1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 #include "opt_ktrace.h" 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/lock.h> 82 #include <sys/mman.h> 83 #include <sys/mutex.h> 84 #include <sys/pctrie.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/refcount.h> 88 #include <sys/resourcevar.h> 89 #include <sys/rwlock.h> 90 #include <sys/signalvar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysent.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #include <vm/vm.h> 100 #include <vm/vm_param.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pageout.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_extern.h> 109 #include <vm/vm_reserv.h> 110 111 #define PFBAK 4 112 #define PFFOR 4 113 114 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 115 116 #define VM_FAULT_DONTNEED_MIN 1048576 117 118 struct faultstate { 119 /* Fault parameters. */ 120 vm_offset_t vaddr; 121 vm_page_t *m_hold; 122 vm_prot_t fault_type; 123 vm_prot_t prot; 124 int fault_flags; 125 boolean_t wired; 126 127 /* Control state. */ 128 struct timeval oom_start_time; 129 bool oom_started; 130 int nera; 131 bool can_read_lock; 132 133 /* Page reference for cow. */ 134 vm_page_t m_cow; 135 136 /* Current object. */ 137 vm_object_t object; 138 vm_pindex_t pindex; 139 vm_page_t m; 140 141 /* Top-level map object. */ 142 vm_object_t first_object; 143 vm_pindex_t first_pindex; 144 vm_page_t first_m; 145 146 /* Map state. */ 147 vm_map_t map; 148 vm_map_entry_t entry; 149 int map_generation; 150 bool lookup_still_valid; 151 152 /* Vnode if locked. */ 153 struct vnode *vp; 154 }; 155 156 /* 157 * Return codes for internal fault routines. 158 */ 159 enum fault_status { 160 FAULT_SUCCESS = 10000, /* Return success to user. */ 161 FAULT_FAILURE, /* Return failure to user. */ 162 FAULT_CONTINUE, /* Continue faulting. */ 163 FAULT_RESTART, /* Restart fault. */ 164 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 165 FAULT_HARD, /* Performed I/O. */ 166 FAULT_SOFT, /* Found valid page. */ 167 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 168 }; 169 170 enum fault_next_status { 171 FAULT_NEXT_GOTOBJ = 1, 172 FAULT_NEXT_NOOBJ, 173 FAULT_NEXT_RESTART, 174 }; 175 176 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 177 int ahead); 178 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 179 int backward, int forward, bool obj_locked); 180 181 static int vm_pfault_oom_attempts = 3; 182 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 183 &vm_pfault_oom_attempts, 0, 184 "Number of page allocation attempts in page fault handler before it " 185 "triggers OOM handling"); 186 187 static int vm_pfault_oom_wait = 10; 188 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 189 &vm_pfault_oom_wait, 0, 190 "Number of seconds to wait for free pages before retrying " 191 "the page fault handler"); 192 193 static inline void 194 vm_fault_page_release(vm_page_t *mp) 195 { 196 vm_page_t m; 197 198 m = *mp; 199 if (m != NULL) { 200 /* 201 * We are likely to loop around again and attempt to busy 202 * this page. Deactivating it leaves it available for 203 * pageout while optimizing fault restarts. 204 */ 205 vm_page_deactivate(m); 206 vm_page_xunbusy(m); 207 *mp = NULL; 208 } 209 } 210 211 static inline void 212 vm_fault_page_free(vm_page_t *mp) 213 { 214 vm_page_t m; 215 216 m = *mp; 217 if (m != NULL) { 218 VM_OBJECT_ASSERT_WLOCKED(m->object); 219 if (!vm_page_wired(m)) 220 vm_page_free(m); 221 else 222 vm_page_xunbusy(m); 223 *mp = NULL; 224 } 225 } 226 227 /* 228 * Return true if a vm_pager_get_pages() call is needed in order to check 229 * whether the pager might have a particular page, false if it can be determined 230 * immediately that the pager can not have a copy. For swap objects, this can 231 * be checked quickly. 232 */ 233 static inline bool 234 vm_fault_object_needs_getpages(vm_object_t object) 235 { 236 VM_OBJECT_ASSERT_LOCKED(object); 237 238 return ((object->flags & OBJ_SWAP) == 0 || 239 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 240 } 241 242 static inline void 243 vm_fault_unlock_map(struct faultstate *fs) 244 { 245 246 if (fs->lookup_still_valid) { 247 vm_map_lookup_done(fs->map, fs->entry); 248 fs->lookup_still_valid = false; 249 } 250 } 251 252 static void 253 vm_fault_unlock_vp(struct faultstate *fs) 254 { 255 256 if (fs->vp != NULL) { 257 vput(fs->vp); 258 fs->vp = NULL; 259 } 260 } 261 262 static void 263 vm_fault_deallocate(struct faultstate *fs) 264 { 265 266 vm_fault_page_release(&fs->m_cow); 267 vm_fault_page_release(&fs->m); 268 vm_object_pip_wakeup(fs->object); 269 if (fs->object != fs->first_object) { 270 VM_OBJECT_WLOCK(fs->first_object); 271 vm_fault_page_free(&fs->first_m); 272 VM_OBJECT_WUNLOCK(fs->first_object); 273 vm_object_pip_wakeup(fs->first_object); 274 } 275 vm_object_deallocate(fs->first_object); 276 vm_fault_unlock_map(fs); 277 vm_fault_unlock_vp(fs); 278 } 279 280 static void 281 vm_fault_unlock_and_deallocate(struct faultstate *fs) 282 { 283 284 VM_OBJECT_UNLOCK(fs->object); 285 vm_fault_deallocate(fs); 286 } 287 288 static void 289 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 290 { 291 bool need_dirty; 292 293 if (((fs->prot & VM_PROT_WRITE) == 0 && 294 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 295 (m->oflags & VPO_UNMANAGED) != 0) 296 return; 297 298 VM_PAGE_OBJECT_BUSY_ASSERT(m); 299 300 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 301 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 302 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 303 304 vm_object_set_writeable_dirty(m->object); 305 306 /* 307 * If the fault is a write, we know that this page is being 308 * written NOW so dirty it explicitly to save on 309 * pmap_is_modified() calls later. 310 * 311 * Also, since the page is now dirty, we can possibly tell 312 * the pager to release any swap backing the page. 313 */ 314 if (need_dirty && vm_page_set_dirty(m) == 0) { 315 /* 316 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 317 * if the page is already dirty to prevent data written with 318 * the expectation of being synced from not being synced. 319 * Likewise if this entry does not request NOSYNC then make 320 * sure the page isn't marked NOSYNC. Applications sharing 321 * data should use the same flags to avoid ping ponging. 322 */ 323 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 324 vm_page_aflag_set(m, PGA_NOSYNC); 325 else 326 vm_page_aflag_clear(m, PGA_NOSYNC); 327 } 328 329 } 330 331 /* 332 * Unlocks fs.first_object and fs.map on success. 333 */ 334 static enum fault_status 335 vm_fault_soft_fast(struct faultstate *fs) 336 { 337 vm_page_t m, m_map; 338 #if VM_NRESERVLEVEL > 0 339 vm_page_t m_super; 340 int flags; 341 #endif 342 int psind; 343 vm_offset_t vaddr; 344 345 MPASS(fs->vp == NULL); 346 347 /* 348 * If we fail, vast majority of the time it is because the page is not 349 * there to begin with. Opportunistically perform the lookup and 350 * subsequent checks without the object lock, revalidate later. 351 * 352 * Note: a busy page can be mapped for read|execute access. 353 */ 354 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 355 if (m == NULL || !vm_page_all_valid(m) || 356 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 357 VM_OBJECT_WLOCK(fs->first_object); 358 return (FAULT_FAILURE); 359 } 360 361 vaddr = fs->vaddr; 362 363 VM_OBJECT_RLOCK(fs->first_object); 364 365 /* 366 * Now that we stabilized the state, revalidate the page is in the shape 367 * we encountered above. 368 */ 369 370 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 371 goto fail; 372 373 vm_object_busy(fs->first_object); 374 375 if (!vm_page_all_valid(m) || 376 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 377 goto fail_busy; 378 379 m_map = m; 380 psind = 0; 381 #if VM_NRESERVLEVEL > 0 382 if ((m->flags & PG_FICTITIOUS) == 0 && 383 (m_super = vm_reserv_to_superpage(m)) != NULL && 384 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 385 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 386 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 387 (pagesizes[m_super->psind] - 1)) && 388 pmap_ps_enabled(fs->map->pmap)) { 389 flags = PS_ALL_VALID; 390 if ((fs->prot & VM_PROT_WRITE) != 0) { 391 /* 392 * Create a superpage mapping allowing write access 393 * only if none of the constituent pages are busy and 394 * all of them are already dirty (except possibly for 395 * the page that was faulted on). 