xref: /freebsd/sys/vm/vm_fault.c (revision 26d8ca3bc9cafaf8fae8764a6ad2cb3fbb84c8ee)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_ktrace.h"
78 #include "opt_vm.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/lock.h>
84 #include <sys/mman.h>
85 #include <sys/proc.h>
86 #include <sys/racct.h>
87 #include <sys/resourcevar.h>
88 #include <sys/rwlock.h>
89 #include <sys/sysctl.h>
90 #include <sys/vmmeter.h>
91 #include <sys/vnode.h>
92 #ifdef KTRACE
93 #include <sys/ktrace.h>
94 #endif
95 
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_map.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_reserv.h>
107 
108 #define PFBAK 4
109 #define PFFOR 4
110 
111 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
112 #define	VM_FAULT_READ_MAX	(1 + VM_FAULT_READ_AHEAD_MAX)
113 
114 #define	VM_FAULT_DONTNEED_MIN	1048576
115 
116 struct faultstate {
117 	vm_page_t m;
118 	vm_object_t object;
119 	vm_pindex_t pindex;
120 	vm_page_t first_m;
121 	vm_object_t	first_object;
122 	vm_pindex_t first_pindex;
123 	vm_map_t map;
124 	vm_map_entry_t entry;
125 	int lookup_still_valid;
126 	struct vnode *vp;
127 };
128 
129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
130 	    int ahead);
131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
132 	    int backward, int forward);
133 
134 static inline void
135 release_page(struct faultstate *fs)
136 {
137 
138 	vm_page_xunbusy(fs->m);
139 	vm_page_lock(fs->m);
140 	vm_page_deactivate(fs->m);
141 	vm_page_unlock(fs->m);
142 	fs->m = NULL;
143 }
144 
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148 
149 	if (fs->lookup_still_valid) {
150 		vm_map_lookup_done(fs->map, fs->entry);
151 		fs->lookup_still_valid = FALSE;
152 	}
153 }
154 
155 static void
156 unlock_and_deallocate(struct faultstate *fs)
157 {
158 
159 	vm_object_pip_wakeup(fs->object);
160 	VM_OBJECT_WUNLOCK(fs->object);
161 	if (fs->object != fs->first_object) {
162 		VM_OBJECT_WLOCK(fs->first_object);
163 		vm_page_lock(fs->first_m);
164 		vm_page_free(fs->first_m);
165 		vm_page_unlock(fs->first_m);
166 		vm_object_pip_wakeup(fs->first_object);
167 		VM_OBJECT_WUNLOCK(fs->first_object);
168 		fs->first_m = NULL;
169 	}
170 	vm_object_deallocate(fs->first_object);
171 	unlock_map(fs);
172 	if (fs->vp != NULL) {
173 		vput(fs->vp);
174 		fs->vp = NULL;
175 	}
176 }
177 
178 static void
179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot,
180     vm_prot_t fault_type, int fault_flags, boolean_t set_wd)
181 {
182 	boolean_t need_dirty;
183 
184 	if (((prot & VM_PROT_WRITE) == 0 &&
185 	    (fault_flags & VM_FAULT_DIRTY) == 0) ||
186 	    (m->oflags & VPO_UNMANAGED) != 0)
187 		return;
188 
189 	VM_OBJECT_ASSERT_LOCKED(m->object);
190 
191 	need_dirty = ((fault_type & VM_PROT_WRITE) != 0 &&
192 	    (fault_flags & VM_FAULT_WIRE) == 0) ||
193 	    (fault_flags & VM_FAULT_DIRTY) != 0;
194 
195 	if (set_wd)
196 		vm_object_set_writeable_dirty(m->object);
197 	else
198 		/*
199 		 * If two callers of vm_fault_dirty() with set_wd ==
200 		 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC
201 		 * flag set, other with flag clear, race, it is
202 		 * possible for the no-NOSYNC thread to see m->dirty
203 		 * != 0 and not clear VPO_NOSYNC.  Take vm_page lock
204 		 * around manipulation of VPO_NOSYNC and
205 		 * vm_page_dirty() call, to avoid the race and keep
206 		 * m->oflags consistent.
207 		 */
208 		vm_page_lock(m);
209 
210 	/*
211 	 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
212 	 * if the page is already dirty to prevent data written with
213 	 * the expectation of being synced from not being synced.
214 	 * Likewise if this entry does not request NOSYNC then make
215 	 * sure the page isn't marked NOSYNC.  Applications sharing
216 	 * data should use the same flags to avoid ping ponging.
217 	 */
218 	if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) {
219 		if (m->dirty == 0) {
220 			m->oflags |= VPO_NOSYNC;
221 		}
222 	} else {
223 		m->oflags &= ~VPO_NOSYNC;
224 	}
225 
226 	/*
227 	 * If the fault is a write, we know that this page is being
228 	 * written NOW so dirty it explicitly to save on
229 	 * pmap_is_modified() calls later.
230 	 *
231 	 * Also tell the backing pager, if any, that it should remove
232 	 * any swap backing since the page is now dirty.
233 	 */
234 	if (need_dirty)
235 		vm_page_dirty(m);
236 	if (!set_wd)
237 		vm_page_unlock(m);
238 	if (need_dirty)
239 		vm_pager_page_unswapped(m);
240 }
241 
242 /*
243  *	vm_fault:
244  *
245  *	Handle a page fault occurring at the given address,
246  *	requiring the given permissions, in the map specified.
247  *	If successful, the page is inserted into the
248  *	associated physical map.
249  *
250  *	NOTE: the given address should be truncated to the
251  *	proper page address.
252  *
253  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
254  *	a standard error specifying why the fault is fatal is returned.
255  *
256  *	The map in question must be referenced, and remains so.
257  *	Caller may hold no locks.
