1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/proc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/rwlock.h> 87 #include <sys/sysctl.h> 88 #include <sys/vmmeter.h> 89 #include <sys/vnode.h> 90 #ifdef KTRACE 91 #include <sys/ktrace.h> 92 #endif 93 94 #include <vm/vm.h> 95 #include <vm/vm_param.h> 96 #include <vm/pmap.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_kern.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_extern.h> 104 105 #define PFBAK 4 106 #define PFFOR 4 107 108 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 109 110 #define VM_FAULT_READ_BEHIND 8 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 #define VM_FAULT_NINCR (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND) 114 #define VM_FAULT_SUM (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2) 115 #define VM_FAULT_CACHE_BEHIND (VM_FAULT_READ_BEHIND * VM_FAULT_SUM) 116 117 struct faultstate { 118 vm_page_t m; 119 vm_object_t object; 120 vm_pindex_t pindex; 121 vm_page_t first_m; 122 vm_object_t first_object; 123 vm_pindex_t first_pindex; 124 vm_map_t map; 125 vm_map_entry_t entry; 126 int lookup_still_valid; 127 struct vnode *vp; 128 }; 129 130 static void vm_fault_cache_behind(const struct faultstate *fs, int distance); 131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 132 int faultcount, int reqpage); 133 134 static inline void 135 release_page(struct faultstate *fs) 136 { 137 138 vm_page_xunbusy(fs->m); 139 vm_page_lock(fs->m); 140 vm_page_deactivate(fs->m); 141 vm_page_unlock(fs->m); 142 fs->m = NULL; 143 } 144 145 static inline void 146 unlock_map(struct faultstate *fs) 147 { 148 149 if (fs->lookup_still_valid) { 150 vm_map_lookup_done(fs->map, fs->entry); 151 fs->lookup_still_valid = FALSE; 152 } 153 } 154 155 static void 156 unlock_and_deallocate(struct faultstate *fs) 157 { 158 159 vm_object_pip_wakeup(fs->object); 160 VM_OBJECT_WUNLOCK(fs->object); 161 if (fs->object != fs->first_object) { 162 VM_OBJECT_WLOCK(fs->first_object); 163 vm_page_lock(fs->first_m); 164 vm_page_free(fs->first_m); 165 vm_page_unlock(fs->first_m); 166 vm_object_pip_wakeup(fs->first_object); 167 VM_OBJECT_WUNLOCK(fs->first_object); 168 fs->first_m = NULL; 169 } 170 vm_object_deallocate(fs->first_object); 171 unlock_map(fs); 172 if (fs->vp != NULL) { 173 vput(fs->vp); 174 fs->vp = NULL; 175 } 176 } 177 178 static void 179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 180 vm_prot_t fault_type, int fault_flags, boolean_t set_wd) 181 { 182 boolean_t need_dirty; 183 184 if (((prot & VM_PROT_WRITE) == 0 && 185 (fault_flags & VM_FAULT_DIRTY) == 0) || 186 (m->oflags & VPO_UNMANAGED) != 0) 187 return; 188 189 VM_OBJECT_ASSERT_LOCKED(m->object); 190 191 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 192 (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) || 193 (fault_flags & VM_FAULT_DIRTY) != 0; 194 195 if (set_wd) 196 vm_object_set_writeable_dirty(m->object); 197 else 198 /* 199 * If two callers of vm_fault_dirty() with set_wd == 200 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 201 * flag set, other with flag clear, race, it is 202 * possible for the no-NOSYNC thread to see m->dirty 203 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 204 * around manipulation of VPO_NOSYNC and 205 * vm_page_dirty() call, to avoid the race and keep 206 * m->oflags consistent. 207 */ 208 vm_page_lock(m); 209 210 /* 211 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 212 * if the page is already dirty to prevent data written with 213 * the expectation of being synced from not being synced. 214 * Likewise if this entry does not request NOSYNC then make 215 * sure the page isn't marked NOSYNC. Applications sharing 216 * data should use the same flags to avoid ping ponging. 217 */ 218 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 219 if (m->dirty == 0) { 220 m->oflags |= VPO_NOSYNC; 221 } 222 } else { 223 m->oflags &= ~VPO_NOSYNC; 224 } 225 226 /* 227 * If the fault is a write, we know that this page is being 228 * written NOW so dirty it explicitly to save on 229 * pmap_is_modified() calls later. 230 * 231 * Also tell the backing pager, if any, that it should remove 232 * any swap backing since the page is now dirty. 233 */ 234 if (need_dirty) 235 vm_page_dirty(m); 236 if (!set_wd) 237 vm_page_unlock(m); 238 if (need_dirty) 239 vm_pager_page_unswapped(m); 240 } 241 242 /* 243 * TRYPAGER - used by vm_fault to calculate whether the pager for the 244 * current object *might* contain the page. 245 * 246 * default objects are zero-fill, there is no real pager. 247 */ 248 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 249 ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired)) 250 251 /* 252 * vm_fault: 253 * 254 * Handle a page fault occurring at the given address, 255 * requiring the given permissions, in the map specified. 256 * If successful, the page is inserted into the 257 * associated physical map. 258 * 259 * NOTE: the given address should be truncated to the 260 * proper page address. 261 * 262 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 263 * a standard error specifying why the fault is fatal is returned. 264 * 265 * The map in question must be referenced, and remains so. 266 * Caller may hold no locks. 