396 */ 397 flags |= PS_NONE_BUSY; 398 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 399 flags |= PS_ALL_DIRTY; 400 } 401 if (vm_page_ps_test(m_super, flags, m)) { 402 m_map = m_super; 403 psind = m_super->psind; 404 vaddr = rounddown2(vaddr, pagesizes[psind]); 405 /* Preset the modified bit for dirty superpages. */ 406 if ((flags & PS_ALL_DIRTY) != 0) 407 fs->fault_type |= VM_PROT_WRITE; 408 } 409 } 410 #endif 411 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 412 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 413 KERN_SUCCESS) 414 goto fail_busy; 415 if (fs->m_hold != NULL) { 416 (*fs->m_hold) = m; 417 vm_page_wire(m); 418 } 419 if (psind == 0 && !fs->wired) 420 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 421 VM_OBJECT_RUNLOCK(fs->first_object); 422 vm_fault_dirty(fs, m); 423 vm_object_unbusy(fs->first_object); 424 vm_map_lookup_done(fs->map, fs->entry); 425 curthread->td_ru.ru_minflt++; 426 return (FAULT_SUCCESS); 427 fail_busy: 428 vm_object_unbusy(fs->first_object); 429 fail: 430 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 431 VM_OBJECT_RUNLOCK(fs->first_object); 432 VM_OBJECT_WLOCK(fs->first_object); 433 } 434 return (FAULT_FAILURE); 435 } 436 437 static void 438 vm_fault_restore_map_lock(struct faultstate *fs) 439 { 440 441 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 442 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 443 444 if (!vm_map_trylock_read(fs->map)) { 445 VM_OBJECT_WUNLOCK(fs->first_object); 446 vm_map_lock_read(fs->map); 447 VM_OBJECT_WLOCK(fs->first_object); 448 } 449 fs->lookup_still_valid = true; 450 } 451 452 static void 453 vm_fault_populate_check_page(vm_page_t m) 454 { 455 456 /* 457 * Check each page to ensure that the pager is obeying the 458 * interface: the page must be installed in the object, fully 459 * valid, and exclusively busied. 460 */ 461 MPASS(m != NULL); 462 MPASS(vm_page_all_valid(m)); 463 MPASS(vm_page_xbusied(m)); 464 } 465 466 static void 467 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 468 vm_pindex_t last) 469 { 470 vm_page_t m; 471 vm_pindex_t pidx; 472 473 VM_OBJECT_ASSERT_WLOCKED(object); 474 MPASS(first <= last); 475 for (pidx = first, m = vm_page_lookup(object, pidx); 476 pidx <= last; pidx++, m = vm_page_next(m)) { 477 vm_fault_populate_check_page(m); 478 vm_page_deactivate(m); 479 vm_page_xunbusy(m); 480 } 481 } 482 483 static enum fault_status 484 vm_fault_populate(struct faultstate *fs) 485 { 486 vm_offset_t vaddr; 487 vm_page_t m; 488 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 489 int bdry_idx, i, npages, psind, rv; 490 enum fault_status res; 491 492 MPASS(fs->object == fs->first_object); 493 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 494 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 495 MPASS(fs->first_object->backing_object == NULL); 496 MPASS(fs->lookup_still_valid); 497 498 pager_first = OFF_TO_IDX(fs->entry->offset); 499 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 500 vm_fault_unlock_map(fs); 501 vm_fault_unlock_vp(fs); 502 503 res = FAULT_SUCCESS; 504 505 /* 506 * Call the pager (driver) populate() method. 507 * 508 * There is no guarantee that the method will be called again 509 * if the current fault is for read, and a future fault is 510 * for write. Report the entry's maximum allowed protection 511 * to the driver. 512 */ 513 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 514 fs->fault_type, fs->entry->max_protection, &pager_first, 515 &pager_last); 516 517 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 518 if (rv == VM_PAGER_BAD) { 519 /* 520 * VM_PAGER_BAD is the backdoor for a pager to request 521 * normal fault handling. 522 */ 523 vm_fault_restore_map_lock(fs); 524 if (fs->map->timestamp != fs->map_generation) 525 return (FAULT_RESTART); 526 return (FAULT_CONTINUE); 527 } 528 if (rv != VM_PAGER_OK) 529 return (FAULT_FAILURE); /* AKA SIGSEGV */ 530 531 /* Ensure that the driver is obeying the interface. */ 532 MPASS(pager_first <= pager_last); 533 MPASS(fs->first_pindex <= pager_last); 534 MPASS(fs->first_pindex >= pager_first); 535 MPASS(pager_last < fs->first_object->size); 536 537 vm_fault_restore_map_lock(fs); 538 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 539 if (fs->map->timestamp != fs->map_generation) { 540 if (bdry_idx == 0) { 541 vm_fault_populate_cleanup(fs->first_object, pager_first, 542 pager_last); 543 } else { 544 m = vm_page_lookup(fs->first_object, pager_first); 545 if (m != fs->m) 546 vm_page_xunbusy(m); 547 } 548 return (FAULT_RESTART); 549 } 550 551 /* 552 * The map is unchanged after our last unlock. Process the fault. 553 * 554 * First, the special case of largepage mappings, where 555 * populate only busies the first page in superpage run. 556 */ 557 if (bdry_idx != 0) { 558 KASSERT(PMAP_HAS_LARGEPAGES, 559 ("missing pmap support for large pages")); 560 m = vm_page_lookup(fs->first_object, pager_first); 561 vm_fault_populate_check_page(m); 562 VM_OBJECT_WUNLOCK(fs->first_object); 563 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 564 fs->entry->offset; 565 /* assert alignment for entry */ 566 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 567 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 568 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 569 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 570 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 571 ("unaligned superpage m %p %#jx", m, 572 (uintmax_t)VM_PAGE_TO_PHYS(m))); 573 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 574 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 575 PMAP_ENTER_LARGEPAGE, bdry_idx); 576 VM_OBJECT_WLOCK(fs->first_object); 577 vm_page_xunbusy(m); 578 if (rv != KERN_SUCCESS) { 579 res = FAULT_FAILURE; 580 goto out; 581 } 582 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 583 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 584 vm_page_wire(m + i); 585 } 586 if (fs->m_hold != NULL) { 587 *fs->m_hold = m + (fs->first_pindex - pager_first); 588 vm_page_wire(*fs->m_hold); 589 } 590 goto out; 591 } 592 593 /* 594 * The range [pager_first, pager_last] that is given to the 595 * pager is only a hint. The pager may populate any range 596 * within the object that includes the requested page index. 597 * In case the pager expanded the range, clip it to fit into 598 * the map entry. 599 */ 600 map_first = OFF_TO_IDX(fs->entry->offset); 601 if (map_first > pager_first) { 602 vm_fault_populate_cleanup(fs->first_object, pager_first, 603 map_first - 1); 604 pager_first = map_first; 605 } 606 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 607 if (map_last < pager_last) { 608 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 609 pager_last); 610 pager_last = map_last; 611 } 612 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 613 pidx <= pager_last; 614 pidx += npages, m = vm_page_next(&m[npages - 1])) { 615 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 616 617 psind = m->psind; 618 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 619 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 620 !pmap_ps_enabled(fs->map->pmap))) 621 psind = 0; 622 623 npages = atop(pagesizes[psind]); 624 for (i = 0; i < npages; i++) { 625 vm_fault_populate_check_page(&m[i]); 626 vm_fault_dirty(fs, &m[i]); 627 } 628 VM_OBJECT_WUNLOCK(fs->first_object); 629 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 630 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 631 632 /* 633 * pmap_enter() may fail for a superpage mapping if additional 634 * protection policies prevent the full mapping. 635 * For example, this will happen on amd64 if the entire 636 * address range does not share the same userspace protection 637 * key. Revert to single-page mappings if this happens. 