1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mutex.h> 85 #include <sys/proc.h> 86 #include <sys/resourcevar.h> 87 #include <sys/sysctl.h> 88 #include <sys/vmmeter.h> 89 #include <sys/vnode.h> 90 #ifdef KTRACE 91 #include <sys/ktrace.h> 92 #endif 93 94 #include <vm/vm.h> 95 #include <vm/vm_param.h> 96 #include <vm/pmap.h> 97 #include <vm/vm_map.h> 98 #include <vm/vm_object.h> 99 #include <vm/vm_page.h> 100 #include <vm/vm_pageout.h> 101 #include <vm/vm_kern.h> 102 #include <vm/vm_pager.h> 103 #include <vm/vm_extern.h> 104 105 #define PFBAK 4 106 #define PFFOR 4 107 #define PAGEORDER_SIZE (PFBAK+PFFOR) 108 109 static int prefault_pageorder[] = { 110 -1 * PAGE_SIZE, 1 * PAGE_SIZE, 111 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 112 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 113 -4 * PAGE_SIZE, 4 * PAGE_SIZE 114 }; 115 116 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 117 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t); 118 119 #define VM_FAULT_READ_BEHIND 8 120 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 121 #define VM_FAULT_NINCR (VM_FAULT_READ_MAX / VM_FAULT_READ_BEHIND) 122 #define VM_FAULT_SUM (VM_FAULT_NINCR * (VM_FAULT_NINCR + 1) / 2) 123 #define VM_FAULT_CACHE_BEHIND (VM_FAULT_READ_BEHIND * VM_FAULT_SUM) 124 125 struct faultstate { 126 vm_page_t m; 127 vm_object_t object; 128 vm_pindex_t pindex; 129 vm_page_t first_m; 130 vm_object_t first_object; 131 vm_pindex_t first_pindex; 132 vm_map_t map; 133 vm_map_entry_t entry; 134 int lookup_still_valid; 135 struct vnode *vp; 136 }; 137 138 static void vm_fault_cache_behind(const struct faultstate *fs, int distance); 139 140 static inline void 141 release_page(struct faultstate *fs) 142 { 143 144 vm_page_wakeup(fs->m); 145 vm_page_lock(fs->m); 146 vm_page_deactivate(fs->m); 147 vm_page_unlock(fs->m); 148 fs->m = NULL; 149 } 150 151 static inline void 152 unlock_map(struct faultstate *fs) 153 { 154 155 if (fs->lookup_still_valid) { 156 vm_map_lookup_done(fs->map, fs->entry); 157 fs->lookup_still_valid = FALSE; 158 } 159 } 160 161 static void 162 unlock_and_deallocate(struct faultstate *fs) 163 { 164 165 vm_object_pip_wakeup(fs->object); 166 VM_OBJECT_UNLOCK(fs->object); 167 if (fs->object != fs->first_object) { 168 VM_OBJECT_LOCK(fs->first_object); 169 vm_page_lock(fs->first_m); 170 vm_page_free(fs->first_m); 171 vm_page_unlock(fs->first_m); 172 vm_object_pip_wakeup(fs->first_object); 173 VM_OBJECT_UNLOCK(fs->first_object); 174 fs->first_m = NULL; 175 } 176 vm_object_deallocate(fs->first_object); 177 unlock_map(fs); 178 if (fs->vp != NULL) { 179 vput(fs->vp); 180 fs->vp = NULL; 181 } 182 } 183 184 /* 185 * TRYPAGER - used by vm_fault to calculate whether the pager for the 186 * current object *might* contain the page. 187 * 188 * default objects are zero-fill, there is no real pager. 189 */ 190 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 191 ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 || wired)) 192 193 /* 194 * vm_fault: 195 * 196 * Handle a page fault occurring at the given address, 197 * requiring the given permissions, in the map specified. 198 * If successful, the page is inserted into the 199 * associated physical map. 200 * 201 * NOTE: the given address should be truncated to the 202 * proper page address. 203 * 204 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 205 * a standard error specifying why the fault is fatal is returned. 206 * 207 * The map in question must be referenced, and remains so. 208 * Caller may hold no locks. 209 */ 210 int 211 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 212 int fault_flags) 213 { 214 struct thread *td; 215 int result; 216 217 td = curthread; 218 if ((td->td_pflags & TDP_NOFAULTING) != 0) 219 return (KERN_PROTECTION_FAILURE); 220 #ifdef KTRACE 221 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 222 ktrfault(vaddr, fault_type); 223 #endif 224 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 225 NULL); 226 #ifdef KTRACE 227 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 228 ktrfaultend(result); 229 #endif 230 return (result); 231 } 232 233 int 234 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 235 int fault_flags, vm_page_t *m_hold) 236 { 237 vm_prot_t prot; 238 long ahead, behind; 239 int alloc_req, era, faultcount, nera, reqpage, result; 240 boolean_t growstack, is_first_object_locked, wired; 241 int map_generation; 242 vm_object_t next_object; 243 vm_page_t marray[VM_FAULT_READ_MAX]; 244 int hardfault; 245 struct faultstate fs; 246 struct vnode *vp; 247 int locked, error; 248 249 hardfault = 0; 250 growstack = TRUE; 251 PCPU_INC(cnt.v_vm_faults); 252 fs.vp = NULL; 253 faultcount = reqpage = 0; 254 255 RetryFault:; 256 257 /* 258 * Find the backing store object and offset into it to begin the 259 * search. 