258  */
259 int
260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
261     int fault_flags)
262 {
263 	struct thread *td;
264 	int result;
265 
266 	td = curthread;
267 	if ((td->td_pflags & TDP_NOFAULTING) != 0)
268 		return (KERN_PROTECTION_FAILURE);
269 #ifdef KTRACE
270 	if (map != kernel_map && KTRPOINT(td, KTR_FAULT))
271 		ktrfault(vaddr, fault_type);
272 #endif
273 	result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags,
274 	    NULL);
275 #ifdef KTRACE
276 	if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND))
277 		ktrfaultend(result);
278 #endif
279 	return (result);
280 }
281 
282 int
283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
284     int fault_flags, vm_page_t *m_hold)
285 {
286 	vm_prot_t prot;
287 	int alloc_req, era, faultcount, nera, result;
288 	boolean_t dead, growstack, is_first_object_locked, wired;
289 	int map_generation;
290 	vm_object_t next_object;
291 	int hardfault;
292 	struct faultstate fs;
293 	struct vnode *vp;
294 	vm_offset_t e_end, e_start;
295 	vm_page_t m;
296 	int ahead, behind, cluster_offset, error, locked, rv;
297 	u_char behavior;
298 
299 	hardfault = 0;
300 	growstack = TRUE;
301 	PCPU_INC(cnt.v_vm_faults);
302 	fs.vp = NULL;
303 	faultcount = 0;
304 	nera = -1;
305 
306 RetryFault:;
307 
308 	/*
309 	 * Find the backing store object and offset into it to begin the
310 	 * search.
311 	 */
312 	fs.map = map;
313 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
314 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
315 	if (result != KERN_SUCCESS) {
316 		if (growstack && result == KERN_INVALID_ADDRESS &&
317 		    map != kernel_map) {
318 			result = vm_map_growstack(curproc, vaddr);
319 			if (result != KERN_SUCCESS)
320 				return (KERN_FAILURE);
321 			growstack = FALSE;
322 			goto RetryFault;
323 		}
324 		if (fs.vp != NULL)
325 			vput(fs.vp);
326 		return (result);
327 	}
328 
329 	map_generation = fs.map->timestamp;
330 
331 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
332 		panic("vm_fault: fault on nofault entry, addr: %lx",
333 		    (u_long)vaddr);
334 	}
335 
336 	if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION &&
337 	    fs.entry->wiring_thread != curthread) {
338 		vm_map_unlock_read(fs.map);
339 		vm_map_lock(fs.map);
340 		if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) &&
341 		    (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
342 			if (fs.vp != NULL) {
343 				vput(fs.vp);
344 				fs.vp = NULL;
345 			}
346 			fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
347 			vm_map_unlock_and_wait(fs.map, 0);
348 		} else
349 			vm_map_unlock(fs.map);
350 		goto RetryFault;
351 	}
352 
353 	if (wired)
354 		fault_type = prot | (fault_type & VM_PROT_COPY);
355 	else
356 		KASSERT((fault_flags & VM_FAULT_WIRE) == 0,
357 		    ("!wired && VM_FAULT_WIRE"));
358 
359 	/*
360 	 * Try to avoid lock contention on the top-level object through
361 	 * special-case handling of some types of page faults, specifically,
362 	 * those that are both (1) mapping an existing page from the top-
363 	 * level object and (2) not having to mark that object as containing
364 	 * dirty pages.  Under these conditions, a read lock on the top-level
365 	 * object suffices, allowing multiple page faults of a similar type to
366 	 * run in parallel on the same top-level object.
367 	 */
368 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
369 	    (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 &&
370 	    /* avoid calling vm_object_set_writeable_dirty() */
371 	    ((prot & VM_PROT_WRITE) == 0 ||
372 	    (fs.first_object->type != OBJT_VNODE &&
373 	    (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) ||
374 	    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) {
375 		VM_OBJECT_RLOCK(fs.first_object);
376 		if ((prot & VM_PROT_WRITE) != 0 &&
377 		    (fs.first_object->type == OBJT_VNODE ||
378 		    (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) &&
379 		    (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0)
380 			goto fast_failed;
381 		m = vm_page_lookup(fs.first_object, fs.first_pindex);
382 		/* A busy page can be mapped for read|execute access. */
383 		if (m == NULL || ((prot & VM_PROT_WRITE) != 0 &&
384 		    vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL)
385 			goto fast_failed;
386 		result = pmap_enter(fs.map->pmap, vaddr, m, prot,
387 		   fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED :
388 		   0), 0);
389 		if (result != KERN_SUCCESS)
390 			goto fast_failed;
391 		if (m_hold != NULL) {
392 			*m_hold = m;
393 			vm_page_lock(m);
394 			vm_page_hold(m);
395 			vm_page_unlock(m);
396 		}
397 		vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags,
398 		    FALSE);
399 		VM_OBJECT_RUNLOCK(fs.first_object);
400 		if (!wired)
401 			vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR);
402 		vm_map_lookup_done(fs.map, fs.entry);
403 		curthread->td_ru.ru_minflt++;
404 		return (KERN_SUCCESS);
405 fast_failed:
406 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
407 			VM_OBJECT_RUNLOCK(fs.first_object);
408 			VM_OBJECT_WLOCK(fs.first_object);
409 		}
410 	} else {
411 		VM_OBJECT_WLOCK(fs.first_object);
412 	}
413 
414 	/*
415 	 * Make a reference to this object to prevent its disposal while we
416 	 * are messing with it.  Once we have the reference, the map is free
417 	 * to be diddled.  Since objects reference their shadows (and copies),
418 	 * they will stay around as well.
419 	 *
420 	 * Bump the paging-in-progress count to prevent size changes (e.g.
421 	 * truncation operations) during I/O.  This must be done after
422 	 * obtaining the vnode lock in order to avoid possible deadlocks.
423 	 */
424 	vm_object_reference_locked(fs.first_object);
425 	vm_object_pip_add(fs.first_object, 1);
426 
427 	fs.lookup_still_valid = TRUE;
428 
429 	fs.first_m = NULL;
430 
431 	/*
432 	 * Search for the page at object/offset.
433 	 */
434 	fs.object = fs.first_object;
435 	fs.pindex = fs.first_pindex;
436 	while (TRUE) {
437 		/*
438 		 * If the object is marked for imminent termination,
439 		 * we retry here, since the collapse pass has raced
440 		 * with us.  Otherwise, if we see terminally dead
441 		 * object, return fail.
442 		 */
443 		if ((fs.object->flags & OBJ_DEAD) != 0) {
444 			dead = fs.object->type == OBJT_DEAD;
445 			unlock_and_deallocate(&fs);
446 			if (dead)
447 				return (KERN_PROTECTION_FAILURE);
448 			pause("vmf_de", 1);
449 			goto RetryFault;
450 		}
451 
452 		/*
453 		 * See if page is resident
454 		 */
455 		fs.m = vm_page_lookup(fs.object, fs.pindex);
456 		if (fs.m != NULL) {
457 			/*
458 			 * Wait/Retry if the page is busy.  We have to do this
459 			 * if the page is either exclusive or shared busy
460 			 * because the vm_pager may be using read busy for
461 			 * pageouts (and even pageins if it is the vnode
462 			 * pager), and we could end up trying to pagein and
463 			 * pageout the same page simultaneously.
