1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/racct.h> 90 #include <sys/refcount.h> 91 #include <sys/resourcevar.h> 92 #include <sys/rwlock.h> 93 #include <sys/sysctl.h> 94 #include <sys/vmmeter.h> 95 #include <sys/vnode.h> 96 #ifdef KTRACE 97 #include <sys/ktrace.h> 98 #endif 99 100 #include <vm/vm.h> 101 #include <vm/vm_param.h> 102 #include <vm/pmap.h> 103 #include <vm/vm_map.h> 104 #include <vm/vm_object.h> 105 #include <vm/vm_page.h> 106 #include <vm/vm_pageout.h> 107 #include <vm/vm_kern.h> 108 #include <vm/vm_pager.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_reserv.h> 111 112 #define PFBAK 4 113 #define PFFOR 4 114 115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 116 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 117 118 #define VM_FAULT_DONTNEED_MIN 1048576 119 120 struct faultstate { 121 vm_page_t m; 122 vm_object_t object; 123 vm_pindex_t pindex; 124 vm_page_t first_m; 125 vm_object_t first_object; 126 vm_pindex_t first_pindex; 127 vm_map_t map; 128 vm_map_entry_t entry; 129 int map_generation; 130 bool lookup_still_valid; 131 struct vnode *vp; 132 }; 133 134 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 135 int ahead); 136 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 137 int backward, int forward, bool obj_locked); 138 139 static int vm_pfault_oom_attempts = 3; 140 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 141 &vm_pfault_oom_attempts, 0, 142 "Number of page allocation attempts in page fault handler before it " 143 "triggers OOM handling"); 144 145 static int vm_pfault_oom_wait = 10; 146 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 147 &vm_pfault_oom_wait, 0, 148 "Number of seconds to wait for free pages before retrying " 149 "the page fault handler"); 150 151 static inline void 152 release_page(struct faultstate *fs) 153 { 154 155 vm_page_xunbusy(fs->m); 156 vm_page_lock(fs->m); 157 vm_page_deactivate(fs->m); 158 vm_page_unlock(fs->m); 159 fs->m = NULL; 160 } 161 162 static inline void 163 unlock_map(struct faultstate *fs) 164 { 165 166 if (fs->lookup_still_valid) { 167 vm_map_lookup_done(fs->map, fs->entry); 168 fs->lookup_still_valid = false; 169 } 170 } 171 172 static void 173 unlock_vp(struct faultstate *fs) 174 { 175 176 if (fs->vp != NULL) { 177 vput(fs->vp); 178 fs->vp = NULL; 179 } 180 } 181 182 static void 183 unlock_and_deallocate(struct faultstate *fs) 184 { 185 186 vm_object_pip_wakeup(fs->object); 187 VM_OBJECT_WUNLOCK(fs->object); 188 if (fs->object != fs->first_object) { 189 VM_OBJECT_WLOCK(fs->first_object); 190 vm_page_free(fs->first_m); 191 vm_object_pip_wakeup(fs->first_object); 192 VM_OBJECT_WUNLOCK(fs->first_object); 193 fs->first_m = NULL; 194 } 195 vm_object_deallocate(fs->first_object); 196 unlock_map(fs); 197 unlock_vp(fs); 198 } 199 200 static void 201 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 202 vm_prot_t fault_type, int fault_flags, bool set_wd) 203 { 204 bool need_dirty; 205 206 if (((prot & VM_PROT_WRITE) == 0 && 207 (fault_flags & VM_FAULT_DIRTY) == 0) || 208 (m->oflags & VPO_UNMANAGED) != 0) 209 return; 210 211 VM_OBJECT_ASSERT_LOCKED(m->object); 212 213 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 214 (fault_flags & VM_FAULT_WIRE) == 0) || 215 (fault_flags & VM_FAULT_DIRTY) != 0; 216 217 if (set_wd) 218 vm_object_set_writeable_dirty(m->object); 219 else 220 /* 221 * If two callers of vm_fault_dirty() with set_wd == 222 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 223 * flag set, other with flag clear, race, it is 224 * possible for the no-NOSYNC thread to see m->dirty 225 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 226 * around manipulation of VPO_NOSYNC and 227 * vm_page_dirty() call, to avoid the race and keep 228 * m->oflags consistent. 229 */ 230 vm_page_lock(m); 231 232 /* 233 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 234 * if the page is already dirty to prevent data written with 235 * the expectation of being synced from not being synced. 236 * Likewise if this entry does not request NOSYNC then make 237 * sure the page isn't marked NOSYNC. Applications sharing 238 * data should use the same flags to avoid ping ponging. 239 */ 240 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 241 if (m->dirty == 0) { 242 m->oflags |= VPO_NOSYNC; 243 } 244 } else { 245 m->oflags &= ~VPO_NOSYNC; 246 } 247 248 /* 249 * If the fault is a write, we know that this page is being 250 * written NOW so dirty it explicitly to save on 251 * pmap_is_modified() calls later. 252 * 253 * Also, since the page is now dirty, we can possibly tell 254 * the pager to release any swap backing the page. Calling 255 * the pager requires a write lock on the object. 256 */ 257 if (need_dirty) 258 vm_page_dirty(m); 259 if (!set_wd) 260 vm_page_unlock(m); 261 else if (need_dirty) 262 vm_pager_page_unswapped(m); 263 } 264 265 /* 266 * Unlocks fs.first_object and fs.map on success. 267 */ 268 static int 269 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 270 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 271 { 272 vm_page_t m, m_map; 273 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 274 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 275 VM_NRESERVLEVEL > 0 276 vm_page_t m_super; 277 int flags; 278 #endif 279 int psind, rv; 280 281 MPASS(fs->vp == NULL); 282 m = vm_page_lookup(fs->first_object, fs->first_pindex); 283 /* A busy page can be mapped for read|execute access. */ 284 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 285 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 286 return (KERN_FAILURE); 287 m_map = m; 288 psind = 0; 289 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 290 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 291 VM_NRESERVLEVEL > 0 292 if ((m->flags & PG_FICTITIOUS) == 0 && 293 (m_super = vm_reserv_to_superpage(m)) != NULL && 294 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 295 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 296 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 297 (pagesizes[m_super->psind] - 1)) && !wired && 298 pmap_ps_enabled(fs->map->pmap)) { 299 flags = PS_ALL_VALID; 300 if ((prot & VM_PROT_WRITE) != 0) { 301 /* 302 * Create a superpage mapping allowing write access 303 * only if none of the constituent pages are busy and 304 * all of them are already dirty (except possibly for 305 * the page that was faulted on). 