260 */ 261 fs.map = map; 262 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 263 &fs.first_object, &fs.first_pindex, &prot, &wired); 264 if (result != KERN_SUCCESS) { 265 if (growstack && result == KERN_INVALID_ADDRESS && 266 map != kernel_map) { 267 result = vm_map_growstack(curproc, vaddr); 268 if (result != KERN_SUCCESS) 269 return (KERN_FAILURE); 270 growstack = FALSE; 271 goto RetryFault; 272 } 273 return (result); 274 } 275 276 map_generation = fs.map->timestamp; 277 278 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 279 panic("vm_fault: fault on nofault entry, addr: %lx", 280 (u_long)vaddr); 281 } 282 283 /* 284 * Make a reference to this object to prevent its disposal while we 285 * are messing with it. Once we have the reference, the map is free 286 * to be diddled. Since objects reference their shadows (and copies), 287 * they will stay around as well. 288 * 289 * Bump the paging-in-progress count to prevent size changes (e.g. 290 * truncation operations) during I/O. This must be done after 291 * obtaining the vnode lock in order to avoid possible deadlocks. 292 */ 293 VM_OBJECT_LOCK(fs.first_object); 294 vm_object_reference_locked(fs.first_object); 295 vm_object_pip_add(fs.first_object, 1); 296 297 fs.lookup_still_valid = TRUE; 298 299 if (wired) 300 fault_type = prot | (fault_type & VM_PROT_COPY); 301 302 fs.first_m = NULL; 303 304 /* 305 * Search for the page at object/offset. 306 */ 307 fs.object = fs.first_object; 308 fs.pindex = fs.first_pindex; 309 while (TRUE) { 310 /* 311 * If the object is dead, we stop here 312 */ 313 if (fs.object->flags & OBJ_DEAD) { 314 unlock_and_deallocate(&fs); 315 return (KERN_PROTECTION_FAILURE); 316 } 317 318 /* 319 * See if page is resident 320 */ 321 fs.m = vm_page_lookup(fs.object, fs.pindex); 322 if (fs.m != NULL) { 323 /* 324 * check for page-based copy on write. 325 * We check fs.object == fs.first_object so 326 * as to ensure the legacy COW mechanism is 327 * used when the page in question is part of 328 * a shadow object. Otherwise, vm_page_cowfault() 329 * removes the page from the backing object, 330 * which is not what we want. 331 */ 332 vm_page_lock(fs.m); 333 if ((fs.m->cow) && 334 (fault_type & VM_PROT_WRITE) && 335 (fs.object == fs.first_object)) { 336 vm_page_cowfault(fs.m); 337 unlock_and_deallocate(&fs); 338 goto RetryFault; 339 } 340 341 /* 342 * Wait/Retry if the page is busy. We have to do this 343 * if the page is busy via either VPO_BUSY or 344 * vm_page_t->busy because the vm_pager may be using 345 * vm_page_t->busy for pageouts ( and even pageins if 346 * it is the vnode pager ), and we could end up trying 347 * to pagein and pageout the same page simultaneously. 348 * 349 * We can theoretically allow the busy case on a read 350 * fault if the page is marked valid, but since such 351 * pages are typically already pmap'd, putting that 352 * special case in might be more effort then it is 353 * worth. We cannot under any circumstances mess 354 * around with a vm_page_t->busy page except, perhaps, 355 * to pmap it. 356 */ 357 if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) { 358 /* 359 * Reference the page before unlocking and 360 * sleeping so that the page daemon is less 361 * likely to reclaim it. 362 */ 363 vm_page_aflag_set(fs.m, PGA_REFERENCED); 364 vm_page_unlock(fs.m); 365 if (fs.object != fs.first_object) { 366 if (!VM_OBJECT_TRYLOCK( 367 fs.first_object)) { 368 VM_OBJECT_UNLOCK(fs.object); 369 VM_OBJECT_LOCK(fs.first_object); 370 VM_OBJECT_LOCK(fs.object); 371 } 372 vm_page_lock(fs.first_m); 373 vm_page_free(fs.first_m); 374 vm_page_unlock(fs.first_m); 375 vm_object_pip_wakeup(fs.first_object); 376 VM_OBJECT_UNLOCK(fs.first_object); 377 fs.first_m = NULL; 378 } 379 unlock_map(&fs); 380 if (fs.m == vm_page_lookup(fs.object, 381 fs.pindex)) { 382 vm_page_sleep_if_busy(fs.m, TRUE, 383 "vmpfw"); 384 } 385 vm_object_pip_wakeup(fs.object); 386 VM_OBJECT_UNLOCK(fs.object); 387 PCPU_INC(cnt.v_intrans); 388 vm_object_deallocate(fs.first_object); 389 goto RetryFault; 390 } 391 vm_page_remque(fs.m); 392 vm_page_unlock(fs.m); 393 394 /* 395 * Mark page busy for other processes, and the 396 * pagedaemon. If it still isn't completely valid 397 * (readable), jump to readrest, else break-out ( we 398 * found the page ). 399 */ 400 vm_page_busy(fs.m); 401 if (fs.m->valid != VM_PAGE_BITS_ALL) 402 goto readrest; 403 break; 404 } 405 406 /* 407 * Page is not resident, If this is the search termination 408 * or the pager might contain the page, allocate a new page. 409 */ 410 if (TRYPAGER || fs.object == fs.first_object) { 411 if (fs.pindex >= fs.object->size) { 412 unlock_and_deallocate(&fs); 413 return (KERN_PROTECTION_FAILURE); 414 } 415 416 /* 417 * Allocate a new page for this object/offset pair. 418 * 419 * Unlocked read of the p_flag is harmless. At 420 * worst, the P_KILLED might be not observed 421 * there, and allocation can fail, causing 422 * restart and new reading of the p_flag. 423 */ 424 fs.m = NULL; 425 if (!vm_page_count_severe() || P_KILLED(curproc)) { 426 #if VM_NRESERVLEVEL > 0 427 if ((fs.object->flags & OBJ_COLORED) == 0) { 428 fs.object->flags |= OBJ_COLORED; 429 fs.object->pg_color = atop(vaddr) - 430 fs.pindex; 431 } 432 #endif 433 alloc_req = P_KILLED(curproc) ? 