1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 * 69 * $Id: vm_fault.c,v 1.92 1999/01/08 17:31:24 eivind Exp $ 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vmmeter.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_prot.h> 86 #include <sys/lock.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_pager.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/vm_extern.h> 96 97 static int vm_fault_additional_pages __P((vm_page_t, int, 98 int, vm_page_t *, int *)); 99 100 #define VM_FAULT_READ_AHEAD 8 101 #define VM_FAULT_READ_BEHIND 7 102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1) 103 104 struct faultstate { 105 vm_page_t m; 106 vm_object_t object; 107 vm_pindex_t pindex; 108 vm_page_t first_m; 109 vm_object_t first_object; 110 vm_pindex_t first_pindex; 111 vm_map_t map; 112 vm_map_entry_t entry; 113 int lookup_still_valid; 114 struct vnode *vp; 115 }; 116 117 static void 118 release_page(struct faultstate *fs) 119 { 120 vm_page_wakeup(fs->m); 121 vm_page_deactivate(fs->m); 122 fs->m = NULL; 123 } 124 125 static void 126 unlock_map(struct faultstate *fs) 127 { 128 if (fs->lookup_still_valid) { 129 vm_map_lookup_done(fs->map, fs->entry); 130 fs->lookup_still_valid = FALSE; 131 } 132 } 133 134 static void 135 _unlock_things(struct faultstate *fs, int dealloc) 136 { 137 vm_object_pip_wakeup(fs->object); 138 if (fs->object != fs->first_object) { 139 vm_page_free(fs->first_m); 140 vm_object_pip_wakeup(fs->first_object); 141 fs->first_m = NULL; 142 } 143 if (dealloc) { 144 vm_object_deallocate(fs->first_object); 145 } 146 unlock_map(fs); 147 if (fs->vp != NULL) { 148 vput(fs->vp); 149 fs->vp = NULL; 150 } 151 } 152 153 #define unlock_things(fs) _unlock_things(fs, 0) 154 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 155 156 /* 157 * vm_fault: 158 * 159 * Handle a page fault occuring at the given address, 160 * requiring the given permissions, in the map specified. 161 * If successful, the page is inserted into the 162 * associated physical map. 163 * 164 * NOTE: the given address should be truncated to the 165 * proper page address. 166 * 167 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 168 * a standard error specifying why the fault is fatal is returned. 169 * 170 * 171 * The map in question must be referenced, and remains so. 172 * Caller may hold no locks. 173 */ 174 int 175 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 176 { 177 vm_prot_t prot; 178 int result; 179 boolean_t wired; 180 int map_generation; 181 vm_page_t old_m; 182 vm_object_t next_object; 183 vm_page_t marray[VM_FAULT_READ]; 184 int hardfault; 185 int faultcount; 186 struct faultstate fs; 187 188 cnt.v_vm_faults++; /* needs lock XXX */ 189 hardfault = 0; 190 191 RetryFault:; 192 fs.map = map; 193 194 /* 195 * Find the backing store object and offset into it to begin the 196 * search. 197 */ 198 if ((result = vm_map_lookup(&fs.map, vaddr, 199 fault_type, &fs.entry, &fs.first_object, 200 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) { 201 if ((result != KERN_PROTECTION_FAILURE) || 202 ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) { 203 return result; 204 } 205 206 /* 207 * If we are user-wiring a r/w segment, and it is COW, then 208 * we need to do the COW operation. Note that we don't COW 209 * currently RO sections now, because it is NOT desirable 210 * to COW .text. We simply keep .text from ever being COW'ed 211 * and take the heat that one cannot debug wired .text sections. 212 */ 213 result = vm_map_lookup(&fs.map, vaddr, 214 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE, 215 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired); 216 if (result != KERN_SUCCESS) { 217 return result; 218 } 219 220 /* 221 * If we don't COW now, on a user wire, the user will never 222 * be able to write to the mapping. If we don't make this 223 * restriction, the bookkeeping would be nearly impossible. 