xref: /freebsd/sys/vm/vm_fault.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #define PFBAK 4
101 #define PFFOR 4
102 #define PAGEORDER_SIZE (PFBAK+PFFOR)
103 
104 static int prefault_pageorder[] = {
105 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
106 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
107 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
108 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
109 };
110 
111 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
112 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
113 
114 #define VM_FAULT_READ_AHEAD 8
115 #define VM_FAULT_READ_BEHIND 7
116 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
117 
118 struct faultstate {
119 	vm_page_t m;
120 	vm_object_t object;
121 	vm_pindex_t pindex;
122 	vm_page_t first_m;
123 	vm_object_t	first_object;
124 	vm_pindex_t first_pindex;
125 	vm_map_t map;
126 	vm_map_entry_t entry;
127 	int lookup_still_valid;
128 	struct vnode *vp;
129 };
130 
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134 	vm_page_lock_queues();
135 	vm_page_wakeup(fs->m);
136 	vm_page_deactivate(fs->m);
137 	vm_page_unlock_queues();
138 	fs->m = NULL;
139 }
140 
141 static __inline void
142 unlock_map(struct faultstate *fs)
143 {
144 	if (fs->lookup_still_valid) {
145 		vm_map_lookup_done(fs->map, fs->entry);
146 		fs->lookup_still_valid = FALSE;
147 	}
148 }
149 
150 static void
151 _unlock_things(struct faultstate *fs, int dealloc)
152 {
153 
154 	vm_object_pip_wakeup(fs->object);
155 	VM_OBJECT_UNLOCK(fs->object);
156 	if (fs->object != fs->first_object) {
157 		VM_OBJECT_LOCK(fs->first_object);
158 		vm_page_lock_queues();
159 		vm_page_free(fs->first_m);
160 		vm_page_unlock_queues();
161 		vm_object_pip_wakeup(fs->first_object);
162 		VM_OBJECT_UNLOCK(fs->first_object);
163 		fs->first_m = NULL;
164 	}
165 	if (dealloc) {
166 		vm_object_deallocate(fs->first_object);
167 	}
168 	unlock_map(fs);
169 	if (fs->vp != NULL) {
170 		vput(fs->vp);
171 		fs->vp = NULL;
172 	}
173 }
174 
175 #define unlock_things(fs) _unlock_things(fs, 0)
176 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
177 
178 /*
179  * TRYPAGER - used by vm_fault to calculate whether the pager for the
180  *	      current object *might* contain the page.
181  *
182  *	      default objects are zero-fill, there is no real pager.
183  */
184 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
185 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
186 
187 /*
188  *	vm_fault:
189  *
190  *	Handle a page fault occurring at the given address,
191  *	requiring the given permissions, in the map specified.
192  *	If successful, the page is inserted into the
193  *	associated physical map.
194  *
195  *	NOTE: the given address should be truncated to the
196  *	proper page address.
197  *
198  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
199  *	a standard error specifying why the fault is fatal is returned.
200  *
201  *
202  *	The map in question must be referenced, and remains so.
203  *	Caller may hold no locks.
204  */
205 int
206 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
207 	 int fault_flags)
208 {
209 	vm_prot_t prot;
210 	int is_first_object_locked, result;
211 	boolean_t growstack, wired;
212 	int map_generation;
213 	vm_object_t next_object;
214 	vm_page_t marray[VM_FAULT_READ];
215 	int hardfault;
216 	int faultcount;
217 	struct faultstate fs;
218 
219 	hardfault = 0;
220 	growstack = TRUE;
221 	atomic_add_int(&cnt.v_vm_faults, 1);
222 
223 	mtx_lock(&Giant);
224 RetryFault:;
225 
226 	/*
227 	 * Find the backing store object and offset into it to begin the
228 	 * search.
229 	 */
230 	fs.map = map;
231 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
232 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
233 	if (result != KERN_SUCCESS) {
234 		if (result != KERN_PROTECTION_FAILURE ||
235 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
236 			if (growstack && result == KERN_INVALID_ADDRESS &&
237 			    map != kernel_map && curproc != NULL) {
238 				result = vm_map_growstack(curproc, vaddr);
239 				if (result != KERN_SUCCESS) {
240 					mtx_unlock(&Giant);
241 					return (KERN_FAILURE);
242 				}
243 				growstack = FALSE;
244 				goto RetryFault;
245 			}
246 			mtx_unlock(&Giant);
247 			return (result);
248 		}
249 
250 		/*
251    		 * If we are user-wiring a r/w segment, and it is COW, then
252    		 * we need to do the COW operation.  Note that we don't COW
253    		 * currently RO sections now, because it is NOT desirable
254    		 * to COW .text.  We simply keep .text from ever being COW'ed
255    		 * and take the heat that one cannot debug wired .text sections.
256    		 */
257 		result = vm_map_lookup(&fs.map, vaddr,
258 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
259 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
260 		if (result != KERN_SUCCESS) {
261 			mtx_unlock(&Giant);
262 			return (result);
263 		}
264 
265 		/*
266 		 * If we don't COW now, on a user wire, the user will never
267 		 * be able to write to the mapping.  If we don't make this
268 		 * restriction, the bookkeeping would be nearly impossible.