306 */ 307 flags |= PS_NONE_BUSY; 308 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 309 flags |= PS_ALL_DIRTY; 310 } 311 if (vm_page_ps_test(m_super, flags, m)) { 312 m_map = m_super; 313 psind = m_super->psind; 314 vaddr = rounddown2(vaddr, pagesizes[psind]); 315 /* Preset the modified bit for dirty superpages. */ 316 if ((flags & PS_ALL_DIRTY) != 0) 317 fault_type |= VM_PROT_WRITE; 318 } 319 } 320 #endif 321 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 322 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 323 if (rv != KERN_SUCCESS) 324 return (rv); 325 if (m_hold != NULL) { 326 *m_hold = m; 327 vm_page_wire(m); 328 } 329 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 330 if (psind == 0 && !wired) 331 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 332 VM_OBJECT_RUNLOCK(fs->first_object); 333 vm_map_lookup_done(fs->map, fs->entry); 334 curthread->td_ru.ru_minflt++; 335 return (KERN_SUCCESS); 336 } 337 338 static void 339 vm_fault_restore_map_lock(struct faultstate *fs) 340 { 341 342 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 343 MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); 344 345 if (!vm_map_trylock_read(fs->map)) { 346 VM_OBJECT_WUNLOCK(fs->first_object); 347 vm_map_lock_read(fs->map); 348 VM_OBJECT_WLOCK(fs->first_object); 349 } 350 fs->lookup_still_valid = true; 351 } 352 353 static void 354 vm_fault_populate_check_page(vm_page_t m) 355 { 356 357 /* 358 * Check each page to ensure that the pager is obeying the 359 * interface: the page must be installed in the object, fully 360 * valid, and exclusively busied. 361 */ 362 MPASS(m != NULL); 363 MPASS(m->valid == VM_PAGE_BITS_ALL); 364 MPASS(vm_page_xbusied(m)); 365 } 366 367 static void 368 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 369 vm_pindex_t last) 370 { 371 vm_page_t m; 372 vm_pindex_t pidx; 373 374 VM_OBJECT_ASSERT_WLOCKED(object); 375 MPASS(first <= last); 376 for (pidx = first, m = vm_page_lookup(object, pidx); 377 pidx <= last; pidx++, m = vm_page_next(m)) { 378 vm_fault_populate_check_page(m); 379 vm_page_lock(m); 380 vm_page_deactivate(m); 381 vm_page_unlock(m); 382 vm_page_xunbusy(m); 383 } 384 } 385 386 static int 387 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type, 388 int fault_flags, boolean_t wired, vm_page_t *m_hold) 389 { 390 struct mtx *m_mtx; 391 vm_offset_t vaddr; 392 vm_page_t m; 393 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 394 int i, npages, psind, rv; 395 396 MPASS(fs->object == fs->first_object); 397 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 398 MPASS(REFCOUNT_COUNT(fs->first_object->paging_in_progress) > 0); 399 MPASS(fs->first_object->backing_object == NULL); 400 MPASS(fs->lookup_still_valid); 401 402 pager_first = OFF_TO_IDX(fs->entry->offset); 403 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 404 unlock_map(fs); 405 unlock_vp(fs); 406 407 /* 408 * Call the pager (driver) populate() method. 409 * 410 * There is no guarantee that the method will be called again 411 * if the current fault is for read, and a future fault is 412 * for write. Report the entry's maximum allowed protection 413 * to the driver. 414 */ 415 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 416 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 417 418 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 419 if (rv == VM_PAGER_BAD) { 420 /* 421 * VM_PAGER_BAD is the backdoor for a pager to request 422 * normal fault handling. 423 */ 424 vm_fault_restore_map_lock(fs); 425 if (fs->map->timestamp != fs->map_generation) 426 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 427 return (KERN_NOT_RECEIVER); 428 } 429 if (rv != VM_PAGER_OK) 430 return (KERN_FAILURE); /* AKA SIGSEGV */ 431 432 /* Ensure that the driver is obeying the interface. */ 433 MPASS(pager_first <= pager_last); 434 MPASS(fs->first_pindex <= pager_last); 435 MPASS(fs->first_pindex >= pager_first); 436 MPASS(pager_last < fs->first_object->size); 437 438 vm_fault_restore_map_lock(fs); 439 if (fs->map->timestamp != fs->map_generation) { 440 vm_fault_populate_cleanup(fs->first_object, pager_first, 441 pager_last); 442 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 443 } 444 445 /* 446 * The map is unchanged after our last unlock. Process the fault. 447 * 448 * The range [pager_first, pager_last] that is given to the 449 * pager is only a hint. The pager may populate any range 450 * within the object that includes the requested page index. 451 * In case the pager expanded the range, clip it to fit into 452 * the map entry. 453 */ 454 map_first = OFF_TO_IDX(fs->entry->offset); 455 if (map_first > pager_first) { 456 vm_fault_populate_cleanup(fs->first_object, pager_first, 457 map_first - 1); 458 pager_first = map_first; 459 } 460 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 461 if (map_last < pager_last) { 462 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 463 pager_last); 464 pager_last = map_last; 465 } 466 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 467 pidx <= pager_last; 468 pidx += npages, m = vm_page_next(&m[npages - 1])) { 469 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 470 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 471 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) 472 psind = m->psind; 473 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 474 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 475 !pmap_ps_enabled(fs->map->pmap) || wired)) 476 psind = 0; 477 #else 478 psind = 0; 479 #endif 480 npages = atop(pagesizes[psind]); 481 for (i = 0; i < npages; i++) { 482 vm_fault_populate_check_page(&m[i]); 483 vm_fault_dirty(fs->entry, &m[i], prot, fault_type, 484 fault_flags, true); 485 } 486 VM_OBJECT_WUNLOCK(fs->first_object); 487 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | 488 (wired ? PMAP_ENTER_WIRED : 0), psind); 489 #if defined(__amd64__) 490 if (psind > 0 && rv == KERN_FAILURE) { 491 for (i = 0; i < npages; i++) { 492 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 493 &m[i], prot, fault_type | 494 (wired ? PMAP_ENTER_WIRED : 0), 0); 495 MPASS(rv == KERN_SUCCESS); 496 } 497 } 498 #else 499 MPASS(rv == KERN_SUCCESS); 500 #endif 501 VM_OBJECT_WLOCK(fs->first_object); 502 m_mtx = NULL; 503 for (i = 0; i < npages; i++) { 504 if ((fault_flags & VM_FAULT_WIRE) != 0) { 505 vm_page_wire(&m[i]); 506 } else { 507 vm_page_change_lock(&m[i], &m_mtx); 508 vm_page_activate(&m[i]); 509 } 510 if (m_hold != NULL && m[i].pindex == fs->first_pindex) { 511 *m_hold = &m[i]; 512 vm_page_wire(&m[i]); 513 } 514 vm_page_xunbusy(&m[i]); 515 } 516 if (m_mtx != NULL) 517 mtx_unlock(m_mtx); 518 } 519 curthread->td_ru.ru_majflt++; 520 return (KERN_SUCCESS); 521 } 522 523 /* 524 * vm_fault: 525 * 526 * Handle a page fault occurring at the given address, 527 * requiring the given permissions, in the map specified. 528 * If successful, the page is inserted into the 529 * associated physical map. 530 * 531 * NOTE: the given address should be truncated to the 532 * proper page address. 533 * 534 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 535 * a standard error specifying why the fault is fatal is returned. 