638 */ 639 MPASS(rv == KERN_SUCCESS || 640 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 641 if (__predict_false(psind > 0 && 642 rv == KERN_PROTECTION_FAILURE)) { 643 MPASS(!fs->wired); 644 for (i = 0; i < npages; i++) { 645 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 646 &m[i], fs->prot, fs->fault_type, 0); 647 MPASS(rv == KERN_SUCCESS); 648 } 649 } 650 651 VM_OBJECT_WLOCK(fs->first_object); 652 for (i = 0; i < npages; i++) { 653 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 654 m[i].pindex == fs->first_pindex) 655 vm_page_wire(&m[i]); 656 else 657 vm_page_activate(&m[i]); 658 if (fs->m_hold != NULL && 659 m[i].pindex == fs->first_pindex) { 660 (*fs->m_hold) = &m[i]; 661 vm_page_wire(&m[i]); 662 } 663 vm_page_xunbusy(&m[i]); 664 } 665 } 666 out: 667 curthread->td_ru.ru_majflt++; 668 return (res); 669 } 670 671 static int prot_fault_translation; 672 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 673 &prot_fault_translation, 0, 674 "Control signal to deliver on protection fault"); 675 676 /* compat definition to keep common code for signal translation */ 677 #define UCODE_PAGEFLT 12 678 #ifdef T_PAGEFLT 679 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 680 #endif 681 682 /* 683 * vm_fault_trap: 684 * 685 * Handle a page fault occurring at the given address, 686 * requiring the given permissions, in the map specified. 687 * If successful, the page is inserted into the 688 * associated physical map. 689 * 690 * NOTE: the given address should be truncated to the 691 * proper page address. 692 * 693 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 694 * a standard error specifying why the fault is fatal is returned. 695 * 696 * The map in question must be referenced, and remains so. 697 * Caller may hold no locks. 698 */ 699 int 700 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 701 int fault_flags, int *signo, int *ucode) 702 { 703 int result; 704 705 MPASS(signo == NULL || ucode != NULL); 706 #ifdef KTRACE 707 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 708 ktrfault(vaddr, fault_type); 709 #endif 710 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 711 NULL); 712 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 713 result == KERN_INVALID_ADDRESS || 714 result == KERN_RESOURCE_SHORTAGE || 715 result == KERN_PROTECTION_FAILURE || 716 result == KERN_OUT_OF_BOUNDS, 717 ("Unexpected Mach error %d from vm_fault()", result)); 718 #ifdef KTRACE 719 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 720 ktrfaultend(result); 721 #endif 722 if (result != KERN_SUCCESS && signo != NULL) { 723 switch (result) { 724 case KERN_FAILURE: 725 case KERN_INVALID_ADDRESS: 726 *signo = SIGSEGV; 727 *ucode = SEGV_MAPERR; 728 break; 729 case KERN_RESOURCE_SHORTAGE: 730 *signo = SIGBUS; 731 *ucode = BUS_OOMERR; 732 break; 733 case KERN_OUT_OF_BOUNDS: 734 *signo = SIGBUS; 735 *ucode = BUS_OBJERR; 736 break; 737 case KERN_PROTECTION_FAILURE: 738 if (prot_fault_translation == 0) { 739 /* 740 * Autodetect. This check also covers 741 * the images without the ABI-tag ELF 742 * note. 743 */ 744 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 745 curproc->p_osrel >= P_OSREL_SIGSEGV) { 746 *signo = SIGSEGV; 747 *ucode = SEGV_ACCERR; 748 } else { 749 *signo = SIGBUS; 750 *ucode = UCODE_PAGEFLT; 751 } 752 } else if (prot_fault_translation == 1) { 753 /* Always compat mode. */ 754 *signo = SIGBUS; 755 *ucode = UCODE_PAGEFLT; 756 } else { 757 /* Always SIGSEGV mode. */ 758 *signo = SIGSEGV; 759 *ucode = SEGV_ACCERR; 760 } 761 break; 762 default: 763 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 764 result)); 765 break; 766 } 767 } 768 return (result); 769 } 770 771 static bool 772 vm_fault_object_ensure_wlocked(struct faultstate *fs) 773 { 774 if (fs->object == fs->first_object) 775 VM_OBJECT_ASSERT_WLOCKED(fs->object); 776 777 if (!fs->can_read_lock) { 778 VM_OBJECT_ASSERT_WLOCKED(fs->object); 779 return (true); 780 } 781 782 if (VM_OBJECT_WOWNED(fs->object)) 783 return (true); 784 785 if (VM_OBJECT_TRYUPGRADE(fs->object)) 786 return (true); 787 788 return (false); 789 } 790 791 static enum fault_status 792 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 793 { 794 struct vnode *vp; 795 int error, locked; 796 797 if (fs->object->type != OBJT_VNODE) 798 return (FAULT_CONTINUE); 799 vp = fs->object->handle; 800 if (vp == fs->vp) { 801 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 802 return (FAULT_CONTINUE); 803 } 804 805 /* 806 * Perform an unlock in case the desired vnode changed while 807 * the map was unlocked during a retry. 808 */ 809 vm_fault_unlock_vp(fs); 810 811 locked = VOP_ISLOCKED(vp); 812 if (locked != LK_EXCLUSIVE) 813 locked = LK_SHARED; 814 815 /* 816 * We must not sleep acquiring the vnode lock while we have 817 * the page exclusive busied or the object's 818 * paging-in-progress count incremented. Otherwise, we could 819 * deadlock. 820 */ 821 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 822 if (error == 0) { 823 fs->vp = vp; 824 return (FAULT_CONTINUE); 825 } 826 827 vhold(vp); 828 if (objlocked) 829 vm_fault_unlock_and_deallocate(fs); 830 else 831 vm_fault_deallocate(fs); 832 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 833 vdrop(vp); 834 fs->vp = vp; 835 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 836 return (FAULT_RESTART); 837 } 838 839 /* 840 * Calculate the desired readahead. Handle drop-behind. 841 * 842 * Returns the number of readahead blocks to pass to the pager. 843 */ 844 static int 845 vm_fault_readahead(struct faultstate *fs) 846 { 847 int era, nera; 848 u_char behavior; 849 850 KASSERT(fs->lookup_still_valid, ("map unlocked")); 851 era = fs->entry->read_ahead; 852 behavior = vm_map_entry_behavior(fs->entry); 853 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 854 nera = 0; 855 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 856 nera = VM_FAULT_READ_AHEAD_MAX; 857 if (fs->vaddr == fs->entry->next_read) 858 vm_fault_dontneed(fs, fs->vaddr, nera); 859 } else if (fs->vaddr == fs->entry->next_read) { 860 /* 861 * This is a sequential fault. Arithmetically 862 * increase the requested number of pages in 863 * the read-ahead window. The requested 864 * number of pages is "# of sequential faults 865 * x (read ahead min + 1) + read ahead min" 866 */ 867 nera = VM_FAULT_READ_AHEAD_MIN; 868 if (era > 0) { 869 nera += era + 1; 870 if (nera > VM_FAULT_READ_AHEAD_MAX) 871 nera = VM_FAULT_READ_AHEAD_MAX; 872 } 873 if (era == VM_FAULT_READ_AHEAD_MAX) 874 vm_fault_dontneed(fs, fs->vaddr, nera); 875 } else { 876 /* 877 * This is a non-sequential fault. 878 */ 879 nera = 0; 880 } 881 if (era != nera) { 882 /* 883 * A read lock on the map suffices to update 884 * the read ahead count safely. 885 */ 886 fs->entry->read_ahead = nera; 887 } 888 889 return (nera); 890 } 891 892 static int 893 vm_fault_lookup(struct faultstate *fs) 894 { 895 int result; 896 897 KASSERT(!fs->lookup_still_valid, 898 ("vm_fault_lookup: Map already locked.")); 899 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 900 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 901 &fs->first_pindex, &fs->prot, &fs->wired); 902 if (result != KERN_SUCCESS) { 903 vm_fault_unlock_vp(fs); 904 return (result); 905 } 906 907 fs->map_generation = fs->map->timestamp; 908 909 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 910 panic("%s: fault on nofault entry, addr: %#lx", 911 __func__, (u_long)fs->vaddr); 912 } 913 914 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 915 fs->entry->wiring_thread != curthread) { 916 vm_map_unlock_read(fs->map); 917 vm_map_lock(fs->map); 918 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 919 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 920 vm_fault_unlock_vp(fs); 921 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 922 vm_map_unlock_and_wait(fs->map, 0); 923 } else 924 vm_map_unlock(fs->map); 925 return (KERN_RESOURCE_SHORTAGE); 926 } 927 928 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 929 930 if (fs->wired) 931 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 932 else 933 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 934 ("!fs->wired && VM_FAULT_WIRE")); 935 fs->lookup_still_valid = true; 936 937 return (KERN_SUCCESS); 938 } 939 940 static int 941 vm_fault_relookup(struct faultstate *fs) 942 { 943 vm_object_t retry_object; 944 vm_pindex_t retry_pindex; 945 vm_prot_t retry_prot; 946 int result; 947 948 if (!vm_map_trylock_read(fs->map)) 949 return (KERN_RESTART); 950 951 fs->lookup_still_valid = true; 952 if (fs->map->timestamp == fs->map_generation) 953 return (KERN_SUCCESS); 954 955 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 956 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 957 &fs->wired); 958 if (result != KERN_SUCCESS) { 959 /* 960 * If retry of map lookup would have blocked then 961 * retry fault from start. 