269 		 *
270 		 * XXX The following assignment modifies the map without
271 		 * holding a write lock on it.
272 		 */
273 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
274 			fs.entry->max_protection &= ~VM_PROT_WRITE;
275 	}
276 
277 	map_generation = fs.map->timestamp;
278 
279 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
280 		panic("vm_fault: fault on nofault entry, addr: %lx",
281 		    (u_long)vaddr);
282 	}
283 
284 	/*
285 	 * Make a reference to this object to prevent its disposal while we
286 	 * are messing with it.  Once we have the reference, the map is free
287 	 * to be diddled.  Since objects reference their shadows (and copies),
288 	 * they will stay around as well.
289 	 *
290 	 * Bump the paging-in-progress count to prevent size changes (e.g.
291 	 * truncation operations) during I/O.  This must be done after
292 	 * obtaining the vnode lock in order to avoid possible deadlocks.
293 	 *
294 	 * XXX vnode_pager_lock() can block without releasing the map lock.
295 	 */
296 	vm_object_reference(fs.first_object);
297 	VM_OBJECT_LOCK(fs.first_object);
298 	fs.vp = vnode_pager_lock(fs.first_object);
299 	vm_object_pip_add(fs.first_object, 1);
300 
301 	fs.lookup_still_valid = TRUE;
302 
303 	if (wired)
304 		fault_type = prot;
305 
306 	fs.first_m = NULL;
307 
308 	/*
309 	 * Search for the page at object/offset.
310 	 */
311 	fs.object = fs.first_object;
312 	fs.pindex = fs.first_pindex;
313 	while (TRUE) {
314 		/*
315 		 * If the object is dead, we stop here
316 		 */
317 		if (fs.object->flags & OBJ_DEAD) {
318 			unlock_and_deallocate(&fs);
319 			mtx_unlock(&Giant);
320 			return (KERN_PROTECTION_FAILURE);
321 		}
322 
323 		/*
324 		 * See if page is resident
325 		 */
326 		fs.m = vm_page_lookup(fs.object, fs.pindex);
327 		if (fs.m != NULL) {
328 			int queue, s;
329 
330 			/*
331 			 * check for page-based copy on write.
332 			 * We check fs.object == fs.first_object so
333 			 * as to ensure the legacy COW mechanism is
334 			 * used when the page in question is part of
335 			 * a shadow object.  Otherwise, vm_page_cowfault()
336 			 * removes the page from the backing object,
337 			 * which is not what we want.
338 			 */
339 			vm_page_lock_queues();
340 			if ((fs.m->cow) &&
341 			    (fault_type & VM_PROT_WRITE) &&
342 			    (fs.object == fs.first_object)) {
343 				s = splvm();
344 				vm_page_cowfault(fs.m);
345 				splx(s);
346 				vm_page_unlock_queues();
347 				unlock_and_deallocate(&fs);
348 				goto RetryFault;
349 			}
350 
351 			/*
352 			 * Wait/Retry if the page is busy.  We have to do this
353 			 * if the page is busy via either PG_BUSY or
354 			 * vm_page_t->busy because the vm_pager may be using
355 			 * vm_page_t->busy for pageouts ( and even pageins if
356 			 * it is the vnode pager ), and we could end up trying
357 			 * to pagein and pageout the same page simultaneously.
358 			 *
359 			 * We can theoretically allow the busy case on a read
360 			 * fault if the page is marked valid, but since such
361 			 * pages are typically already pmap'd, putting that
362 			 * special case in might be more effort then it is
363 			 * worth.  We cannot under any circumstances mess
364 			 * around with a vm_page_t->busy page except, perhaps,
365 			 * to pmap it.
366 			 */
367 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
368 				vm_page_unlock_queues();
369 				unlock_things(&fs);
370 				vm_page_lock_queues();
371 				if (!vm_page_sleep_if_busy(fs.m, TRUE, "vmpfw"))
372 					vm_page_unlock_queues();
373 				cnt.v_intrans++;
374 				vm_object_deallocate(fs.first_object);
375 				goto RetryFault;
376 			}
377 			queue = fs.m->queue;
378 
379 			s = splvm();
380 			vm_pageq_remove_nowakeup(fs.m);
381 			splx(s);
382 
383 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
384 				vm_page_activate(fs.m);
385 				vm_page_unlock_queues();
386 				unlock_and_deallocate(&fs);
387 				VM_WAITPFAULT;
388 				goto RetryFault;
389 			}
390 
391 			/*
392 			 * Mark page busy for other processes, and the
393 			 * pagedaemon.  If it still isn't completely valid
394 			 * (readable), jump to readrest, else break-out ( we
395 			 * found the page ).
396 			 */
397 			vm_page_busy(fs.m);
398 			vm_page_unlock_queues();
399 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
400 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
401 				goto readrest;
402 			}
403 
404 			break;
405 		}
406 
407 		/*
408 		 * Page is not resident, If this is the search termination
409 		 * or the pager might contain the page, allocate a new page.
410 		 */
411 		if (TRYPAGER || fs.object == fs.first_object) {
412 			if (fs.pindex >= fs.object->size) {
413 				unlock_and_deallocate(&fs);
414 				mtx_unlock(&Giant);
415 				return (KERN_PROTECTION_FAILURE);
416 			}
417 
418 			/*
419 			 * Allocate a new page for this object/offset pair.