464 			 *
465 			 * We can theoretically allow the busy case on a read
466 			 * fault if the page is marked valid, but since such
467 			 * pages are typically already pmap'd, putting that
468 			 * special case in might be more effort then it is
469 			 * worth.  We cannot under any circumstances mess
470 			 * around with a shared busied page except, perhaps,
471 			 * to pmap it.
472 			 */
473 			if (vm_page_busied(fs.m)) {
474 				/*
475 				 * Reference the page before unlocking and
476 				 * sleeping so that the page daemon is less
477 				 * likely to reclaim it.
478 				 */
479 				vm_page_aflag_set(fs.m, PGA_REFERENCED);
480 				if (fs.object != fs.first_object) {
481 					if (!VM_OBJECT_TRYWLOCK(
482 					    fs.first_object)) {
483 						VM_OBJECT_WUNLOCK(fs.object);
484 						VM_OBJECT_WLOCK(fs.first_object);
485 						VM_OBJECT_WLOCK(fs.object);
486 					}
487 					vm_page_lock(fs.first_m);
488 					vm_page_free(fs.first_m);
489 					vm_page_unlock(fs.first_m);
490 					vm_object_pip_wakeup(fs.first_object);
491 					VM_OBJECT_WUNLOCK(fs.first_object);
492 					fs.first_m = NULL;
493 				}
494 				unlock_map(&fs);
495 				if (fs.m == vm_page_lookup(fs.object,
496 				    fs.pindex)) {
497 					vm_page_sleep_if_busy(fs.m, "vmpfw");
498 				}
499 				vm_object_pip_wakeup(fs.object);
500 				VM_OBJECT_WUNLOCK(fs.object);
501 				PCPU_INC(cnt.v_intrans);
502 				vm_object_deallocate(fs.first_object);
503 				goto RetryFault;
504 			}
505 			vm_page_lock(fs.m);
506 			vm_page_remque(fs.m);
507 			vm_page_unlock(fs.m);
508 
509 			/*
510 			 * Mark page busy for other processes, and the
511 			 * pagedaemon.  If it still isn't completely valid
512 			 * (readable), jump to readrest, else break-out ( we
513 			 * found the page ).
514 			 */
515 			vm_page_xbusy(fs.m);
516 			if (fs.m->valid != VM_PAGE_BITS_ALL)
517 				goto readrest;
518 			break;
519 		}
520 		KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m));
521 
522 		/*
523 		 * Page is not resident.  If the pager might contain the page
524 		 * or this is the beginning of the search, allocate a new
525 		 * page.  (Default objects are zero-fill, so there is no real
526 		 * pager for them.)
527 		 */
528 		if (fs.object->type != OBJT_DEFAULT ||
529 		    fs.object == fs.first_object) {
530 			if (fs.pindex >= fs.object->size) {
531 				unlock_and_deallocate(&fs);
532 				return (KERN_PROTECTION_FAILURE);
533 			}
534 
535 			/*
536 			 * Allocate a new page for this object/offset pair.
537 			 *
538 			 * Unlocked read of the p_flag is harmless. At
539 			 * worst, the P_KILLED might be not observed
540 			 * there, and allocation can fail, causing
541 			 * restart and new reading of the p_flag.
542 			 */
543 			if (!vm_page_count_severe() || P_KILLED(curproc)) {
544 #if VM_NRESERVLEVEL > 0
545 				vm_object_color(fs.object, atop(vaddr) -
546 				    fs.pindex);
547 #endif
548 				alloc_req = P_KILLED(curproc) ?
549 				    VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL;
550 				if (fs.object->type != OBJT_VNODE &&
551 				    fs.object->backing_object == NULL)
552 					alloc_req |= VM_ALLOC_ZERO;
553 				fs.m = vm_page_alloc(fs.object, fs.pindex,
554 				    alloc_req);
555 			}
556 			if (fs.m == NULL) {
557 				unlock_and_deallocate(&fs);
558 				VM_WAITPFAULT;
559 				goto RetryFault;
560 			} else if (fs.m->valid == VM_PAGE_BITS_ALL)
561 				break;
562 		}
563 
564 readrest:
565 		/*
566 		 * If the pager for the current object might have the page,
567 		 * then determine the number of additional pages to read and
568 		 * potentially reprioritize previously read pages for earlier
569 		 * reclamation.  These operations should only be performed
570 		 * once per page fault.  Even if the current pager doesn't
571 		 * have the page, the number of additional pages to read will
572 		 * apply to subsequent objects in the shadow chain.
573 		 */
574 		if (fs.object->type != OBJT_DEFAULT && nera == -1 &&
575 		    !P_KILLED(curproc)) {
576 			KASSERT(fs.lookup_still_valid, ("map unlocked"));
577 			era = fs.entry->read_ahead;
578 			behavior = vm_map_entry_behavior(fs.entry);
579 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
580 				nera = 0;
581 			} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
582 				nera = VM_FAULT_READ_AHEAD_MAX;
583 				if (vaddr == fs.entry->next_read)
584 					vm_fault_dontneed(&fs, vaddr, nera);
585 			} else if (vaddr == fs.entry->next_read) {
586 				/*
587 				 * This is a sequential fault.  Arithmetically
588 				 * increase the requested number of pages in
589 				 * the read-ahead window.  The requested
590 				 * number of pages is "# of sequential faults
591 				 * x (read ahead min + 1) + read ahead min"
592 				 */
593 				nera = VM_FAULT_READ_AHEAD_MIN;
594 				if (era > 0) {
595 					nera += era + 1;
596 					if (nera > VM_FAULT_READ_AHEAD_MAX)
597 						nera = VM_FAULT_READ_AHEAD_MAX;
598 				}
599 				if (era == VM_FAULT_READ_AHEAD_MAX)
600 					vm_fault_dontneed(&fs, vaddr, nera);
601 			} else {
602 				/*
603 				 * This is a non-sequential fault.
604 				 */
605 				nera = 0;
606 			}
607 			if (era != nera) {
608 				/*
609 				 * A read lock on the map suffices to update
610 				 * the read ahead count safely.
611 				 */
612 				fs.entry->read_ahead = nera;
613 			}
614 
615 			/*
616 			 * Prepare for unlocking the map.  Save the map
617 			 * entry's start and end addresses, which are used to
618 			 * optimize the size of the pager operation below.
