xref: /freebsd/sys/vm/vm_fault.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
101 
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105 
106 static int prefault_pageorder[] = {
107 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112 
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115 
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119 
120 struct faultstate {
121 	vm_page_t m;
122 	vm_object_t object;
123 	vm_pindex_t pindex;
124 	vm_page_t first_m;
125 	vm_object_t	first_object;
126 	vm_pindex_t first_pindex;
127 	vm_map_t map;
128 	vm_map_entry_t entry;
129 	int lookup_still_valid;
130 	struct vnode *vp;
131 };
132 
133 static __inline void
134 release_page(struct faultstate *fs)
135 {
136 	vm_page_lock_queues();
137 	vm_page_wakeup(fs->m);
138 	vm_page_deactivate(fs->m);
139 	vm_page_unlock_queues();
140 	fs->m = NULL;
141 }
142 
143 static __inline void
144 unlock_map(struct faultstate *fs)
145 {
146 	if (fs->lookup_still_valid) {
147 		vm_map_lookup_done(fs->map, fs->entry);
148 		fs->lookup_still_valid = FALSE;
149 	}
150 }
151 
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155 
156 	vm_object_pip_wakeup(fs->object);
157 	VM_OBJECT_UNLOCK(fs->object);
158 	if (fs->object != fs->first_object) {
159 		VM_OBJECT_LOCK(fs->first_object);
160 		vm_page_lock_queues();
161 		vm_page_free(fs->first_m);
162 		vm_page_unlock_queues();
163 		vm_object_pip_wakeup(fs->first_object);
164 		VM_OBJECT_UNLOCK(fs->first_object);
165 		fs->first_m = NULL;
166 	}
167 	vm_object_deallocate(fs->first_object);
168 	unlock_map(fs);
169 	if (fs->vp != NULL) {
170 		int vfslocked;
171 
172 		vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173 		vput(fs->vp);
174 		fs->vp = NULL;
175 		VFS_UNLOCK_GIANT(vfslocked);
176 	}
177 	if (fs->first_object->flags & OBJ_NEEDGIANT)
178 		VM_UNLOCK_GIANT();
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *	The map in question must be referenced, and remains so.
206  *	Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 	 int fault_flags)
211 {
212 	vm_prot_t prot;
213 	int is_first_object_locked, result;
214 	boolean_t growstack, wired;
215 	int map_generation;
216 	vm_object_t next_object;
217 	vm_page_t marray[VM_FAULT_READ];
218 	int hardfault;
219 	int faultcount;
220 	struct faultstate fs;
221 
222 	hardfault = 0;
223 	growstack = TRUE;
224 	atomic_add_int(&cnt.v_vm_faults, 1);
225 
226 RetryFault:;
227 
228 	/*
229 	 * Find the backing store object and offset into it to begin the
230 	 * search.
231 	 */
232 	fs.map = map;
233 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
234 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
235 	if (result != KERN_SUCCESS) {
236 		if (result != KERN_PROTECTION_FAILURE ||
237 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
238 			if (growstack && result == KERN_INVALID_ADDRESS &&
239 			    map != kernel_map && curproc != NULL) {
240 				result = vm_map_growstack(curproc, vaddr);
241 				if (result != KERN_SUCCESS)
242 					return (KERN_FAILURE);
243 				growstack = FALSE;
244 				goto RetryFault;
245 			}
246 			return (result);
247 		}
248 
249 		/*
250    		 * If we are user-wiring a r/w segment, and it is COW, then
251    		 * we need to do the COW operation.  Note that we don't COW
252    		 * currently RO sections now, because it is NOT desirable
253    		 * to COW .text.  We simply keep .text from ever being COW'ed
254    		 * and take the heat that one cannot debug wired .text sections.
255    		 */
256 		result = vm_map_lookup(&fs.map, vaddr,
257 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
258 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
259 		if (result != KERN_SUCCESS)
260 			return (result);
261 
262 		/*
263 		 * If we don't COW now, on a user wire, the user will never
264 		 * be able to write to the mapping.  If we don't make this
265 		 * restriction, the bookkeeping would be nearly impossible.
266 		 *
267 		 * XXX The following assignment modifies the map without
268 		 * holding a write lock on it.