420 			 */
421 			fs.m = NULL;
422 			if (!vm_page_count_severe()) {
423 				fs.m = vm_page_alloc(fs.object, fs.pindex,
424 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
425 			}
426 			if (fs.m == NULL) {
427 				unlock_and_deallocate(&fs);
428 				VM_WAITPFAULT;
429 				goto RetryFault;
430 			}
431 		}
432 
433 readrest:
434 		/*
435 		 * We have found a valid page or we have allocated a new page.
436 		 * The page thus may not be valid or may not be entirely
437 		 * valid.
438 		 *
439 		 * Attempt to fault-in the page if there is a chance that the
440 		 * pager has it, and potentially fault in additional pages
441 		 * at the same time.
442 		 */
443 		if (TRYPAGER) {
444 			int rv;
445 			int reqpage;
446 			int ahead, behind;
447 			u_char behavior = vm_map_entry_behavior(fs.entry);
448 
449 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
450 				ahead = 0;
451 				behind = 0;
452 			} else {
453 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
454 				if (behind > VM_FAULT_READ_BEHIND)
455 					behind = VM_FAULT_READ_BEHIND;
456 
457 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
458 				if (ahead > VM_FAULT_READ_AHEAD)
459 					ahead = VM_FAULT_READ_AHEAD;
460 			}
461 			is_first_object_locked = FALSE;
462 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
463 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
464 			      fs.pindex >= fs.entry->lastr &&
465 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
466 			    (fs.first_object == fs.object ||
467 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
468 			    fs.first_object->type != OBJT_DEVICE) {
469 				vm_pindex_t firstpindex, tmppindex;
470 
471 				if (fs.first_pindex < 2 * VM_FAULT_READ)
472 					firstpindex = 0;
473 				else
474 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
475 
476 				vm_page_lock_queues();
477 				/*
478 				 * note: partially valid pages cannot be
479 				 * included in the lookahead - NFS piecemeal
480 				 * writes will barf on it badly.
481 				 */
482 				for (tmppindex = fs.first_pindex - 1;
483 					tmppindex >= firstpindex;
484 					--tmppindex) {
485 					vm_page_t mt;
486 
487 					mt = vm_page_lookup(fs.first_object, tmppindex);
488 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
489 						break;
490 					if (mt->busy ||
491 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
492 						mt->hold_count ||
493 						mt->wire_count)
494 						continue;
495 					if (mt->dirty == 0)
496 						vm_page_test_dirty(mt);
497 					if (mt->dirty) {
498 						pmap_remove_all(mt);
499 						vm_page_deactivate(mt);
500 					} else {
501 						vm_page_cache(mt);
502 					}
503 				}
504 				vm_page_unlock_queues();
505 				ahead += behind;
506 				behind = 0;
507 			}
508 			if (is_first_object_locked)
509 				VM_OBJECT_UNLOCK(fs.first_object);
510 			/*
511 			 * now we find out if any other pages should be paged
512 			 * in at this time this routine checks to see if the
513 			 * pages surrounding this fault reside in the same
514 			 * object as the page for this fault.  If they do,
515 			 * then they are faulted in also into the object.  The
516 			 * array "marray" returned contains an array of
517 			 * vm_page_t structs where one of them is the
518 			 * vm_page_t passed to the routine.  The reqpage
519 			 * return value is the index into the marray for the
520 			 * vm_page_t passed to the routine.
521 			 *
522 			 * fs.m plus the additional pages are PG_BUSY'd.
523 			 *
524 			 * XXX vm_fault_additional_pages() can block
525 			 * without releasing the map lock.
526 			 */
527 			faultcount = vm_fault_additional_pages(
528 			    fs.m, behind, ahead, marray, &reqpage);
529 
530 			/*
531 			 * update lastr imperfectly (we do not know how much
532 			 * getpages will actually read), but good enough.
533 			 *
534 			 * XXX The following assignment modifies the map
535 			 * without holding a write lock on it.
536 			 */
537 			fs.entry->lastr = fs.pindex + faultcount - behind;
538 
539 			/*
540 			 * Call the pager to retrieve the data, if any, after
541 			 * releasing the lock on the map.  We hold a ref on
542 			 * fs.object and the pages are PG_BUSY'd.
543 			 */
544 			unlock_map(&fs);
545 
546 			rv = faultcount ?
547 			    vm_pager_get_pages(fs.object, marray, faultcount,
548 				reqpage) : VM_PAGER_FAIL;
549 
550 			if (rv == VM_PAGER_OK) {
551 				/*
552 				 * Found the page. Leave it busy while we play
553 				 * with it.
554 				 */
555 
556 				/*
557 				 * Relookup in case pager changed page. Pager
558 				 * is responsible for disposition of old page
559 				 * if moved.
560 				 */
561 				fs.m = vm_page_lookup(fs.object, fs.pindex);
562 				if (!fs.m) {
563 					unlock_and_deallocate(&fs);
564 					goto RetryFault;
565 				}
566 
567 				hardfault++;
568 				break; /* break to PAGE HAS BEEN FOUND */
569 			}
570 			/*
571 			 * Remove the bogus page (which does not exist at this
572 			 * object/offset); before doing so, we must get back
573 			 * our object lock to preserve our invariant.