962 */ 963 if (result == KERN_FAILURE) 964 return (KERN_RESTART); 965 return (result); 966 } 967 if (retry_object != fs->first_object || 968 retry_pindex != fs->first_pindex) 969 return (KERN_RESTART); 970 971 /* 972 * Check whether the protection has changed or the object has 973 * been copied while we left the map unlocked. Changing from 974 * read to write permission is OK - we leave the page 975 * write-protected, and catch the write fault. Changing from 976 * write to read permission means that we can't mark the page 977 * write-enabled after all. 978 */ 979 fs->prot &= retry_prot; 980 fs->fault_type &= retry_prot; 981 if (fs->prot == 0) 982 return (KERN_RESTART); 983 984 /* Reassert because wired may have changed. */ 985 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 986 ("!wired && VM_FAULT_WIRE")); 987 988 return (KERN_SUCCESS); 989 } 990 991 static void 992 vm_fault_cow(struct faultstate *fs) 993 { 994 bool is_first_object_locked; 995 996 KASSERT(fs->object != fs->first_object, 997 ("source and target COW objects are identical")); 998 999 /* 1000 * This allows pages to be virtually copied from a backing_object 1001 * into the first_object, where the backing object has no other 1002 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1003 * we just move the page from the backing object to the first 1004 * object. Note that we must mark the page dirty in the first 1005 * object so that it will go out to swap when needed. 1006 */ 1007 is_first_object_locked = false; 1008 if ( 1009 /* 1010 * Only one shadow object and no other refs. 1011 */ 1012 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1013 /* 1014 * No other ways to look the object up 1015 */ 1016 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 && 1017 /* 1018 * We don't chase down the shadow chain and we can acquire locks. 1019 */ 1020 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) && 1021 fs->object == fs->first_object->backing_object && 1022 VM_OBJECT_TRYWLOCK(fs->object)) { 1023 /* 1024 * Remove but keep xbusy for replace. fs->m is moved into 1025 * fs->first_object and left busy while fs->first_m is 1026 * conditionally freed. 1027 */ 1028 vm_page_remove_xbusy(fs->m); 1029 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1030 fs->first_m); 1031 vm_page_dirty(fs->m); 1032 #if VM_NRESERVLEVEL > 0 1033 /* 1034 * Rename the reservation. 1035 */ 1036 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1037 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1038 #endif 1039 VM_OBJECT_WUNLOCK(fs->object); 1040 VM_OBJECT_WUNLOCK(fs->first_object); 1041 fs->first_m = fs->m; 1042 fs->m = NULL; 1043 VM_CNT_INC(v_cow_optim); 1044 } else { 1045 if (is_first_object_locked) 1046 VM_OBJECT_WUNLOCK(fs->first_object); 1047 /* 1048 * Oh, well, lets copy it. 1049 */ 1050 pmap_copy_page(fs->m, fs->first_m); 1051 vm_page_valid(fs->first_m); 1052 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1053 vm_page_wire(fs->first_m); 1054 vm_page_unwire(fs->m, PQ_INACTIVE); 1055 } 1056 /* 1057 * Save the cow page to be released after 1058 * pmap_enter is complete. 1059 */ 1060 fs->m_cow = fs->m; 1061 fs->m = NULL; 1062 1063 /* 1064 * Typically, the shadow object is either private to this 1065 * address space (OBJ_ONEMAPPING) or its pages are read only. 1066 * In the highly unusual case where the pages of a shadow object 1067 * are read/write shared between this and other address spaces, 1068 * we need to ensure that any pmap-level mappings to the 1069 * original, copy-on-write page from the backing object are 1070 * removed from those other address spaces. 1071 * 1072 * The flag check is racy, but this is tolerable: if 1073 * OBJ_ONEMAPPING is cleared after the check, the busy state 1074 * ensures that new mappings of m_cow can't be created. 1075 * pmap_enter() will replace an existing mapping in the current 1076 * address space. If OBJ_ONEMAPPING is set after the check, 1077 * removing mappings will at worse trigger some unnecessary page 1078 * faults. 1079 */ 1080 vm_page_assert_xbusied(fs->m_cow); 1081 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1082 pmap_remove_all(fs->m_cow); 1083 } 1084 1085 vm_object_pip_wakeup(fs->object); 1086 1087 /* 1088 * Only use the new page below... 1089 */ 1090 fs->object = fs->first_object; 1091 fs->pindex = fs->first_pindex; 1092 fs->m = fs->first_m; 1093 VM_CNT_INC(v_cow_faults); 1094 curthread->td_cow++; 1095 } 1096 1097 static enum fault_next_status 1098 vm_fault_next(struct faultstate *fs) 1099 { 1100 vm_object_t next_object; 1101 1102 if (fs->object == fs->first_object || !fs->can_read_lock) 1103 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1104 else 1105 VM_OBJECT_ASSERT_LOCKED(fs->object); 1106 1107 /* 1108 * The requested page does not exist at this object/ 1109 * offset. Remove the invalid page from the object, 1110 * waking up anyone waiting for it, and continue on to 1111 * the next object. However, if this is the top-level 1112 * object, we must leave the busy page in place to 1113 * prevent another process from rushing past us, and 1114 * inserting the page in that object at the same time 1115 * that we are. 1116 */ 1117 if (fs->object == fs->first_object) { 1118 fs->first_m = fs->m; 1119 fs->m = NULL; 1120 } else if (fs->m != NULL) { 1121 if (!vm_fault_object_ensure_wlocked(fs)) { 1122 fs->can_read_lock = false; 1123 vm_fault_unlock_and_deallocate(fs); 1124 return (FAULT_NEXT_RESTART); 1125 } 1126 vm_fault_page_free(&fs->m); 1127 } 1128 1129 /* 1130 * Move on to the next object. Lock the next object before 1131 * unlocking the current one. 1132 */ 1133 next_object = fs->object->backing_object; 1134 if (next_object == NULL) 1135 return (FAULT_NEXT_NOOBJ); 1136 MPASS(fs->first_m != NULL); 1137 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1138 if (fs->can_read_lock) 1139 VM_OBJECT_RLOCK(next_object); 1140 else 1141 VM_OBJECT_WLOCK(next_object); 1142 vm_object_pip_add(next_object, 1); 1143 if (fs->object != fs->first_object) 1144 vm_object_pip_wakeup(fs->object); 1145 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1146 VM_OBJECT_UNLOCK(fs->object); 1147 fs->object = next_object; 1148 1149 return (FAULT_NEXT_GOTOBJ); 1150 } 1151 1152 static void 1153 vm_fault_zerofill(struct faultstate *fs) 1154 { 1155 1156 /* 1157 * If there's no object left, fill the page in the top 1158 * object with zeros. 1159 */ 1160 if (fs->object != fs->first_object) { 1161 vm_object_pip_wakeup(fs->object); 1162 fs->object = fs->first_object; 1163 fs->pindex = fs->first_pindex; 1164 } 1165 MPASS(fs->first_m != NULL); 1166 MPASS(fs->m == NULL); 1167 fs->m = fs->first_m; 1168 fs->first_m = NULL; 1169 1170 /* 1171 * Zero the page if necessary and mark it valid. 1172 */ 1173 if ((fs->m->flags & PG_ZERO) == 0) { 1174 pmap_zero_page(fs->m); 1175 } else { 1176 VM_CNT_INC(v_ozfod); 1177 } 1178 VM_CNT_INC(v_zfod); 1179 vm_page_valid(fs->m); 1180 } 1181 1182 /* 1183 * Initiate page fault after timeout. Returns true if caller should 1184 * do vm_waitpfault() after the call. 1185 */ 1186 static bool 1187 vm_fault_allocate_oom(struct faultstate *fs) 1188 { 1189 struct timeval now; 1190 1191 vm_fault_unlock_and_deallocate(fs); 1192 if (vm_pfault_oom_attempts < 0) 1193 return (true); 1194 if (!fs->oom_started) { 1195 fs->oom_started = true; 1196 getmicrotime(&fs->oom_start_time); 1197 return (true); 1198 } 1199 1200 getmicrotime(&now); 1201 timevalsub(&now, &fs->oom_start_time); 1202 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1203 return (true); 1204 1205 if (bootverbose) 1206 printf( 1207 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1208 curproc->p_pid, curproc->p_comm); 1209 vm_pageout_oom(VM_OOM_MEM_PF); 1210 fs->oom_started = false; 1211 return (false); 1212 } 1213 1214 /* 1215 * Allocate a page directly or via the object populate method. 