224 */ 225 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 226 fs.entry->max_protection &= ~VM_PROT_WRITE; 227 } 228 229 map_generation = fs.map->timestamp; 230 231 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 232 panic("vm_fault: fault on nofault entry, addr: %lx", 233 (u_long)vaddr); 234 } 235 236 /* 237 * Make a reference to this object to prevent its disposal while we 238 * are messing with it. Once we have the reference, the map is free 239 * to be diddled. Since objects reference their shadows (and copies), 240 * they will stay around as well. 241 */ 242 vm_object_reference(fs.first_object); 243 vm_object_pip_add(fs.first_object, 1); 244 245 fs.vp = vnode_pager_lock(fs.first_object); 246 if ((fault_type & VM_PROT_WRITE) && 247 (fs.first_object->type == OBJT_VNODE)) { 248 vm_freeze_copyopts(fs.first_object, 249 fs.first_pindex, fs.first_pindex + 1); 250 } 251 252 fs.lookup_still_valid = TRUE; 253 254 if (wired) 255 fault_type = prot; 256 257 fs.first_m = NULL; 258 259 /* 260 * Search for the page at object/offset. 261 */ 262 263 fs.object = fs.first_object; 264 fs.pindex = fs.first_pindex; 265 266 /* 267 * See whether this page is resident 268 */ 269 while (TRUE) { 270 271 if (fs.object->flags & OBJ_DEAD) { 272 unlock_and_deallocate(&fs); 273 return (KERN_PROTECTION_FAILURE); 274 } 275 276 fs.m = vm_page_lookup(fs.object, fs.pindex); 277 if (fs.m != NULL) { 278 int queue, s; 279 /* 280 * If the page is being brought in, wait for it and 281 * then retry. 282 */ 283 if ((fs.m->flags & PG_BUSY) || 284 (fs.m->busy && 285 (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 286 unlock_things(&fs); 287 s = splvm(); 288 if ((fs.m->flags & PG_BUSY) || 289 (fs.m->busy && 290 (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 291 vm_page_flag_set(fs.m, PG_WANTED | PG_REFERENCED); 292 cnt.v_intrans++; 293 tsleep(fs.m, PSWP, "vmpfw", 0); 294 } 295 splx(s); 296 vm_object_deallocate(fs.first_object); 297 goto RetryFault; 298 } 299 300 queue = fs.m->queue; 301 s = splvm(); 302 vm_page_unqueue_nowakeup(fs.m); 303 splx(s); 304 305 /* 306 * Mark page busy for other processes, and the pagedaemon. 307 */ 308 if (((queue - fs.m->pc) == PQ_CACHE) && 309 (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) { 310 vm_page_activate(fs.m); 311 unlock_and_deallocate(&fs); 312 VM_WAIT; 313 goto RetryFault; 314 } 315 316 vm_page_busy(fs.m); 317 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) && 318 fs.m->object != kernel_object && fs.m->object != kmem_object) { 319 goto readrest; 320 } 321 322 break; 323 } 324 if (((fs.object->type != OBJT_DEFAULT) && 325 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) 326 || (fs.object == fs.first_object)) { 327 328 if (fs.pindex >= fs.object->size) { 329 unlock_and_deallocate(&fs); 330 return (KERN_PROTECTION_FAILURE); 331 } 332 333 /* 334 * Allocate a new page for this object/offset pair. 335 */ 336 fs.m = vm_page_alloc(fs.object, fs.pindex, 337 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO); 338 339 if (fs.m == NULL) { 340 unlock_and_deallocate(&fs); 341 VM_WAIT; 342 goto RetryFault; 343 } 344 } 345 346 readrest: 347 if (fs.object->type != OBJT_DEFAULT && 348 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) { 349 int rv; 350 int reqpage; 351 int ahead, behind; 352 353 if (fs.first_object->behavior == OBJ_RANDOM) { 354 ahead = 0; 355 behind = 0; 356 } else { 357 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT; 358 if (behind > VM_FAULT_READ_BEHIND) 359 behind = VM_FAULT_READ_BEHIND; 360 361 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1; 362 if (ahead > VM_FAULT_READ_AHEAD) 363 ahead = VM_FAULT_READ_AHEAD; 364 } 365 366 if ((fs.first_object->type != OBJT_DEVICE) && 367 (fs.first_object->behavior == OBJ_SEQUENTIAL)) { 368 vm_pindex_t firstpindex, tmppindex; 369 if (fs.first_pindex < 370 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1)) 371 firstpindex = 0; 372 else 373 firstpindex = fs.first_pindex - 374 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1); 375 376 for(tmppindex = fs.first_pindex - 1; 377 tmppindex >= firstpindex; 378 --tmppindex) { 379 vm_page_t mt; 380 mt = vm_page_lookup( fs.first_object, tmppindex); 381 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL)) 382 break; 383 if (mt->busy || 384 (mt->flags & (PG_BUSY | PG_FICTITIOUS)) || 385 mt->hold_count || 386 mt->wire_count) 387 continue; 388 if (mt->dirty == 0) 389 vm_page_test_dirty(mt); 390 if (mt->dirty) { 391 vm_page_protect(mt, VM_PROT_NONE); 392 vm_page_deactivate(mt); 393 } else { 394 vm_page_cache(mt); 395 } 396 } 397 398 ahead += behind; 399 behind = 0; 400 } 401 402 /* 403 * now we find out if any other pages should be paged 404 * in at this time this routine checks to see if the 405 * pages surrounding this fault reside in the same 406 * object as the page for this fault. If they do, 407 * then they are faulted in also into the object. The 408 * array "marray" returned contains an array of 409 * vm_page_t structs where one of them is the 410 * vm_page_t passed to the routine. The reqpage 411 * return value is the index into the marray for the 412 * vm_page_t passed to the routine. 413 */ 414 faultcount = vm_fault_additional_pages( 415 fs.m, behind, ahead, marray, &reqpage); 416 417 /* 418 * Call the pager to retrieve the data, if any, after 419 * releasing the lock on the map. 420 */ 421 unlock_map(&fs); 422 423 rv = faultcount ? 424 vm_pager_get_pages(fs.object, marray, faultcount, 425 reqpage) : VM_PAGER_FAIL; 426 427 if (rv == VM_PAGER_OK) { 428 /* 429 * Found the page. Leave it busy while we play 430 * with it. 431 */ 432 433 /* 434 * Relookup in case pager changed page. Pager 435 * is responsible for disposition of old page 436 * if moved. 437 */ 438 fs.m = vm_page_lookup(fs.object, fs.pindex); 439 if(!fs.m) { 440 unlock_and_deallocate(&fs); 441 goto RetryFault; 442 } 443 444 hardfault++; 445 break; 446 } 447 /* 448 * Remove the bogus page (which does not exist at this 449 * object/offset); before doing so, we must get back 450 * our object lock to preserve our invariant. 451 * 452 * Also wake up any other process that may want to bring 453 * in this page. 454 * 455 * If this is the top-level object, we must leave the 456 * busy page to prevent another process from rushing 457 * past us, and inserting the page in that object at 458 * the same time that we are. 459 */ 460 461 if (rv == VM_PAGER_ERROR) 462 printf("vm_fault: pager read error, pid %d (%s)\n", 463 curproc->p_pid, curproc->p_comm); 464 /* 465 * Data outside the range of the pager or an I/O error 466 */ 467 /* 468 * XXX - the check for kernel_map is a kludge to work 469 * around having the machine panic on a kernel space 470 * fault w/ I/O error. 471 */ 472 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 473 (rv == VM_PAGER_BAD)) { 474 vm_page_free(fs.m); 475 fs.m = NULL; 476 unlock_and_deallocate(&fs); 477 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 478 } 479 if (fs.object != fs.first_object) { 480 vm_page_free(fs.m); 481 fs.m = NULL; 482 /* 483 * XXX - we cannot just fall out at this 484 * point, m has been freed and is invalid! 485 */ 486 } 487 } 488 /* 489 * We get here if the object has default pager (or unwiring) or the 490 * pager doesn't have the page. 491 */ 492 if (fs.object == fs.first_object) 493 fs.first_m = fs.m; 494 495 /* 496 * Move on to the next object. Lock the next object before 497 * unlocking the current one. 498 */ 499 500 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 501 next_object = fs.object->backing_object; 502 if (next_object == NULL) { 503 /* 504 * If there's no object left, fill the page in the top 505 * object with zeros. 