434 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 435 if (fs.object->type != OBJT_VNODE && 436 fs.object->backing_object == NULL) 437 alloc_req |= VM_ALLOC_ZERO; 438 fs.m = vm_page_alloc(fs.object, fs.pindex, 439 alloc_req); 440 } 441 if (fs.m == NULL) { 442 unlock_and_deallocate(&fs); 443 VM_WAITPFAULT; 444 goto RetryFault; 445 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 446 break; 447 } 448 449 readrest: 450 /* 451 * We have found a valid page or we have allocated a new page. 452 * The page thus may not be valid or may not be entirely 453 * valid. 454 * 455 * Attempt to fault-in the page if there is a chance that the 456 * pager has it, and potentially fault in additional pages 457 * at the same time. 458 */ 459 if (TRYPAGER) { 460 int rv; 461 u_char behavior = vm_map_entry_behavior(fs.entry); 462 463 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 464 P_KILLED(curproc)) { 465 behind = 0; 466 ahead = 0; 467 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 468 behind = 0; 469 ahead = atop(fs.entry->end - vaddr) - 1; 470 if (ahead > VM_FAULT_READ_AHEAD_MAX) 471 ahead = VM_FAULT_READ_AHEAD_MAX; 472 if (fs.pindex == fs.entry->next_read) 473 vm_fault_cache_behind(&fs, 474 VM_FAULT_READ_MAX); 475 } else { 476 /* 477 * If this is a sequential page fault, then 478 * arithmetically increase the number of pages 479 * in the read-ahead window. Otherwise, reset 480 * the read-ahead window to its smallest size. 481 */ 482 behind = atop(vaddr - fs.entry->start); 483 if (behind > VM_FAULT_READ_BEHIND) 484 behind = VM_FAULT_READ_BEHIND; 485 ahead = atop(fs.entry->end - vaddr) - 1; 486 era = fs.entry->read_ahead; 487 if (fs.pindex == fs.entry->next_read) { 488 nera = era + behind; 489 if (nera > VM_FAULT_READ_AHEAD_MAX) 490 nera = VM_FAULT_READ_AHEAD_MAX; 491 behind = 0; 492 if (ahead > nera) 493 ahead = nera; 494 if (era == VM_FAULT_READ_AHEAD_MAX) 495 vm_fault_cache_behind(&fs, 496 VM_FAULT_CACHE_BEHIND); 497 } else if (ahead > VM_FAULT_READ_AHEAD_MIN) 498 ahead = VM_FAULT_READ_AHEAD_MIN; 499 if (era != ahead) 500 fs.entry->read_ahead = ahead; 501 } 502 503 /* 504 * Call the pager to retrieve the data, if any, after 505 * releasing the lock on the map. We hold a ref on 506 * fs.object and the pages are VPO_BUSY'd. 507 */ 508 unlock_map(&fs); 509 510 if (fs.object->type == OBJT_VNODE) { 511 vp = fs.object->handle; 512 if (vp == fs.vp) 513 goto vnode_locked; 514 else if (fs.vp != NULL) { 515 vput(fs.vp); 516 fs.vp = NULL; 517 } 518 locked = VOP_ISLOCKED(vp); 519 520 if (locked != LK_EXCLUSIVE) 521 locked = LK_SHARED; 522 /* Do not sleep for vnode lock while fs.m is busy */ 523 error = vget(vp, locked | LK_CANRECURSE | 524 LK_NOWAIT, curthread); 525 if (error != 0) { 526 vhold(vp); 527 release_page(&fs); 528 unlock_and_deallocate(&fs); 529 error = vget(vp, locked | LK_RETRY | 530 LK_CANRECURSE, curthread); 531 vdrop(vp); 532 fs.vp = vp; 533 KASSERT(error == 0, 534 ("vm_fault: vget failed")); 535 goto RetryFault; 536 } 537 fs.vp = vp; 538 } 539 vnode_locked: 540 KASSERT(fs.vp == NULL || !fs.map->system_map, 541 ("vm_fault: vnode-backed object mapped by system map")); 542 543 /* 544 * now we find out if any other pages should be paged 545 * in at this time this routine checks to see if the 546 * pages surrounding this fault reside in the same 547 * object as the page for this fault. If they do, 548 * then they are faulted in also into the object. The 549 * array "marray" returned contains an array of 550 * vm_page_t structs where one of them is the 551 * vm_page_t passed to the routine. The reqpage 552 * return value is the index into the marray for the 553 * vm_page_t passed to the routine. 554 * 555 * fs.m plus the additional pages are VPO_BUSY'd. 556 */ 557 faultcount = vm_fault_additional_pages( 558 fs.m, behind, ahead, marray, &reqpage); 559 560 rv = faultcount ? 561 vm_pager_get_pages(fs.object, marray, faultcount, 562 reqpage) : VM_PAGER_FAIL; 563 564 if (rv == VM_PAGER_OK) { 565 /* 566 * Found the page. Leave it busy while we play 567 * with it. 568 */ 569 570 /* 571 * Relookup in case pager changed page. Pager 572 * is responsible for disposition of old page 573 * if moved. 574 */ 575 fs.m = vm_page_lookup(fs.object, fs.pindex); 576 if (!fs.m) { 577 unlock_and_deallocate(&fs); 578 goto RetryFault; 579 } 580 581 hardfault++; 582 break; /* break to PAGE HAS BEEN FOUND */ 583 } 584 /* 585 * Remove the bogus page (which does not exist at this 586 * object/offset); before doing so, we must get back 587 * our object lock to preserve our invariant. 588 * 589 * Also wake up any other process that may want to bring 590 * in this page. 591 * 592 * If this is the top-level object, we must leave the 593 * busy page to prevent another process from rushing 594 * past us, and inserting the page in that object at 595 * the same time that we are. 596 */ 597 if (rv == VM_PAGER_ERROR) 598 printf("vm_fault: pager read error, pid %d (%s)\n", 599 curproc->p_pid, curproc->p_comm); 600 /* 601 * Data outside the range of the pager or an I/O error 602 */ 603 /* 604 * XXX - the check for kernel_map is a kludge to work 605 * around having the machine panic on a kernel space 606 * fault w/ I/O error. 