1216 */ 1217 static enum fault_status 1218 vm_fault_allocate(struct faultstate *fs) 1219 { 1220 struct domainset *dset; 1221 enum fault_status res; 1222 1223 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1224 res = vm_fault_lock_vnode(fs, true); 1225 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1226 if (res == FAULT_RESTART) 1227 return (res); 1228 } 1229 1230 if (fs->pindex >= fs->object->size) { 1231 vm_fault_unlock_and_deallocate(fs); 1232 return (FAULT_OUT_OF_BOUNDS); 1233 } 1234 1235 if (fs->object == fs->first_object && 1236 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1237 fs->first_object->shadow_count == 0) { 1238 res = vm_fault_populate(fs); 1239 switch (res) { 1240 case FAULT_SUCCESS: 1241 case FAULT_FAILURE: 1242 case FAULT_RESTART: 1243 vm_fault_unlock_and_deallocate(fs); 1244 return (res); 1245 case FAULT_CONTINUE: 1246 /* 1247 * Pager's populate() method 1248 * returned VM_PAGER_BAD. 1249 */ 1250 break; 1251 default: 1252 panic("inconsistent return codes"); 1253 } 1254 } 1255 1256 /* 1257 * Allocate a new page for this object/offset pair. 1258 * 1259 * If the process has a fatal signal pending, prioritize the allocation 1260 * with the expectation that the process will exit shortly and free some 1261 * pages. In particular, the signal may have been posted by the page 1262 * daemon in an attempt to resolve an out-of-memory condition. 1263 * 1264 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1265 * might be not observed here, and allocation fails, causing a restart 1266 * and new reading of the p_flag. 1267 */ 1268 dset = fs->object->domain.dr_policy; 1269 if (dset == NULL) 1270 dset = curthread->td_domain.dr_policy; 1271 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1272 #if VM_NRESERVLEVEL > 0 1273 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1274 #endif 1275 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1276 vm_fault_unlock_and_deallocate(fs); 1277 return (FAULT_FAILURE); 1278 } 1279 fs->m = vm_page_alloc(fs->object, fs->pindex, 1280 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0); 1281 } 1282 if (fs->m == NULL) { 1283 if (vm_fault_allocate_oom(fs)) 1284 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1285 return (FAULT_RESTART); 1286 } 1287 fs->oom_started = false; 1288 1289 return (FAULT_CONTINUE); 1290 } 1291 1292 /* 1293 * Call the pager to retrieve the page if there is a chance 1294 * that the pager has it, and potentially retrieve additional 1295 * pages at the same time. 1296 */ 1297 static enum fault_status 1298 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1299 { 1300 vm_offset_t e_end, e_start; 1301 int ahead, behind, cluster_offset, rv; 1302 enum fault_status status; 1303 u_char behavior; 1304 1305 /* 1306 * Prepare for unlocking the map. Save the map 1307 * entry's start and end addresses, which are used to 1308 * optimize the size of the pager operation below. 1309 * Even if the map entry's addresses change after 1310 * unlocking the map, using the saved addresses is 1311 * safe. 1312 */ 1313 e_start = fs->entry->start; 1314 e_end = fs->entry->end; 1315 behavior = vm_map_entry_behavior(fs->entry); 1316 1317 /* 1318 * If the pager for the current object might have 1319 * the page, then determine the number of additional 1320 * pages to read and potentially reprioritize 1321 * previously read pages for earlier reclamation. 1322 * These operations should only be performed once per 1323 * page fault. Even if the current pager doesn't 1324 * have the page, the number of additional pages to 1325 * read will apply to subsequent objects in the 1326 * shadow chain. 1327 */ 1328 if (fs->nera == -1 && !P_KILLED(curproc)) 1329 fs->nera = vm_fault_readahead(fs); 1330 1331 /* 1332 * Release the map lock before locking the vnode or 1333 * sleeping in the pager. (If the current object has 1334 * a shadow, then an earlier iteration of this loop 1335 * may have already unlocked the map.) 1336 */ 1337 vm_fault_unlock_map(fs); 1338 1339 status = vm_fault_lock_vnode(fs, false); 1340 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1341 if (status == FAULT_RESTART) 1342 return (status); 1343 KASSERT(fs->vp == NULL || !fs->map->system_map, 1344 ("vm_fault: vnode-backed object mapped by system map")); 1345 1346 /* 1347 * Page in the requested page and hint the pager, 1348 * that it may bring up surrounding pages. 1349 */ 1350 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1351 P_KILLED(curproc)) { 1352 behind = 0; 1353 ahead = 0; 1354 } else { 1355 /* Is this a sequential fault? */ 1356 if (fs->nera > 0) { 1357 behind = 0; 1358 ahead = fs->nera; 1359 } else { 1360 /* 1361 * Request a cluster of pages that is 1362 * aligned to a VM_FAULT_READ_DEFAULT 1363 * page offset boundary within the 1364 * object. Alignment to a page offset 1365 * boundary is more likely to coincide 1366 * with the underlying file system 1367 * block than alignment to a virtual 1368 * address boundary. 1369 */ 1370 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1371 behind = ulmin(cluster_offset, 1372 atop(fs->vaddr - e_start)); 1373 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1374 } 1375 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1376 } 1377 *behindp = behind; 1378 *aheadp = ahead; 1379 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1380 if (rv == VM_PAGER_OK) 1381 return (FAULT_HARD); 1382 if (rv == VM_PAGER_ERROR) 1383 printf("vm_fault: pager read error, pid %d (%s)\n", 1384 curproc->p_pid, curproc->p_comm); 1385 /* 1386 * If an I/O error occurred or the requested page was 1387 * outside the range of the pager, clean up and return 1388 * an error. 1389 */ 1390 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1391 VM_OBJECT_WLOCK(fs->object); 1392 vm_fault_page_free(&fs->m); 1393 vm_fault_unlock_and_deallocate(fs); 1394 return (FAULT_OUT_OF_BOUNDS); 1395 } 1396 KASSERT(rv == VM_PAGER_FAIL, 1397 ("%s: unexpected pager error %d", __func__, rv)); 1398 return (FAULT_CONTINUE); 1399 } 1400 1401 /* 1402 * Wait/Retry if the page is busy. We have to do this if the page is 1403 * either exclusive or shared busy because the vm_pager may be using 1404 * read busy for pageouts (and even pageins if it is the vnode pager), 1405 * and we could end up trying to pagein and pageout the same page 1406 * simultaneously. 1407 * 1408 * We can theoretically allow the busy case on a read fault if the page 1409 * is marked valid, but since such pages are typically already pmap'd, 1410 * putting that special case in might be more effort then it is worth. 1411 * We cannot under any circumstances mess around with a shared busied 1412 * page except, perhaps, to pmap it. 1413 */ 1414 static void 1415 vm_fault_busy_sleep(struct faultstate *fs) 1416 { 1417 /* 1418 * Reference the page before unlocking and 1419 * sleeping so that the page daemon is less 1420 * likely to reclaim it. 1421 */ 1422 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1423 if (fs->object != fs->first_object) { 1424 vm_fault_page_release(&fs->first_m); 1425 vm_object_pip_wakeup(fs->first_object); 1426 } 1427 vm_object_pip_wakeup(fs->object); 1428 vm_fault_unlock_map(fs); 1429 if (fs->m != vm_page_lookup(fs->object, fs->pindex) || 1430 !vm_page_busy_sleep(fs->m, "vmpfw", 0)) 1431 VM_OBJECT_UNLOCK(fs->object); 1432 VM_CNT_INC(v_intrans); 1433 vm_object_deallocate(fs->first_object); 1434 } 1435 1436 /* 1437 * Handle page lookup, populate, allocate, page-in for the current 1438 * object. 1439 * 1440 * The object is locked on entry and will remain locked with a return 1441 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1442 * Otherwise, the object will be unlocked upon return. 1443 */ 1444 static enum fault_status 1445 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1446 { 1447 enum fault_status res; 1448 bool dead; 1449 1450 if (fs->object == fs->first_object || !fs->can_read_lock) 1451 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1452 else 1453 VM_OBJECT_ASSERT_LOCKED(fs->object); 1454 1455 /* 1456 * If the object is marked for imminent termination, we retry 1457 * here, since the collapse pass has raced with us. Otherwise, 1458 * if we see terminally dead object, return fail. 1459 */ 1460 if ((fs->object->flags & OBJ_DEAD) != 0) { 1461 dead = fs->object->type == OBJT_DEAD; 1462 vm_fault_unlock_and_deallocate(fs); 1463 if (dead) 1464 return (FAULT_PROTECTION_FAILURE); 1465 pause("vmf_de", 1); 1466 return (FAULT_RESTART); 1467 } 1468 1469 /* 1470 * See if the page is resident. 1471 */ 1472 fs->m = vm_page_lookup(fs->object, fs->pindex); 1473 if (fs->m != NULL) { 1474 if (!vm_page_tryxbusy(fs->m)) { 1475 vm_fault_busy_sleep(fs); 1476 return (FAULT_RESTART); 1477 } 1478 1479 /* 1480 * The page is marked busy for other processes and the 1481 * pagedaemon. If it is still completely valid we are 1482 * done. 1483 */ 1484 if (vm_page_all_valid(fs->m)) { 1485 VM_OBJECT_UNLOCK(fs->object); 1486 return (FAULT_SOFT); 1487 } 1488 } 1489 1490 /* 1491 * Page is not resident. If the pager might contain the page 1492 * or this is the beginning of the search, allocate a new 1493 * page. 1494 */ 1495 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1496 fs->object == fs->first_object)) { 1497 if (!vm_fault_object_ensure_wlocked(fs)) { 1498 fs->can_read_lock = false; 1499 vm_fault_unlock_and_deallocate(fs); 1500 return (FAULT_RESTART); 1501 } 1502 res = vm_fault_allocate(fs); 1503 if (res != FAULT_CONTINUE) 1504 return (res); 1505 } 1506 1507 /* 1508 * Check to see if the pager can possibly satisfy this fault. 