536 * 537 * The map in question must be referenced, and remains so. 538 * Caller may hold no locks. 539 */ 540 int 541 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 542 int fault_flags) 543 { 544 struct thread *td; 545 int result; 546 547 td = curthread; 548 if ((td->td_pflags & TDP_NOFAULTING) != 0) 549 return (KERN_PROTECTION_FAILURE); 550 #ifdef KTRACE 551 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 552 ktrfault(vaddr, fault_type); 553 #endif 554 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 555 NULL); 556 #ifdef KTRACE 557 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 558 ktrfaultend(result); 559 #endif 560 return (result); 561 } 562 563 int 564 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 565 int fault_flags, vm_page_t *m_hold) 566 { 567 struct faultstate fs; 568 struct vnode *vp; 569 struct domainset *dset; 570 vm_object_t next_object, retry_object; 571 vm_offset_t e_end, e_start; 572 vm_pindex_t retry_pindex; 573 vm_prot_t prot, retry_prot; 574 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 575 int locked, nera, oom, result, rv; 576 u_char behavior; 577 boolean_t wired; /* Passed by reference. */ 578 bool dead, hardfault, is_first_object_locked; 579 580 VM_CNT_INC(v_vm_faults); 581 fs.vp = NULL; 582 faultcount = 0; 583 nera = -1; 584 hardfault = false; 585 586 RetryFault: 587 oom = 0; 588 RetryFault_oom: 589 590 /* 591 * Find the backing store object and offset into it to begin the 592 * search. 593 */ 594 fs.map = map; 595 result = vm_map_lookup(&fs.map, vaddr, fault_type | 596 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 597 &fs.first_pindex, &prot, &wired); 598 if (result != KERN_SUCCESS) { 599 unlock_vp(&fs); 600 return (result); 601 } 602 603 fs.map_generation = fs.map->timestamp; 604 605 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 606 panic("%s: fault on nofault entry, addr: %#lx", 607 __func__, (u_long)vaddr); 608 } 609 610 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 611 fs.entry->wiring_thread != curthread) { 612 vm_map_unlock_read(fs.map); 613 vm_map_lock(fs.map); 614 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 615 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 616 unlock_vp(&fs); 617 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 618 vm_map_unlock_and_wait(fs.map, 0); 619 } else 620 vm_map_unlock(fs.map); 621 goto RetryFault; 622 } 623 624 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 625 626 if (wired) 627 fault_type = prot | (fault_type & VM_PROT_COPY); 628 else 629 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 630 ("!wired && VM_FAULT_WIRE")); 631 632 /* 633 * Try to avoid lock contention on the top-level object through 634 * special-case handling of some types of page faults, specifically, 635 * those that are both (1) mapping an existing page from the top- 636 * level object and (2) not having to mark that object as containing 637 * dirty pages. Under these conditions, a read lock on the top-level 638 * object suffices, allowing multiple page faults of a similar type to 639 * run in parallel on the same top-level object. 640 */ 641 if (fs.vp == NULL /* avoid locked vnode leak */ && 642 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 643 /* avoid calling vm_object_set_writeable_dirty() */ 644 ((prot & VM_PROT_WRITE) == 0 || 645 (fs.first_object->type != OBJT_VNODE && 646 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 647 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 648 VM_OBJECT_RLOCK(fs.first_object); 649 if ((prot & VM_PROT_WRITE) == 0 || 650 (fs.first_object->type != OBJT_VNODE && 651 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 652 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 653 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 654 fault_flags, wired, m_hold); 655 if (rv == KERN_SUCCESS) 656 return (rv); 657 } 658 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 659 VM_OBJECT_RUNLOCK(fs.first_object); 660 VM_OBJECT_WLOCK(fs.first_object); 661 } 662 } else { 663 VM_OBJECT_WLOCK(fs.first_object); 664 } 665 666 /* 667 * Make a reference to this object to prevent its disposal while we 668 * are messing with it. Once we have the reference, the map is free 669 * to be diddled. Since objects reference their shadows (and copies), 670 * they will stay around as well. 671 * 672 * Bump the paging-in-progress count to prevent size changes (e.g. 673 * truncation operations) during I/O. 674 */ 675 vm_object_reference_locked(fs.first_object); 676 vm_object_pip_add(fs.first_object, 1); 677 678 fs.lookup_still_valid = true; 679 680 fs.first_m = NULL; 681 682 /* 683 * Search for the page at object/offset. 684 */ 685 fs.object = fs.first_object; 686 fs.pindex = fs.first_pindex; 687 while (TRUE) { 688 /* 689 * If the object is marked for imminent termination, 690 * we retry here, since the collapse pass has raced 691 * with us. Otherwise, if we see terminally dead 692 * object, return fail. 693 */ 694 if ((fs.object->flags & OBJ_DEAD) != 0) { 695 dead = fs.object->type == OBJT_DEAD; 696 unlock_and_deallocate(&fs); 697 if (dead) 698 return (KERN_PROTECTION_FAILURE); 699 pause("vmf_de", 1); 700 goto RetryFault; 701 } 702 703 /* 704 * See if page is resident 705 */ 706 fs.m = vm_page_lookup(fs.object, fs.pindex); 707 if (fs.m != NULL) { 708 /* 709 * Wait/Retry if the page is busy. We have to do this 710 * if the page is either exclusive or shared busy 711 * because the vm_pager may be using read busy for 712 * pageouts (and even pageins if it is the vnode 713 * pager), and we could end up trying to pagein and 714 * pageout the same page simultaneously. 715 * 716 * We can theoretically allow the busy case on a read 717 * fault if the page is marked valid, but since such 718 * pages are typically already pmap'd, putting that 719 * special case in might be more effort then it is 720 * worth. We cannot under any circumstances mess 721 * around with a shared busied page except, perhaps, 722 * to pmap it. 723 */ 724 if (vm_page_busied(fs.m)) { 725 /* 726 * Reference the page before unlocking and 727 * sleeping so that the page daemon is less 728 * likely to reclaim it. 729 */ 730 vm_page_aflag_set(fs.m, PGA_REFERENCED); 731 if (fs.object != fs.first_object) { 732 if (!VM_OBJECT_TRYWLOCK( 733 fs.first_object)) { 734 VM_OBJECT_WUNLOCK(fs.object); 735 VM_OBJECT_WLOCK(fs.first_object); 736 VM_OBJECT_WLOCK(fs.object); 737 } 738 vm_page_free(fs.first_m); 739 vm_object_pip_wakeup(fs.first_object); 740 VM_OBJECT_WUNLOCK(fs.first_object); 741 fs.first_m = NULL; 742 } 743 unlock_map(&fs); 744 if (fs.m == vm_page_lookup(fs.object, 745 fs.pindex)) { 746 vm_page_sleep_if_busy(fs.m, "vmpfw"); 747 } 748 vm_object_pip_wakeup(fs.object); 749 VM_OBJECT_WUNLOCK(fs.object); 750 VM_CNT_INC(v_intrans); 751 vm_object_deallocate(fs.first_object); 752 goto RetryFault; 753 } 754 755 /* 756 * Mark page busy for other processes, and the 757 * pagedaemon. If it still isn't completely valid 758 * (readable), jump to readrest, else break-out ( we 759 * found the page ). 