607 */ 608 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 609 (rv == VM_PAGER_BAD)) { 610 vm_page_lock(fs.m); 611 vm_page_free(fs.m); 612 vm_page_unlock(fs.m); 613 fs.m = NULL; 614 unlock_and_deallocate(&fs); 615 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 616 } 617 if (fs.object != fs.first_object) { 618 vm_page_lock(fs.m); 619 vm_page_free(fs.m); 620 vm_page_unlock(fs.m); 621 fs.m = NULL; 622 /* 623 * XXX - we cannot just fall out at this 624 * point, m has been freed and is invalid! 625 */ 626 } 627 } 628 629 /* 630 * We get here if the object has default pager (or unwiring) 631 * or the pager doesn't have the page. 632 */ 633 if (fs.object == fs.first_object) 634 fs.first_m = fs.m; 635 636 /* 637 * Move on to the next object. Lock the next object before 638 * unlocking the current one. 639 */ 640 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 641 next_object = fs.object->backing_object; 642 if (next_object == NULL) { 643 /* 644 * If there's no object left, fill the page in the top 645 * object with zeros. 646 */ 647 if (fs.object != fs.first_object) { 648 vm_object_pip_wakeup(fs.object); 649 VM_OBJECT_UNLOCK(fs.object); 650 651 fs.object = fs.first_object; 652 fs.pindex = fs.first_pindex; 653 fs.m = fs.first_m; 654 VM_OBJECT_LOCK(fs.object); 655 } 656 fs.first_m = NULL; 657 658 /* 659 * Zero the page if necessary and mark it valid. 660 */ 661 if ((fs.m->flags & PG_ZERO) == 0) { 662 pmap_zero_page(fs.m); 663 } else { 664 PCPU_INC(cnt.v_ozfod); 665 } 666 PCPU_INC(cnt.v_zfod); 667 fs.m->valid = VM_PAGE_BITS_ALL; 668 break; /* break to PAGE HAS BEEN FOUND */ 669 } else { 670 KASSERT(fs.object != next_object, 671 ("object loop %p", next_object)); 672 VM_OBJECT_LOCK(next_object); 673 vm_object_pip_add(next_object, 1); 674 if (fs.object != fs.first_object) 675 vm_object_pip_wakeup(fs.object); 676 VM_OBJECT_UNLOCK(fs.object); 677 fs.object = next_object; 678 } 679 } 680 681 KASSERT((fs.m->oflags & VPO_BUSY) != 0, 682 ("vm_fault: not busy after main loop")); 683 684 /* 685 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 686 * is held.] 687 */ 688 689 /* 690 * If the page is being written, but isn't already owned by the 691 * top-level object, we have to copy it into a new page owned by the 692 * top-level object. 693 */ 694 if (fs.object != fs.first_object) { 695 /* 696 * We only really need to copy if we want to write it. 697 */ 698 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 699 /* 700 * This allows pages to be virtually copied from a 701 * backing_object into the first_object, where the 702 * backing object has no other refs to it, and cannot 703 * gain any more refs. Instead of a bcopy, we just 704 * move the page from the backing object to the 705 * first object. Note that we must mark the page 706 * dirty in the first object so that it will go out 707 * to swap when needed. 708 */ 709 is_first_object_locked = FALSE; 710 if ( 711 /* 712 * Only one shadow object 713 */ 714 (fs.object->shadow_count == 1) && 715 /* 716 * No COW refs, except us 717 */ 718 (fs.object->ref_count == 1) && 719 /* 720 * No one else can look this object up 721 */ 722 (fs.object->handle == NULL) && 723 /* 724 * No other ways to look the object up 725 */ 726 ((fs.object->type == OBJT_DEFAULT) || 727 (fs.object->type == OBJT_SWAP)) && 728 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) && 729 /* 730 * We don't chase down the shadow chain 731 */ 732 fs.object == fs.first_object->backing_object) { 733 /* 734 * get rid of the unnecessary page 735 */ 736 vm_page_lock(fs.first_m); 737 vm_page_free(fs.first_m); 738 vm_page_unlock(fs.first_m); 739 /* 740 * grab the page and put it into the 741 * process'es object. The page is 742 * automatically made dirty. 743 */ 744 vm_page_lock(fs.m); 745 vm_page_rename(fs.m, fs.first_object, fs.first_pindex); 746 vm_page_unlock(fs.m); 747 vm_page_busy(fs.m); 748 fs.first_m = fs.m; 749 fs.m = NULL; 750 PCPU_INC(cnt.v_cow_optim); 751 } else { 752 /* 753 * Oh, well, lets copy it. 754 */ 755 pmap_copy_page(fs.m, fs.first_m); 756 fs.first_m->valid = VM_PAGE_BITS_ALL; 757 if (wired && (fault_flags & 758 VM_FAULT_CHANGE_WIRING) == 0) { 759 vm_page_lock(fs.first_m); 760 vm_page_wire(fs.first_m); 761 vm_page_unlock(fs.first_m); 762 763 vm_page_lock(fs.m); 764 vm_page_unwire(fs.m, FALSE); 765 vm_page_unlock(fs.m); 766 } 767 /* 768 * We no longer need the old page or object. 769 */ 770 release_page(&fs); 771 } 772 /* 773 * fs.object != fs.first_object due to above 774 * conditional 775 */ 776 vm_object_pip_wakeup(fs.object); 777 VM_OBJECT_UNLOCK(fs.object); 778 /* 779 * Only use the new page below... 780 */ 781 fs.object = fs.first_object; 782 fs.pindex = fs.first_pindex; 783 fs.m = fs.first_m; 784 if (!is_first_object_locked) 785 VM_OBJECT_LOCK(fs.object); 786 PCPU_INC(cnt.v_cow_faults); 787 curthread->td_cow++; 788 } else { 789 prot &= ~VM_PROT_WRITE; 790 } 791 } 792 793 /* 794 * We must verify that the maps have not changed since our last 795 * lookup. 796 */ 797 if (!fs.lookup_still_valid) { 798 vm_object_t retry_object; 799 vm_pindex_t retry_pindex; 800 vm_prot_t retry_prot; 801 802 if (!vm_map_trylock_read(fs.map)) { 803 release_page(&fs); 804 unlock_and_deallocate(&fs); 805 goto RetryFault; 806 } 807 fs.lookup_still_valid = TRUE; 808 if (fs.map->timestamp != map_generation) { 809 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 810 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 811 812 /* 813 * If we don't need the page any longer, put it on the inactive 814 * list (the easiest thing to do here). If no one needs it, 815 * pageout will grab it eventually. 