506 */ 507 if (fs.object != fs.first_object) { 508 vm_object_pip_wakeup(fs.object); 509 510 fs.object = fs.first_object; 511 fs.pindex = fs.first_pindex; 512 fs.m = fs.first_m; 513 } 514 fs.first_m = NULL; 515 516 if ((fs.m->flags & PG_ZERO) == 0) { 517 vm_page_zero_fill(fs.m); 518 cnt.v_ozfod++; 519 } 520 cnt.v_zfod++; 521 break; 522 } else { 523 if (fs.object != fs.first_object) { 524 vm_object_pip_wakeup(fs.object); 525 } 526 fs.object = next_object; 527 vm_object_pip_add(fs.object, 1); 528 } 529 } 530 KASSERT((fs.m->flags & PG_BUSY) != 0, 531 ("vm_fault: not busy after main loop")); 532 533 /* 534 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 535 * is held.] 536 */ 537 538 old_m = fs.m; /* save page that would be copied */ 539 540 /* 541 * If the page is being written, but isn't already owned by the 542 * top-level object, we have to copy it into a new page owned by the 543 * top-level object. 544 */ 545 546 if (fs.object != fs.first_object) { 547 /* 548 * We only really need to copy if we want to write it. 549 */ 550 551 if (fault_type & VM_PROT_WRITE) { 552 553 /* 554 * This allows pages to be virtually copied from a backing_object 555 * into the first_object, where the backing object has no other 556 * refs to it, and cannot gain any more refs. Instead of a 557 * bcopy, we just move the page from the backing object to the 558 * first object. Note that we must mark the page dirty in the 559 * first object so that it will go out to swap when needed. 560 */ 561 if (map_generation == fs.map->timestamp && 562 /* 563 * Only one shadow object 564 */ 565 (fs.object->shadow_count == 1) && 566 /* 567 * No COW refs, except us 568 */ 569 (fs.object->ref_count == 1) && 570 /* 571 * Noone else can look this object up 572 */ 573 (fs.object->handle == NULL) && 574 /* 575 * No other ways to look the object up 576 */ 577 ((fs.object->type == OBJT_DEFAULT) || 578 (fs.object->type == OBJT_SWAP)) && 579 /* 580 * We don't chase down the shadow chain 581 */ 582 (fs.object == fs.first_object->backing_object) && 583 584 /* 585 * grab the lock if we need to 586 */ 587 (fs.lookup_still_valid || 588 (((fs.entry->eflags & MAP_ENTRY_IS_A_MAP) == 0) && 589 lockmgr(&fs.map->lock, 590 LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0))) { 591 592 fs.lookup_still_valid = 1; 593 /* 594 * get rid of the unnecessary page 595 */ 596 vm_page_protect(fs.first_m, VM_PROT_NONE); 597 vm_page_free(fs.first_m); 598 fs.first_m = NULL; 599 600 /* 601 * grab the page and put it into the process'es object 602 */ 603 vm_page_rename(fs.m, fs.first_object, fs.first_pindex); 604 fs.first_m = fs.m; 605 fs.first_m->dirty = VM_PAGE_BITS_ALL; 606 vm_page_busy(fs.first_m); 607 fs.m = NULL; 608 cnt.v_cow_optim++; 609 } else { 610 /* 611 * Oh, well, lets copy it. 612 */ 613 vm_page_copy(fs.m, fs.first_m); 614 } 615 616 if (fs.m) { 617 /* 618 * We no longer need the old page or object. 619 */ 620 release_page(&fs); 621 } 622 623 vm_object_pip_wakeup(fs.object); 624 /* 625 * Only use the new page below... 626 */ 627 628 cnt.v_cow_faults++; 629 fs.m = fs.first_m; 630 fs.object = fs.first_object; 631 fs.pindex = fs.first_pindex; 632 633 } else { 634 prot &= ~VM_PROT_WRITE; 635 } 636 } 637 638 /* 639 * We must verify that the maps have not changed since our last 640 * lookup. 641 */ 642 643 if (!fs.lookup_still_valid && 644 (fs.map->timestamp != map_generation)) { 645 vm_object_t retry_object; 646 vm_pindex_t retry_pindex; 647 vm_prot_t retry_prot; 648 649 /* 650 * Since map entries may be pageable, make sure we can take a 651 * page fault on them. 652 */ 653 654 /* 655 * To avoid trying to write_lock the map while another process 656 * has it read_locked (in vm_map_pageable), we do not try for 657 * write permission. If the page is still writable, we will 658 * get write permission. If it is not, or has been marked 659 * needs_copy, we enter the mapping without write permission, 660 * and will merely take another fault. 