267 */ 268 int 269 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 270 int fault_flags) 271 { 272 struct thread *td; 273 int result; 274 275 td = curthread; 276 if ((td->td_pflags & TDP_NOFAULTING) != 0) 277 return (KERN_PROTECTION_FAILURE); 278 #ifdef KTRACE 279 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 280 ktrfault(vaddr, fault_type); 281 #endif 282 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 283 NULL); 284 #ifdef KTRACE 285 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 286 ktrfaultend(result); 287 #endif 288 return (result); 289 } 290 291 int 292 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 293 int fault_flags, vm_page_t *m_hold) 294 { 295 vm_prot_t prot; 296 int alloc_req, era, faultcount, nera, reqpage, result; 297 boolean_t growstack, is_first_object_locked, wired; 298 int map_generation; 299 vm_object_t next_object; 300 vm_page_t marray[VM_FAULT_READ_MAX]; 301 int hardfault; 302 struct faultstate fs; 303 struct vnode *vp; 304 vm_page_t m; 305 int ahead, behind, cluster_offset, error, locked; 306 307 hardfault = 0; 308 growstack = TRUE; 309 PCPU_INC(cnt.v_vm_faults); 310 fs.vp = NULL; 311 faultcount = reqpage = 0; 312 313 RetryFault:; 314 315 /* 316 * Find the backing store object and offset into it to begin the 317 * search. 318 */ 319 fs.map = map; 320 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 321 &fs.first_object, &fs.first_pindex, &prot, &wired); 322 if (result != KERN_SUCCESS) { 323 if (growstack && result == KERN_INVALID_ADDRESS && 324 map != kernel_map) { 325 result = vm_map_growstack(curproc, vaddr); 326 if (result != KERN_SUCCESS) 327 return (KERN_FAILURE); 328 growstack = FALSE; 329 goto RetryFault; 330 } 331 return (result); 332 } 333 334 map_generation = fs.map->timestamp; 335 336 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 337 panic("vm_fault: fault on nofault entry, addr: %lx", 338 (u_long)vaddr); 339 } 340 341 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 342 fs.entry->wiring_thread != curthread) { 343 vm_map_unlock_read(fs.map); 344 vm_map_lock(fs.map); 345 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 346 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 347 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 348 vm_map_unlock_and_wait(fs.map, 0); 349 } else 350 vm_map_unlock(fs.map); 351 goto RetryFault; 352 } 353 354 if (wired) 355 fault_type = prot | (fault_type & VM_PROT_COPY); 356 357 if (fs.vp == NULL /* avoid locked vnode leak */ && 358 (fault_flags & (VM_FAULT_CHANGE_WIRING | VM_FAULT_DIRTY)) == 0 && 359 /* avoid calling vm_object_set_writeable_dirty() */ 360 ((prot & VM_PROT_WRITE) == 0 || 361 fs.first_object->type != OBJT_VNODE || 362 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 363 VM_OBJECT_RLOCK(fs.first_object); 364 if ((prot & VM_PROT_WRITE) != 0 && 365 fs.first_object->type == OBJT_VNODE && 366 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0) 367 goto fast_failed; 368 m = vm_page_lookup(fs.first_object, fs.first_pindex); 369 /* A busy page can be mapped for read|execute access. */ 370 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 371 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 372 goto fast_failed; 373 result = pmap_enter(fs.map->pmap, vaddr, m, prot, 374 fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 375 0), 0); 376 if (result != KERN_SUCCESS) 377 goto fast_failed; 378 if (m_hold != NULL) { 379 *m_hold = m; 380 vm_page_lock(m); 381 vm_page_hold(m); 382 vm_page_unlock(m); 383 } 384 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags, 385 FALSE); 386 VM_OBJECT_RUNLOCK(fs.first_object); 387 if (!wired) 388 vm_fault_prefault(&fs, vaddr, 0, 0); 389 vm_map_lookup_done(fs.map, fs.entry); 390 curthread->td_ru.ru_minflt++; 391 return (KERN_SUCCESS); 392 fast_failed: 393 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 394 VM_OBJECT_RUNLOCK(fs.first_object); 395 VM_OBJECT_WLOCK(fs.first_object); 396 } 397 } else { 398 VM_OBJECT_WLOCK(fs.first_object); 399 } 400 401 /* 402 * Make a reference to this object to prevent its disposal while we 403 * are messing with it. Once we have the reference, the map is free 404 * to be diddled. Since objects reference their shadows (and copies), 405 * they will stay around as well. 406 * 407 * Bump the paging-in-progress count to prevent size changes (e.g. 408 * truncation operations) during I/O. This must be done after 409 * obtaining the vnode lock in order to avoid possible deadlocks. 410 */ 411 vm_object_reference_locked(fs.first_object); 412 vm_object_pip_add(fs.first_object, 1); 413 414 fs.lookup_still_valid = TRUE; 415 416 fs.first_m = NULL; 417 418 /* 419 * Search for the page at object/offset. 420 */ 421 fs.object = fs.first_object; 422 fs.pindex = fs.first_pindex; 423 while (TRUE) { 424 /* 425 * If the object is dead, we stop here 426 */ 427 if (fs.object->flags & OBJ_DEAD) { 428 unlock_and_deallocate(&fs); 429 return (KERN_PROTECTION_FAILURE); 430 } 431 432 /* 433 * See if page is resident 434 */ 435 fs.m = vm_page_lookup(fs.object, fs.pindex); 436 if (fs.m != NULL) { 437 /* 438 * Wait/Retry if the page is busy. We have to do this 439 * if the page is either exclusive or shared busy 440 * because the vm_pager may be using read busy for 441 * pageouts (and even pageins if it is the vnode 442 * pager), and we could end up trying to pagein and 443 * pageout the same page simultaneously. 