619 			 * Even if the map entry's addresses change after
620 			 * unlocking the map, using the saved addresses is
621 			 * safe.
622 			 */
623 			e_start = fs.entry->start;
624 			e_end = fs.entry->end;
625 		}
626 
627 		/*
628 		 * Call the pager to retrieve the page if there is a chance
629 		 * that the pager has it, and potentially retrieve additional
630 		 * pages at the same time.
631 		 */
632 		if (fs.object->type != OBJT_DEFAULT) {
633 			/*
634 			 * We have either allocated a new page or found an
635 			 * existing page that is only partially valid.  We
636 			 * hold a reference on fs.object and the page is
637 			 * exclusive busied.
638 			 */
639 			unlock_map(&fs);
640 
641 			if (fs.object->type == OBJT_VNODE) {
642 				vp = fs.object->handle;
643 				if (vp == fs.vp)
644 					goto vnode_locked;
645 				else if (fs.vp != NULL) {
646 					vput(fs.vp);
647 					fs.vp = NULL;
648 				}
649 				locked = VOP_ISLOCKED(vp);
650 
651 				if (locked != LK_EXCLUSIVE)
652 					locked = LK_SHARED;
653 				/* Do not sleep for vnode lock while fs.m is busy */
654 				error = vget(vp, locked | LK_CANRECURSE |
655 				    LK_NOWAIT, curthread);
656 				if (error != 0) {
657 					vhold(vp);
658 					release_page(&fs);
659 					unlock_and_deallocate(&fs);
660 					error = vget(vp, locked | LK_RETRY |
661 					    LK_CANRECURSE, curthread);
662 					vdrop(vp);
663 					fs.vp = vp;
664 					KASSERT(error == 0,
665 					    ("vm_fault: vget failed"));
666 					goto RetryFault;
667 				}
668 				fs.vp = vp;
669 			}
670 vnode_locked:
671 			KASSERT(fs.vp == NULL || !fs.map->system_map,
672 			    ("vm_fault: vnode-backed object mapped by system map"));
673 
674 			/*
675 			 * Page in the requested page and hint the pager,
676 			 * that it may bring up surrounding pages.
677 			 */
678 			if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
679 			    P_KILLED(curproc)) {
680 				behind = 0;
681 				ahead = 0;
682 			} else {
683 				/* Is this a sequential fault? */
684 				if (nera > 0) {
685 					behind = 0;
686 					ahead = nera;
687 				} else {
688 					/*
689 					 * Request a cluster of pages that is
690 					 * aligned to a VM_FAULT_READ_DEFAULT
691 					 * page offset boundary within the
692 					 * object.  Alignment to a page offset
693 					 * boundary is more likely to coincide
694 					 * with the underlying file system
695 					 * block than alignment to a virtual
696 					 * address boundary.
697 					 */
698 					cluster_offset = fs.pindex %
699 					    VM_FAULT_READ_DEFAULT;
700 					behind = ulmin(cluster_offset,
701 					    atop(vaddr - e_start));
702 					ahead = VM_FAULT_READ_DEFAULT - 1 -
703 					    cluster_offset;
704 				}
705 				ahead = ulmin(ahead, atop(e_end - vaddr) - 1);
706 			}
707 			rv = vm_pager_get_pages(fs.object, &fs.m, 1,
708 			    &behind, &ahead);
709 			if (rv == VM_PAGER_OK) {
710 				faultcount = behind + 1 + ahead;
711 				hardfault++;
712 				break; /* break to PAGE HAS BEEN FOUND */
713 			}
714 			if (rv == VM_PAGER_ERROR)
715 				printf("vm_fault: pager read error, pid %d (%s)\n",
716 				    curproc->p_pid, curproc->p_comm);
717 
718 			/*
719 			 * If an I/O error occurred or the requested page was
720 			 * outside the range of the pager, clean up and return
721 			 * an error.
722 			 */
723 			if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
724 				vm_page_lock(fs.m);
725 				vm_page_free(fs.m);
726 				vm_page_unlock(fs.m);
727 				fs.m = NULL;
728 				unlock_and_deallocate(&fs);
729 				return (rv == VM_PAGER_ERROR ? KERN_FAILURE :
730 				    KERN_PROTECTION_FAILURE);
731 			}
732 
733 			/*
734 			 * The requested page does not exist at this object/
735 			 * offset.  Remove the invalid page from the object,
736 			 * waking up anyone waiting for it, and continue on to
737 			 * the next object.  However, if this is the top-level
738 			 * object, we must leave the busy page in place to
739 			 * prevent another process from rushing past us, and
740 			 * inserting the page in that object at the same time
741 			 * that we are.
742 			 */
743 			if (fs.object != fs.first_object) {
744 				vm_page_lock(fs.m);
745 				vm_page_free(fs.m);
746 				vm_page_unlock(fs.m);
747 				fs.m = NULL;
748 			}
749 		}
750 
751 		/*
752 		 * We get here if the object has default pager (or unwiring)
753 		 * or the pager doesn't have the page.
754 		 */
755 		if (fs.object == fs.first_object)
756 			fs.first_m = fs.m;
757 
758 		/*
759 		 * Move on to the next object.  Lock the next object before
760 		 * unlocking the current one.
761 		 */
762 		next_object = fs.object->backing_object;
763 		if (next_object == NULL) {
764 			/*
765 			 * If there's no object left, fill the page in the top
766 			 * object with zeros.
767 			 */
768 			if (fs.object != fs.first_object) {
769 				vm_object_pip_wakeup(fs.object);
770 				VM_OBJECT_WUNLOCK(fs.object);
771 
772 				fs.object = fs.first_object;
773 				fs.pindex = fs.first_pindex;
774 				fs.m = fs.first_m;
775 				VM_OBJECT_WLOCK(fs.object);
776 			}
777 			fs.first_m = NULL;
778 
779 			/*
780 			 * Zero the page if necessary and mark it valid.