661 */ 662 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE, 663 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 664 map_generation = fs.map->timestamp; 665 666 /* 667 * If we don't need the page any longer, put it on the active 668 * list (the easiest thing to do here). If no one needs it, 669 * pageout will grab it eventually. 670 */ 671 672 if (result != KERN_SUCCESS) { 673 release_page(&fs); 674 unlock_and_deallocate(&fs); 675 return (result); 676 } 677 fs.lookup_still_valid = TRUE; 678 679 if ((retry_object != fs.first_object) || 680 (retry_pindex != fs.first_pindex)) { 681 release_page(&fs); 682 unlock_and_deallocate(&fs); 683 goto RetryFault; 684 } 685 /* 686 * Check whether the protection has changed or the object has 687 * been copied while we left the map unlocked. Changing from 688 * read to write permission is OK - we leave the page 689 * write-protected, and catch the write fault. Changing from 690 * write to read permission means that we can't mark the page 691 * write-enabled after all. 692 */ 693 prot &= retry_prot; 694 } 695 696 /* 697 * Put this page into the physical map. We had to do the unlock above 698 * because pmap_enter may cause other faults. We don't put the page 699 * back on the active queue until later so that the page-out daemon 700 * won't find us (yet). 701 */ 702 703 if (prot & VM_PROT_WRITE) { 704 vm_page_flag_set(fs.m, PG_WRITEABLE); 705 vm_object_set_flag(fs.m->object, 706 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY); 707 /* 708 * If the fault is a write, we know that this page is being 709 * written NOW. This will save on the pmap_is_modified() calls 710 * later. 711 */ 712 if (fault_flags & VM_FAULT_DIRTY) { 713 fs.m->dirty = VM_PAGE_BITS_ALL; 714 } 715 } 716 717 unlock_things(&fs); 718 fs.m->valid = VM_PAGE_BITS_ALL; 719 vm_page_flag_clear(fs.m, PG_ZERO); 720 721 pmap_enter(fs.map->pmap, vaddr, VM_PAGE_TO_PHYS(fs.m), prot, wired); 722 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) { 723 pmap_prefault(fs.map->pmap, vaddr, fs.entry); 724 } 725 726 vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED); 727 if (fault_flags & VM_FAULT_HOLD) 728 vm_page_hold(fs.m); 729 730 /* 731 * If the page is not wired down, then put it where the pageout daemon 732 * can find it. 733 */ 734 if (fault_flags & VM_FAULT_WIRE_MASK) { 735 if (wired) 736 vm_page_wire(fs.m); 737 else 738 vm_page_unwire(fs.m, 1); 739 } else { 740 vm_page_activate(fs.m); 741 } 742 743 if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) { 744 if (hardfault) { 745 curproc->p_stats->p_ru.ru_majflt++; 746 } else { 747 curproc->p_stats->p_ru.ru_minflt++; 748 } 749 } 750 751 /* 752 * Unlock everything, and return 753 */ 754 755 vm_page_wakeup(fs.m); 756 vm_object_deallocate(fs.first_object); 757 758 return (KERN_SUCCESS); 759 760 } 761 762 /* 763 * vm_fault_wire: 764 * 765 * Wire down a range of virtual addresses in a map. 766 */ 767 int 768 vm_fault_wire(map, start, end) 769 vm_map_t map; 770 vm_offset_t start, end; 771 { 772 773 register vm_offset_t va; 774 register pmap_t pmap; 775 int rv; 776 777 pmap = vm_map_pmap(map); 778 779 /* 780 * Inform the physical mapping system that the range of addresses may 781 * not fault, so that page tables and such can be locked down as well. 782 */ 783 784 pmap_pageable(pmap, start, end, FALSE); 785 786 /* 787 * We simulate a fault to get the page and enter it in the physical 788 * map. 789 */ 790 791 for (va = start; va < end; va += PAGE_SIZE) { 792 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 793 VM_FAULT_CHANGE_WIRING); 794 if (rv) { 795 if (va != start) 796 vm_fault_unwire(map, start, va); 797 return (rv); 798 } 799 } 800 return (KERN_SUCCESS); 801 } 802 803 /* 804 * vm_fault_user_wire: 805 * 806 * Wire down a range of virtual addresses in a map. This 807 * is for user mode though, so we only ask for read access 808 * on currently read only sections. 