if all of
2001 	 * the constituent small page mappings are modified. Marking
2002 	 * PTEs as modified on inception allows promotion to happen
2003 	 * without taking potentially large number of soft faults.
2004 	 */
2005 	access = prot = dst_entry->protection;
2006 	if (!upgrade)
2007 		access &= ~VM_PROT_WRITE;
2008 
2009 	src_object = src_entry->object.vm_object;
2010 	src_pindex = OFF_TO_IDX(src_entry->offset);
2011 
2012 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2013 		dst_object = src_object;
2014 		vm_object_reference(dst_object);
2015 	} else {
2016 		/*
2017 		 * Create the top-level object for the destination entry.
2018 		 * Doesn't actually shadow anything - we copy the pages
2019 		 * directly.
2020 		 */
2021 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
2022 		    dst_entry->start), NULL, NULL, 0);
2023 #if VM_NRESERVLEVEL > 0
2024 		dst_object->flags |= OBJ_COLORED;
2025 		dst_object->pg_color = atop(dst_entry->start);
2026 #endif
2027 		dst_object->domain = src_object->domain;
2028 		dst_object->charge = dst_entry->end - dst_entry->start;
2029 
2030 		dst_entry->object.vm_object = dst_object;
2031 		dst_entry->offset = 0;
2032 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2033 	}
2034 
2035 	VM_OBJECT_WLOCK(dst_object);
2036 	if (fork_charge != NULL) {
2037 		KASSERT(dst_entry->cred == NULL,
2038 		    ("vm_fault_copy_entry: leaked swp charge"));
2039 		dst_object->cred = curthread->td_ucred;
2040 		crhold(dst_object->cred);
2041 		*fork_charge += dst_object->charge;
2042 	} else if ((dst_object->flags & OBJ_SWAP) != 0 &&
2043 	    dst_object->cred == NULL) {
2044 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2045 		    dst_entry));
2046 		dst_object->cred = dst_entry->cred;
2047 		dst_entry->cred = NULL;
2048 	}
2049 
2050 	/*
2051 	 * Loop through all of the virtual pages within the entry's
2052 	 * range, copying each page from the source object to the
2053 	 * destination object.  Since the source is wired, those pages
2054 	 * must exist.  In contrast, the destination is pageable.
2055 	 * Since the destination object doesn't share any backing storage
2056 	 * with the source object, all of its pages must be dirtied,
2057 	 * regardless of whether they can be written.
2058 	 */
2059 	for (vaddr = dst_entry->start, dst_pindex = 0;
2060 	    vaddr < dst_entry->end;
2061 	    vaddr += PAGE_SIZE, dst_pindex++) {
2062 again:
2063 		/*
2064 		 * Find the page in the source object, and copy it in.
2065 		 * Because the source is wired down, the page will be
2066 		 * in memory.
2067 		 */
2068 		if (src_object != dst_object)
2069 			VM_OBJECT_RLOCK(src_object);
2070 		object = src_object;
2071 		pindex = src_pindex + dst_pindex;
2072 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2073 		    (backing_object = object->backing_object) != NULL) {
2074 			/*
2075 			 * Unless the source mapping is read-only or
2076 			 * it is presently being upgraded from
2077 			 * read-only, the first object in the shadow
2078 			 * chain should provide all of the pages.  In
2079 			 * other words, this loop body should never be
2080 			 * executed when the source mapping is already
2081 			 * read/write.
2082 			 */
2083 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2084 			    upgrade,
2085 			    ("vm_fault_copy_entry: main object missing page"));
2086 
2087 			VM_OBJECT_RLOCK(backing_object);
2088 			pindex += OFF_TO_IDX(object->backing_object_offset);
2089 			if (object != dst_object)
2090 				VM_OBJECT_RUNLOCK(object);
2091 			object = backing_object;
2092 		}
2093 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2094 
2095 		if (object != dst_object) {
2096 			/*
2097 			 * Allocate a page in the destination object.
2098 			 */
2099 			dst_m = vm_page_alloc(dst_object, (src_object ==
2100 			    dst_object ? src_pindex : 0) + dst_pindex,
2101 			    VM_ALLOC_NORMAL);
2102 			if (dst_m == NULL) {
2103 				VM_OBJECT_WUNLOCK(dst_object);
2104 				VM_OBJECT_RUNLOCK(object);
2105 				vm_wait(dst_object);
2106 				VM_OBJECT_WLOCK(dst_object);
2107 				goto again;
2108 			}
2109 
2110 			/*
2111 			 * See the comment in vm_fault_cow().
2112 			 */
2113 			if (src_object == dst_object &&
2114 			    (object->flags & OBJ_ONEMAPPING) == 0)
2115 				pmap_remove_all(src_m);
2116 			pmap_copy_page(src_m, dst_m);
2117 
2118 			/*
2119 			 * The object lock does not guarantee that "src_m" will
2120 			 * transition from invalid to valid, but it does ensure
2121 			 * that "src_m" will not transition from valid to
2122 			 * invalid.
2123 			 */
2124 			dst_m->dirty = dst_m->valid = src_m->valid;
2125 			VM_OBJECT_RUNLOCK(object);
2126 		} else {
2127 			dst_m = src_m;
2128 			if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2129 				goto again;
2130 			if (dst_m->pindex >= dst_object->size) {
2131 				/*
2132 				 * We are upgrading.  Index can occur
2133 				 * out of bounds if the object type is
2134 				 * vnode and the file was truncated.
2135 				 */
2136 				vm_page_xunbusy(dst_m);
2137 				break;
2138 			}
2139 		}
2140 
2141 		/*
2142 		 * Enter it in the pmap. If a wired, copy-on-write
2143 		 * mapping is being replaced by a write-enabled
2144 		 * mapping, then wire that new mapping.
2145 		 *
2146 		 * The page can be invalid if the user called
2147 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2148 		 * or shared memory object.  In this case, do not
2149 		 * insert it into pmap, but still do the copy so that
2150 		 * all copies of the wired map entry have similar
2151 		 * backing pages.
2152 		 */
2153 		if (vm_page_all_valid(dst_m)) {
2154 			VM_OBJECT_WUNLOCK(dst_object);
2155 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2156 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2157 			VM_OBJECT_WLOCK(dst_object);
2158 		}
2159 
2160 		/*
2161 		 * Mark it no longer busy, and put it on the active list.
2162 		 */
2163 		if (upgrade) {
2164 			if (src_m != dst_m) {
2165 				vm_page_unwire(src_m, PQ_INACTIVE);
2166 				vm_page_wire(dst_m);
2167 			} else {
2168 				KASSERT(vm_page_wired(dst_m),
2169 				    ("dst_m %p is not wired", dst_m));
2170 			}
2171 		} else {
2172 			vm_page_activate(dst_m);
2173 		}
2174 		vm_page_xunbusy(dst_m);
2175 	}
2176 	VM_OBJECT_WUNLOCK(dst_object);
2177 	if (upgrade) {
2178 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2179 		vm_object_deallocate(src_object);
2180 	}
2181 }
2182 
2183 /*
2184  * Block entry into the machine-independent layer's page fault handler by
2185  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2186  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2187  * spurious page faults.
2188  */
2189 int
2190 vm_fault_disable_pagefaults(void)
2191 {
2192 
2193 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2194 }
2195 
2196 void
2197 vm_fault_enable_pagefaults(int save)
2198 {
2199 
2200 	curthread_pflags_restore(save);
2201 }
2202