444 * 445 * We can theoretically allow the busy case on a read 446 * fault if the page is marked valid, but since such 447 * pages are typically already pmap'd, putting that 448 * special case in might be more effort then it is 449 * worth. We cannot under any circumstances mess 450 * around with a shared busied page except, perhaps, 451 * to pmap it. 452 */ 453 if (vm_page_busied(fs.m)) { 454 /* 455 * Reference the page before unlocking and 456 * sleeping so that the page daemon is less 457 * likely to reclaim it. 458 */ 459 vm_page_aflag_set(fs.m, PGA_REFERENCED); 460 if (fs.object != fs.first_object) { 461 if (!VM_OBJECT_TRYWLOCK( 462 fs.first_object)) { 463 VM_OBJECT_WUNLOCK(fs.object); 464 VM_OBJECT_WLOCK(fs.first_object); 465 VM_OBJECT_WLOCK(fs.object); 466 } 467 vm_page_lock(fs.first_m); 468 vm_page_free(fs.first_m); 469 vm_page_unlock(fs.first_m); 470 vm_object_pip_wakeup(fs.first_object); 471 VM_OBJECT_WUNLOCK(fs.first_object); 472 fs.first_m = NULL; 473 } 474 unlock_map(&fs); 475 if (fs.m == vm_page_lookup(fs.object, 476 fs.pindex)) { 477 vm_page_sleep_if_busy(fs.m, "vmpfw"); 478 } 479 vm_object_pip_wakeup(fs.object); 480 VM_OBJECT_WUNLOCK(fs.object); 481 PCPU_INC(cnt.v_intrans); 482 vm_object_deallocate(fs.first_object); 483 goto RetryFault; 484 } 485 vm_page_lock(fs.m); 486 vm_page_remque(fs.m); 487 vm_page_unlock(fs.m); 488 489 /* 490 * Mark page busy for other processes, and the 491 * pagedaemon. If it still isn't completely valid 492 * (readable), jump to readrest, else break-out ( we 493 * found the page ). 494 */ 495 vm_page_xbusy(fs.m); 496 if (fs.m->valid != VM_PAGE_BITS_ALL) 497 goto readrest; 498 break; 499 } 500 501 /* 502 * Page is not resident, If this is the search termination 503 * or the pager might contain the page, allocate a new page. 504 */ 505 if (TRYPAGER || fs.object == fs.first_object) { 506 if (fs.pindex >= fs.object->size) { 507 unlock_and_deallocate(&fs); 508 return (KERN_PROTECTION_FAILURE); 509 } 510 511 /* 512 * Allocate a new page for this object/offset pair. 513 * 514 * Unlocked read of the p_flag is harmless. At 515 * worst, the P_KILLED might be not observed 516 * there, and allocation can fail, causing 517 * restart and new reading of the p_flag. 518 */ 519 fs.m = NULL; 520 if (!vm_page_count_severe() || P_KILLED(curproc)) { 521 #if VM_NRESERVLEVEL > 0 522 if ((fs.object->flags & OBJ_COLORED) == 0) { 523 fs.object->flags |= OBJ_COLORED; 524 fs.object->pg_color = atop(vaddr) - 525 fs.pindex; 526 } 527 #endif 528 alloc_req = P_KILLED(curproc) ? 529 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 530 if (fs.object->type != OBJT_VNODE && 531 fs.object->backing_object == NULL) 532 alloc_req |= VM_ALLOC_ZERO; 533 fs.m = vm_page_alloc(fs.object, fs.pindex, 534 alloc_req); 535 } 536 if (fs.m == NULL) { 537 unlock_and_deallocate(&fs); 538 VM_WAITPFAULT; 539 goto RetryFault; 540 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 541 break; 542 } 543 544 readrest: 545 /* 546 * We have found a valid page or we have allocated a new page. 547 * The page thus may not be valid or may not be entirely 548 * valid. 549 * 550 * Attempt to fault-in the page if there is a chance that the 551 * pager has it, and potentially fault in additional pages 552 * at the same time. 553 */ 554 if (TRYPAGER) { 555 int rv; 556 u_char behavior = vm_map_entry_behavior(fs.entry); 557 558 era = fs.entry->read_ahead; 559 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 560 P_KILLED(curproc)) { 561 behind = 0; 562 nera = 0; 563 ahead = 0; 564 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 565 behind = 0; 566 nera = VM_FAULT_READ_AHEAD_MAX; 567 ahead = nera; 568 if (fs.pindex == fs.entry->next_read) 569 vm_fault_cache_behind(&fs, 570 VM_FAULT_READ_MAX); 571 } else if (fs.pindex == fs.entry->next_read) { 572 /* 573 * This is a sequential fault. Arithmetically 574 * increase the requested number of pages in 575 * the read-ahead window. The requested 576 * number of pages is "# of sequential faults 577 * x (read ahead min + 1) + read ahead min" 578 */ 579 behind = 0; 580 nera = VM_FAULT_READ_AHEAD_MIN; 581 if (era > 0) { 582 nera += era + 1; 583 if (nera > VM_FAULT_READ_AHEAD_MAX) 584 nera = VM_FAULT_READ_AHEAD_MAX; 585 } 586 ahead = nera; 587 if (era == VM_FAULT_READ_AHEAD_MAX) 588 vm_fault_cache_behind(&fs, 589 VM_FAULT_CACHE_BEHIND); 590 } else { 591 /* 592 * This is a non-sequential fault. Request a 593 * cluster of pages that is aligned to a 594 * VM_FAULT_READ_DEFAULT page offset boundary 595 * within the object. Alignment to a page 596 * offset boundary is more likely to coincide 597 * with the underlying file system block than 598 * alignment to a virtual address boundary. 599 */ 600 cluster_offset = fs.pindex % 601 VM_FAULT_READ_DEFAULT; 602 behind = ulmin(cluster_offset, 603 atop(vaddr - fs.entry->start)); 604 nera = 0; 605 ahead = VM_FAULT_READ_DEFAULT - 1 - 606 cluster_offset; 607 } 608 ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1); 609 if (era != nera) 610 fs.entry->read_ahead = nera; 611 612 /* 613 * Call the pager to retrieve the data, if any, after 614 * releasing the lock on the map. We hold a ref on 615 * fs.object and the pages are exclusive busied. 