269 		 */
270 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
271 			fs.entry->max_protection &= ~VM_PROT_WRITE;
272 	}
273 
274 	map_generation = fs.map->timestamp;
275 
276 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
277 		panic("vm_fault: fault on nofault entry, addr: %lx",
278 		    (u_long)vaddr);
279 	}
280 
281 	/*
282 	 * Make a reference to this object to prevent its disposal while we
283 	 * are messing with it.  Once we have the reference, the map is free
284 	 * to be diddled.  Since objects reference their shadows (and copies),
285 	 * they will stay around as well.
286 	 *
287 	 * Bump the paging-in-progress count to prevent size changes (e.g.
288 	 * truncation operations) during I/O.  This must be done after
289 	 * obtaining the vnode lock in order to avoid possible deadlocks.
290 	 *
291 	 * XXX vnode_pager_lock() can block without releasing the map lock.
292 	 */
293 	if (fs.first_object->flags & OBJ_NEEDGIANT)
294 		mtx_lock(&Giant);
295 	VM_OBJECT_LOCK(fs.first_object);
296 	vm_object_reference_locked(fs.first_object);
297 	fs.vp = vnode_pager_lock(fs.first_object);
298 	KASSERT(fs.vp == NULL || !fs.map->system_map,
299 	    ("vm_fault: vnode-backed object mapped by system map"));
300 	KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
301 	    !fs.map->system_map,
302 	    ("vm_fault: Object requiring giant mapped by system map"));
303 	if (fs.first_object->flags & OBJ_NEEDGIANT && debug_mpsafevm)
304 		mtx_unlock(&Giant);
305 	vm_object_pip_add(fs.first_object, 1);
306 
307 	fs.lookup_still_valid = TRUE;
308 
309 	if (wired)
310 		fault_type = prot;
311 
312 	fs.first_m = NULL;
313 
314 	/*
315 	 * Search for the page at object/offset.
316 	 */
317 	fs.object = fs.first_object;
318 	fs.pindex = fs.first_pindex;
319 	while (TRUE) {
320 		/*
321 		 * If the object is dead, we stop here
322 		 */
323 		if (fs.object->flags & OBJ_DEAD) {
324 			unlock_and_deallocate(&fs);
325 			return (KERN_PROTECTION_FAILURE);
326 		}
327 
328 		/*
329 		 * See if page is resident
330 		 */
331 		fs.m = vm_page_lookup(fs.object, fs.pindex);
332 		if (fs.m != NULL) {
333 			int queue;
334 
335 			/*
336 			 * check for page-based copy on write.
337 			 * We check fs.object == fs.first_object so
338 			 * as to ensure the legacy COW mechanism is
339 			 * used when the page in question is part of
340 			 * a shadow object.  Otherwise, vm_page_cowfault()
341 			 * removes the page from the backing object,
342 			 * which is not what we want.
343 			 */
344 			vm_page_lock_queues();
345 			if ((fs.m->cow) &&
346 			    (fault_type & VM_PROT_WRITE) &&
347 			    (fs.object == fs.first_object)) {
348 				vm_page_cowfault(fs.m);
349 				vm_page_unlock_queues();
350 				unlock_and_deallocate(&fs);
351 				goto RetryFault;
352 			}
353 
354 			/*
355 			 * Wait/Retry if the page is busy.  We have to do this
356 			 * if the page is busy via either PG_BUSY or
357 			 * vm_page_t->busy because the vm_pager may be using
358 			 * vm_page_t->busy for pageouts ( and even pageins if
359 			 * it is the vnode pager ), and we could end up trying
360 			 * to pagein and pageout the same page simultaneously.
361 			 *
362 			 * We can theoretically allow the busy case on a read
363 			 * fault if the page is marked valid, but since such
364 			 * pages are typically already pmap'd, putting that
365 			 * special case in might be more effort then it is
366 			 * worth.  We cannot under any circumstances mess
367 			 * around with a vm_page_t->busy page except, perhaps,
368 			 * to pmap it.