1509 * If not, skip to the next object without dropping the lock to 1510 * preserve atomicity of shadow faults. 1511 */ 1512 if (vm_fault_object_needs_getpages(fs->object)) { 1513 /* 1514 * At this point, we have either allocated a new page 1515 * or found an existing page that is only partially 1516 * valid. 1517 * 1518 * We hold a reference on the current object and the 1519 * page is exclusive busied. The exclusive busy 1520 * prevents simultaneous faults and collapses while 1521 * the object lock is dropped. 1522 */ 1523 VM_OBJECT_UNLOCK(fs->object); 1524 res = vm_fault_getpages(fs, behindp, aheadp); 1525 if (res == FAULT_CONTINUE) 1526 VM_OBJECT_WLOCK(fs->object); 1527 } else { 1528 res = FAULT_CONTINUE; 1529 } 1530 return (res); 1531 } 1532 1533 int 1534 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1535 int fault_flags, vm_page_t *m_hold) 1536 { 1537 struct faultstate fs; 1538 int ahead, behind, faultcount, rv; 1539 enum fault_status res; 1540 enum fault_next_status res_next; 1541 bool hardfault; 1542 1543 VM_CNT_INC(v_vm_faults); 1544 1545 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1546 return (KERN_PROTECTION_FAILURE); 1547 1548 fs.vp = NULL; 1549 fs.vaddr = vaddr; 1550 fs.m_hold = m_hold; 1551 fs.fault_flags = fault_flags; 1552 fs.map = map; 1553 fs.lookup_still_valid = false; 1554 fs.oom_started = false; 1555 fs.nera = -1; 1556 fs.can_read_lock = true; 1557 faultcount = 0; 1558 hardfault = false; 1559 1560 RetryFault: 1561 fs.fault_type = fault_type; 1562 1563 /* 1564 * Find the backing store object and offset into it to begin the 1565 * search. 1566 */ 1567 rv = vm_fault_lookup(&fs); 1568 if (rv != KERN_SUCCESS) { 1569 if (rv == KERN_RESOURCE_SHORTAGE) 1570 goto RetryFault; 1571 return (rv); 1572 } 1573 1574 /* 1575 * Try to avoid lock contention on the top-level object through 1576 * special-case handling of some types of page faults, specifically, 1577 * those that are mapping an existing page from the top-level object. 1578 * Under this condition, a read lock on the object suffices, allowing 1579 * multiple page faults of a similar type to run in parallel. 1580 */ 1581 if (fs.vp == NULL /* avoid locked vnode leak */ && 1582 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1583 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1584 res = vm_fault_soft_fast(&fs); 1585 if (res == FAULT_SUCCESS) { 1586 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1587 return (KERN_SUCCESS); 1588 } 1589 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1590 } else { 1591 VM_OBJECT_WLOCK(fs.first_object); 1592 } 1593 1594 /* 1595 * Make a reference to this object to prevent its disposal while we 1596 * are messing with it. Once we have the reference, the map is free 1597 * to be diddled. Since objects reference their shadows (and copies), 1598 * they will stay around as well. 1599 * 1600 * Bump the paging-in-progress count to prevent size changes (e.g. 1601 * truncation operations) during I/O. 1602 */ 1603 vm_object_reference_locked(fs.first_object); 1604 vm_object_pip_add(fs.first_object, 1); 1605 1606 fs.m_cow = fs.m = fs.first_m = NULL; 1607 1608 /* 1609 * Search for the page at object/offset. 1610 */ 1611 fs.object = fs.first_object; 1612 fs.pindex = fs.first_pindex; 1613 1614 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1615 res = vm_fault_allocate(&fs); 1616 switch (res) { 1617 case FAULT_RESTART: 1618 goto RetryFault; 1619 case FAULT_SUCCESS: 1620 return (KERN_SUCCESS); 1621 case FAULT_FAILURE: 1622 return (KERN_FAILURE); 1623 case FAULT_OUT_OF_BOUNDS: 1624 return (KERN_OUT_OF_BOUNDS); 1625 case FAULT_CONTINUE: 1626 break; 1627 default: 1628 panic("vm_fault: Unhandled status %d", res); 1629 } 1630 } 1631 1632 while (TRUE) { 1633 KASSERT(fs.m == NULL, 1634 ("page still set %p at loop start", fs.m)); 1635 1636 res = vm_fault_object(&fs, &behind, &ahead); 1637 switch (res) { 1638 case FAULT_SOFT: 1639 goto found; 1640 case FAULT_HARD: 1641 faultcount = behind + 1 + ahead; 1642 hardfault = true; 1643 goto found; 1644 case FAULT_RESTART: 1645 goto RetryFault; 1646 case FAULT_SUCCESS: 1647 return (KERN_SUCCESS); 1648 case FAULT_FAILURE: 1649 return (KERN_FAILURE); 1650 case FAULT_OUT_OF_BOUNDS: 1651 return (KERN_OUT_OF_BOUNDS); 1652 case FAULT_PROTECTION_FAILURE: 1653 return (KERN_PROTECTION_FAILURE); 1654 case FAULT_CONTINUE: 1655 break; 1656 default: 1657 panic("vm_fault: Unhandled status %d", res); 1658 } 1659 1660 /* 1661 * The page was not found in the current object. Try to 1662 * traverse into a backing object or zero fill if none is 1663 * found. 1664 */ 1665 res_next = vm_fault_next(&fs); 1666 if (res_next == FAULT_NEXT_RESTART) 1667 goto RetryFault; 1668 else if (res_next == FAULT_NEXT_GOTOBJ) 1669 continue; 1670 MPASS(res_next == FAULT_NEXT_NOOBJ); 1671 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1672 if (fs.first_object == fs.object) 1673 vm_fault_page_free(&fs.first_m); 1674 vm_fault_unlock_and_deallocate(&fs); 1675 return (KERN_OUT_OF_BOUNDS); 1676 } 1677 VM_OBJECT_UNLOCK(fs.object); 1678 vm_fault_zerofill(&fs); 1679 /* Don't try to prefault neighboring pages. */ 1680 faultcount = 1; 1681 break; 1682 } 1683 1684 found: 1685 /* 1686 * A valid page has been found and exclusively busied. The 1687 * object lock must no longer be held. 1688 */ 1689 vm_page_assert_xbusied(fs.m); 1690 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1691 1692 /* 1693 * If the page is being written, but isn't already owned by the 1694 * top-level object, we have to copy it into a new page owned by the 1695 * top-level object. 1696 */ 1697 if (fs.object != fs.first_object) { 1698 /* 1699 * We only really need to copy if we want to write it. 1700 */ 1701 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1702 vm_fault_cow(&fs); 1703 /* 1704 * We only try to prefault read-only mappings to the 1705 * neighboring pages when this copy-on-write fault is 1706 * a hard fault. In other cases, trying to prefault 1707 * is typically wasted effort. 1708 */ 1709 if (faultcount == 0) 1710 faultcount = 1; 1711 1712 } else { 1713 fs.prot &= ~VM_PROT_WRITE; 1714 } 1715 } 1716 1717 /* 1718 * We must verify that the maps have not changed since our last 1719 * lookup. 1720 */ 1721 if (!fs.lookup_still_valid) { 1722 rv = vm_fault_relookup(&fs); 1723 if (rv != KERN_SUCCESS) { 1724 vm_fault_deallocate(&fs); 1725 if (rv == KERN_RESTART) 1726 goto RetryFault; 1727 return (rv); 1728 } 1729 } 1730 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1731 1732 /* 1733 * If the page was filled by a pager, save the virtual address that 1734 * should be faulted on next under a sequential access pattern to the 1735 * map entry. A read lock on the map suffices to update this address 1736 * safely. 1737 */ 1738 if (hardfault) 1739 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1740 1741 /* 1742 * Page must be completely valid or it is not fit to 1743 * map into user space. vm_pager_get_pages() ensures this. 1744 */ 1745 vm_page_assert_xbusied(fs.m); 1746 KASSERT(vm_page_all_valid(fs.m), 1747 ("vm_fault: page %p partially invalid", fs.m)); 1748 1749 vm_fault_dirty(&fs, fs.m); 1750 1751 /* 1752 * Put this page into the physical map. We had to do the unlock above 1753 * because pmap_enter() may sleep. We don't put the page 1754 * back on the active queue until later so that the pageout daemon 1755 * won't find it (yet). 