616 */ 617 unlock_map(&fs); 618 619 if (fs.object->type == OBJT_VNODE) { 620 vp = fs.object->handle; 621 if (vp == fs.vp) 622 goto vnode_locked; 623 else if (fs.vp != NULL) { 624 vput(fs.vp); 625 fs.vp = NULL; 626 } 627 locked = VOP_ISLOCKED(vp); 628 629 if (locked != LK_EXCLUSIVE) 630 locked = LK_SHARED; 631 /* Do not sleep for vnode lock while fs.m is busy */ 632 error = vget(vp, locked | LK_CANRECURSE | 633 LK_NOWAIT, curthread); 634 if (error != 0) { 635 vhold(vp); 636 release_page(&fs); 637 unlock_and_deallocate(&fs); 638 error = vget(vp, locked | LK_RETRY | 639 LK_CANRECURSE, curthread); 640 vdrop(vp); 641 fs.vp = vp; 642 KASSERT(error == 0, 643 ("vm_fault: vget failed")); 644 goto RetryFault; 645 } 646 fs.vp = vp; 647 } 648 vnode_locked: 649 KASSERT(fs.vp == NULL || !fs.map->system_map, 650 ("vm_fault: vnode-backed object mapped by system map")); 651 652 /* 653 * now we find out if any other pages should be paged 654 * in at this time this routine checks to see if the 655 * pages surrounding this fault reside in the same 656 * object as the page for this fault. If they do, 657 * then they are faulted in also into the object. The 658 * array "marray" returned contains an array of 659 * vm_page_t structs where one of them is the 660 * vm_page_t passed to the routine. The reqpage 661 * return value is the index into the marray for the 662 * vm_page_t passed to the routine. 663 * 664 * fs.m plus the additional pages are exclusive busied. 665 */ 666 faultcount = vm_fault_additional_pages( 667 fs.m, behind, ahead, marray, &reqpage); 668 669 rv = faultcount ? 670 vm_pager_get_pages(fs.object, marray, faultcount, 671 reqpage) : VM_PAGER_FAIL; 672 673 if (rv == VM_PAGER_OK) { 674 /* 675 * Found the page. Leave it busy while we play 676 * with it. 677 */ 678 679 /* 680 * Relookup in case pager changed page. Pager 681 * is responsible for disposition of old page 682 * if moved. 683 */ 684 fs.m = vm_page_lookup(fs.object, fs.pindex); 685 if (!fs.m) { 686 unlock_and_deallocate(&fs); 687 goto RetryFault; 688 } 689 690 hardfault++; 691 break; /* break to PAGE HAS BEEN FOUND */ 692 } 693 /* 694 * Remove the bogus page (which does not exist at this 695 * object/offset); before doing so, we must get back 696 * our object lock to preserve our invariant. 697 * 698 * Also wake up any other process that may want to bring 699 * in this page. 700 * 701 * If this is the top-level object, we must leave the 702 * busy page to prevent another process from rushing 703 * past us, and inserting the page in that object at 704 * the same time that we are. 705 */ 706 if (rv == VM_PAGER_ERROR) 707 printf("vm_fault: pager read error, pid %d (%s)\n", 708 curproc->p_pid, curproc->p_comm); 709 /* 710 * Data outside the range of the pager or an I/O error 711 */ 712 /* 713 * XXX - the check for kernel_map is a kludge to work 714 * around having the machine panic on a kernel space 715 * fault w/ I/O error. 716 */ 717 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 718 (rv == VM_PAGER_BAD)) { 719 vm_page_lock(fs.m); 720 vm_page_free(fs.m); 721 vm_page_unlock(fs.m); 722 fs.m = NULL; 723 unlock_and_deallocate(&fs); 724 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 725 } 726 if (fs.object != fs.first_object) { 727 vm_page_lock(fs.m); 728 vm_page_free(fs.m); 729 vm_page_unlock(fs.m); 730 fs.m = NULL; 731 /* 732 * XXX - we cannot just fall out at this 733 * point, m has been freed and is invalid! 734 */ 735 } 736 } 737 738 /* 739 * We get here if the object has default pager (or unwiring) 740 * or the pager doesn't have the page. 741 */ 742 if (fs.object == fs.first_object) 743 fs.first_m = fs.m; 744 745 /* 746 * Move on to the next object. Lock the next object before 747 * unlocking the current one. 748 */ 749 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 750 next_object = fs.object->backing_object; 751 if (next_object == NULL) { 752 /* 753 * If there's no object left, fill the page in the top 754 * object with zeros. 755 */ 756 if (fs.object != fs.first_object) { 757 vm_object_pip_wakeup(fs.object); 758 VM_OBJECT_WUNLOCK(fs.object); 759 760 fs.object = fs.first_object; 761 fs.pindex = fs.first_pindex; 762 fs.m = fs.first_m; 763 VM_OBJECT_WLOCK(fs.object); 764 } 765 fs.first_m = NULL; 766 767 /* 768 * Zero the page if necessary and mark it valid. 769 */ 770 if ((fs.m->flags & PG_ZERO) == 0) { 771 pmap_zero_page(fs.m); 772 } else { 773 PCPU_INC(cnt.v_ozfod); 774 } 775 PCPU_INC(cnt.v_zfod); 776 fs.m->valid = VM_PAGE_BITS_ALL; 777 /* Don't try to prefault neighboring pages. */ 778 faultcount = 1; 779 break; /* break to PAGE HAS BEEN FOUND */ 780 } else { 781 KASSERT(fs.object != next_object, 782 ("object loop %p", next_object)); 783 VM_OBJECT_WLOCK(next_object); 784 vm_object_pip_add(next_object, 1); 785 if (fs.object != fs.first_object) 786 vm_object_pip_wakeup(fs.object); 787 VM_OBJECT_WUNLOCK(fs.object); 788 fs.object = next_object; 789 } 790 } 791 792 vm_page_assert_xbusied(fs.m); 793 794 /* 795 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 796 * is held.] 797 */ 798 799 /* 800 * If the page is being written, but isn't already owned by the 801 * top-level object, we have to copy it into a new page owned by the 802 * top-level object. 803 */ 804 if (fs.object != fs.first_object) { 805 /* 806 * We only really need to copy if we want to write it. 807 */ 808 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 809 /* 810 * This allows pages to be virtually copied from a 811 * backing_object into the first_object, where the 812 * backing object has no other refs to it, and cannot 813 * gain any more refs. Instead of a bcopy, we just 814 * move the page from the backing object to the 815 * first object. Note that we must mark the page 816 * dirty in the first object so that it will go out 817 * to swap when needed. 