369 			 */
370 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
371 				vm_page_unlock_queues();
372 				VM_OBJECT_UNLOCK(fs.object);
373 				if (fs.object != fs.first_object) {
374 					VM_OBJECT_LOCK(fs.first_object);
375 					vm_page_lock_queues();
376 					vm_page_free(fs.first_m);
377 					vm_page_unlock_queues();
378 					vm_object_pip_wakeup(fs.first_object);
379 					VM_OBJECT_UNLOCK(fs.first_object);
380 					fs.first_m = NULL;
381 				}
382 				unlock_map(&fs);
383 				if (fs.vp != NULL) {
384 					int vfslck;
385 
386 					vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
387 					vput(fs.vp);
388 					fs.vp = NULL;
389 					VFS_UNLOCK_GIANT(vfslck);
390 				}
391 				VM_OBJECT_LOCK(fs.object);
392 				if (fs.m == vm_page_lookup(fs.object,
393 				    fs.pindex)) {
394 					vm_page_lock_queues();
395 					if (!vm_page_sleep_if_busy(fs.m, TRUE,
396 					    "vmpfw"))
397 						vm_page_unlock_queues();
398 				}
399 				vm_object_pip_wakeup(fs.object);
400 				VM_OBJECT_UNLOCK(fs.object);
401 				atomic_add_int(&cnt.v_intrans, 1);
402 				if (fs.first_object->flags & OBJ_NEEDGIANT)
403 					VM_UNLOCK_GIANT();
404 				vm_object_deallocate(fs.first_object);
405 				goto RetryFault;
406 			}
407 			queue = fs.m->queue;
408 
409 			vm_pageq_remove_nowakeup(fs.m);
410 
411 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
412 				vm_page_activate(fs.m);
413 				vm_page_unlock_queues();
414 				unlock_and_deallocate(&fs);
415 				VM_WAITPFAULT;
416 				goto RetryFault;
417 			}
418 
419 			/*
420 			 * Mark page busy for other processes, and the
421 			 * pagedaemon.  If it still isn't completely valid
422 			 * (readable), jump to readrest, else break-out ( we
423 			 * found the page ).
424 			 */
425 			vm_page_busy(fs.m);
426 			vm_page_unlock_queues();
427 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
428 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
429 				goto readrest;
430 			}
431 
432 			break;
433 		}
434 
435 		/*
436 		 * Page is not resident, If this is the search termination
437 		 * or the pager might contain the page, allocate a new page.
438 		 */
439 		if (TRYPAGER || fs.object == fs.first_object) {
440 			if (fs.pindex >= fs.object->size) {
441 				unlock_and_deallocate(&fs);
442 				return (KERN_PROTECTION_FAILURE);
443 			}
444 
445 			/*
446 			 * Allocate a new page for this object/offset pair.
447 			 */
448 			fs.m = NULL;
449 			if (!vm_page_count_severe()) {
450 				fs.m = vm_page_alloc(fs.object, fs.pindex,
451 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
452 			}
453 			if (fs.m == NULL) {
454 				unlock_and_deallocate(&fs);
455 				VM_WAITPFAULT;
456 				goto RetryFault;
457 			}
458 		}
459 
460 readrest:
461 		/*
462 		 * We have found a valid page or we have allocated a new page.
463 		 * The page thus may not be valid or may not be entirely
464 		 * valid.
465 		 *
466 		 * Attempt to fault-in the page if there is a chance that the
467 		 * pager has it, and potentially fault in additional pages
468 		 * at the same time.
469 		 */
470 		if (TRYPAGER) {
471 			int rv;
472 			int reqpage;
473 			int ahead, behind;
474 			u_char behavior = vm_map_entry_behavior(fs.entry);
475 
476 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
477 				ahead = 0;
478 				behind = 0;
479 			} else {
480 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
481 				if (behind > VM_FAULT_READ_BEHIND)
482 					behind = VM_FAULT_READ_BEHIND;
483 
484 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
485 				if (ahead > VM_FAULT_READ_AHEAD)
486 					ahead = VM_FAULT_READ_AHEAD;
487 			}
488 			is_first_object_locked = FALSE;
489 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
490 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
491 			      fs.pindex >= fs.entry->lastr &&
492 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
493 			    (fs.first_object == fs.object ||
494 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
495 			    fs.first_object->type != OBJT_DEVICE) {
496 				vm_pindex_t firstpindex, tmppindex;
497 
498 				if (fs.first_pindex < 2 * VM_FAULT_READ)
499 					firstpindex = 0;
500 				else
501 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
502 
503 				vm_page_lock_queues();
504 				/*
505 				 * note: partially valid pages cannot be
506 				 * included in the lookahead - NFS piecemeal
507 				 * writes will barf on it badly.