781 			 */
782 			if ((fs.m->flags & PG_ZERO) == 0) {
783 				pmap_zero_page(fs.m);
784 			} else {
785 				PCPU_INC(cnt.v_ozfod);
786 			}
787 			PCPU_INC(cnt.v_zfod);
788 			fs.m->valid = VM_PAGE_BITS_ALL;
789 			/* Don't try to prefault neighboring pages. */
790 			faultcount = 1;
791 			break;	/* break to PAGE HAS BEEN FOUND */
792 		} else {
793 			KASSERT(fs.object != next_object,
794 			    ("object loop %p", next_object));
795 			VM_OBJECT_WLOCK(next_object);
796 			vm_object_pip_add(next_object, 1);
797 			if (fs.object != fs.first_object)
798 				vm_object_pip_wakeup(fs.object);
799 			fs.pindex +=
800 			    OFF_TO_IDX(fs.object->backing_object_offset);
801 			VM_OBJECT_WUNLOCK(fs.object);
802 			fs.object = next_object;
803 		}
804 	}
805 
806 	vm_page_assert_xbusied(fs.m);
807 
808 	/*
809 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
810 	 * is held.]
811 	 */
812 
813 	/*
814 	 * If the page is being written, but isn't already owned by the
815 	 * top-level object, we have to copy it into a new page owned by the
816 	 * top-level object.
817 	 */
818 	if (fs.object != fs.first_object) {
819 		/*
820 		 * We only really need to copy if we want to write it.
821 		 */
822 		if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
823 			/*
824 			 * This allows pages to be virtually copied from a
825 			 * backing_object into the first_object, where the
826 			 * backing object has no other refs to it, and cannot
827 			 * gain any more refs.  Instead of a bcopy, we just
828 			 * move the page from the backing object to the
829 			 * first object.  Note that we must mark the page
830 			 * dirty in the first object so that it will go out
831 			 * to swap when needed.
832 			 */
833 			is_first_object_locked = FALSE;
834 			if (
835 				/*
836 				 * Only one shadow object
837 				 */
838 				(fs.object->shadow_count == 1) &&
839 				/*
840 				 * No COW refs, except us
841 				 */
842 				(fs.object->ref_count == 1) &&
843 				/*
844 				 * No one else can look this object up
845 				 */
846 				(fs.object->handle == NULL) &&
847 				/*
848 				 * No other ways to look the object up
849 				 */
850 				((fs.object->type == OBJT_DEFAULT) ||
851 				 (fs.object->type == OBJT_SWAP)) &&
852 			    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) &&
853 				/*
854 				 * We don't chase down the shadow chain
855 				 */
856 			    fs.object == fs.first_object->backing_object) {
857 				vm_page_lock(fs.m);
858 				vm_page_remove(fs.m);
859 				vm_page_unlock(fs.m);
860 				vm_page_lock(fs.first_m);
861 				vm_page_replace_checked(fs.m, fs.first_object,
862 				    fs.first_pindex, fs.first_m);
863 				vm_page_free(fs.first_m);
864 				vm_page_unlock(fs.first_m);
865 				vm_page_dirty(fs.m);
866 #if VM_NRESERVLEVEL > 0
867 				/*
868 				 * Rename the reservation.
869 				 */
870 				vm_reserv_rename(fs.m, fs.first_object,
871 				    fs.object, OFF_TO_IDX(
872 				    fs.first_object->backing_object_offset));
873 #endif
874 				/*
875 				 * Removing the page from the backing object
876 				 * unbusied it.
877 				 */
878 				vm_page_xbusy(fs.m);
879 				fs.first_m = fs.m;
880 				fs.m = NULL;
881 				PCPU_INC(cnt.v_cow_optim);
882 			} else {
883 				/*
884 				 * Oh, well, lets copy it.
885 				 */
886 				pmap_copy_page(fs.m, fs.first_m);
887 				fs.first_m->valid = VM_PAGE_BITS_ALL;
888 				if (wired && (fault_flags &
889 				    VM_FAULT_WIRE) == 0) {
890 					vm_page_lock(fs.first_m);
891 					vm_page_wire(fs.first_m);
892 					vm_page_unlock(fs.first_m);
893 
894 					vm_page_lock(fs.m);
895 					vm_page_unwire(fs.m, PQ_INACTIVE);
896 					vm_page_unlock(fs.m);
897 				}
898 				/*
899 				 * We no longer need the old page or object.
900 				 */
901 				release_page(&fs);
902 			}
903 			/*
904 			 * fs.object != fs.first_object due to above
905 			 * conditional
906 			 */
907 			vm_object_pip_wakeup(fs.object);
908 			VM_OBJECT_WUNLOCK(fs.object);
909 			/*
910 			 * Only use the new page below...
911 			 */
912 			fs.object = fs.first_object;
913 			fs.pindex = fs.first_pindex;
914 			fs.m = fs.first_m;
915 			if (!is_first_object_locked)
916 				VM_OBJECT_WLOCK(fs.object);
917 			PCPU_INC(cnt.v_cow_faults);
918 			curthread->td_cow++;
919 		} else {
920 			prot &= ~VM_PROT_WRITE;
921 		}
922 	}
923 
924 	/*
925 	 * We must verify that the maps have not changed since our last
926 	 * lookup.
927 	 */
928 	if (!fs.lookup_still_valid) {
929 		vm_object_t retry_object;
930 		vm_pindex_t retry_pindex;
931 		vm_prot_t retry_prot;
932 
933 		if (!vm_map_trylock_read(fs.map)) {
934 			release_page(&fs);
935 			unlock_and_deallocate(&fs);
936 			goto RetryFault;
937 		}
938 		fs.lookup_still_valid = TRUE;
939 		if (fs.map->timestamp != map_generation) {
940 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
941 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
942 
943 			/*
944 			 * If we don't need the page any longer, put it on the inactive
945 			 * list (the easiest thing to do here).  If no one needs it,
946 			 * pageout will grab it eventually.
947 			 */
948 			if (result != KERN_SUCCESS) {
949 				release_page(&fs);
950 				unlock_and_deallocate(&fs);
951 
952 				/*
953 				 * If retry of map lookup would have blocked then
954 				 * retry fault from start.
955 				 */
956 				if (result == KERN_FAILURE)
957 					goto RetryFault;
958 				return (result);
959 			}
960 			if ((retry_object != fs.first_object) ||
961 			    (retry_pindex != fs.first_pindex)) {
962 				release_page(&fs);
963 				unlock_and_deallocate(&fs);
964 				goto RetryFault;
965 			}
966 
967 			/*
968 			 * Check whether the protection has changed or the object has
969 			 * been copied while we left the map unlocked. Changing from
970 			 * read to write permission is OK - we leave the page
971 			 * write-protected, and catch the write fault. Changing from
972 			 * write to read permission means that we can't mark the page
973 			 * write-enabled after all.