760 */ 761 vm_page_xbusy(fs.m); 762 if (fs.m->valid != VM_PAGE_BITS_ALL) 763 goto readrest; 764 break; /* break to PAGE HAS BEEN FOUND */ 765 } 766 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 767 768 /* 769 * Page is not resident. If the pager might contain the page 770 * or this is the beginning of the search, allocate a new 771 * page. (Default objects are zero-fill, so there is no real 772 * pager for them.) 773 */ 774 if (fs.object->type != OBJT_DEFAULT || 775 fs.object == fs.first_object) { 776 if (fs.pindex >= fs.object->size) { 777 unlock_and_deallocate(&fs); 778 return (KERN_PROTECTION_FAILURE); 779 } 780 781 if (fs.object == fs.first_object && 782 (fs.first_object->flags & OBJ_POPULATE) != 0 && 783 fs.first_object->shadow_count == 0) { 784 rv = vm_fault_populate(&fs, prot, fault_type, 785 fault_flags, wired, m_hold); 786 switch (rv) { 787 case KERN_SUCCESS: 788 case KERN_FAILURE: 789 unlock_and_deallocate(&fs); 790 return (rv); 791 case KERN_RESOURCE_SHORTAGE: 792 unlock_and_deallocate(&fs); 793 goto RetryFault; 794 case KERN_NOT_RECEIVER: 795 /* 796 * Pager's populate() method 797 * returned VM_PAGER_BAD. 798 */ 799 break; 800 default: 801 panic("inconsistent return codes"); 802 } 803 } 804 805 /* 806 * Allocate a new page for this object/offset pair. 807 * 808 * Unlocked read of the p_flag is harmless. At 809 * worst, the P_KILLED might be not observed 810 * there, and allocation can fail, causing 811 * restart and new reading of the p_flag. 812 */ 813 dset = fs.object->domain.dr_policy; 814 if (dset == NULL) 815 dset = curthread->td_domain.dr_policy; 816 if (!vm_page_count_severe_set(&dset->ds_mask) || 817 P_KILLED(curproc)) { 818 #if VM_NRESERVLEVEL > 0 819 vm_object_color(fs.object, atop(vaddr) - 820 fs.pindex); 821 #endif 822 alloc_req = P_KILLED(curproc) ? 823 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 824 if (fs.object->type != OBJT_VNODE && 825 fs.object->backing_object == NULL) 826 alloc_req |= VM_ALLOC_ZERO; 827 fs.m = vm_page_alloc(fs.object, fs.pindex, 828 alloc_req); 829 } 830 if (fs.m == NULL) { 831 unlock_and_deallocate(&fs); 832 if (vm_pfault_oom_attempts < 0 || 833 oom < vm_pfault_oom_attempts) { 834 oom++; 835 vm_waitpfault(dset, 836 vm_pfault_oom_wait * hz); 837 goto RetryFault_oom; 838 } 839 if (bootverbose) 840 printf( 841 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 842 curproc->p_pid, curproc->p_comm); 843 vm_pageout_oom(VM_OOM_MEM_PF); 844 goto RetryFault; 845 } 846 } 847 848 readrest: 849 /* 850 * At this point, we have either allocated a new page or found 851 * an existing page that is only partially valid. 852 * 853 * We hold a reference on the current object and the page is 854 * exclusive busied. 855 */ 856 857 /* 858 * If the pager for the current object might have the page, 859 * then determine the number of additional pages to read and 860 * potentially reprioritize previously read pages for earlier 861 * reclamation. These operations should only be performed 862 * once per page fault. Even if the current pager doesn't 863 * have the page, the number of additional pages to read will 864 * apply to subsequent objects in the shadow chain. 865 */ 866 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 867 !P_KILLED(curproc)) { 868 KASSERT(fs.lookup_still_valid, ("map unlocked")); 869 era = fs.entry->read_ahead; 870 behavior = vm_map_entry_behavior(fs.entry); 871 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 872 nera = 0; 873 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 874 nera = VM_FAULT_READ_AHEAD_MAX; 875 if (vaddr == fs.entry->next_read) 876 vm_fault_dontneed(&fs, vaddr, nera); 877 } else if (vaddr == fs.entry->next_read) { 878 /* 879 * This is a sequential fault. Arithmetically 880 * increase the requested number of pages in 881 * the read-ahead window. The requested 882 * number of pages is "# of sequential faults 883 * x (read ahead min + 1) + read ahead min" 884 */ 885 nera = VM_FAULT_READ_AHEAD_MIN; 886 if (era > 0) { 887 nera += era + 1; 888 if (nera > VM_FAULT_READ_AHEAD_MAX) 889 nera = VM_FAULT_READ_AHEAD_MAX; 890 } 891 if (era == VM_FAULT_READ_AHEAD_MAX) 892 vm_fault_dontneed(&fs, vaddr, nera); 893 } else { 894 /* 895 * This is a non-sequential fault. 896 */ 897 nera = 0; 898 } 899 if (era != nera) { 900 /* 901 * A read lock on the map suffices to update 902 * the read ahead count safely. 903 */ 904 fs.entry->read_ahead = nera; 905 } 906 907 /* 908 * Prepare for unlocking the map. Save the map 909 * entry's start and end addresses, which are used to 910 * optimize the size of the pager operation below. 911 * Even if the map entry's addresses change after 912 * unlocking the map, using the saved addresses is 913 * safe. 914 */ 915 e_start = fs.entry->start; 916 e_end = fs.entry->end; 917 } 918 919 /* 920 * Call the pager to retrieve the page if there is a chance 921 * that the pager has it, and potentially retrieve additional 922 * pages at the same time. 923 */ 924 if (fs.object->type != OBJT_DEFAULT) { 925 /* 926 * Release the map lock before locking the vnode or 927 * sleeping in the pager. (If the current object has 928 * a shadow, then an earlier iteration of this loop 929 * may have already unlocked the map.) 930 */ 931 unlock_map(&fs); 932 933 if (fs.object->type == OBJT_VNODE && 934 (vp = fs.object->handle) != fs.vp) { 935 /* 936 * Perform an unlock in case the desired vnode 937 * changed while the map was unlocked during a 938 * retry. 939 */ 940 unlock_vp(&fs); 941 942 locked = VOP_ISLOCKED(vp); 943 if (locked != LK_EXCLUSIVE) 944 locked = LK_SHARED; 945 946 /* 947 * We must not sleep acquiring the vnode lock 948 * while we have the page exclusive busied or 949 * the object's paging-in-progress count 950 * incremented. Otherwise, we could deadlock. 951 */ 952 error = vget(vp, locked | LK_CANRECURSE | 953 LK_NOWAIT, curthread); 954 if (error != 0) { 955 vhold(vp); 956 release_page(&fs); 957 unlock_and_deallocate(&fs); 958 error = vget(vp, locked | LK_RETRY | 959 LK_CANRECURSE, curthread); 960 vdrop(vp); 961 fs.vp = vp; 962 KASSERT(error == 0, 963 ("vm_fault: vget failed")); 964 goto RetryFault; 965 } 966 fs.vp = vp; 967 } 968 KASSERT(fs.vp == NULL || !fs.map->system_map, 969 ("vm_fault: vnode-backed object mapped by system map")); 970 971 /* 972 * Page in the requested page and hint the pager, 973 * that it may bring up surrounding pages. 