508 				 */
509 				for (tmppindex = fs.first_pindex - 1;
510 					tmppindex >= firstpindex;
511 					--tmppindex) {
512 					vm_page_t mt;
513 
514 					mt = vm_page_lookup(fs.first_object, tmppindex);
515 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
516 						break;
517 					if (mt->busy ||
518 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
519 						mt->hold_count ||
520 						mt->wire_count)
521 						continue;
522 					pmap_remove_all(mt);
523 					if (mt->dirty) {
524 						vm_page_deactivate(mt);
525 					} else {
526 						vm_page_cache(mt);
527 					}
528 				}
529 				vm_page_unlock_queues();
530 				ahead += behind;
531 				behind = 0;
532 			}
533 			if (is_first_object_locked)
534 				VM_OBJECT_UNLOCK(fs.first_object);
535 			/*
536 			 * now we find out if any other pages should be paged
537 			 * in at this time this routine checks to see if the
538 			 * pages surrounding this fault reside in the same
539 			 * object as the page for this fault.  If they do,
540 			 * then they are faulted in also into the object.  The
541 			 * array "marray" returned contains an array of
542 			 * vm_page_t structs where one of them is the
543 			 * vm_page_t passed to the routine.  The reqpage
544 			 * return value is the index into the marray for the
545 			 * vm_page_t passed to the routine.
546 			 *
547 			 * fs.m plus the additional pages are PG_BUSY'd.
548 			 *
549 			 * XXX vm_fault_additional_pages() can block
550 			 * without releasing the map lock.
551 			 */
552 			faultcount = vm_fault_additional_pages(
553 			    fs.m, behind, ahead, marray, &reqpage);
554 
555 			/*
556 			 * update lastr imperfectly (we do not know how much
557 			 * getpages will actually read), but good enough.
558 			 *
559 			 * XXX The following assignment modifies the map
560 			 * without holding a write lock on it.
561 			 */
562 			fs.entry->lastr = fs.pindex + faultcount - behind;
563 
564 			/*
565 			 * Call the pager to retrieve the data, if any, after
566 			 * releasing the lock on the map.  We hold a ref on
567 			 * fs.object and the pages are PG_BUSY'd.
568 			 */
569 			unlock_map(&fs);
570 
571 			rv = faultcount ?
572 			    vm_pager_get_pages(fs.object, marray, faultcount,
573 				reqpage) : VM_PAGER_FAIL;
574 
575 			if (rv == VM_PAGER_OK) {
576 				/*
577 				 * Found the page. Leave it busy while we play
578 				 * with it.
579 				 */
580 
581 				/*
582 				 * Relookup in case pager changed page. Pager
583 				 * is responsible for disposition of old page
584 				 * if moved.
585 				 */
586 				fs.m = vm_page_lookup(fs.object, fs.pindex);
587 				if (!fs.m) {
588 					unlock_and_deallocate(&fs);
589 					goto RetryFault;
590 				}
591 
592 				hardfault++;
593 				break; /* break to PAGE HAS BEEN FOUND */
594 			}
595 			/*
596 			 * Remove the bogus page (which does not exist at this
597 			 * object/offset); before doing so, we must get back
598 			 * our object lock to preserve our invariant.
599 			 *
600 			 * Also wake up any other process that may want to bring
601 			 * in this page.
602 			 *
603 			 * If this is the top-level object, we must leave the
604 			 * busy page to prevent another process from rushing
605 			 * past us, and inserting the page in that object at
606 			 * the same time that we are.
607 			 */
608 			if (rv == VM_PAGER_ERROR)
609 				printf("vm_fault: pager read error, pid %d (%s)\n",
610 				    curproc->p_pid, curproc->p_comm);
611 			/*
612 			 * Data outside the range of the pager or an I/O error
613 			 */
614 			/*
615 			 * XXX - the check for kernel_map is a kludge to work
616 			 * around having the machine panic on a kernel space
617 			 * fault w/ I/O error.
618 			 */
619 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
620 				(rv == VM_PAGER_BAD)) {
621 				vm_page_lock_queues();
622 				vm_page_free(fs.m);
623 				vm_page_unlock_queues();
624 				fs.m = NULL;
625 				unlock_and_deallocate(&fs);
626 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
627 			}
628 			if (fs.object != fs.first_object) {
629 				vm_page_lock_queues();
630 				vm_page_free(fs.m);
631 				vm_page_unlock_queues();
632 				fs.m = NULL;
633 				/*
634 				 * XXX - we cannot just fall out at this
635 				 * point, m has been freed and is invalid!
636 				 */
637 			}
638 		}
639 
640 		/*
641 		 * We get here if the object has default pager (or unwiring)
642 		 * or the pager doesn't have the page.
643 		 */
644 		if (fs.object == fs.first_object)
645 			fs.first_m = fs.m;
646 
647 		/*
648 		 * Move on to the next object.  Lock the next object before
649 		 * unlocking the current one.