574 			 *
575 			 * Also wake up any other process that may want to bring
576 			 * in this page.
577 			 *
578 			 * If this is the top-level object, we must leave the
579 			 * busy page to prevent another process from rushing
580 			 * past us, and inserting the page in that object at
581 			 * the same time that we are.
582 			 */
583 			if (rv == VM_PAGER_ERROR)
584 				printf("vm_fault: pager read error, pid %d (%s)\n",
585 				    curproc->p_pid, curproc->p_comm);
586 			/*
587 			 * Data outside the range of the pager or an I/O error
588 			 */
589 			/*
590 			 * XXX - the check for kernel_map is a kludge to work
591 			 * around having the machine panic on a kernel space
592 			 * fault w/ I/O error.
593 			 */
594 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
595 				(rv == VM_PAGER_BAD)) {
596 				vm_page_lock_queues();
597 				vm_page_free(fs.m);
598 				vm_page_unlock_queues();
599 				fs.m = NULL;
600 				unlock_and_deallocate(&fs);
601 				mtx_unlock(&Giant);
602 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
603 			}
604 			if (fs.object != fs.first_object) {
605 				vm_page_lock_queues();
606 				vm_page_free(fs.m);
607 				vm_page_unlock_queues();
608 				fs.m = NULL;
609 				/*
610 				 * XXX - we cannot just fall out at this
611 				 * point, m has been freed and is invalid!
612 				 */
613 			}
614 		}
615 
616 		/*
617 		 * We get here if the object has default pager (or unwiring)
618 		 * or the pager doesn't have the page.
619 		 */
620 		if (fs.object == fs.first_object)
621 			fs.first_m = fs.m;
622 
623 		/*
624 		 * Move on to the next object.  Lock the next object before
625 		 * unlocking the current one.
626 		 */
627 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
628 		next_object = fs.object->backing_object;
629 		if (next_object == NULL) {
630 			/*
631 			 * If there's no object left, fill the page in the top
632 			 * object with zeros.
633 			 */
634 			if (fs.object != fs.first_object) {
635 				vm_object_pip_wakeup(fs.object);
636 				VM_OBJECT_UNLOCK(fs.object);
637 
638 				fs.object = fs.first_object;
639 				fs.pindex = fs.first_pindex;
640 				fs.m = fs.first_m;
641 				VM_OBJECT_LOCK(fs.object);
642 			}
643 			fs.first_m = NULL;
644 
645 			/*
646 			 * Zero the page if necessary and mark it valid.
647 			 */
648 			if ((fs.m->flags & PG_ZERO) == 0) {
649 				pmap_zero_page(fs.m);
650 			} else {
651 				cnt.v_ozfod++;
652 			}
653 			cnt.v_zfod++;
654 			fs.m->valid = VM_PAGE_BITS_ALL;
655 			break;	/* break to PAGE HAS BEEN FOUND */
656 		} else {
657 			KASSERT(fs.object != next_object,
658 			    ("object loop %p", next_object));
659 			VM_OBJECT_LOCK(next_object);
660 			vm_object_pip_add(next_object, 1);
661 			if (fs.object != fs.first_object)
662 				vm_object_pip_wakeup(fs.object);
663 			VM_OBJECT_UNLOCK(fs.object);
664 			fs.object = next_object;
665 		}
666 	}
667 
668 	KASSERT((fs.m->flags & PG_BUSY) != 0,
669 	    ("vm_fault: not busy after main loop"));
670 
671 	/*
672 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
673 	 * is held.]
674 	 */
675 
676 	/*
677 	 * If the page is being written, but isn't already owned by the
678 	 * top-level object, we have to copy it into a new page owned by the
679 	 * top-level object.
680 	 */
681 	if (fs.object != fs.first_object) {
682 		/*
683 		 * We only really need to copy if we want to write it.
684 		 */
685 		if (fault_type & VM_PROT_WRITE) {
686 			/*
687 			 * This allows pages to be virtually copied from a
688 			 * backing_object into the first_object, where the
689 			 * backing object has no other refs to it, and cannot
690 			 * gain any more refs.  Instead of a bcopy, we just
691 			 * move the page from the backing object to the
692 			 * first object.  Note that we must mark the page
693 			 * dirty in the first object so that it will go out
694 			 * to swap when needed.
695 			 */
696 			is_first_object_locked = FALSE;
697 			if (
698 				/*
699 				 * Only one shadow object
700 				 */
701 				(fs.object->shadow_count == 1) &&
702 				/*
703 				 * No COW refs, except us
704 				 */
705 				(fs.object->ref_count == 1) &&
706 				/*
707 				 * No one else can look this object up
708 				 */
709 				(fs.object->handle == NULL) &&
710 				/*
711 				 * No other ways to look the object up
712 				 */
713 				((fs.object->type == OBJT_DEFAULT) ||
714 				 (fs.object->type == OBJT_SWAP)) &&
715 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
716 				/*
717 				 * We don't chase down the shadow chain
718 				 */
719 			    fs.object == fs.first_object->backing_object) {
720 				vm_page_lock_queues();
721 				/*
722 				 * get rid of the unnecessary page
723 				 */
724 				pmap_remove_all(fs.first_m);
725 				vm_page_free(fs.first_m);
726 				/*
727 				 * grab the page and put it into the
728 				 * process'es object.  The page is
729 				 * automatically made dirty.