818 */ 819 is_first_object_locked = FALSE; 820 if ( 821 /* 822 * Only one shadow object 823 */ 824 (fs.object->shadow_count == 1) && 825 /* 826 * No COW refs, except us 827 */ 828 (fs.object->ref_count == 1) && 829 /* 830 * No one else can look this object up 831 */ 832 (fs.object->handle == NULL) && 833 /* 834 * No other ways to look the object up 835 */ 836 ((fs.object->type == OBJT_DEFAULT) || 837 (fs.object->type == OBJT_SWAP)) && 838 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 839 /* 840 * We don't chase down the shadow chain 841 */ 842 fs.object == fs.first_object->backing_object) { 843 /* 844 * get rid of the unnecessary page 845 */ 846 vm_page_lock(fs.first_m); 847 vm_page_free(fs.first_m); 848 vm_page_unlock(fs.first_m); 849 /* 850 * grab the page and put it into the 851 * process'es object. The page is 852 * automatically made dirty. 853 */ 854 if (vm_page_rename(fs.m, fs.first_object, 855 fs.first_pindex)) { 856 unlock_and_deallocate(&fs); 857 goto RetryFault; 858 } 859 vm_page_xbusy(fs.m); 860 fs.first_m = fs.m; 861 fs.m = NULL; 862 PCPU_INC(cnt.v_cow_optim); 863 } else { 864 /* 865 * Oh, well, lets copy it. 866 */ 867 pmap_copy_page(fs.m, fs.first_m); 868 fs.first_m->valid = VM_PAGE_BITS_ALL; 869 if (wired && (fault_flags & 870 VM_FAULT_CHANGE_WIRING) == 0) { 871 vm_page_lock(fs.first_m); 872 vm_page_wire(fs.first_m); 873 vm_page_unlock(fs.first_m); 874 875 vm_page_lock(fs.m); 876 vm_page_unwire(fs.m, PQ_INACTIVE); 877 vm_page_unlock(fs.m); 878 } 879 /* 880 * We no longer need the old page or object. 881 */ 882 release_page(&fs); 883 } 884 /* 885 * fs.object != fs.first_object due to above 886 * conditional 887 */ 888 vm_object_pip_wakeup(fs.object); 889 VM_OBJECT_WUNLOCK(fs.object); 890 /* 891 * Only use the new page below... 892 */ 893 fs.object = fs.first_object; 894 fs.pindex = fs.first_pindex; 895 fs.m = fs.first_m; 896 if (!is_first_object_locked) 897 VM_OBJECT_WLOCK(fs.object); 898 PCPU_INC(cnt.v_cow_faults); 899 curthread->td_cow++; 900 } else { 901 prot &= ~VM_PROT_WRITE; 902 } 903 } 904 905 /* 906 * We must verify that the maps have not changed since our last 907 * lookup. 908 */ 909 if (!fs.lookup_still_valid) { 910 vm_object_t retry_object; 911 vm_pindex_t retry_pindex; 912 vm_prot_t retry_prot; 913 914 if (!vm_map_trylock_read(fs.map)) { 915 release_page(&fs); 916 unlock_and_deallocate(&fs); 917 goto RetryFault; 918 } 919 fs.lookup_still_valid = TRUE; 920 if (fs.map->timestamp != map_generation) { 921 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 922 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 923 924 /* 925 * If we don't need the page any longer, put it on the inactive 926 * list (the easiest thing to do here). If no one needs it, 927 * pageout will grab it eventually. 928 */ 929 if (result != KERN_SUCCESS) { 930 release_page(&fs); 931 unlock_and_deallocate(&fs); 932 933 /* 934 * If retry of map lookup would have blocked then 935 * retry fault from start. 936 */ 937 if (result == KERN_FAILURE) 938 goto RetryFault; 939 return (result); 940 } 941 if ((retry_object != fs.first_object) || 942 (retry_pindex != fs.first_pindex)) { 943 release_page(&fs); 944 unlock_and_deallocate(&fs); 945 goto RetryFault; 946 } 947 948 /* 949 * Check whether the protection has changed or the object has 950 * been copied while we left the map unlocked. Changing from 951 * read to write permission is OK - we leave the page 952 * write-protected, and catch the write fault. Changing from 953 * write to read permission means that we can't mark the page 954 * write-enabled after all. 955 */ 956 prot &= retry_prot; 957 } 958 } 959 /* 960 * If the page was filled by a pager, update the map entry's 961 * last read offset. Since the pager does not return the 962 * actual set of pages that it read, this update is based on 963 * the requested set. Typically, the requested and actual 964 * sets are the same. 965 * 966 * XXX The following assignment modifies the map 967 * without holding a write lock on it. 968 */ 969 if (hardfault) 970 fs.entry->next_read = fs.pindex + faultcount - reqpage; 971 972 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE); 973 vm_page_assert_xbusied(fs.m); 974 975 /* 976 * Page must be completely valid or it is not fit to 977 * map into user space. vm_pager_get_pages() ensures this. 978 */ 979 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 980 ("vm_fault: page %p partially invalid", fs.m)); 981 VM_OBJECT_WUNLOCK(fs.object); 982 983 /* 984 * Put this page into the physical map. We had to do the unlock above 985 * because pmap_enter() may sleep. We don't put the page 986 * back on the active queue until later so that the pageout daemon 987 * won't find it (yet). 988 */ 989 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 990 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 991 if (faultcount != 1 && (fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && 992 wired == 0) 993 vm_fault_prefault(&fs, vaddr, faultcount, reqpage); 994 VM_OBJECT_WLOCK(fs.object); 995 vm_page_lock(fs.m); 996 997 /* 998 * If the page is not wired down, then put it where the pageout daemon 999 * can find it. 1000 */ 1001 if (fault_flags & VM_FAULT_CHANGE_WIRING) { 1002 if (wired) 1003 vm_page_wire(fs.m); 1004 else 1005 vm_page_unwire(fs.m, PQ_ACTIVE); 1006 } else 1007 vm_page_activate(fs.m); 1008 if (m_hold != NULL) { 1009 *m_hold = fs.m; 1010 vm_page_hold(fs.m); 1011 } 1012 vm_page_unlock(fs.m); 1013 vm_page_xunbusy(fs.m); 1014 1015 /* 1016 * Unlock everything, and return 1017 */ 1018 unlock_and_deallocate(&fs); 1019 if (hardfault) { 1020 PCPU_INC(cnt.v_io_faults); 1021 curthread->td_ru.ru_majflt++; 1022 } else 1023 curthread->td_ru.ru_minflt++; 1024 1025 return (KERN_SUCCESS); 1026 } 1027 1028 /* 1029 * Speed up the reclamation of up to "distance" pages that precede the 1030 * faulting pindex within the first object of the shadow chain. 