650 		 */
651 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
652 		next_object = fs.object->backing_object;
653 		if (next_object == NULL) {
654 			/*
655 			 * If there's no object left, fill the page in the top
656 			 * object with zeros.
657 			 */
658 			if (fs.object != fs.first_object) {
659 				vm_object_pip_wakeup(fs.object);
660 				VM_OBJECT_UNLOCK(fs.object);
661 
662 				fs.object = fs.first_object;
663 				fs.pindex = fs.first_pindex;
664 				fs.m = fs.first_m;
665 				VM_OBJECT_LOCK(fs.object);
666 			}
667 			fs.first_m = NULL;
668 
669 			/*
670 			 * Zero the page if necessary and mark it valid.
671 			 */
672 			if ((fs.m->flags & PG_ZERO) == 0) {
673 				pmap_zero_page(fs.m);
674 			} else {
675 				atomic_add_int(&cnt.v_ozfod, 1);
676 			}
677 			atomic_add_int(&cnt.v_zfod, 1);
678 			fs.m->valid = VM_PAGE_BITS_ALL;
679 			break;	/* break to PAGE HAS BEEN FOUND */
680 		} else {
681 			KASSERT(fs.object != next_object,
682 			    ("object loop %p", next_object));
683 			VM_OBJECT_LOCK(next_object);
684 			vm_object_pip_add(next_object, 1);
685 			if (fs.object != fs.first_object)
686 				vm_object_pip_wakeup(fs.object);
687 			VM_OBJECT_UNLOCK(fs.object);
688 			fs.object = next_object;
689 		}
690 	}
691 
692 	KASSERT((fs.m->flags & PG_BUSY) != 0,
693 	    ("vm_fault: not busy after main loop"));
694 
695 	/*
696 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
697 	 * is held.]
698 	 */
699 
700 	/*
701 	 * If the page is being written, but isn't already owned by the
702 	 * top-level object, we have to copy it into a new page owned by the
703 	 * top-level object.
704 	 */
705 	if (fs.object != fs.first_object) {
706 		/*
707 		 * We only really need to copy if we want to write it.
708 		 */
709 		if (fault_type & VM_PROT_WRITE) {
710 			/*
711 			 * This allows pages to be virtually copied from a
712 			 * backing_object into the first_object, where the
713 			 * backing object has no other refs to it, and cannot
714 			 * gain any more refs.  Instead of a bcopy, we just
715 			 * move the page from the backing object to the
716 			 * first object.  Note that we must mark the page
717 			 * dirty in the first object so that it will go out
718 			 * to swap when needed.
719 			 */
720 			is_first_object_locked = FALSE;
721 			if (
722 				/*
723 				 * Only one shadow object
724 				 */
725 				(fs.object->shadow_count == 1) &&
726 				/*
727 				 * No COW refs, except us
728 				 */
729 				(fs.object->ref_count == 1) &&
730 				/*
731 				 * No one else can look this object up
732 				 */
733 				(fs.object->handle == NULL) &&
734 				/*
735 				 * No other ways to look the object up
736 				 */
737 				((fs.object->type == OBJT_DEFAULT) ||
738 				 (fs.object->type == OBJT_SWAP)) &&
739 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
740 				/*
741 				 * We don't chase down the shadow chain
742 				 */
743 			    fs.object == fs.first_object->backing_object) {
744 				vm_page_lock_queues();
745 				/*
746 				 * get rid of the unnecessary page
747 				 */
748 				pmap_remove_all(fs.first_m);
749 				vm_page_free(fs.first_m);
750 				/*
751 				 * grab the page and put it into the
752 				 * process'es object.  The page is
753 				 * automatically made dirty.
754 				 */
755 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
756 				vm_page_busy(fs.m);
757 				vm_page_unlock_queues();
758 				fs.first_m = fs.m;
759 				fs.m = NULL;
760 				atomic_add_int(&cnt.v_cow_optim, 1);
761 			} else {
762 				/*
763 				 * Oh, well, lets copy it.
764 				 */
765 				pmap_copy_page(fs.m, fs.first_m);
766 				fs.first_m->valid = VM_PAGE_BITS_ALL;
767 			}
768 			if (fs.m) {
769 				/*
770 				 * We no longer need the old page or object.
771 				 */
772 				release_page(&fs);
773 			}
774 			/*
775 			 * fs.object != fs.first_object due to above
776 			 * conditional
777 			 */
778 			vm_object_pip_wakeup(fs.object);
779 			VM_OBJECT_UNLOCK(fs.object);
780 			/*
781 			 * Only use the new page below...