730 				 */
731 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
732 				vm_page_busy(fs.m);
733 				vm_page_unlock_queues();
734 				fs.first_m = fs.m;
735 				fs.m = NULL;
736 				cnt.v_cow_optim++;
737 			} else {
738 				/*
739 				 * Oh, well, lets copy it.
740 				 */
741 				pmap_copy_page(fs.m, fs.first_m);
742 				fs.first_m->valid = VM_PAGE_BITS_ALL;
743 			}
744 			if (fs.m) {
745 				/*
746 				 * We no longer need the old page or object.
747 				 */
748 				release_page(&fs);
749 			}
750 			/*
751 			 * fs.object != fs.first_object due to above
752 			 * conditional
753 			 */
754 			vm_object_pip_wakeup(fs.object);
755 			VM_OBJECT_UNLOCK(fs.object);
756 			/*
757 			 * Only use the new page below...
758 			 */
759 			fs.object = fs.first_object;
760 			fs.pindex = fs.first_pindex;
761 			fs.m = fs.first_m;
762 			if (!is_first_object_locked)
763 				VM_OBJECT_LOCK(fs.object);
764 			cnt.v_cow_faults++;
765 		} else {
766 			prot &= ~VM_PROT_WRITE;
767 		}
768 	}
769 
770 	/*
771 	 * We must verify that the maps have not changed since our last
772 	 * lookup.
773 	 */
774 	if (!fs.lookup_still_valid &&
775 		(fs.map->timestamp != map_generation)) {
776 		vm_object_t retry_object;
777 		vm_pindex_t retry_pindex;
778 		vm_prot_t retry_prot;
779 
780 		/*
781 		 * Since map entries may be pageable, make sure we can take a
782 		 * page fault on them.
783 		 */
784 
785 		/*
786 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
787 		 * avoid a deadlock between the inode and exec_map that can
788 		 * occur due to locks being obtained in different orders.
789 		 */
790 		if (fs.vp != NULL) {
791 			vput(fs.vp);
792 			fs.vp = NULL;
793 		}
794 
795 		if (fs.map->infork) {
796 			release_page(&fs);
797 			unlock_and_deallocate(&fs);
798 			goto RetryFault;
799 		}
800 		VM_OBJECT_UNLOCK(fs.object);
801 
802 		/*
803 		 * To avoid trying to write_lock the map while another process
804 		 * has it read_locked (in vm_map_wire), we do not try for
805 		 * write permission.  If the page is still writable, we will
806 		 * get write permission.  If it is not, or has been marked
807 		 * needs_copy, we enter the mapping without write permission,
808 		 * and will merely take another fault.
809 		 */
810 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
811 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
812 		map_generation = fs.map->timestamp;
813 
814 		VM_OBJECT_LOCK(fs.object);
815 		/*
816 		 * If we don't need the page any longer, put it on the active
817 		 * list (the easiest thing to do here).  If no one needs it,
818 		 * pageout will grab it eventually.
819 		 */
820 		if (result != KERN_SUCCESS) {
821 			release_page(&fs);
822 			unlock_and_deallocate(&fs);
823 			mtx_unlock(&Giant);
824 			return (result);
825 		}
826 		fs.lookup_still_valid = TRUE;
827 
828 		if ((retry_object != fs.first_object) ||
829 		    (retry_pindex != fs.first_pindex)) {
830 			release_page(&fs);
831 			unlock_and_deallocate(&fs);
832 			goto RetryFault;
833 		}
834 		/*
835 		 * Check whether the protection has changed or the object has
836 		 * been copied while we left the map unlocked. Changing from
837 		 * read to write permission is OK - we leave the page
838 		 * write-protected, and catch the write fault. Changing from
839 		 * write to read permission means that we can't mark the page
840 		 * write-enabled after all.
841 		 */
842 		prot &= retry_prot;
843 	}
844 
845 	/*
846 	 * Put this page into the physical map. We had to do the unlock above
847 	 * because pmap_enter may cause other faults.   We don't put the page
848 	 * back on the active queue until later so that the page-out daemon
849 	 * won't find us (yet).
850 	 */
851 
852 	if (prot & VM_PROT_WRITE) {
853 		vm_page_lock_queues();
854 		vm_page_flag_set(fs.m, PG_WRITEABLE);
855 		vm_object_set_writeable_dirty(fs.m->object);
856 
857 		/*
858 		 * If the fault is a write, we know that this page is being
859 		 * written NOW so dirty it explicitly to save on
860 		 * pmap_is_modified() calls later.
861 		 *
862 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
863 		 * if the page is already dirty to prevent data written with
864 		 * the expectation of being synced from not being synced.
865 		 * Likewise if this entry does not request NOSYNC then make
866 		 * sure the page isn't marked NOSYNC.  Applications sharing
867 		 * data should use the same flags to avoid ping ponging.
868 		 *
869 		 * Also tell the backing pager, if any, that it should remove
870 		 * any swap backing since the page is now dirty.