974 			 */
975 			prot &= retry_prot;
976 		}
977 	}
978 
979 	/*
980 	 * If the page was filled by a pager, save the virtual address that
981 	 * should be faulted on next under a sequential access pattern to the
982 	 * map entry.  A read lock on the map suffices to update this address
983 	 * safely.
984 	 */
985 	if (hardfault)
986 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
987 
988 	vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE);
989 	vm_page_assert_xbusied(fs.m);
990 
991 	/*
992 	 * Page must be completely valid or it is not fit to
993 	 * map into user space.  vm_pager_get_pages() ensures this.
994 	 */
995 	KASSERT(fs.m->valid == VM_PAGE_BITS_ALL,
996 	    ("vm_fault: page %p partially invalid", fs.m));
997 	VM_OBJECT_WUNLOCK(fs.object);
998 
999 	/*
1000 	 * Put this page into the physical map.  We had to do the unlock above
1001 	 * because pmap_enter() may sleep.  We don't put the page
1002 	 * back on the active queue until later so that the pageout daemon
1003 	 * won't find it (yet).
1004 	 */
1005 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot,
1006 	    fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0);
1007 	if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 &&
1008 	    wired == 0)
1009 		vm_fault_prefault(&fs, vaddr,
1010 		    faultcount > 0 ? behind : PFBAK,
1011 		    faultcount > 0 ? ahead : PFFOR);
1012 	VM_OBJECT_WLOCK(fs.object);
1013 	vm_page_lock(fs.m);
1014 
1015 	/*
1016 	 * If the page is not wired down, then put it where the pageout daemon
1017 	 * can find it.
1018 	 */
1019 	if ((fault_flags & VM_FAULT_WIRE) != 0) {
1020 		KASSERT(wired, ("VM_FAULT_WIRE && !wired"));
1021 		vm_page_wire(fs.m);
1022 	} else
1023 		vm_page_activate(fs.m);
1024 	if (m_hold != NULL) {
1025 		*m_hold = fs.m;
1026 		vm_page_hold(fs.m);
1027 	}
1028 	vm_page_unlock(fs.m);
1029 	vm_page_xunbusy(fs.m);
1030 
1031 	/*
1032 	 * Unlock everything, and return
1033 	 */
1034 	unlock_and_deallocate(&fs);
1035 	if (hardfault) {
1036 		PCPU_INC(cnt.v_io_faults);
1037 		curthread->td_ru.ru_majflt++;
1038 #ifdef RACCT
1039 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1040 			PROC_LOCK(curproc);
1041 			if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1042 				racct_add_force(curproc, RACCT_WRITEBPS,
1043 				    PAGE_SIZE + behind * PAGE_SIZE);
1044 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1045 			} else {
1046 				racct_add_force(curproc, RACCT_READBPS,
1047 				    PAGE_SIZE + ahead * PAGE_SIZE);
1048 				racct_add_force(curproc, RACCT_READIOPS, 1);
1049 			}
1050 			PROC_UNLOCK(curproc);
1051 		}
1052 #endif
1053 	} else
1054 		curthread->td_ru.ru_minflt++;
1055 
1056 	return (KERN_SUCCESS);
1057 }
1058 
1059 /*
1060  * Speed up the reclamation of pages that precede the faulting pindex within
1061  * the first object of the shadow chain.  Essentially, perform the equivalent
1062  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1063  * the faulting pindex by the cluster size when the pages read by vm_fault()
1064  * cross a cluster-size boundary.  The cluster size is the greater of the
1065  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1066  *
1067  * When "fs->first_object" is a shadow object, the pages in the backing object
1068  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1069  * function must only be concerned with pages in the first object.
1070  */
1071 static void
1072 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1073 {
1074 	vm_map_entry_t entry;
1075 	vm_object_t first_object, object;
1076 	vm_offset_t end, start;
1077 	vm_page_t m, m_next;
1078 	vm_pindex_t pend, pstart;
1079 	vm_size_t size;
1080 
1081 	object = fs->object;
1082 	VM_OBJECT_ASSERT_WLOCKED(object);
1083 	first_object = fs->first_object;
1084 	if (first_object != object) {
1085 		if (!VM_OBJECT_TRYWLOCK(first_object)) {
1086 			VM_OBJECT_WUNLOCK(object);
1087 			VM_OBJECT_WLOCK(first_object);
1088 			VM_OBJECT_WLOCK(object);
1089 		}
1090 	}
1091 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1092 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1093 		size = VM_FAULT_DONTNEED_MIN;
1094 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1095 			size = pagesizes[1];
1096 		end = rounddown2(vaddr, size);
1097 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1098 		    (entry = fs->entry)->start < end) {
1099 			if (end - entry->start < size)
1100 				start = entry->start;
1101 			else
1102 				start = end - size;
1103 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1104 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1105 			    entry->start);
1106 			m_next = vm_page_find_least(first_object, pstart);
1107 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1108 			    entry->start);
1109 			while ((m = m_next) != NULL && m->pindex < pend) {
1110 				m_next = TAILQ_NEXT(m, listq);
1111 				if (m->valid != VM_PAGE_BITS_ALL ||
1112 				    vm_page_busied(m))
1113 					continue;
1114 
1115 				/*
1116 				 * Don't clear PGA_REFERENCED, since it would
1117 				 * likely represent a reference by a different
1118 				 * process.
1119 				 *
1120 				 * Typically, at this point, prefetched pages
1121 				 * are still in the inactive queue.  Only
1122 				 * pages that triggered page faults are in the
1123 				 * active queue.
1124 				 */
1125 				vm_page_lock(m);
1126 				vm_page_deactivate(m);
1127 				vm_page_unlock(m);
1128 			}
1129 		}
1130 	}
1131 	if (first_object != object)
1132 		VM_OBJECT_WUNLOCK(first_object);
1133 }
1134 
1135 /*
1136  * vm_fault_prefault provides a quick way of clustering
1137  * pagefaults into a processes address space.  It is a "cousin"
1138  * of vm_map_pmap_enter, except it runs at page fault time instead
1139  * of mmap time.
1140  */
1141 static void
1142 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1143     int backward, int forward)
1144 {
1145 	pmap_t pmap;
1146 	vm_map_entry_t entry;
1147 	vm_object_t backing_object, lobject;
1148 	vm_offset_t addr, starta;
1149 	vm_pindex_t pindex;
1150 	vm_page_t m;
1151 	int i;
1152 
1153 	pmap = fs->map->pmap;
1154 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1155 		return;
1156 
1157 	entry = fs->entry;
1158 
1159 	starta = addra - backward * PAGE_SIZE;
1160 	if (starta < entry->start) {
1161 		starta = entry->start;
1162 	} else if (starta > addra) {
1163 		starta = 0;
1164 	}
1165 
1166 	/*
1167 	 * Generate the sequence of virtual addresses that are candidates for
1168 	 * prefaulting in an outward spiral from the faulting virtual address,
1169 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1170 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1171 	 * If the candidate address doesn't have a backing physical page, then
1172 	 * the loop immediately terminates.