974 */ 975 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 976 P_KILLED(curproc)) { 977 behind = 0; 978 ahead = 0; 979 } else { 980 /* Is this a sequential fault? */ 981 if (nera > 0) { 982 behind = 0; 983 ahead = nera; 984 } else { 985 /* 986 * Request a cluster of pages that is 987 * aligned to a VM_FAULT_READ_DEFAULT 988 * page offset boundary within the 989 * object. Alignment to a page offset 990 * boundary is more likely to coincide 991 * with the underlying file system 992 * block than alignment to a virtual 993 * address boundary. 994 */ 995 cluster_offset = fs.pindex % 996 VM_FAULT_READ_DEFAULT; 997 behind = ulmin(cluster_offset, 998 atop(vaddr - e_start)); 999 ahead = VM_FAULT_READ_DEFAULT - 1 - 1000 cluster_offset; 1001 } 1002 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 1003 } 1004 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 1005 &behind, &ahead); 1006 if (rv == VM_PAGER_OK) { 1007 faultcount = behind + 1 + ahead; 1008 hardfault = true; 1009 break; /* break to PAGE HAS BEEN FOUND */ 1010 } 1011 if (rv == VM_PAGER_ERROR) 1012 printf("vm_fault: pager read error, pid %d (%s)\n", 1013 curproc->p_pid, curproc->p_comm); 1014 1015 /* 1016 * If an I/O error occurred or the requested page was 1017 * outside the range of the pager, clean up and return 1018 * an error. 1019 */ 1020 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1021 if (!vm_page_wired(fs.m)) 1022 vm_page_free(fs.m); 1023 else 1024 vm_page_xunbusy(fs.m); 1025 fs.m = NULL; 1026 unlock_and_deallocate(&fs); 1027 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 1028 KERN_PROTECTION_FAILURE); 1029 } 1030 1031 /* 1032 * The requested page does not exist at this object/ 1033 * offset. Remove the invalid page from the object, 1034 * waking up anyone waiting for it, and continue on to 1035 * the next object. However, if this is the top-level 1036 * object, we must leave the busy page in place to 1037 * prevent another process from rushing past us, and 1038 * inserting the page in that object at the same time 1039 * that we are. 1040 */ 1041 if (fs.object != fs.first_object) { 1042 if (!vm_page_wired(fs.m)) 1043 vm_page_free(fs.m); 1044 else 1045 vm_page_xunbusy(fs.m); 1046 fs.m = NULL; 1047 } 1048 } 1049 1050 /* 1051 * We get here if the object has default pager (or unwiring) 1052 * or the pager doesn't have the page. 1053 */ 1054 if (fs.object == fs.first_object) 1055 fs.first_m = fs.m; 1056 1057 /* 1058 * Move on to the next object. Lock the next object before 1059 * unlocking the current one. 1060 */ 1061 next_object = fs.object->backing_object; 1062 if (next_object == NULL) { 1063 /* 1064 * If there's no object left, fill the page in the top 1065 * object with zeros. 1066 */ 1067 if (fs.object != fs.first_object) { 1068 vm_object_pip_wakeup(fs.object); 1069 VM_OBJECT_WUNLOCK(fs.object); 1070 1071 fs.object = fs.first_object; 1072 fs.pindex = fs.first_pindex; 1073 fs.m = fs.first_m; 1074 VM_OBJECT_WLOCK(fs.object); 1075 } 1076 fs.first_m = NULL; 1077 1078 /* 1079 * Zero the page if necessary and mark it valid. 1080 */ 1081 if ((fs.m->flags & PG_ZERO) == 0) { 1082 pmap_zero_page(fs.m); 1083 } else { 1084 VM_CNT_INC(v_ozfod); 1085 } 1086 VM_CNT_INC(v_zfod); 1087 fs.m->valid = VM_PAGE_BITS_ALL; 1088 /* Don't try to prefault neighboring pages. */ 1089 faultcount = 1; 1090 break; /* break to PAGE HAS BEEN FOUND */ 1091 } else { 1092 KASSERT(fs.object != next_object, 1093 ("object loop %p", next_object)); 1094 VM_OBJECT_WLOCK(next_object); 1095 vm_object_pip_add(next_object, 1); 1096 if (fs.object != fs.first_object) 1097 vm_object_pip_wakeup(fs.object); 1098 fs.pindex += 1099 OFF_TO_IDX(fs.object->backing_object_offset); 1100 VM_OBJECT_WUNLOCK(fs.object); 1101 fs.object = next_object; 1102 } 1103 } 1104 1105 vm_page_assert_xbusied(fs.m); 1106 1107 /* 1108 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1109 * is held.] 1110 */ 1111 1112 /* 1113 * If the page is being written, but isn't already owned by the 1114 * top-level object, we have to copy it into a new page owned by the 1115 * top-level object. 1116 */ 1117 if (fs.object != fs.first_object) { 1118 /* 1119 * We only really need to copy if we want to write it. 1120 */ 1121 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1122 /* 1123 * This allows pages to be virtually copied from a 1124 * backing_object into the first_object, where the 1125 * backing object has no other refs to it, and cannot 1126 * gain any more refs. Instead of a bcopy, we just 1127 * move the page from the backing object to the 1128 * first object. Note that we must mark the page 1129 * dirty in the first object so that it will go out 1130 * to swap when needed. 1131 */ 1132 is_first_object_locked = false; 1133 if ( 1134 /* 1135 * Only one shadow object 1136 */ 1137 (fs.object->shadow_count == 1) && 1138 /* 1139 * No COW refs, except us 1140 */ 1141 (fs.object->ref_count == 1) && 1142 /* 1143 * No one else can look this object up 1144 */ 1145 (fs.object->handle == NULL) && 1146 /* 1147 * No other ways to look the object up 1148 */ 1149 ((fs.object->type == OBJT_DEFAULT) || 1150 (fs.object->type == OBJT_SWAP)) && 1151 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1152 /* 1153 * We don't chase down the shadow chain 1154 */ 1155 fs.object == fs.first_object->backing_object) { 1156 1157 (void)vm_page_remove(fs.m); 1158 vm_page_replace_checked(fs.m, fs.first_object, 1159 fs.first_pindex, fs.first_m); 1160 vm_page_free(fs.first_m); 1161 vm_page_dirty(fs.m); 1162 #if VM_NRESERVLEVEL > 0 1163 /* 1164 * Rename the reservation. 1165 */ 1166 vm_reserv_rename(fs.m, fs.first_object, 1167 fs.object, OFF_TO_IDX( 1168 fs.first_object->backing_object_offset)); 1169 #endif 1170 /* 1171 * Removing the page from the backing object 1172 * unbusied it. 1173 */ 1174 vm_page_xbusy(fs.m); 1175 fs.first_m = fs.m; 1176 fs.m = NULL; 1177 VM_CNT_INC(v_cow_optim); 1178 } else { 1179 /* 1180 * Oh, well, lets copy it. 1181 */ 1182 pmap_copy_page(fs.m, fs.first_m); 1183 fs.first_m->valid = VM_PAGE_BITS_ALL; 1184 if (wired && (fault_flags & 1185 VM_FAULT_WIRE) == 0) { 1186 vm_page_wire(fs.first_m); 1187 vm_page_unwire(fs.m, PQ_INACTIVE); 1188 } 1189 /* 1190 * We no longer need the old page or object. 1191 */ 1192 release_page(&fs); 1193 } 1194 /* 1195 * fs.object != fs.first_object due to above 1196 * conditional 1197 */ 1198 vm_object_pip_wakeup(fs.object); 1199 VM_OBJECT_WUNLOCK(fs.object); 1200 1201 /* 1202 * We only try to prefault read-only mappings to the 1203 * neighboring pages when this copy-on-write fault is 1204 * a hard fault. In other cases, trying to prefault 1205 * is typically wasted effort. 1206 */ 1207 if (faultcount == 0) 1208 faultcount = 1; 1209 1210 /* 1211 * Only use the new page below... 