816 */ 817 if (result != KERN_SUCCESS) { 818 release_page(&fs); 819 unlock_and_deallocate(&fs); 820 821 /* 822 * If retry of map lookup would have blocked then 823 * retry fault from start. 824 */ 825 if (result == KERN_FAILURE) 826 goto RetryFault; 827 return (result); 828 } 829 if ((retry_object != fs.first_object) || 830 (retry_pindex != fs.first_pindex)) { 831 release_page(&fs); 832 unlock_and_deallocate(&fs); 833 goto RetryFault; 834 } 835 836 /* 837 * Check whether the protection has changed or the object has 838 * been copied while we left the map unlocked. Changing from 839 * read to write permission is OK - we leave the page 840 * write-protected, and catch the write fault. Changing from 841 * write to read permission means that we can't mark the page 842 * write-enabled after all. 843 */ 844 prot &= retry_prot; 845 } 846 } 847 /* 848 * If the page was filled by a pager, update the map entry's 849 * last read offset. Since the pager does not return the 850 * actual set of pages that it read, this update is based on 851 * the requested set. Typically, the requested and actual 852 * sets are the same. 853 * 854 * XXX The following assignment modifies the map 855 * without holding a write lock on it. 856 */ 857 if (hardfault) 858 fs.entry->next_read = fs.pindex + faultcount - reqpage; 859 860 if ((prot & VM_PROT_WRITE) != 0 || 861 (fault_flags & VM_FAULT_DIRTY) != 0) { 862 vm_object_set_writeable_dirty(fs.object); 863 864 /* 865 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 866 * if the page is already dirty to prevent data written with 867 * the expectation of being synced from not being synced. 868 * Likewise if this entry does not request NOSYNC then make 869 * sure the page isn't marked NOSYNC. Applications sharing 870 * data should use the same flags to avoid ping ponging. 871 */ 872 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) { 873 if (fs.m->dirty == 0) 874 fs.m->oflags |= VPO_NOSYNC; 875 } else { 876 fs.m->oflags &= ~VPO_NOSYNC; 877 } 878 879 /* 880 * If the fault is a write, we know that this page is being 881 * written NOW so dirty it explicitly to save on 882 * pmap_is_modified() calls later. 883 * 884 * Also tell the backing pager, if any, that it should remove 885 * any swap backing since the page is now dirty. 886 */ 887 if (((fault_type & VM_PROT_WRITE) != 0 && 888 (fault_flags & VM_FAULT_CHANGE_WIRING) == 0) || 889 (fault_flags & VM_FAULT_DIRTY) != 0) { 890 vm_page_dirty(fs.m); 891 vm_pager_page_unswapped(fs.m); 892 } 893 } 894 895 /* 896 * Page had better still be busy 897 */ 898 KASSERT(fs.m->oflags & VPO_BUSY, 899 ("vm_fault: page %p not busy!", fs.m)); 900 /* 901 * Page must be completely valid or it is not fit to 902 * map into user space. vm_pager_get_pages() ensures this. 903 */ 904 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 905 ("vm_fault: page %p partially invalid", fs.m)); 906 VM_OBJECT_UNLOCK(fs.object); 907 908 /* 909 * Put this page into the physical map. We had to do the unlock above 910 * because pmap_enter() may sleep. We don't put the page 911 * back on the active queue until later so that the pageout daemon 912 * won't find it (yet). 913 */ 914 pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired); 915 if ((fault_flags & VM_FAULT_CHANGE_WIRING) == 0 && wired == 0) 916 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry); 917 VM_OBJECT_LOCK(fs.object); 918 vm_page_lock(fs.m); 919 920 /* 921 * If the page is not wired down, then put it where the pageout daemon 922 * can find it. 923 */ 924 if (fault_flags & VM_FAULT_CHANGE_WIRING) { 925 if (wired) 926 vm_page_wire(fs.m); 927 else 928 vm_page_unwire(fs.m, 1); 929 } else 930 vm_page_activate(fs.m); 931 if (m_hold != NULL) { 932 *m_hold = fs.m; 933 vm_page_hold(fs.m); 934 } 935 vm_page_unlock(fs.m); 936 vm_page_wakeup(fs.m); 937 938 /* 939 * Unlock everything, and return 940 */ 941 unlock_and_deallocate(&fs); 942 if (hardfault) 943 curthread->td_ru.ru_majflt++; 944 else 945 curthread->td_ru.ru_minflt++; 946 947 return (KERN_SUCCESS); 948 } 949 950 /* 951 * Speed up the reclamation of up to "distance" pages that precede the 952 * faulting pindex within the first object of the shadow chain. 