1173 	 */
1174 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1175 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1176 		    PAGE_SIZE);
1177 		if (addr > addra + forward * PAGE_SIZE)
1178 			addr = 0;
1179 
1180 		if (addr < starta || addr >= entry->end)
1181 			continue;
1182 
1183 		if (!pmap_is_prefaultable(pmap, addr))
1184 			continue;
1185 
1186 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1187 		lobject = entry->object.vm_object;
1188 		VM_OBJECT_RLOCK(lobject);
1189 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1190 		    lobject->type == OBJT_DEFAULT &&
1191 		    (backing_object = lobject->backing_object) != NULL) {
1192 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1193 			    0, ("vm_fault_prefault: unaligned object offset"));
1194 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1195 			VM_OBJECT_RLOCK(backing_object);
1196 			VM_OBJECT_RUNLOCK(lobject);
1197 			lobject = backing_object;
1198 		}
1199 		if (m == NULL) {
1200 			VM_OBJECT_RUNLOCK(lobject);
1201 			break;
1202 		}
1203 		if (m->valid == VM_PAGE_BITS_ALL &&
1204 		    (m->flags & PG_FICTITIOUS) == 0)
1205 			pmap_enter_quick(pmap, addr, m, entry->protection);
1206 		VM_OBJECT_RUNLOCK(lobject);
1207 	}
1208 }
1209 
1210 /*
1211  * Hold each of the physical pages that are mapped by the specified range of
1212  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1213  * and allow the specified types of access, "prot".  If all of the implied
1214  * pages are successfully held, then the number of held pages is returned
1215  * together with pointers to those pages in the array "ma".  However, if any
1216  * of the pages cannot be held, -1 is returned.
1217  */
1218 int
1219 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1220     vm_prot_t prot, vm_page_t *ma, int max_count)
1221 {
1222 	vm_offset_t end, va;
1223 	vm_page_t *mp;
1224 	int count;
1225 	boolean_t pmap_failed;
1226 
1227 	if (len == 0)
1228 		return (0);
1229 	end = round_page(addr + len);
1230 	addr = trunc_page(addr);
1231 
1232 	/*
1233 	 * Check for illegal addresses.
1234 	 */
1235 	if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map))
1236 		return (-1);
1237 
1238 	if (atop(end - addr) > max_count)
1239 		panic("vm_fault_quick_hold_pages: count > max_count");
1240 	count = atop(end - addr);
1241 
1242 	/*
1243 	 * Most likely, the physical pages are resident in the pmap, so it is
1244 	 * faster to try pmap_extract_and_hold() first.
1245 	 */
1246 	pmap_failed = FALSE;
1247 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1248 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1249 		if (*mp == NULL)
1250 			pmap_failed = TRUE;
1251 		else if ((prot & VM_PROT_WRITE) != 0 &&
1252 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1253 			/*
1254 			 * Explicitly dirty the physical page.  Otherwise, the
1255 			 * caller's changes may go unnoticed because they are
1256 			 * performed through an unmanaged mapping or by a DMA
1257 			 * operation.
1258 			 *
1259 			 * The object lock is not held here.
1260 			 * See vm_page_clear_dirty_mask().
1261 			 */
1262 			vm_page_dirty(*mp);
1263 		}
1264 	}
1265 	if (pmap_failed) {
1266 		/*
1267 		 * One or more pages could not be held by the pmap.  Either no
1268 		 * page was mapped at the specified virtual address or that
1269 		 * mapping had insufficient permissions.  Attempt to fault in
1270 		 * and hold these pages.
1271 		 */
1272 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1273 			if (*mp == NULL && vm_fault_hold(map, va, prot,
1274 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1275 				goto error;
1276 	}
1277 	return (count);
1278 error:
1279 	for (mp = ma; mp < ma + count; mp++)
1280 		if (*mp != NULL) {
1281 			vm_page_lock(*mp);
1282 			vm_page_unhold(*mp);
1283 			vm_page_unlock(*mp);
1284 		}
1285 	return (-1);
1286 }
1287 
1288 /*
1289  *	Routine:
1290  *		vm_fault_copy_entry
1291  *	Function:
1292  *		Create new shadow object backing dst_entry with private copy of
1293  *		all underlying pages. When src_entry is equal to dst_entry,
1294  *		function implements COW for wired-down map entry. Otherwise,
1295  *		it forks wired entry into dst_map.
1296  *
1297  *	In/out conditions:
1298  *		The source and destination maps must be locked for write.
1299  *		The source map entry must be wired down (or be a sharing map
1300  *		entry corresponding to a main map entry that is wired down).
1301  */
1302 void
1303 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1304     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1305     vm_ooffset_t *fork_charge)
1306 {
1307 	vm_object_t backing_object, dst_object, object, src_object;
1308 	vm_pindex_t dst_pindex, pindex, src_pindex;
1309 	vm_prot_t access, prot;
1310 	vm_offset_t vaddr;
1311 	vm_page_t dst_m;
1312 	vm_page_t src_m;
1313 	boolean_t upgrade;
1314 
1315 #ifdef	lint
1316 	src_map++;
1317 #endif	/* lint */
1318 
1319 	upgrade = src_entry == dst_entry;
1320 	access = prot = dst_entry->protection;
1321 
1322 	src_object = src_entry->object.vm_object;
1323 	src_pindex = OFF_TO_IDX(src_entry->offset);
1324 
1325 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1326 		dst_object = src_object;
1327 		vm_object_reference(dst_object);
1328 	} else {
1329 		/*
1330 		 * Create the top-level object for the destination entry. (Doesn't
1331 		 * actually shadow anything - we copy the pages directly.)