1212 */ 1213 fs.object = fs.first_object; 1214 fs.pindex = fs.first_pindex; 1215 fs.m = fs.first_m; 1216 if (!is_first_object_locked) 1217 VM_OBJECT_WLOCK(fs.object); 1218 VM_CNT_INC(v_cow_faults); 1219 curthread->td_cow++; 1220 } else { 1221 prot &= ~VM_PROT_WRITE; 1222 } 1223 } 1224 1225 /* 1226 * We must verify that the maps have not changed since our last 1227 * lookup. 1228 */ 1229 if (!fs.lookup_still_valid) { 1230 if (!vm_map_trylock_read(fs.map)) { 1231 release_page(&fs); 1232 unlock_and_deallocate(&fs); 1233 goto RetryFault; 1234 } 1235 fs.lookup_still_valid = true; 1236 if (fs.map->timestamp != fs.map_generation) { 1237 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1238 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1239 1240 /* 1241 * If we don't need the page any longer, put it on the inactive 1242 * list (the easiest thing to do here). If no one needs it, 1243 * pageout will grab it eventually. 1244 */ 1245 if (result != KERN_SUCCESS) { 1246 release_page(&fs); 1247 unlock_and_deallocate(&fs); 1248 1249 /* 1250 * If retry of map lookup would have blocked then 1251 * retry fault from start. 1252 */ 1253 if (result == KERN_FAILURE) 1254 goto RetryFault; 1255 return (result); 1256 } 1257 if ((retry_object != fs.first_object) || 1258 (retry_pindex != fs.first_pindex)) { 1259 release_page(&fs); 1260 unlock_and_deallocate(&fs); 1261 goto RetryFault; 1262 } 1263 1264 /* 1265 * Check whether the protection has changed or the object has 1266 * been copied while we left the map unlocked. Changing from 1267 * read to write permission is OK - we leave the page 1268 * write-protected, and catch the write fault. Changing from 1269 * write to read permission means that we can't mark the page 1270 * write-enabled after all. 1271 */ 1272 prot &= retry_prot; 1273 fault_type &= retry_prot; 1274 if (prot == 0) { 1275 release_page(&fs); 1276 unlock_and_deallocate(&fs); 1277 goto RetryFault; 1278 } 1279 1280 /* Reassert because wired may have changed. */ 1281 KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0, 1282 ("!wired && VM_FAULT_WIRE")); 1283 } 1284 } 1285 1286 /* 1287 * If the page was filled by a pager, save the virtual address that 1288 * should be faulted on next under a sequential access pattern to the 1289 * map entry. A read lock on the map suffices to update this address 1290 * safely. 1291 */ 1292 if (hardfault) 1293 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1294 1295 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1296 vm_page_assert_xbusied(fs.m); 1297 1298 /* 1299 * Page must be completely valid or it is not fit to 1300 * map into user space. vm_pager_get_pages() ensures this. 1301 */ 1302 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1303 ("vm_fault: page %p partially invalid", fs.m)); 1304 VM_OBJECT_WUNLOCK(fs.object); 1305 1306 /* 1307 * Put this page into the physical map. We had to do the unlock above 1308 * because pmap_enter() may sleep. We don't put the page 1309 * back on the active queue until later so that the pageout daemon 1310 * won't find it (yet). 1311 */ 1312 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1313 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1314 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1315 wired == 0) 1316 vm_fault_prefault(&fs, vaddr, 1317 faultcount > 0 ? behind : PFBAK, 1318 faultcount > 0 ? ahead : PFFOR, false); 1319 VM_OBJECT_WLOCK(fs.object); 1320 1321 /* 1322 * If the page is not wired down, then put it where the pageout daemon 1323 * can find it. 1324 */ 1325 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1326 vm_page_wire(fs.m); 1327 } else { 1328 vm_page_lock(fs.m); 1329 vm_page_activate(fs.m); 1330 vm_page_unlock(fs.m); 1331 } 1332 if (m_hold != NULL) { 1333 *m_hold = fs.m; 1334 vm_page_wire(fs.m); 1335 } 1336 vm_page_xunbusy(fs.m); 1337 1338 /* 1339 * Unlock everything, and return 1340 */ 1341 unlock_and_deallocate(&fs); 1342 if (hardfault) { 1343 VM_CNT_INC(v_io_faults); 1344 curthread->td_ru.ru_majflt++; 1345 #ifdef RACCT 1346 if (racct_enable && fs.object->type == OBJT_VNODE) { 1347 PROC_LOCK(curproc); 1348 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1349 racct_add_force(curproc, RACCT_WRITEBPS, 1350 PAGE_SIZE + behind * PAGE_SIZE); 1351 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1352 } else { 1353 racct_add_force(curproc, RACCT_READBPS, 1354 PAGE_SIZE + ahead * PAGE_SIZE); 1355 racct_add_force(curproc, RACCT_READIOPS, 1); 1356 } 1357 PROC_UNLOCK(curproc); 1358 } 1359 #endif 1360 } else 1361 curthread->td_ru.ru_minflt++; 1362 1363 return (KERN_SUCCESS); 1364 } 1365 1366 /* 1367 * Speed up the reclamation of pages that precede the faulting pindex within 1368 * the first object of the shadow chain. Essentially, perform the equivalent 1369 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1370 * the faulting pindex by the cluster size when the pages read by vm_fault() 1371 * cross a cluster-size boundary. The cluster size is the greater of the 1372 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1373 * 1374 * When "fs->first_object" is a shadow object, the pages in the backing object 1375 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1376 * function must only be concerned with pages in the first object. 1377 */ 1378 static void 1379 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1380 { 1381 vm_map_entry_t entry; 1382 vm_object_t first_object, object; 1383 vm_offset_t end, start; 1384 vm_page_t m, m_next; 1385 vm_pindex_t pend, pstart; 1386 vm_size_t size; 1387 1388 object = fs->object; 1389 VM_OBJECT_ASSERT_WLOCKED(object); 1390 first_object = fs->first_object; 1391 if (first_object != object) { 1392 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1393 VM_OBJECT_WUNLOCK(object); 1394 VM_OBJECT_WLOCK(first_object); 1395 VM_OBJECT_WLOCK(object); 1396 } 1397 } 1398 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1399 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1400 size = VM_FAULT_DONTNEED_MIN; 1401 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1402 size = pagesizes[1]; 1403 end = rounddown2(vaddr, size); 1404 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1405 (entry = fs->entry)->start < end) { 1406 if (end - entry->start < size) 1407 start = entry->start; 1408 else 1409 start = end - size; 1410 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1411 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1412 entry->start); 1413 m_next = vm_page_find_least(first_object, pstart); 1414 pend = OFF_TO_IDX(entry->offset) + atop(end - 1415 entry->start); 1416 while ((m = m_next) != NULL && m->pindex < pend) { 1417 m_next = TAILQ_NEXT(m, listq); 1418 if (m->valid != VM_PAGE_BITS_ALL || 1419 vm_page_busied(m)) 1420 continue; 1421 1422 /* 1423 * Don't clear PGA_REFERENCED, since it would 1424 * likely represent a reference by a different 1425 * process. 