871 		 */
872 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
873 			if (fs.m->dirty == 0)
874 				vm_page_flag_set(fs.m, PG_NOSYNC);
875 		} else {
876 			vm_page_flag_clear(fs.m, PG_NOSYNC);
877 		}
878 		vm_page_unlock_queues();
879 		if (fault_flags & VM_FAULT_DIRTY) {
880 			int s;
881 			vm_page_dirty(fs.m);
882 			s = splvm();
883 			vm_pager_page_unswapped(fs.m);
884 			splx(s);
885 		}
886 	}
887 
888 	/*
889 	 * Page had better still be busy
890 	 */
891 	KASSERT(fs.m->flags & PG_BUSY,
892 		("vm_fault: page %p not busy!", fs.m));
893 	/*
894 	 * Sanity check: page must be completely valid or it is not fit to
895 	 * map into user space.  vm_pager_get_pages() ensures this.
896 	 */
897 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
898 		vm_page_zero_invalid(fs.m, TRUE);
899 		printf("Warning: page %p partially invalid on fault\n", fs.m);
900 	}
901 	unlock_things(&fs);
902 
903 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
904 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
905 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
906 	}
907 	vm_page_lock_queues();
908 	vm_page_flag_clear(fs.m, PG_ZERO);
909 	vm_page_flag_set(fs.m, PG_REFERENCED);
910 
911 	/*
912 	 * If the page is not wired down, then put it where the pageout daemon
913 	 * can find it.
914 	 */
915 	if (fault_flags & VM_FAULT_WIRE_MASK) {
916 		if (wired)
917 			vm_page_wire(fs.m);
918 		else
919 			vm_page_unwire(fs.m, 1);
920 	} else {
921 		vm_page_activate(fs.m);
922 	}
923 	vm_page_wakeup(fs.m);
924 	vm_page_unlock_queues();
925 
926 	PROC_LOCK(curproc);
927 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
928 		if (hardfault) {
929 			curproc->p_stats->p_ru.ru_majflt++;
930 		} else {
931 			curproc->p_stats->p_ru.ru_minflt++;
932 		}
933 	}
934 	PROC_UNLOCK(curproc);
935 
936 	/*
937 	 * Unlock everything, and return
938 	 */
939 	vm_object_deallocate(fs.first_object);
940 	mtx_unlock(&Giant);
941 	return (KERN_SUCCESS);
942 }
943 
944 /*
945  * vm_fault_prefault provides a quick way of clustering
946  * pagefaults into a processes address space.  It is a "cousin"
947  * of vm_map_pmap_enter, except it runs at page fault time instead
948  * of mmap time.
949  */
950 static void
951 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
952 {
953 	int i;
954 	vm_offset_t addr, starta;
955 	vm_pindex_t pindex;
956 	vm_page_t m, mpte;
957 	vm_object_t object;
958 
959 	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
960 		return;
961 
962 	object = entry->object.vm_object;
963 
964 	starta = addra - PFBAK * PAGE_SIZE;
965 	if (starta < entry->start) {
966 		starta = entry->start;
967 	} else if (starta > addra) {
968 		starta = 0;
969 	}
970 
971 	mpte = NULL;
972 	for (i = 0; i < PAGEORDER_SIZE; i++) {
973 		vm_object_t backing_object, lobject;
974 
975 		addr = addra + prefault_pageorder[i];
976 		if (addr > addra + (PFFOR * PAGE_SIZE))
977 			addr = 0;
978 
979 		if (addr < starta || addr >= entry->end)
980 			continue;
981 
982 		if (!pmap_is_prefaultable(pmap, addr))
983 			continue;
984 
985 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
986 		lobject = object;
987 		VM_OBJECT_LOCK(lobject);
988 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
989 		    lobject->type == OBJT_DEFAULT &&
990 		    (backing_object = lobject->backing_object) != NULL) {
991 			if (lobject->backing_object_offset & PAGE_MASK)
992 				break;
993 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
994 			VM_OBJECT_LOCK(backing_object);
995 			VM_OBJECT_UNLOCK(lobject);
996 			lobject = backing_object;
997 		}
998 		/*
999 		 * give-up when a page is not in memory
1000 		 */
1001 		if (m == NULL) {
1002 			VM_OBJECT_UNLOCK(lobject);
1003 			break;
1004 		}
1005 		vm_page_lock_queues();
1006 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1007 			(m->busy == 0) &&
1008 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1009 
1010 			if ((m->queue - m->pc) == PQ_CACHE) {
1011 				vm_page_deactivate(m);
1012 			}
1013 			vm_page_busy(m);
1014 			vm_page_unlock_queues();
1015 			VM_OBJECT_UNLOCK(lobject);
1016 			mpte = pmap_enter_quick(pmap, addr, m, mpte);
1017 			VM_OBJECT_LOCK(lobject);
1018 			vm_page_lock_queues();
1019 			vm_page_wakeup(m);
1020 		}
1021 		vm_page_unlock_queues();
1022 		VM_OBJECT_UNLOCK(lobject);
1023 	}
1024 }
1025 
1026 /*
1027  *	vm_fault_quick:
1028  *
1029  *	Ensure that the requested virtual address, which may be in userland,
1030  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1031  */
1032 int
1033 vm_fault_quick(caddr_t v, int prot)
1034 {
1035 	int r;
1036 
1037 	if (prot & VM_PROT_WRITE)
1038 		r = subyte(v, fubyte(v));
1039 	else
1040 		r = fubyte(v);
1041 	return(r);
1042 }
1043 
1044 /*
1045  *	vm_fault_wire:
1046  *
1047  *	Wire down a range of virtual addresses in a map.