1756 */ 1757 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1758 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1759 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1760 fs.wired == 0) 1761 vm_fault_prefault(&fs, vaddr, 1762 faultcount > 0 ? behind : PFBAK, 1763 faultcount > 0 ? ahead : PFFOR, false); 1764 1765 /* 1766 * If the page is not wired down, then put it where the pageout daemon 1767 * can find it. 1768 */ 1769 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1770 vm_page_wire(fs.m); 1771 else 1772 vm_page_activate(fs.m); 1773 if (fs.m_hold != NULL) { 1774 (*fs.m_hold) = fs.m; 1775 vm_page_wire(fs.m); 1776 } 1777 vm_page_xunbusy(fs.m); 1778 fs.m = NULL; 1779 1780 /* 1781 * Unlock everything, and return 1782 */ 1783 vm_fault_deallocate(&fs); 1784 if (hardfault) { 1785 VM_CNT_INC(v_io_faults); 1786 curthread->td_ru.ru_majflt++; 1787 #ifdef RACCT 1788 if (racct_enable && fs.object->type == OBJT_VNODE) { 1789 PROC_LOCK(curproc); 1790 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1791 racct_add_force(curproc, RACCT_WRITEBPS, 1792 PAGE_SIZE + behind * PAGE_SIZE); 1793 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1794 } else { 1795 racct_add_force(curproc, RACCT_READBPS, 1796 PAGE_SIZE + ahead * PAGE_SIZE); 1797 racct_add_force(curproc, RACCT_READIOPS, 1); 1798 } 1799 PROC_UNLOCK(curproc); 1800 } 1801 #endif 1802 } else 1803 curthread->td_ru.ru_minflt++; 1804 1805 return (KERN_SUCCESS); 1806 } 1807 1808 /* 1809 * Speed up the reclamation of pages that precede the faulting pindex within 1810 * the first object of the shadow chain. Essentially, perform the equivalent 1811 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1812 * the faulting pindex by the cluster size when the pages read by vm_fault() 1813 * cross a cluster-size boundary. The cluster size is the greater of the 1814 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1815 * 1816 * When "fs->first_object" is a shadow object, the pages in the backing object 1817 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1818 * function must only be concerned with pages in the first object. 1819 */ 1820 static void 1821 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1822 { 1823 vm_map_entry_t entry; 1824 vm_object_t first_object; 1825 vm_offset_t end, start; 1826 vm_page_t m, m_next; 1827 vm_pindex_t pend, pstart; 1828 vm_size_t size; 1829 1830 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1831 first_object = fs->first_object; 1832 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1833 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1834 VM_OBJECT_RLOCK(first_object); 1835 size = VM_FAULT_DONTNEED_MIN; 1836 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1837 size = pagesizes[1]; 1838 end = rounddown2(vaddr, size); 1839 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1840 (entry = fs->entry)->start < end) { 1841 if (end - entry->start < size) 1842 start = entry->start; 1843 else 1844 start = end - size; 1845 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1846 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1847 entry->start); 1848 m_next = vm_page_find_least(first_object, pstart); 1849 pend = OFF_TO_IDX(entry->offset) + atop(end - 1850 entry->start); 1851 while ((m = m_next) != NULL && m->pindex < pend) { 1852 m_next = TAILQ_NEXT(m, listq); 1853 if (!vm_page_all_valid(m) || 1854 vm_page_busied(m)) 1855 continue; 1856 1857 /* 1858 * Don't clear PGA_REFERENCED, since it would 1859 * likely represent a reference by a different 1860 * process. 1861 * 1862 * Typically, at this point, prefetched pages 1863 * are still in the inactive queue. Only 1864 * pages that triggered page faults are in the 1865 * active queue. The test for whether the page 1866 * is in the inactive queue is racy; in the 1867 * worst case we will requeue the page 1868 * unnecessarily. 1869 */ 1870 if (!vm_page_inactive(m)) 1871 vm_page_deactivate(m); 1872 } 1873 } 1874 VM_OBJECT_RUNLOCK(first_object); 1875 } 1876 } 1877 1878 /* 1879 * vm_fault_prefault provides a quick way of clustering 1880 * pagefaults into a processes address space. It is a "cousin" 1881 * of vm_map_pmap_enter, except it runs at page fault time instead 1882 * of mmap time. 1883 */ 1884 static void 1885 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1886 int backward, int forward, bool obj_locked) 1887 { 1888 pmap_t pmap; 1889 vm_map_entry_t entry; 1890 vm_object_t backing_object, lobject; 1891 vm_offset_t addr, starta; 1892 vm_pindex_t pindex; 1893 vm_page_t m; 1894 int i; 1895 1896 pmap = fs->map->pmap; 1897 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1898 return; 1899 1900 entry = fs->entry; 1901 1902 if (addra < backward * PAGE_SIZE) { 1903 starta = entry->start; 1904 } else { 1905 starta = addra - backward * PAGE_SIZE; 1906 if (starta < entry->start) 1907 starta = entry->start; 1908 } 1909 1910 /* 1911 * Generate the sequence of virtual addresses that are candidates for 1912 * prefaulting in an outward spiral from the faulting virtual address, 1913 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1914 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1915 * If the candidate address doesn't have a backing physical page, then 1916 * the loop immediately terminates. 1917 */ 1918 for (i = 0; i < 2 * imax(backward, forward); i++) { 1919 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1920 PAGE_SIZE); 1921 if (addr > addra + forward * PAGE_SIZE) 1922 addr = 0; 1923 1924 if (addr < starta || addr >= entry->end) 1925 continue; 1926 1927 if (!pmap_is_prefaultable(pmap, addr)) 1928 continue; 1929 1930 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1931 lobject = entry->object.vm_object; 1932 if (!obj_locked) 1933 VM_OBJECT_RLOCK(lobject); 1934 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1935 !vm_fault_object_needs_getpages(lobject) && 1936 (backing_object = lobject->backing_object) != NULL) { 1937 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1938 0, ("vm_fault_prefault: unaligned object offset")); 1939 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1940 VM_OBJECT_RLOCK(backing_object); 1941 if (!obj_locked || lobject != entry->object.vm_object) 1942 VM_OBJECT_RUNLOCK(lobject); 1943 lobject = backing_object; 1944 } 1945 if (m == NULL) { 1946 if (!obj_locked || lobject != entry->object.vm_object) 1947 VM_OBJECT_RUNLOCK(lobject); 1948 break; 1949 } 1950 if (vm_page_all_valid(m) && 1951 (m->flags & PG_FICTITIOUS) == 0) 1952 pmap_enter_quick(pmap, addr, m, entry->protection); 1953 if (!obj_locked || lobject != entry->object.vm_object) 1954 VM_OBJECT_RUNLOCK(lobject); 1955 } 1956 } 1957 1958 /* 1959 * Hold each of the physical pages that are mapped by the specified range of 1960 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1961 * and allow the specified types of access, "prot". If all of the implied 1962 * pages are successfully held, then the number of held pages is returned 1963 * together with pointers to those pages in the array "ma". However, if any 1964 * of the pages cannot be held, -1 is returned. 1965 */ 1966 int 1967 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1968 vm_prot_t prot, vm_page_t *ma, int max_count) 1969 { 1970 vm_offset_t end, va; 1971 vm_page_t *mp; 1972 int count; 1973 boolean_t pmap_failed; 1974 1975 if (len == 0) 1976 return (0); 1977 end = round_page(addr + len); 1978 addr = trunc_page(addr); 1979 1980 if (!vm_map_range_valid(map, addr, end)) 1981 return (-1); 1982 1983 if (atop(end - addr) > max_count) 1984 panic("vm_fault_quick_hold_pages: count > max_count"); 1985 count = atop(end - addr); 1986 1987 /* 1988 * Most likely, the physical pages are resident in the pmap, so it is 1989 * faster to try pmap_extract_and_hold() first. 1990 */ 1991 pmap_failed = FALSE; 1992 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1993 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1994 if (*mp == NULL) 1995 pmap_failed = TRUE; 1996 else if ((prot & VM_PROT_WRITE) != 0 && 1997 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1998 /* 1999 * Explicitly dirty the physical page. Otherwise, the 2000 * caller's changes may go unnoticed because they are 2001 * performed through an unmanaged mapping or by a DMA 2002 * operation. 2003 * 2004 * The object lock is not held here. 2005 * See vm_page_clear_dirty_mask(). 2006 */ 2007 vm_page_dirty(*mp); 2008 } 2009 } 2010 if (pmap_failed) { 2011 /* 2012 * One or more pages could not be held by the pmap. Either no 2013 * page was mapped at the specified virtual address or that 2014 * mapping had insufficient permissions. Attempt to fault in 2015 * and hold these pages. 2016 * 2017 * If vm_fault_disable_pagefaults() was called, 2018 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2019 * acquire MD VM locks, which means we must not call 2020 * vm_fault(). Some (out of tree) callers mark 2021 * too wide a code area with vm_fault_disable_pagefaults() 2022 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2023 * the proper behaviour explicitly. 