1031 */ 1032 static void 1033 vm_fault_cache_behind(const struct faultstate *fs, int distance) 1034 { 1035 vm_object_t first_object, object; 1036 vm_page_t m, m_prev; 1037 vm_pindex_t pindex; 1038 1039 object = fs->object; 1040 VM_OBJECT_ASSERT_WLOCKED(object); 1041 first_object = fs->first_object; 1042 if (first_object != object) { 1043 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1044 VM_OBJECT_WUNLOCK(object); 1045 VM_OBJECT_WLOCK(first_object); 1046 VM_OBJECT_WLOCK(object); 1047 } 1048 } 1049 /* Neither fictitious nor unmanaged pages can be cached. */ 1050 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1051 if (fs->first_pindex < distance) 1052 pindex = 0; 1053 else 1054 pindex = fs->first_pindex - distance; 1055 if (pindex < OFF_TO_IDX(fs->entry->offset)) 1056 pindex = OFF_TO_IDX(fs->entry->offset); 1057 m = first_object != object ? fs->first_m : fs->m; 1058 vm_page_assert_xbusied(m); 1059 m_prev = vm_page_prev(m); 1060 while ((m = m_prev) != NULL && m->pindex >= pindex && 1061 m->valid == VM_PAGE_BITS_ALL) { 1062 m_prev = vm_page_prev(m); 1063 if (vm_page_busied(m)) 1064 continue; 1065 vm_page_lock(m); 1066 if (m->hold_count == 0 && m->wire_count == 0) { 1067 pmap_remove_all(m); 1068 vm_page_aflag_clear(m, PGA_REFERENCED); 1069 if (m->dirty != 0) 1070 vm_page_deactivate(m); 1071 else 1072 vm_page_cache(m); 1073 } 1074 vm_page_unlock(m); 1075 } 1076 } 1077 if (first_object != object) 1078 VM_OBJECT_WUNLOCK(first_object); 1079 } 1080 1081 /* 1082 * vm_fault_prefault provides a quick way of clustering 1083 * pagefaults into a processes address space. It is a "cousin" 1084 * of vm_map_pmap_enter, except it runs at page fault time instead 1085 * of mmap time. 1086 */ 1087 static void 1088 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1089 int faultcount, int reqpage) 1090 { 1091 pmap_t pmap; 1092 vm_map_entry_t entry; 1093 vm_object_t backing_object, lobject; 1094 vm_offset_t addr, starta; 1095 vm_pindex_t pindex; 1096 vm_page_t m; 1097 int backward, forward, i; 1098 1099 pmap = fs->map->pmap; 1100 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1101 return; 1102 1103 if (faultcount > 0) { 1104 backward = reqpage; 1105 forward = faultcount - reqpage - 1; 1106 } else { 1107 backward = PFBAK; 1108 forward = PFFOR; 1109 } 1110 entry = fs->entry; 1111 1112 starta = addra - backward * PAGE_SIZE; 1113 if (starta < entry->start) { 1114 starta = entry->start; 1115 } else if (starta > addra) { 1116 starta = 0; 1117 } 1118 1119 /* 1120 * Generate the sequence of virtual addresses that are candidates for 1121 * prefaulting in an outward spiral from the faulting virtual address, 1122 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1123 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1124 * If the candidate address doesn't have a backing physical page, then 1125 * the loop immediately terminates. 1126 */ 1127 for (i = 0; i < 2 * imax(backward, forward); i++) { 1128 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1129 PAGE_SIZE); 1130 if (addr > addra + forward * PAGE_SIZE) 1131 addr = 0; 1132 1133 if (addr < starta || addr >= entry->end) 1134 continue; 1135 1136 if (!pmap_is_prefaultable(pmap, addr)) 1137 continue; 1138 1139 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1140 lobject = entry->object.vm_object; 1141 VM_OBJECT_RLOCK(lobject); 1142 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1143 lobject->type == OBJT_DEFAULT && 1144 (backing_object = lobject->backing_object) != NULL) { 1145 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1146 0, ("vm_fault_prefault: unaligned object offset")); 1147 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1148 VM_OBJECT_RLOCK(backing_object); 1149 VM_OBJECT_RUNLOCK(lobject); 1150 lobject = backing_object; 1151 } 1152 if (m == NULL) { 1153 VM_OBJECT_RUNLOCK(lobject); 1154 break; 1155 } 1156 if (m->valid == VM_PAGE_BITS_ALL && 1157 (m->flags & PG_FICTITIOUS) == 0) 1158 pmap_enter_quick(pmap, addr, m, entry->protection); 1159 VM_OBJECT_RUNLOCK(lobject); 1160 } 1161 } 1162 1163 /* 1164 * Hold each of the physical pages that are mapped by the specified range of 1165 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1166 * and allow the specified types of access, "prot". If all of the implied 1167 * pages are successfully held, then the number of held pages is returned 1168 * together with pointers to those pages in the array "ma". However, if any 1169 * of the pages cannot be held, -1 is returned. 1170 */ 1171 int 1172 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1173 vm_prot_t prot, vm_page_t *ma, int max_count) 1174 { 1175 vm_offset_t end, va; 1176 vm_page_t *mp; 1177 int count; 1178 boolean_t pmap_failed; 1179 1180 if (len == 0) 1181 return (0); 1182 end = round_page(addr + len); 1183 addr = trunc_page(addr); 1184 1185 /* 1186 * Check for illegal addresses. 1187 */ 1188 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1189 return (-1); 1190 1191 if (atop(end - addr) > max_count) 1192 panic("vm_fault_quick_hold_pages: count > max_count"); 1193 count = atop(end - addr); 1194 1195 /* 1196 * Most likely, the physical pages are resident in the pmap, so it is 1197 * faster to try pmap_extract_and_hold() first. 1198 */ 1199 pmap_failed = FALSE; 1200 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1201 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1202 if (*mp == NULL) 1203 pmap_failed = TRUE; 1204 else if ((prot & VM_PROT_WRITE) != 0 && 1205 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1206 /* 1207 * Explicitly dirty the physical page. Otherwise, the 1208 * caller's changes may go unnoticed because they are 1209 * performed through an unmanaged mapping or by a DMA 1210 * operation. 