953 */ 954 static void 955 vm_fault_cache_behind(const struct faultstate *fs, int distance) 956 { 957 vm_object_t first_object, object; 958 vm_page_t m, m_prev; 959 vm_pindex_t pindex; 960 961 object = fs->object; 962 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED); 963 first_object = fs->first_object; 964 if (first_object != object) { 965 if (!VM_OBJECT_TRYLOCK(first_object)) { 966 VM_OBJECT_UNLOCK(object); 967 VM_OBJECT_LOCK(first_object); 968 VM_OBJECT_LOCK(object); 969 } 970 } 971 /* Neither fictitious nor unmanaged pages can be cached. */ 972 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 973 if (fs->first_pindex < distance) 974 pindex = 0; 975 else 976 pindex = fs->first_pindex - distance; 977 if (pindex < OFF_TO_IDX(fs->entry->offset)) 978 pindex = OFF_TO_IDX(fs->entry->offset); 979 m = first_object != object ? fs->first_m : fs->m; 980 KASSERT((m->oflags & VPO_BUSY) != 0, 981 ("vm_fault_cache_behind: page %p is not busy", m)); 982 m_prev = vm_page_prev(m); 983 while ((m = m_prev) != NULL && m->pindex >= pindex && 984 m->valid == VM_PAGE_BITS_ALL) { 985 m_prev = vm_page_prev(m); 986 if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) 987 continue; 988 vm_page_lock(m); 989 if (m->hold_count == 0 && m->wire_count == 0) { 990 pmap_remove_all(m); 991 vm_page_aflag_clear(m, PGA_REFERENCED); 992 if (m->dirty != 0) 993 vm_page_deactivate(m); 994 else 995 vm_page_cache(m); 996 } 997 vm_page_unlock(m); 998 } 999 } 1000 if (first_object != object) 1001 VM_OBJECT_UNLOCK(first_object); 1002 } 1003 1004 /* 1005 * vm_fault_prefault provides a quick way of clustering 1006 * pagefaults into a processes address space. It is a "cousin" 1007 * of vm_map_pmap_enter, except it runs at page fault time instead 1008 * of mmap time. 1009 */ 1010 static void 1011 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry) 1012 { 1013 int i; 1014 vm_offset_t addr, starta; 1015 vm_pindex_t pindex; 1016 vm_page_t m; 1017 vm_object_t object; 1018 1019 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1020 return; 1021 1022 object = entry->object.vm_object; 1023 1024 starta = addra - PFBAK * PAGE_SIZE; 1025 if (starta < entry->start) { 1026 starta = entry->start; 1027 } else if (starta > addra) { 1028 starta = 0; 1029 } 1030 1031 for (i = 0; i < PAGEORDER_SIZE; i++) { 1032 vm_object_t backing_object, lobject; 1033 1034 addr = addra + prefault_pageorder[i]; 1035 if (addr > addra + (PFFOR * PAGE_SIZE)) 1036 addr = 0; 1037 1038 if (addr < starta || addr >= entry->end) 1039 continue; 1040 1041 if (!pmap_is_prefaultable(pmap, addr)) 1042 continue; 1043 1044 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1045 lobject = object; 1046 VM_OBJECT_LOCK(lobject); 1047 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1048 lobject->type == OBJT_DEFAULT && 1049 (backing_object = lobject->backing_object) != NULL) { 1050 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1051 0, ("vm_fault_prefault: unaligned object offset")); 1052 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1053 VM_OBJECT_LOCK(backing_object); 1054 VM_OBJECT_UNLOCK(lobject); 1055 lobject = backing_object; 1056 } 1057 /* 1058 * give-up when a page is not in memory 1059 */ 1060 if (m == NULL) { 1061 VM_OBJECT_UNLOCK(lobject); 1062 break; 1063 } 1064 if (m->valid == VM_PAGE_BITS_ALL && 1065 (m->flags & PG_FICTITIOUS) == 0) 1066 pmap_enter_quick(pmap, addr, m, entry->protection); 1067 VM_OBJECT_UNLOCK(lobject); 1068 } 1069 } 1070 1071 /* 1072 * Hold each of the physical pages that are mapped by the specified range of 1073 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1074 * and allow the specified types of access, "prot". If all of the implied 1075 * pages are successfully held, then the number of held pages is returned 1076 * together with pointers to those pages in the array "ma". However, if any 1077 * of the pages cannot be held, -1 is returned. 1078 */ 1079 int 1080 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1081 vm_prot_t prot, vm_page_t *ma, int max_count) 1082 { 1083 vm_offset_t end, va; 1084 vm_page_t *mp; 1085 int count; 1086 boolean_t pmap_failed; 1087 1088 if (len == 0) 1089 return (0); 1090 end = round_page(addr + len); 1091 addr = trunc_page(addr); 1092 1093 /* 1094 * Check for illegal addresses. 1095 */ 1096 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1097 return (-1); 1098 1099 count = howmany(end - addr, PAGE_SIZE); 1100 if (count > max_count) 1101 panic("vm_fault_quick_hold_pages: count > max_count"); 1102 1103 /* 1104 * Most likely, the physical pages are resident in the pmap, so it is 1105 * faster to try pmap_extract_and_hold() first. 1106 */ 1107 pmap_failed = FALSE; 1108 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1109 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1110 if (*mp == NULL) 1111 pmap_failed = TRUE; 1112 else if ((prot & VM_PROT_WRITE) != 0 && 1113 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1114 /* 1115 * Explicitly dirty the physical page. Otherwise, the 1116 * caller's changes may go unnoticed because they are 1117 * performed through an unmanaged mapping or by a DMA 1118 * operation. 1119 * 1120 * The object lock is not held here. 1121 * See vm_page_clear_dirty_mask(). 1122 */ 1123 vm_page_dirty(*mp); 1124 } 1125 } 1126 if (pmap_failed) { 1127 /* 1128 * One or more pages could not be held by the pmap. Either no 1129 * page was mapped at the specified virtual address or that 1130 * mapping had insufficient permissions. Attempt to fault in 1131 * and hold these pages. 