1426 * 1427 * Typically, at this point, prefetched pages 1428 * are still in the inactive queue. Only 1429 * pages that triggered page faults are in the 1430 * active queue. 1431 */ 1432 vm_page_lock(m); 1433 if (!vm_page_inactive(m)) 1434 vm_page_deactivate(m); 1435 vm_page_unlock(m); 1436 } 1437 } 1438 } 1439 if (first_object != object) 1440 VM_OBJECT_WUNLOCK(first_object); 1441 } 1442 1443 /* 1444 * vm_fault_prefault provides a quick way of clustering 1445 * pagefaults into a processes address space. It is a "cousin" 1446 * of vm_map_pmap_enter, except it runs at page fault time instead 1447 * of mmap time. 1448 */ 1449 static void 1450 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1451 int backward, int forward, bool obj_locked) 1452 { 1453 pmap_t pmap; 1454 vm_map_entry_t entry; 1455 vm_object_t backing_object, lobject; 1456 vm_offset_t addr, starta; 1457 vm_pindex_t pindex; 1458 vm_page_t m; 1459 int i; 1460 1461 pmap = fs->map->pmap; 1462 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1463 return; 1464 1465 entry = fs->entry; 1466 1467 if (addra < backward * PAGE_SIZE) { 1468 starta = entry->start; 1469 } else { 1470 starta = addra - backward * PAGE_SIZE; 1471 if (starta < entry->start) 1472 starta = entry->start; 1473 } 1474 1475 /* 1476 * Generate the sequence of virtual addresses that are candidates for 1477 * prefaulting in an outward spiral from the faulting virtual address, 1478 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1479 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1480 * If the candidate address doesn't have a backing physical page, then 1481 * the loop immediately terminates. 1482 */ 1483 for (i = 0; i < 2 * imax(backward, forward); i++) { 1484 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1485 PAGE_SIZE); 1486 if (addr > addra + forward * PAGE_SIZE) 1487 addr = 0; 1488 1489 if (addr < starta || addr >= entry->end) 1490 continue; 1491 1492 if (!pmap_is_prefaultable(pmap, addr)) 1493 continue; 1494 1495 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1496 lobject = entry->object.vm_object; 1497 if (!obj_locked) 1498 VM_OBJECT_RLOCK(lobject); 1499 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1500 lobject->type == OBJT_DEFAULT && 1501 (backing_object = lobject->backing_object) != NULL) { 1502 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1503 0, ("vm_fault_prefault: unaligned object offset")); 1504 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1505 VM_OBJECT_RLOCK(backing_object); 1506 if (!obj_locked || lobject != entry->object.vm_object) 1507 VM_OBJECT_RUNLOCK(lobject); 1508 lobject = backing_object; 1509 } 1510 if (m == NULL) { 1511 if (!obj_locked || lobject != entry->object.vm_object) 1512 VM_OBJECT_RUNLOCK(lobject); 1513 break; 1514 } 1515 if (m->valid == VM_PAGE_BITS_ALL && 1516 (m->flags & PG_FICTITIOUS) == 0) 1517 pmap_enter_quick(pmap, addr, m, entry->protection); 1518 if (!obj_locked || lobject != entry->object.vm_object) 1519 VM_OBJECT_RUNLOCK(lobject); 1520 } 1521 } 1522 1523 /* 1524 * Hold each of the physical pages that are mapped by the specified range of 1525 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1526 * and allow the specified types of access, "prot". If all of the implied 1527 * pages are successfully held, then the number of held pages is returned 1528 * together with pointers to those pages in the array "ma". However, if any 1529 * of the pages cannot be held, -1 is returned. 1530 */ 1531 int 1532 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1533 vm_prot_t prot, vm_page_t *ma, int max_count) 1534 { 1535 vm_offset_t end, va; 1536 vm_page_t *mp; 1537 int count; 1538 boolean_t pmap_failed; 1539 1540 if (len == 0) 1541 return (0); 1542 end = round_page(addr + len); 1543 addr = trunc_page(addr); 1544 1545 /* 1546 * Check for illegal addresses. 1547 */ 1548 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1549 return (-1); 1550 1551 if (atop(end - addr) > max_count) 1552 panic("vm_fault_quick_hold_pages: count > max_count"); 1553 count = atop(end - addr); 1554 1555 /* 1556 * Most likely, the physical pages are resident in the pmap, so it is 1557 * faster to try pmap_extract_and_hold() first. 1558 */ 1559 pmap_failed = FALSE; 1560 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1561 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1562 if (*mp == NULL) 1563 pmap_failed = TRUE; 1564 else if ((prot & VM_PROT_WRITE) != 0 && 1565 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1566 /* 1567 * Explicitly dirty the physical page. Otherwise, the 1568 * caller's changes may go unnoticed because they are 1569 * performed through an unmanaged mapping or by a DMA 1570 * operation. 1571 * 1572 * The object lock is not held here. 1573 * See vm_page_clear_dirty_mask(). 1574 */ 1575 vm_page_dirty(*mp); 1576 } 1577 } 1578 if (pmap_failed) { 1579 /* 1580 * One or more pages could not be held by the pmap. Either no 1581 * page was mapped at the specified virtual address or that 1582 * mapping had insufficient permissions. Attempt to fault in 1583 * and hold these pages. 1584 * 1585 * If vm_fault_disable_pagefaults() was called, 1586 * i.e., TDP_NOFAULTING is set, we must not sleep nor 1587 * acquire MD VM locks, which means we must not call 1588 * vm_fault_hold(). Some (out of tree) callers mark 1589 * too wide a code area with vm_fault_disable_pagefaults() 1590 * already, use the VM_PROT_QUICK_NOFAULT flag to request 1591 * the proper behaviour explicitly. 1592 */ 1593 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 1594 (curthread->td_pflags & TDP_NOFAULTING) != 0) 1595 goto error; 1596 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1597 if (*mp == NULL && vm_fault_hold(map, va, prot, 1598 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1599 goto error; 1600 } 1601 return (count); 1602 error: 1603 for (mp = ma; mp < ma + count; mp++) 1604 if (*mp != NULL) 1605 vm_page_unwire(*mp, PQ_INACTIVE); 1606 return (-1); 1607 } 1608 1609 /* 1610 * Routine: 1611 * vm_fault_copy_entry 1612 * Function: 1613 * Create new shadow object backing dst_entry with private copy of 1614 * all underlying pages. When src_entry is equal to dst_entry, 1615 * function implements COW for wired-down map entry. Otherwise, 1616 * it forks wired entry into dst_map. 1617 * 1618 * In/out conditions: 1619 * The source and destination maps must be locked for write. 1620 * The source map entry must be wired down (or be a sharing map 1621 * entry corresponding to a main map entry that is wired down). 