1211 * 1212 * The object lock is not held here. 1213 * See vm_page_clear_dirty_mask(). 1214 */ 1215 vm_page_dirty(*mp); 1216 } 1217 } 1218 if (pmap_failed) { 1219 /* 1220 * One or more pages could not be held by the pmap. Either no 1221 * page was mapped at the specified virtual address or that 1222 * mapping had insufficient permissions. Attempt to fault in 1223 * and hold these pages. 1224 */ 1225 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1226 if (*mp == NULL && vm_fault_hold(map, va, prot, 1227 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1228 goto error; 1229 } 1230 return (count); 1231 error: 1232 for (mp = ma; mp < ma + count; mp++) 1233 if (*mp != NULL) { 1234 vm_page_lock(*mp); 1235 vm_page_unhold(*mp); 1236 vm_page_unlock(*mp); 1237 } 1238 return (-1); 1239 } 1240 1241 /* 1242 * Routine: 1243 * vm_fault_copy_entry 1244 * Function: 1245 * Create new shadow object backing dst_entry with private copy of 1246 * all underlying pages. When src_entry is equal to dst_entry, 1247 * function implements COW for wired-down map entry. Otherwise, 1248 * it forks wired entry into dst_map. 1249 * 1250 * In/out conditions: 1251 * The source and destination maps must be locked for write. 1252 * The source map entry must be wired down (or be a sharing map 1253 * entry corresponding to a main map entry that is wired down). 1254 */ 1255 void 1256 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1257 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1258 vm_ooffset_t *fork_charge) 1259 { 1260 vm_object_t backing_object, dst_object, object, src_object; 1261 vm_pindex_t dst_pindex, pindex, src_pindex; 1262 vm_prot_t access, prot; 1263 vm_offset_t vaddr; 1264 vm_page_t dst_m; 1265 vm_page_t src_m; 1266 boolean_t upgrade; 1267 1268 #ifdef lint 1269 src_map++; 1270 #endif /* lint */ 1271 1272 upgrade = src_entry == dst_entry; 1273 access = prot = dst_entry->protection; 1274 1275 src_object = src_entry->object.vm_object; 1276 src_pindex = OFF_TO_IDX(src_entry->offset); 1277 1278 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1279 dst_object = src_object; 1280 vm_object_reference(dst_object); 1281 } else { 1282 /* 1283 * Create the top-level object for the destination entry. (Doesn't 1284 * actually shadow anything - we copy the pages directly.) 1285 */ 1286 dst_object = vm_object_allocate(OBJT_DEFAULT, 1287 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1288 #if VM_NRESERVLEVEL > 0 1289 dst_object->flags |= OBJ_COLORED; 1290 dst_object->pg_color = atop(dst_entry->start); 1291 #endif 1292 } 1293 1294 VM_OBJECT_WLOCK(dst_object); 1295 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1296 ("vm_fault_copy_entry: vm_object not NULL")); 1297 if (src_object != dst_object) { 1298 dst_entry->object.vm_object = dst_object; 1299 dst_entry->offset = 0; 1300 dst_object->charge = dst_entry->end - dst_entry->start; 1301 } 1302 if (fork_charge != NULL) { 1303 KASSERT(dst_entry->cred == NULL, 1304 ("vm_fault_copy_entry: leaked swp charge")); 1305 dst_object->cred = curthread->td_ucred; 1306 crhold(dst_object->cred); 1307 *fork_charge += dst_object->charge; 1308 } else if (dst_object->cred == NULL) { 1309 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1310 dst_entry)); 1311 dst_object->cred = dst_entry->cred; 1312 dst_entry->cred = NULL; 1313 } 1314 1315 /* 1316 * If not an upgrade, then enter the mappings in the pmap as 1317 * read and/or execute accesses. Otherwise, enter them as 1318 * write accesses. 1319 * 1320 * A writeable large page mapping is only created if all of 1321 * the constituent small page mappings are modified. Marking 1322 * PTEs as modified on inception allows promotion to happen 1323 * without taking potentially large number of soft faults. 1324 */ 1325 if (!upgrade) 1326 access &= ~VM_PROT_WRITE; 1327 1328 /* 1329 * Loop through all of the virtual pages within the entry's 1330 * range, copying each page from the source object to the 1331 * destination object. Since the source is wired, those pages 1332 * must exist. In contrast, the destination is pageable. 1333 * Since the destination object does share any backing storage 1334 * with the source object, all of its pages must be dirtied, 1335 * regardless of whether they can be written. 1336 */ 1337 for (vaddr = dst_entry->start, dst_pindex = 0; 1338 vaddr < dst_entry->end; 1339 vaddr += PAGE_SIZE, dst_pindex++) { 1340 again: 1341 /* 1342 * Find the page in the source object, and copy it in. 1343 * Because the source is wired down, the page will be 1344 * in memory. 1345 */ 1346 if (src_object != dst_object) 1347 VM_OBJECT_RLOCK(src_object); 1348 object = src_object; 1349 pindex = src_pindex + dst_pindex; 1350 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1351 (backing_object = object->backing_object) != NULL) { 1352 /* 1353 * Unless the source mapping is read-only or 1354 * it is presently being upgraded from 1355 * read-only, the first object in the shadow 1356 * chain should provide all of the pages. In 1357 * other words, this loop body should never be 1358 * executed when the source mapping is already 1359 * read/write. 