1132 */ 1133 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1134 if (*mp == NULL && vm_fault_hold(map, va, prot, 1135 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1136 goto error; 1137 } 1138 return (count); 1139 error: 1140 for (mp = ma; mp < ma + count; mp++) 1141 if (*mp != NULL) { 1142 vm_page_lock(*mp); 1143 vm_page_unhold(*mp); 1144 vm_page_unlock(*mp); 1145 } 1146 return (-1); 1147 } 1148 1149 /* 1150 * vm_fault_wire: 1151 * 1152 * Wire down a range of virtual addresses in a map. 1153 */ 1154 int 1155 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1156 boolean_t fictitious) 1157 { 1158 vm_offset_t va; 1159 int rv; 1160 1161 /* 1162 * We simulate a fault to get the page and enter it in the physical 1163 * map. For user wiring, we only ask for read access on currently 1164 * read-only sections. 1165 */ 1166 for (va = start; va < end; va += PAGE_SIZE) { 1167 rv = vm_fault(map, va, VM_PROT_NONE, VM_FAULT_CHANGE_WIRING); 1168 if (rv) { 1169 if (va != start) 1170 vm_fault_unwire(map, start, va, fictitious); 1171 return (rv); 1172 } 1173 } 1174 return (KERN_SUCCESS); 1175 } 1176 1177 /* 1178 * vm_fault_unwire: 1179 * 1180 * Unwire a range of virtual addresses in a map. 1181 */ 1182 void 1183 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1184 boolean_t fictitious) 1185 { 1186 vm_paddr_t pa; 1187 vm_offset_t va; 1188 vm_page_t m; 1189 pmap_t pmap; 1190 1191 pmap = vm_map_pmap(map); 1192 1193 /* 1194 * Since the pages are wired down, we must be able to get their 1195 * mappings from the physical map system. 1196 */ 1197 for (va = start; va < end; va += PAGE_SIZE) { 1198 pa = pmap_extract(pmap, va); 1199 if (pa != 0) { 1200 pmap_change_wiring(pmap, va, FALSE); 1201 if (!fictitious) { 1202 m = PHYS_TO_VM_PAGE(pa); 1203 vm_page_lock(m); 1204 vm_page_unwire(m, TRUE); 1205 vm_page_unlock(m); 1206 } 1207 } 1208 } 1209 } 1210 1211 /* 1212 * Routine: 1213 * vm_fault_copy_entry 1214 * Function: 1215 * Create new shadow object backing dst_entry with private copy of 1216 * all underlying pages. When src_entry is equal to dst_entry, 1217 * function implements COW for wired-down map entry. Otherwise, 1218 * it forks wired entry into dst_map. 1219 * 1220 * In/out conditions: 1221 * The source and destination maps must be locked for write. 1222 * The source map entry must be wired down (or be a sharing map 1223 * entry corresponding to a main map entry that is wired down). 1224 */ 1225 void 1226 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1227 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1228 vm_ooffset_t *fork_charge) 1229 { 1230 vm_object_t backing_object, dst_object, object, src_object; 1231 vm_pindex_t dst_pindex, pindex, src_pindex; 1232 vm_prot_t access, prot; 1233 vm_offset_t vaddr; 1234 vm_page_t dst_m; 1235 vm_page_t src_m; 1236 boolean_t src_readonly, upgrade; 1237 1238 #ifdef lint 1239 src_map++; 1240 #endif /* lint */ 1241 1242 upgrade = src_entry == dst_entry; 1243 1244 src_object = src_entry->object.vm_object; 1245 src_pindex = OFF_TO_IDX(src_entry->offset); 1246 src_readonly = (src_entry->protection & VM_PROT_WRITE) == 0; 1247 1248 /* 1249 * Create the top-level object for the destination entry. (Doesn't 1250 * actually shadow anything - we copy the pages directly.) 1251 */ 1252 dst_object = vm_object_allocate(OBJT_DEFAULT, 1253 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1254 #if VM_NRESERVLEVEL > 0 1255 dst_object->flags |= OBJ_COLORED; 1256 dst_object->pg_color = atop(dst_entry->start); 1257 #endif 1258 1259 VM_OBJECT_LOCK(dst_object); 1260 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1261 ("vm_fault_copy_entry: vm_object not NULL")); 1262 dst_entry->object.vm_object = dst_object; 1263 dst_entry->offset = 0; 1264 dst_object->charge = dst_entry->end - dst_entry->start; 1265 if (fork_charge != NULL) { 1266 KASSERT(dst_entry->cred == NULL, 1267 ("vm_fault_copy_entry: leaked swp charge")); 1268 dst_object->cred = curthread->td_ucred; 1269 crhold(dst_object->cred); 1270 *fork_charge += dst_object->charge; 1271 } else { 1272 dst_object->cred = dst_entry->cred; 1273 dst_entry->cred = NULL; 1274 } 1275 access = prot = dst_entry->protection; 1276 /* 1277 * If not an upgrade, then enter the mappings in the pmap as 1278 * read and/or execute accesses. Otherwise, enter them as 1279 * write accesses. 1280 * 1281 * A writeable large page mapping is only created if all of 1282 * the constituent small page mappings are modified. Marking 1283 * PTEs as modified on inception allows promotion to happen 1284 * without taking potentially large number of soft faults. 1285 */ 1286 if (!upgrade) 1287 access &= ~VM_PROT_WRITE; 1288 1289 /* 1290 * Loop through all of the virtual pages within the entry's 1291 * range, copying each page from the source object to the 1292 * destination object. Since the source is wired, those pages 1293 * must exist. In contrast, the destination is pageable. 1294 * Since the destination object does share any backing storage 1295 * with the source object, all of its pages must be dirtied, 1296 * regardless of whether they can be written. 1297 */ 1298 for (vaddr = dst_entry->start, dst_pindex = 0; 1299 vaddr < dst_entry->end; 1300 vaddr += PAGE_SIZE, dst_pindex++) { 1301 1302 /* 1303 * Allocate a page in the destination object. 1304 */ 1305 do { 1306 dst_m = vm_page_alloc(dst_object, dst_pindex, 1307 VM_ALLOC_NORMAL); 1308 if (dst_m == NULL) { 1309 VM_OBJECT_UNLOCK(dst_object); 1310 VM_WAIT; 1311 VM_OBJECT_LOCK(dst_object); 1312 } 1313 } while (dst_m == NULL); 1314 1315 /* 1316 * Find the page in the source object, and copy it in. 1317 * (Because the source is wired down, the page will be in 1318 * memory.) 