1048  */
1049 int
1050 vm_fault_wire(map, start, end, user_wire)
1051 	vm_map_t map;
1052 	vm_offset_t start, end;
1053 	boolean_t user_wire;
1054 {
1055 	vm_offset_t va;
1056 	int rv;
1057 
1058 	/*
1059 	 * We simulate a fault to get the page and enter it in the physical
1060 	 * map.  For user wiring, we only ask for read access on currently
1061 	 * read-only sections.
1062 	 */
1063 	for (va = start; va < end; va += PAGE_SIZE) {
1064 		rv = vm_fault(map, va,
1065 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1066 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1067 		if (rv) {
1068 			if (va != start)
1069 				vm_fault_unwire(map, start, va);
1070 			return (rv);
1071 		}
1072 	}
1073 	return (KERN_SUCCESS);
1074 }
1075 
1076 /*
1077  *	vm_fault_unwire:
1078  *
1079  *	Unwire a range of virtual addresses in a map.
1080  */
1081 void
1082 vm_fault_unwire(map, start, end)
1083 	vm_map_t map;
1084 	vm_offset_t start, end;
1085 {
1086 	vm_paddr_t pa;
1087 	vm_offset_t va;
1088 	pmap_t pmap;
1089 
1090 	pmap = vm_map_pmap(map);
1091 
1092 	mtx_lock(&Giant);
1093 	/*
1094 	 * Since the pages are wired down, we must be able to get their
1095 	 * mappings from the physical map system.
1096 	 */
1097 	for (va = start; va < end; va += PAGE_SIZE) {
1098 		pa = pmap_extract(pmap, va);
1099 		if (pa != 0) {
1100 			pmap_change_wiring(pmap, va, FALSE);
1101 			vm_page_lock_queues();
1102 			vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1103 			vm_page_unlock_queues();
1104 		}
1105 	}
1106 	mtx_unlock(&Giant);
1107 }
1108 
1109 /*
1110  *	Routine:
1111  *		vm_fault_copy_entry
1112  *	Function:
1113  *		Copy all of the pages from a wired-down map entry to another.
1114  *
1115  *	In/out conditions:
1116  *		The source and destination maps must be locked for write.
1117  *		The source map entry must be wired down (or be a sharing map
1118  *		entry corresponding to a main map entry that is wired down).
1119  */
1120 void
1121 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1122 	vm_map_t dst_map;
1123 	vm_map_t src_map;
1124 	vm_map_entry_t dst_entry;
1125 	vm_map_entry_t src_entry;
1126 {
1127 	vm_object_t backing_object, dst_object, object;
1128 	vm_object_t src_object;
1129 	vm_ooffset_t dst_offset;
1130 	vm_ooffset_t src_offset;
1131 	vm_pindex_t pindex;
1132 	vm_prot_t prot;
1133 	vm_offset_t vaddr;
1134 	vm_page_t dst_m;
1135 	vm_page_t src_m;
1136 
1137 #ifdef	lint
1138 	src_map++;
1139 #endif	/* lint */
1140 
1141 	src_object = src_entry->object.vm_object;
1142 	src_offset = src_entry->offset;
1143 
1144 	/*
1145 	 * Create the top-level object for the destination entry. (Doesn't
1146 	 * actually shadow anything - we copy the pages directly.)
1147 	 */
1148 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1149 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1150 
1151 	VM_OBJECT_LOCK(dst_object);
1152 	dst_entry->object.vm_object = dst_object;
1153 	dst_entry->offset = 0;
1154 
1155 	prot = dst_entry->max_protection;
1156 
1157 	/*
1158 	 * Loop through all of the pages in the entry's range, copying each
1159 	 * one from the source object (it should be there) to the destination
1160 	 * object.
1161 	 */
1162 	for (vaddr = dst_entry->start, dst_offset = 0;
1163 	    vaddr < dst_entry->end;
1164 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1165 
1166 		/*
1167 		 * Allocate a page in the destination object
1168 		 */
1169 		do {
1170 			dst_m = vm_page_alloc(dst_object,
1171 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1172 			if (dst_m == NULL) {
1173 				VM_OBJECT_UNLOCK(dst_object);
1174 				VM_WAIT;
1175 				VM_OBJECT_LOCK(dst_object);
1176 			}
1177 		} while (dst_m == NULL);
1178 
1179 		/*
1180 		 * Find the page in the source object, and copy it in.
1181 		 * (Because the source is wired down, the page will be in
1182 		 * memory.)
1183 		 */
1184 		VM_OBJECT_LOCK(src_object);
1185 		object = src_object;
1186 		pindex = 0;
1187 		while ((src_m = vm_page_lookup(object, pindex +
1188 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1189 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1190 		    (backing_object = object->backing_object) != NULL) {
1191 			/*
1192 			 * Allow fallback to backing objects if we are reading.