1360 */ 1361 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1362 upgrade, 1363 ("vm_fault_copy_entry: main object missing page")); 1364 1365 VM_OBJECT_RLOCK(backing_object); 1366 pindex += OFF_TO_IDX(object->backing_object_offset); 1367 if (object != dst_object) 1368 VM_OBJECT_RUNLOCK(object); 1369 object = backing_object; 1370 } 1371 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1372 1373 if (object != dst_object) { 1374 /* 1375 * Allocate a page in the destination object. 1376 */ 1377 dst_m = vm_page_alloc(dst_object, (src_object == 1378 dst_object ? src_pindex : 0) + dst_pindex, 1379 VM_ALLOC_NORMAL); 1380 if (dst_m == NULL) { 1381 VM_OBJECT_WUNLOCK(dst_object); 1382 VM_OBJECT_RUNLOCK(object); 1383 VM_WAIT; 1384 VM_OBJECT_WLOCK(dst_object); 1385 goto again; 1386 } 1387 pmap_copy_page(src_m, dst_m); 1388 VM_OBJECT_RUNLOCK(object); 1389 dst_m->valid = VM_PAGE_BITS_ALL; 1390 dst_m->dirty = VM_PAGE_BITS_ALL; 1391 } else { 1392 dst_m = src_m; 1393 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1394 goto again; 1395 vm_page_xbusy(dst_m); 1396 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1397 ("invalid dst page %p", dst_m)); 1398 } 1399 VM_OBJECT_WUNLOCK(dst_object); 1400 1401 /* 1402 * Enter it in the pmap. If a wired, copy-on-write 1403 * mapping is being replaced by a write-enabled 1404 * mapping, then wire that new mapping. 1405 */ 1406 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1407 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1408 1409 /* 1410 * Mark it no longer busy, and put it on the active list. 1411 */ 1412 VM_OBJECT_WLOCK(dst_object); 1413 1414 if (upgrade) { 1415 if (src_m != dst_m) { 1416 vm_page_lock(src_m); 1417 vm_page_unwire(src_m, PQ_INACTIVE); 1418 vm_page_unlock(src_m); 1419 vm_page_lock(dst_m); 1420 vm_page_wire(dst_m); 1421 vm_page_unlock(dst_m); 1422 } else { 1423 KASSERT(dst_m->wire_count > 0, 1424 ("dst_m %p is not wired", dst_m)); 1425 } 1426 } else { 1427 vm_page_lock(dst_m); 1428 vm_page_activate(dst_m); 1429 vm_page_unlock(dst_m); 1430 } 1431 vm_page_xunbusy(dst_m); 1432 } 1433 VM_OBJECT_WUNLOCK(dst_object); 1434 if (upgrade) { 1435 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1436 vm_object_deallocate(src_object); 1437 } 1438 } 1439 1440 1441 /* 1442 * This routine checks around the requested page for other pages that 1443 * might be able to be faulted in. This routine brackets the viable 1444 * pages for the pages to be paged in. 1445 * 1446 * Inputs: 1447 * m, rbehind, rahead 1448 * 1449 * Outputs: 1450 * marray (array of vm_page_t), reqpage (index of requested page) 1451 * 1452 * Return value: 1453 * number of pages in marray 1454 */ 1455 static int 1456 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1457 vm_page_t m; 1458 int rbehind; 1459 int rahead; 1460 vm_page_t *marray; 1461 int *reqpage; 1462 { 1463 int i,j; 1464 vm_object_t object; 1465 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1466 vm_page_t rtm; 1467 int cbehind, cahead; 1468 1469 VM_OBJECT_ASSERT_WLOCKED(m->object); 1470 1471 object = m->object; 1472 pindex = m->pindex; 1473 cbehind = cahead = 0; 1474 1475 /* 1476 * if the requested page is not available, then give up now 1477 */ 1478 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1479 return 0; 1480 } 1481 1482 if ((cbehind == 0) && (cahead == 0)) { 1483 *reqpage = 0; 1484 marray[0] = m; 1485 return 1; 1486 } 1487 1488 if (rahead > cahead) { 1489 rahead = cahead; 1490 } 1491 1492 if (rbehind > cbehind) { 1493 rbehind = cbehind; 1494 } 1495 1496 /* 1497 * scan backward for the read behind pages -- in memory 1498 */ 1499 if (pindex > 0) { 1500 if (rbehind > pindex) { 1501 rbehind = pindex; 1502 startpindex = 0; 1503 } else { 1504 startpindex = pindex - rbehind; 1505 } 1506 1507 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL && 1508 rtm->pindex >= startpindex) 1509 startpindex = rtm->pindex + 1; 1510 1511 /* tpindex is unsigned; beware of numeric underflow. */ 1512 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex && 1513 tpindex < pindex; i++, tpindex--) { 1514 1515 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1516 VM_ALLOC_IFNOTCACHED); 1517 if (rtm == NULL) { 1518 /* 1519 * Shift the allocated pages to the 1520 * beginning of the array. 1521 */ 1522 for (j = 0; j < i; j++) { 1523 marray[j] = marray[j + tpindex + 1 - 1524 startpindex]; 1525 } 1526 break; 1527 } 1528 1529 marray[tpindex - startpindex] = rtm; 1530 } 1531 } else { 1532 startpindex = 0; 1533 i = 0; 1534 } 1535 1536 marray[i] = m; 1537 /* page offset of the required page */ 1538 *reqpage = i; 1539 1540 tpindex = pindex + 1; 1541 i++; 1542 1543 /* 1544 * scan forward for the read ahead pages 1545 */ 1546 endpindex = tpindex + rahead; 1547 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex) 1548 endpindex = rtm->pindex; 1549 if (endpindex > object->size) 1550 endpindex = object->size; 1551 1552 for (; tpindex < endpindex; i++, tpindex++) { 1553 1554 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1555 VM_ALLOC_IFNOTCACHED); 1556 if (rtm == NULL) { 1557 break; 1558 } 1559 1560 marray[i] = rtm; 1561 } 1562 1563 /* return number of pages */ 1564 return i; 1565 } 1566 1567 /* 1568 * Block entry into the machine-independent layer's page fault handler by 1569 * the calling thread. Subsequent calls to vm_fault() by that thread will 1570 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1571 * spurious page faults. 1572 */ 1573 int 1574 vm_fault_disable_pagefaults(void) 1575 { 1576 1577 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1578 } 1579 1580 void 1581 vm_fault_enable_pagefaults(int save) 1582 { 1583 1584 curthread_pflags_restore(save); 1585 } 1586