1319 */ 1320 VM_OBJECT_LOCK(src_object); 1321 object = src_object; 1322 pindex = src_pindex + dst_pindex; 1323 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1324 src_readonly && 1325 (backing_object = object->backing_object) != NULL) { 1326 /* 1327 * Allow fallback to backing objects if we are reading. 1328 */ 1329 VM_OBJECT_LOCK(backing_object); 1330 pindex += OFF_TO_IDX(object->backing_object_offset); 1331 VM_OBJECT_UNLOCK(object); 1332 object = backing_object; 1333 } 1334 if (src_m == NULL) 1335 panic("vm_fault_copy_wired: page missing"); 1336 pmap_copy_page(src_m, dst_m); 1337 VM_OBJECT_UNLOCK(object); 1338 dst_m->valid = VM_PAGE_BITS_ALL; 1339 dst_m->dirty = VM_PAGE_BITS_ALL; 1340 VM_OBJECT_UNLOCK(dst_object); 1341 1342 /* 1343 * Enter it in the pmap. If a wired, copy-on-write 1344 * mapping is being replaced by a write-enabled 1345 * mapping, then wire that new mapping. 1346 */ 1347 pmap_enter(dst_map->pmap, vaddr, access, dst_m, prot, upgrade); 1348 1349 /* 1350 * Mark it no longer busy, and put it on the active list. 1351 */ 1352 VM_OBJECT_LOCK(dst_object); 1353 1354 if (upgrade) { 1355 vm_page_lock(src_m); 1356 vm_page_unwire(src_m, 0); 1357 vm_page_unlock(src_m); 1358 1359 vm_page_lock(dst_m); 1360 vm_page_wire(dst_m); 1361 vm_page_unlock(dst_m); 1362 } else { 1363 vm_page_lock(dst_m); 1364 vm_page_activate(dst_m); 1365 vm_page_unlock(dst_m); 1366 } 1367 vm_page_wakeup(dst_m); 1368 } 1369 VM_OBJECT_UNLOCK(dst_object); 1370 if (upgrade) { 1371 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1372 vm_object_deallocate(src_object); 1373 } 1374 } 1375 1376 1377 /* 1378 * This routine checks around the requested page for other pages that 1379 * might be able to be faulted in. This routine brackets the viable 1380 * pages for the pages to be paged in. 1381 * 1382 * Inputs: 1383 * m, rbehind, rahead 1384 * 1385 * Outputs: 1386 * marray (array of vm_page_t), reqpage (index of requested page) 1387 * 1388 * Return value: 1389 * number of pages in marray 1390 */ 1391 static int 1392 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1393 vm_page_t m; 1394 int rbehind; 1395 int rahead; 1396 vm_page_t *marray; 1397 int *reqpage; 1398 { 1399 int i,j; 1400 vm_object_t object; 1401 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1402 vm_page_t rtm; 1403 int cbehind, cahead; 1404 1405 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1406 1407 object = m->object; 1408 pindex = m->pindex; 1409 cbehind = cahead = 0; 1410 1411 /* 1412 * if the requested page is not available, then give up now 1413 */ 1414 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1415 return 0; 1416 } 1417 1418 if ((cbehind == 0) && (cahead == 0)) { 1419 *reqpage = 0; 1420 marray[0] = m; 1421 return 1; 1422 } 1423 1424 if (rahead > cahead) { 1425 rahead = cahead; 1426 } 1427 1428 if (rbehind > cbehind) { 1429 rbehind = cbehind; 1430 } 1431 1432 /* 1433 * scan backward for the read behind pages -- in memory 1434 */ 1435 if (pindex > 0) { 1436 if (rbehind > pindex) { 1437 rbehind = pindex; 1438 startpindex = 0; 1439 } else { 1440 startpindex = pindex - rbehind; 1441 } 1442 1443 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL && 1444 rtm->pindex >= startpindex) 1445 startpindex = rtm->pindex + 1; 1446 1447 /* tpindex is unsigned; beware of numeric underflow. */ 1448 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex && 1449 tpindex < pindex; i++, tpindex--) { 1450 1451 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1452 VM_ALLOC_IFNOTCACHED); 1453 if (rtm == NULL) { 1454 /* 1455 * Shift the allocated pages to the 1456 * beginning of the array. 1457 */ 1458 for (j = 0; j < i; j++) { 1459 marray[j] = marray[j + tpindex + 1 - 1460 startpindex]; 1461 } 1462 break; 1463 } 1464 1465 marray[tpindex - startpindex] = rtm; 1466 } 1467 } else { 1468 startpindex = 0; 1469 i = 0; 1470 } 1471 1472 marray[i] = m; 1473 /* page offset of the required page */ 1474 *reqpage = i; 1475 1476 tpindex = pindex + 1; 1477 i++; 1478 1479 /* 1480 * scan forward for the read ahead pages 1481 */ 1482 endpindex = tpindex + rahead; 1483 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex) 1484 endpindex = rtm->pindex; 1485 if (endpindex > object->size) 1486 endpindex = object->size; 1487 1488 for (; tpindex < endpindex; i++, tpindex++) { 1489 1490 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1491 VM_ALLOC_IFNOTCACHED); 1492 if (rtm == NULL) { 1493 break; 1494 } 1495 1496 marray[i] = rtm; 1497 } 1498 1499 /* return number of pages */ 1500 return i; 1501 } 1502 1503 /* 1504 * Block entry into the machine-independent layer's page fault handler by 1505 * the calling thread. Subsequent calls to vm_fault() by that thread will 1506 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1507 * spurious page faults. 1508 */ 1509 int 1510 vm_fault_disable_pagefaults(void) 1511 { 1512 1513 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1514 } 1515 1516 void 1517 vm_fault_enable_pagefaults(int save) 1518 { 1519 1520 curthread_pflags_restore(save); 1521 } 1522