2024 */ 2025 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2026 (curthread->td_pflags & TDP_NOFAULTING) != 0) 2027 goto error; 2028 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 2029 if (*mp == NULL && vm_fault(map, va, prot, 2030 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 2031 goto error; 2032 } 2033 return (count); 2034 error: 2035 for (mp = ma; mp < ma + count; mp++) 2036 if (*mp != NULL) 2037 vm_page_unwire(*mp, PQ_INACTIVE); 2038 return (-1); 2039 } 2040 2041 /* 2042 * Routine: 2043 * vm_fault_copy_entry 2044 * Function: 2045 * Create new object backing dst_entry with private copy of all 2046 * underlying pages. When src_entry is equal to dst_entry, function 2047 * implements COW for wired-down map entry. Otherwise, it forks 2048 * wired entry into dst_map. 2049 * 2050 * In/out conditions: 2051 * The source and destination maps must be locked for write. 2052 * The source map entry must be wired down (or be a sharing map 2053 * entry corresponding to a main map entry that is wired down). 2054 */ 2055 void 2056 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2057 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2058 vm_ooffset_t *fork_charge) 2059 { 2060 vm_object_t backing_object, dst_object, object, src_object; 2061 vm_pindex_t dst_pindex, pindex, src_pindex; 2062 vm_prot_t access, prot; 2063 vm_offset_t vaddr; 2064 vm_page_t dst_m; 2065 vm_page_t src_m; 2066 bool upgrade; 2067 2068 upgrade = src_entry == dst_entry; 2069 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2070 ("vm_fault_copy_entry: vm_object not NULL")); 2071 2072 /* 2073 * If not an upgrade, then enter the mappings in the pmap as 2074 * read and/or execute accesses. Otherwise, enter them as 2075 * write accesses. 2076 * 2077 * A writeable large page mapping is only created if all of 2078 * the constituent small page mappings are modified. Marking 2079 * PTEs as modified on inception allows promotion to happen 2080 * without taking potentially large number of soft faults. 2081 */ 2082 access = prot = dst_entry->protection; 2083 if (!upgrade) 2084 access &= ~VM_PROT_WRITE; 2085 2086 src_object = src_entry->object.vm_object; 2087 src_pindex = OFF_TO_IDX(src_entry->offset); 2088 2089 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2090 dst_object = src_object; 2091 vm_object_reference(dst_object); 2092 } else { 2093 /* 2094 * Create the top-level object for the destination entry. 2095 * Doesn't actually shadow anything - we copy the pages 2096 * directly. 2097 */ 2098 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2099 dst_entry->start), NULL, NULL, 0); 2100 #if VM_NRESERVLEVEL > 0 2101 dst_object->flags |= OBJ_COLORED; 2102 dst_object->pg_color = atop(dst_entry->start); 2103 #endif 2104 dst_object->domain = src_object->domain; 2105 dst_object->charge = dst_entry->end - dst_entry->start; 2106 2107 dst_entry->object.vm_object = dst_object; 2108 dst_entry->offset = 0; 2109 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2110 } 2111 2112 VM_OBJECT_WLOCK(dst_object); 2113 if (fork_charge != NULL) { 2114 KASSERT(dst_entry->cred == NULL, 2115 ("vm_fault_copy_entry: leaked swp charge")); 2116 dst_object->cred = curthread->td_ucred; 2117 crhold(dst_object->cred); 2118 *fork_charge += dst_object->charge; 2119 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2120 dst_object->cred == NULL) { 2121 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2122 dst_entry)); 2123 dst_object->cred = dst_entry->cred; 2124 dst_entry->cred = NULL; 2125 } 2126 2127 /* 2128 * Loop through all of the virtual pages within the entry's 2129 * range, copying each page from the source object to the 2130 * destination object. Since the source is wired, those pages 2131 * must exist. In contrast, the destination is pageable. 2132 * Since the destination object doesn't share any backing storage 2133 * with the source object, all of its pages must be dirtied, 2134 * regardless of whether they can be written. 2135 */ 2136 for (vaddr = dst_entry->start, dst_pindex = 0; 2137 vaddr < dst_entry->end; 2138 vaddr += PAGE_SIZE, dst_pindex++) { 2139 again: 2140 /* 2141 * Find the page in the source object, and copy it in. 2142 * Because the source is wired down, the page will be 2143 * in memory. 2144 */ 2145 if (src_object != dst_object) 2146 VM_OBJECT_RLOCK(src_object); 2147 object = src_object; 2148 pindex = src_pindex + dst_pindex; 2149 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2150 (backing_object = object->backing_object) != NULL) { 2151 /* 2152 * Unless the source mapping is read-only or 2153 * it is presently being upgraded from 2154 * read-only, the first object in the shadow 2155 * chain should provide all of the pages. In 2156 * other words, this loop body should never be 2157 * executed when the source mapping is already 2158 * read/write. 2159 */ 2160 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2161 upgrade, 2162 ("vm_fault_copy_entry: main object missing page")); 2163 2164 VM_OBJECT_RLOCK(backing_object); 2165 pindex += OFF_TO_IDX(object->backing_object_offset); 2166 if (object != dst_object) 2167 VM_OBJECT_RUNLOCK(object); 2168 object = backing_object; 2169 } 2170 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2171 2172 if (object != dst_object) { 2173 /* 2174 * Allocate a page in the destination object. 2175 */ 2176 dst_m = vm_page_alloc(dst_object, (src_object == 2177 dst_object ? src_pindex : 0) + dst_pindex, 2178 VM_ALLOC_NORMAL); 2179 if (dst_m == NULL) { 2180 VM_OBJECT_WUNLOCK(dst_object); 2181 VM_OBJECT_RUNLOCK(object); 2182 vm_wait(dst_object); 2183 VM_OBJECT_WLOCK(dst_object); 2184 goto again; 2185 } 2186 2187 /* 2188 * See the comment in vm_fault_cow(). 2189 */ 2190 if (src_object == dst_object && 2191 (object->flags & OBJ_ONEMAPPING) == 0) 2192 pmap_remove_all(src_m); 2193 pmap_copy_page(src_m, dst_m); 2194 2195 /* 2196 * The object lock does not guarantee that "src_m" will 2197 * transition from invalid to valid, but it does ensure 2198 * that "src_m" will not transition from valid to 2199 * invalid. 2200 */ 2201 dst_m->dirty = dst_m->valid = src_m->valid; 2202 VM_OBJECT_RUNLOCK(object); 2203 } else { 2204 dst_m = src_m; 2205 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) 2206 goto again; 2207 if (dst_m->pindex >= dst_object->size) { 2208 /* 2209 * We are upgrading. Index can occur 2210 * out of bounds if the object type is 2211 * vnode and the file was truncated. 2212 */ 2213 vm_page_xunbusy(dst_m); 2214 break; 2215 } 2216 } 2217 2218 /* 2219 * Enter it in the pmap. If a wired, copy-on-write 2220 * mapping is being replaced by a write-enabled 2221 * mapping, then wire that new mapping. 2222 * 2223 * The page can be invalid if the user called 2224 * msync(MS_INVALIDATE) or truncated the backing vnode 2225 * or shared memory object. In this case, do not 2226 * insert it into pmap, but still do the copy so that 2227 * all copies of the wired map entry have similar 2228 * backing pages. 2229 */ 2230 if (vm_page_all_valid(dst_m)) { 2231 VM_OBJECT_WUNLOCK(dst_object); 2232 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2233 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2234 VM_OBJECT_WLOCK(dst_object); 2235 } 2236 2237 /* 2238 * Mark it no longer busy, and put it on the active list. 2239 */ 2240 if (upgrade) { 2241 if (src_m != dst_m) { 2242 vm_page_unwire(src_m, PQ_INACTIVE); 2243 vm_page_wire(dst_m); 2244 } else { 2245 KASSERT(vm_page_wired(dst_m), 2246 ("dst_m %p is not wired", dst_m)); 2247 } 2248 } else { 2249 vm_page_activate(dst_m); 2250 } 2251 vm_page_xunbusy(dst_m); 2252 } 2253 VM_OBJECT_WUNLOCK(dst_object); 2254 if (upgrade) { 2255 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2256 vm_object_deallocate(src_object); 2257 } 2258 } 2259 2260 /* 2261 * Block entry into the machine-independent layer's page fault handler by 2262 * the calling thread. Subsequent calls to vm_fault() by that thread will 2263 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2264 * spurious page faults. 2265 */ 2266 int 2267 vm_fault_disable_pagefaults(void) 2268 { 2269 2270 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2271 } 2272 2273 void 2274 vm_fault_enable_pagefaults(int save) 2275 { 2276 2277 curthread_pflags_restore(save); 2278 } 2279