1622 */ 1623 void 1624 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1625 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1626 vm_ooffset_t *fork_charge) 1627 { 1628 vm_object_t backing_object, dst_object, object, src_object; 1629 vm_pindex_t dst_pindex, pindex, src_pindex; 1630 vm_prot_t access, prot; 1631 vm_offset_t vaddr; 1632 vm_page_t dst_m; 1633 vm_page_t src_m; 1634 boolean_t upgrade; 1635 1636 #ifdef lint 1637 src_map++; 1638 #endif /* lint */ 1639 1640 upgrade = src_entry == dst_entry; 1641 access = prot = dst_entry->protection; 1642 1643 src_object = src_entry->object.vm_object; 1644 src_pindex = OFF_TO_IDX(src_entry->offset); 1645 1646 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1647 dst_object = src_object; 1648 vm_object_reference(dst_object); 1649 } else { 1650 /* 1651 * Create the top-level object for the destination entry. (Doesn't 1652 * actually shadow anything - we copy the pages directly.) 1653 */ 1654 dst_object = vm_object_allocate(OBJT_DEFAULT, 1655 atop(dst_entry->end - dst_entry->start)); 1656 #if VM_NRESERVLEVEL > 0 1657 dst_object->flags |= OBJ_COLORED; 1658 dst_object->pg_color = atop(dst_entry->start); 1659 #endif 1660 dst_object->domain = src_object->domain; 1661 dst_object->charge = dst_entry->end - dst_entry->start; 1662 } 1663 1664 VM_OBJECT_WLOCK(dst_object); 1665 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1666 ("vm_fault_copy_entry: vm_object not NULL")); 1667 if (src_object != dst_object) { 1668 dst_entry->object.vm_object = dst_object; 1669 dst_entry->offset = 0; 1670 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 1671 } 1672 if (fork_charge != NULL) { 1673 KASSERT(dst_entry->cred == NULL, 1674 ("vm_fault_copy_entry: leaked swp charge")); 1675 dst_object->cred = curthread->td_ucred; 1676 crhold(dst_object->cred); 1677 *fork_charge += dst_object->charge; 1678 } else if ((dst_object->type == OBJT_DEFAULT || 1679 dst_object->type == OBJT_SWAP) && 1680 dst_object->cred == NULL) { 1681 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1682 dst_entry)); 1683 dst_object->cred = dst_entry->cred; 1684 dst_entry->cred = NULL; 1685 } 1686 1687 /* 1688 * If not an upgrade, then enter the mappings in the pmap as 1689 * read and/or execute accesses. Otherwise, enter them as 1690 * write accesses. 1691 * 1692 * A writeable large page mapping is only created if all of 1693 * the constituent small page mappings are modified. Marking 1694 * PTEs as modified on inception allows promotion to happen 1695 * without taking potentially large number of soft faults. 1696 */ 1697 if (!upgrade) 1698 access &= ~VM_PROT_WRITE; 1699 1700 /* 1701 * Loop through all of the virtual pages within the entry's 1702 * range, copying each page from the source object to the 1703 * destination object. Since the source is wired, those pages 1704 * must exist. In contrast, the destination is pageable. 1705 * Since the destination object doesn't share any backing storage 1706 * with the source object, all of its pages must be dirtied, 1707 * regardless of whether they can be written. 1708 */ 1709 for (vaddr = dst_entry->start, dst_pindex = 0; 1710 vaddr < dst_entry->end; 1711 vaddr += PAGE_SIZE, dst_pindex++) { 1712 again: 1713 /* 1714 * Find the page in the source object, and copy it in. 1715 * Because the source is wired down, the page will be 1716 * in memory. 1717 */ 1718 if (src_object != dst_object) 1719 VM_OBJECT_RLOCK(src_object); 1720 object = src_object; 1721 pindex = src_pindex + dst_pindex; 1722 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1723 (backing_object = object->backing_object) != NULL) { 1724 /* 1725 * Unless the source mapping is read-only or 1726 * it is presently being upgraded from 1727 * read-only, the first object in the shadow 1728 * chain should provide all of the pages. In 1729 * other words, this loop body should never be 1730 * executed when the source mapping is already 1731 * read/write. 1732 */ 1733 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1734 upgrade, 1735 ("vm_fault_copy_entry: main object missing page")); 1736 1737 VM_OBJECT_RLOCK(backing_object); 1738 pindex += OFF_TO_IDX(object->backing_object_offset); 1739 if (object != dst_object) 1740 VM_OBJECT_RUNLOCK(object); 1741 object = backing_object; 1742 } 1743 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1744 1745 if (object != dst_object) { 1746 /* 1747 * Allocate a page in the destination object. 1748 */ 1749 dst_m = vm_page_alloc(dst_object, (src_object == 1750 dst_object ? src_pindex : 0) + dst_pindex, 1751 VM_ALLOC_NORMAL); 1752 if (dst_m == NULL) { 1753 VM_OBJECT_WUNLOCK(dst_object); 1754 VM_OBJECT_RUNLOCK(object); 1755 vm_wait(dst_object); 1756 VM_OBJECT_WLOCK(dst_object); 1757 goto again; 1758 } 1759 pmap_copy_page(src_m, dst_m); 1760 VM_OBJECT_RUNLOCK(object); 1761 dst_m->dirty = dst_m->valid = src_m->valid; 1762 } else { 1763 dst_m = src_m; 1764 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1765 goto again; 1766 if (dst_m->pindex >= dst_object->size) 1767 /* 1768 * We are upgrading. Index can occur 1769 * out of bounds if the object type is 1770 * vnode and the file was truncated. 1771 */ 1772 break; 1773 vm_page_xbusy(dst_m); 1774 } 1775 VM_OBJECT_WUNLOCK(dst_object); 1776 1777 /* 1778 * Enter it in the pmap. If a wired, copy-on-write 1779 * mapping is being replaced by a write-enabled 1780 * mapping, then wire that new mapping. 1781 * 1782 * The page can be invalid if the user called 1783 * msync(MS_INVALIDATE) or truncated the backing vnode 1784 * or shared memory object. In this case, do not 1785 * insert it into pmap, but still do the copy so that 1786 * all copies of the wired map entry have similar 1787 * backing pages. 1788 */ 1789 if (dst_m->valid == VM_PAGE_BITS_ALL) { 1790 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1791 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1792 } 1793 1794 /* 1795 * Mark it no longer busy, and put it on the active list. 1796 */ 1797 VM_OBJECT_WLOCK(dst_object); 1798 1799 if (upgrade) { 1800 if (src_m != dst_m) { 1801 vm_page_unwire(src_m, PQ_INACTIVE); 1802 vm_page_wire(dst_m); 1803 } else { 1804 KASSERT(vm_page_wired(dst_m), 1805 ("dst_m %p is not wired", dst_m)); 1806 } 1807 } else { 1808 vm_page_lock(dst_m); 1809 vm_page_activate(dst_m); 1810 vm_page_unlock(dst_m); 1811 } 1812 vm_page_xunbusy(dst_m); 1813 } 1814 VM_OBJECT_WUNLOCK(dst_object); 1815 if (upgrade) { 1816 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1817 vm_object_deallocate(src_object); 1818 } 1819 } 1820 1821 /* 1822 * Block entry into the machine-independent layer's page fault handler by 1823 * the calling thread. Subsequent calls to vm_fault() by that thread will 1824 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1825 * spurious page faults. 1826 */ 1827 int 1828 vm_fault_disable_pagefaults(void) 1829 { 1830 1831 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1832 } 1833 1834 void 1835 vm_fault_enable_pagefaults(int save) 1836 { 1837 1838 curthread_pflags_restore(save); 1839 } 1840