1193 			 */
1194 			VM_OBJECT_LOCK(backing_object);
1195 			pindex += OFF_TO_IDX(object->backing_object_offset);
1196 			VM_OBJECT_UNLOCK(object);
1197 			object = backing_object;
1198 		}
1199 		if (src_m == NULL)
1200 			panic("vm_fault_copy_wired: page missing");
1201 		pmap_copy_page(src_m, dst_m);
1202 		VM_OBJECT_UNLOCK(object);
1203 		dst_m->valid = VM_PAGE_BITS_ALL;
1204 		VM_OBJECT_UNLOCK(dst_object);
1205 
1206 		/*
1207 		 * Enter it in the pmap...
1208 		 */
1209 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1210 		VM_OBJECT_LOCK(dst_object);
1211 		vm_page_lock_queues();
1212 		if ((prot & VM_PROT_WRITE) != 0)
1213 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1214 
1215 		/*
1216 		 * Mark it no longer busy, and put it on the active list.
1217 		 */
1218 		vm_page_activate(dst_m);
1219 		vm_page_wakeup(dst_m);
1220 		vm_page_unlock_queues();
1221 	}
1222 	VM_OBJECT_UNLOCK(dst_object);
1223 }
1224 
1225 
1226 /*
1227  * This routine checks around the requested page for other pages that
1228  * might be able to be faulted in.  This routine brackets the viable
1229  * pages for the pages to be paged in.
1230  *
1231  * Inputs:
1232  *	m, rbehind, rahead
1233  *
1234  * Outputs:
1235  *  marray (array of vm_page_t), reqpage (index of requested page)
1236  *
1237  * Return value:
1238  *  number of pages in marray
1239  *
1240  * This routine can't block.
1241  */
1242 static int
1243 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1244 	vm_page_t m;
1245 	int rbehind;
1246 	int rahead;
1247 	vm_page_t *marray;
1248 	int *reqpage;
1249 {
1250 	int i,j;
1251 	vm_object_t object;
1252 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1253 	vm_page_t rtm;
1254 	int cbehind, cahead;
1255 
1256 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1257 
1258 	object = m->object;
1259 	pindex = m->pindex;
1260 
1261 	/*
1262 	 * we don't fault-ahead for device pager
1263 	 */
1264 	if (object->type == OBJT_DEVICE) {
1265 		*reqpage = 0;
1266 		marray[0] = m;
1267 		return 1;
1268 	}
1269 
1270 	/*
1271 	 * if the requested page is not available, then give up now
1272 	 */
1273 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1274 		return 0;
1275 	}
1276 
1277 	if ((cbehind == 0) && (cahead == 0)) {
1278 		*reqpage = 0;
1279 		marray[0] = m;
1280 		return 1;
1281 	}
1282 
1283 	if (rahead > cahead) {
1284 		rahead = cahead;
1285 	}
1286 
1287 	if (rbehind > cbehind) {
1288 		rbehind = cbehind;
1289 	}
1290 
1291 	/*
1292 	 * try to do any readahead that we might have free pages for.
1293 	 */
1294 	if ((rahead + rbehind) >
1295 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1296 		pagedaemon_wakeup();
1297 		marray[0] = m;
1298 		*reqpage = 0;
1299 		return 1;
1300 	}
1301 
1302 	/*
1303 	 * scan backward for the read behind pages -- in memory
1304 	 */
1305 	if (pindex > 0) {
1306 		if (rbehind > pindex) {
1307 			rbehind = pindex;
1308 			startpindex = 0;
1309 		} else {
1310 			startpindex = pindex - rbehind;
1311 		}
1312 
1313 		for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1314 			if (vm_page_lookup(object, tpindex)) {
1315 				startpindex = tpindex + 1;
1316 				break;
1317 			}
1318 			if (tpindex == 0)
1319 				break;
1320 		}
1321 
1322 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1323 
1324 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1325 			if (rtm == NULL) {
1326 				vm_page_lock_queues();
1327 				for (j = 0; j < i; j++) {
1328 					vm_page_free(marray[j]);
1329 				}
1330 				vm_page_unlock_queues();
1331 				marray[0] = m;
1332 				*reqpage = 0;
1333 				return 1;
1334 			}
1335 
1336 			marray[i] = rtm;
1337 		}
1338 	} else {
1339 		startpindex = 0;
1340 		i = 0;
1341 	}
1342 
1343 	marray[i] = m;
1344 	/* page offset of the required page */
1345 	*reqpage = i;
1346 
1347 	tpindex = pindex + 1;
1348 	i++;
1349 
1350 	/*
1351 	 * scan forward for the read ahead pages
1352 	 */
1353 	endpindex = tpindex + rahead;
1354 	if (endpindex > object->size)
1355 		endpindex = object->size;
1356 
1357 	for (; tpindex < endpindex; i++, tpindex++) {
1358 
1359 		if (vm_page_lookup(object, tpindex)) {
1360 			break;
1361 		}
1362 
1363 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1364 		if (rtm == NULL) {
1365 			break;
1366 		}
1367 
1368 		marray[i] = rtm;
1369 	}
1370 
1371 	/* return number of bytes of pages */
1372 	return i;
1373 }
1374