809 */ 810 int 811 vm_fault_user_wire(map, start, end) 812 vm_map_t map; 813 vm_offset_t start, end; 814 { 815 816 register vm_offset_t va; 817 register pmap_t pmap; 818 int rv; 819 820 pmap = vm_map_pmap(map); 821 822 /* 823 * Inform the physical mapping system that the range of addresses may 824 * not fault, so that page tables and such can be locked down as well. 825 */ 826 827 pmap_pageable(pmap, start, end, FALSE); 828 829 /* 830 * We simulate a fault to get the page and enter it in the physical 831 * map. 832 */ 833 for (va = start; va < end; va += PAGE_SIZE) { 834 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE); 835 if (rv) { 836 if (va != start) 837 vm_fault_unwire(map, start, va); 838 return (rv); 839 } 840 } 841 return (KERN_SUCCESS); 842 } 843 844 845 /* 846 * vm_fault_unwire: 847 * 848 * Unwire a range of virtual addresses in a map. 849 */ 850 void 851 vm_fault_unwire(map, start, end) 852 vm_map_t map; 853 vm_offset_t start, end; 854 { 855 856 register vm_offset_t va, pa; 857 register pmap_t pmap; 858 859 pmap = vm_map_pmap(map); 860 861 /* 862 * Since the pages are wired down, we must be able to get their 863 * mappings from the physical map system. 864 */ 865 866 for (va = start; va < end; va += PAGE_SIZE) { 867 pa = pmap_extract(pmap, va); 868 if (pa != (vm_offset_t) 0) { 869 pmap_change_wiring(pmap, va, FALSE); 870 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 871 } 872 } 873 874 /* 875 * Inform the physical mapping system that the range of addresses may 876 * fault, so that page tables and such may be unwired themselves. 877 */ 878 879 pmap_pageable(pmap, start, end, TRUE); 880 881 } 882 883 /* 884 * Routine: 885 * vm_fault_copy_entry 886 * Function: 887 * Copy all of the pages from a wired-down map entry to another. 888 * 889 * In/out conditions: 890 * The source and destination maps must be locked for write. 891 * The source map entry must be wired down (or be a sharing map 892 * entry corresponding to a main map entry that is wired down). 893 */ 894 895 void 896 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry) 897 vm_map_t dst_map; 898 vm_map_t src_map; 899 vm_map_entry_t dst_entry; 900 vm_map_entry_t src_entry; 901 { 902 vm_object_t dst_object; 903 vm_object_t src_object; 904 vm_ooffset_t dst_offset; 905 vm_ooffset_t src_offset; 906 vm_prot_t prot; 907 vm_offset_t vaddr; 908 vm_page_t dst_m; 909 vm_page_t src_m; 910 911 #ifdef lint 912 src_map++; 913 #endif /* lint */ 914 915 src_object = src_entry->object.vm_object; 916 src_offset = src_entry->offset; 917 918 /* 919 * Create the top-level object for the destination entry. (Doesn't 920 * actually shadow anything - we copy the pages directly.) 921 */ 922 dst_object = vm_object_allocate(OBJT_DEFAULT, 923 (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start)); 924 925 dst_entry->object.vm_object = dst_object; 926 dst_entry->offset = 0; 927 928 prot = dst_entry->max_protection; 929 930 /* 931 * Loop through all of the pages in the entry's range, copying each 932 * one from the source object (it should be there) to the destination 933 * object. 934 */ 935 for (vaddr = dst_entry->start, dst_offset = 0; 936 vaddr < dst_entry->end; 937 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 938 939 /* 940 * Allocate a page in the destination object 941 */ 942 do { 943 dst_m = vm_page_alloc(dst_object, 944 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 945 if (dst_m == NULL) { 946 VM_WAIT; 947 } 948 } while (dst_m == NULL); 949 950 /* 951 * Find the page in the source object, and copy it in. 952 * (Because the source is wired down, the page will be in 953 * memory.) 