1332 		 */
1333 		dst_object = vm_object_allocate(OBJT_DEFAULT,
1334 		    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1335 #if VM_NRESERVLEVEL > 0
1336 		dst_object->flags |= OBJ_COLORED;
1337 		dst_object->pg_color = atop(dst_entry->start);
1338 #endif
1339 	}
1340 
1341 	VM_OBJECT_WLOCK(dst_object);
1342 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
1343 	    ("vm_fault_copy_entry: vm_object not NULL"));
1344 	if (src_object != dst_object) {
1345 		dst_entry->object.vm_object = dst_object;
1346 		dst_entry->offset = 0;
1347 		dst_object->charge = dst_entry->end - dst_entry->start;
1348 	}
1349 	if (fork_charge != NULL) {
1350 		KASSERT(dst_entry->cred == NULL,
1351 		    ("vm_fault_copy_entry: leaked swp charge"));
1352 		dst_object->cred = curthread->td_ucred;
1353 		crhold(dst_object->cred);
1354 		*fork_charge += dst_object->charge;
1355 	} else if (dst_object->cred == NULL) {
1356 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
1357 		    dst_entry));
1358 		dst_object->cred = dst_entry->cred;
1359 		dst_entry->cred = NULL;
1360 	}
1361 
1362 	/*
1363 	 * If not an upgrade, then enter the mappings in the pmap as
1364 	 * read and/or execute accesses.  Otherwise, enter them as
1365 	 * write accesses.
1366 	 *
1367 	 * A writeable large page mapping is only created if all of
1368 	 * the constituent small page mappings are modified. Marking
1369 	 * PTEs as modified on inception allows promotion to happen
1370 	 * without taking potentially large number of soft faults.
1371 	 */
1372 	if (!upgrade)
1373 		access &= ~VM_PROT_WRITE;
1374 
1375 	/*
1376 	 * Loop through all of the virtual pages within the entry's
1377 	 * range, copying each page from the source object to the
1378 	 * destination object.  Since the source is wired, those pages
1379 	 * must exist.  In contrast, the destination is pageable.
1380 	 * Since the destination object does share any backing storage
1381 	 * with the source object, all of its pages must be dirtied,
1382 	 * regardless of whether they can be written.
1383 	 */
1384 	for (vaddr = dst_entry->start, dst_pindex = 0;
1385 	    vaddr < dst_entry->end;
1386 	    vaddr += PAGE_SIZE, dst_pindex++) {
1387 again:
1388 		/*
1389 		 * Find the page in the source object, and copy it in.
1390 		 * Because the source is wired down, the page will be
1391 		 * in memory.
1392 		 */
1393 		if (src_object != dst_object)
1394 			VM_OBJECT_RLOCK(src_object);
1395 		object = src_object;
1396 		pindex = src_pindex + dst_pindex;
1397 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
1398 		    (backing_object = object->backing_object) != NULL) {
1399 			/*
1400 			 * Unless the source mapping is read-only or
1401 			 * it is presently being upgraded from
1402 			 * read-only, the first object in the shadow
1403 			 * chain should provide all of the pages.  In
1404 			 * other words, this loop body should never be
1405 			 * executed when the source mapping is already
1406 			 * read/write.
1407 			 */
1408 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
1409 			    upgrade,
1410 			    ("vm_fault_copy_entry: main object missing page"));
1411 
1412 			VM_OBJECT_RLOCK(backing_object);
1413 			pindex += OFF_TO_IDX(object->backing_object_offset);
1414 			if (object != dst_object)
1415 				VM_OBJECT_RUNLOCK(object);
1416 			object = backing_object;
1417 		}
1418 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
1419 
1420 		if (object != dst_object) {
1421 			/*
1422 			 * Allocate a page in the destination object.
1423 			 */
1424 			dst_m = vm_page_alloc(dst_object, (src_object ==
1425 			    dst_object ? src_pindex : 0) + dst_pindex,
1426 			    VM_ALLOC_NORMAL);
1427 			if (dst_m == NULL) {
1428 				VM_OBJECT_WUNLOCK(dst_object);
1429 				VM_OBJECT_RUNLOCK(object);
1430 				VM_WAIT;
1431 				VM_OBJECT_WLOCK(dst_object);
1432 				goto again;
1433 			}
1434 			pmap_copy_page(src_m, dst_m);
1435 			VM_OBJECT_RUNLOCK(object);
1436 			dst_m->valid = VM_PAGE_BITS_ALL;
1437 			dst_m->dirty = VM_PAGE_BITS_ALL;
1438 		} else {
1439 			dst_m = src_m;
1440 			if (vm_page_sleep_if_busy(dst_m, "fltupg"))
1441 				goto again;
1442 			vm_page_xbusy(dst_m);
1443 			KASSERT(dst_m->valid == VM_PAGE_BITS_ALL,
1444 			    ("invalid dst page %p", dst_m));
1445 		}
1446 		VM_OBJECT_WUNLOCK(dst_object);
1447 
1448 		/*
1449 		 * Enter it in the pmap. If a wired, copy-on-write
1450 		 * mapping is being replaced by a write-enabled
1451 		 * mapping, then wire that new mapping.
1452 		 */
1453 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
1454 		    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
1455 
1456 		/*
1457 		 * Mark it no longer busy, and put it on the active list.
1458 		 */
1459 		VM_OBJECT_WLOCK(dst_object);
1460 
1461 		if (upgrade) {
1462 			if (src_m != dst_m) {
1463 				vm_page_lock(src_m);
1464 				vm_page_unwire(src_m, PQ_INACTIVE);
1465 				vm_page_unlock(src_m);
1466 				vm_page_lock(dst_m);
1467 				vm_page_wire(dst_m);
1468 				vm_page_unlock(dst_m);
1469 			} else {
1470 				KASSERT(dst_m->wire_count > 0,
1471 				    ("dst_m %p is not wired", dst_m));
1472 			}
1473 		} else {
1474 			vm_page_lock(dst_m);
1475 			vm_page_activate(dst_m);
1476 			vm_page_unlock(dst_m);
1477 		}
1478 		vm_page_xunbusy(dst_m);
1479 	}
1480 	VM_OBJECT_WUNLOCK(dst_object);
1481 	if (upgrade) {
1482 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
1483 		vm_object_deallocate(src_object);
1484 	}
1485 }
1486 
1487 /*
1488  * Block entry into the machine-independent layer's page fault handler by
1489  * the calling thread.  Subsequent calls to vm_fault() by that thread will
1490  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
1491  * spurious page faults.
1492  */
1493 int
1494 vm_fault_disable_pagefaults(void)
1495 {
1496 
1497 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
1498 }
1499 
1500 void
1501 vm_fault_enable_pagefaults(int save)
1502 {
1503 
1504 	curthread_pflags_restore(save);
1505 }
1506