954 */ 955 src_m = vm_page_lookup(src_object, 956 OFF_TO_IDX(dst_offset + src_offset)); 957 if (src_m == NULL) 958 panic("vm_fault_copy_wired: page missing"); 959 960 vm_page_copy(src_m, dst_m); 961 962 /* 963 * Enter it in the pmap... 964 */ 965 966 vm_page_flag_clear(dst_m, PG_ZERO); 967 pmap_enter(dst_map->pmap, vaddr, VM_PAGE_TO_PHYS(dst_m), 968 prot, FALSE); 969 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED); 970 971 /* 972 * Mark it no longer busy, and put it on the active list. 973 */ 974 vm_page_activate(dst_m); 975 vm_page_wakeup(dst_m); 976 } 977 } 978 979 980 /* 981 * This routine checks around the requested page for other pages that 982 * might be able to be faulted in. This routine brackets the viable 983 * pages for the pages to be paged in. 984 * 985 * Inputs: 986 * m, rbehind, rahead 987 * 988 * Outputs: 989 * marray (array of vm_page_t), reqpage (index of requested page) 990 * 991 * Return value: 992 * number of pages in marray 993 */ 994 static int 995 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 996 vm_page_t m; 997 int rbehind; 998 int rahead; 999 vm_page_t *marray; 1000 int *reqpage; 1001 { 1002 int i,j; 1003 vm_object_t object; 1004 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1005 vm_page_t rtm; 1006 int cbehind, cahead; 1007 1008 object = m->object; 1009 pindex = m->pindex; 1010 1011 /* 1012 * we don't fault-ahead for device pager 1013 */ 1014 if (object->type == OBJT_DEVICE) { 1015 *reqpage = 0; 1016 marray[0] = m; 1017 return 1; 1018 } 1019 1020 /* 1021 * if the requested page is not available, then give up now 1022 */ 1023 1024 if (!vm_pager_has_page(object, 1025 OFF_TO_IDX(object->paging_offset) + pindex, &cbehind, &cahead)) { 1026 return 0; 1027 } 1028 1029 if ((cbehind == 0) && (cahead == 0)) { 1030 *reqpage = 0; 1031 marray[0] = m; 1032 return 1; 1033 } 1034 1035 if (rahead > cahead) { 1036 rahead = cahead; 1037 } 1038 1039 if (rbehind > cbehind) { 1040 rbehind = cbehind; 1041 } 1042 1043 /* 1044 * try to do any readahead that we might have free pages for. 1045 */ 1046 if ((rahead + rbehind) > 1047 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) { 1048 pagedaemon_wakeup(); 1049 marray[0] = m; 1050 *reqpage = 0; 1051 return 1; 1052 } 1053 1054 /* 1055 * scan backward for the read behind pages -- in memory 1056 */ 1057 if (pindex > 0) { 1058 if (rbehind > pindex) { 1059 rbehind = pindex; 1060 startpindex = 0; 1061 } else { 1062 startpindex = pindex - rbehind; 1063 } 1064 1065 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) { 1066 if (vm_page_lookup( object, tpindex)) { 1067 startpindex = tpindex + 1; 1068 break; 1069 } 1070 if (tpindex == 0) 1071 break; 1072 } 1073 1074 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) { 1075 1076 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1077 if (rtm == NULL) { 1078 for (j = 0; j < i; j++) { 1079 vm_page_free(marray[j]); 1080 } 1081 marray[0] = m; 1082 *reqpage = 0; 1083 return 1; 1084 } 1085 1086 marray[i] = rtm; 1087 } 1088 } else { 1089 startpindex = 0; 1090 i = 0; 1091 } 1092 1093 marray[i] = m; 1094 /* page offset of the required page */ 1095 *reqpage = i; 1096 1097 tpindex = pindex + 1; 1098 i++; 1099 1100 /* 1101 * scan forward for the read ahead pages 1102 */ 1103 endpindex = tpindex + rahead; 1104 if (endpindex > object->size) 1105 endpindex = object->size; 1106 1107 for( ; tpindex < endpindex; i++, tpindex++) { 1108 1109 if (vm_page_lookup(object, tpindex)) { 1110 break; 1111 } 1112 1113 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1114 if (rtm == NULL) { 1115 break; 1116 } 1117 1118 marray[i] = rtm; 1119 } 1120 1121 /* return number of bytes of pages */ 1122 return i; 1123 } 1124