782 			 */
783 			fs.object = fs.first_object;
784 			fs.pindex = fs.first_pindex;
785 			fs.m = fs.first_m;
786 			if (!is_first_object_locked)
787 				VM_OBJECT_LOCK(fs.object);
788 			atomic_add_int(&cnt.v_cow_faults, 1);
789 		} else {
790 			prot &= ~VM_PROT_WRITE;
791 		}
792 	}
793 
794 	/*
795 	 * We must verify that the maps have not changed since our last
796 	 * lookup.
797 	 */
798 	if (!fs.lookup_still_valid) {
799 		vm_object_t retry_object;
800 		vm_pindex_t retry_pindex;
801 		vm_prot_t retry_prot;
802 
803 		if (!vm_map_trylock_read(fs.map)) {
804 			release_page(&fs);
805 			unlock_and_deallocate(&fs);
806 			goto RetryFault;
807 		}
808 		fs.lookup_still_valid = TRUE;
809 		if (fs.map->timestamp != map_generation) {
810 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
811 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
812 
813 			/*
814 			 * If we don't need the page any longer, put it on the active
815 			 * list (the easiest thing to do here).  If no one needs it,
816 			 * pageout will grab it eventually.
817 			 */
818 			if (result != KERN_SUCCESS) {
819 				release_page(&fs);
820 				unlock_and_deallocate(&fs);
821 
822 				/*
823 				 * If retry of map lookup would have blocked then
824 				 * retry fault from start.
825 				 */
826 				if (result == KERN_FAILURE)
827 					goto RetryFault;
828 				return (result);
829 			}
830 			if ((retry_object != fs.first_object) ||
831 			    (retry_pindex != fs.first_pindex)) {
832 				release_page(&fs);
833 				unlock_and_deallocate(&fs);
834 				goto RetryFault;
835 			}
836 
837 			/*
838 			 * Check whether the protection has changed or the object has
839 			 * been copied while we left the map unlocked. Changing from
840 			 * read to write permission is OK - we leave the page
841 			 * write-protected, and catch the write fault. Changing from
842 			 * write to read permission means that we can't mark the page
843 			 * write-enabled after all.
844 			 */
845 			prot &= retry_prot;
846 		}
847 	}
848 	if (prot & VM_PROT_WRITE) {
849 		vm_page_lock_queues();
850 		vm_page_flag_set(fs.m, PG_WRITEABLE);
851 		vm_object_set_writeable_dirty(fs.m->object);
852 
853 		/*
854 		 * If the fault is a write, we know that this page is being
855 		 * written NOW so dirty it explicitly to save on
856 		 * pmap_is_modified() calls later.
857 		 *
858 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
859 		 * if the page is already dirty to prevent data written with
860 		 * the expectation of being synced from not being synced.
861 		 * Likewise if this entry does not request NOSYNC then make
862 		 * sure the page isn't marked NOSYNC.  Applications sharing
863 		 * data should use the same flags to avoid ping ponging.
864 		 *
865 		 * Also tell the backing pager, if any, that it should remove
866 		 * any swap backing since the page is now dirty.
867 		 */
868 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
869 			if (fs.m->dirty == 0)
870 				vm_page_flag_set(fs.m, PG_NOSYNC);
871 		} else {
872 			vm_page_flag_clear(fs.m, PG_NOSYNC);
873 		}
874 		vm_page_unlock_queues();
875 		if (fault_flags & VM_FAULT_DIRTY) {
876 			vm_page_dirty(fs.m);
877 			vm_pager_page_unswapped(fs.m);
878 		}
879 	}
880 
881 	/*
882 	 * Page had better still be busy
883 	 */
884 	KASSERT(fs.m->flags & PG_BUSY,
885 		("vm_fault: page %p not busy!", fs.m));
886 	/*
887 	 * Sanity check: page must be completely valid or it is not fit to
888 	 * map into user space.  vm_pager_get_pages() ensures this.
889 	 */
890 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
891 		vm_page_zero_invalid(fs.m, TRUE);
892 		printf("Warning: page %p partially invalid on fault\n", fs.m);
893 	}
894 	VM_OBJECT_UNLOCK(fs.object);
895 
896 	/*
897 	 * Put this page into the physical map.  We had to do the unlock above
898 	 * because pmap_enter() may sleep.  We don't put the page
899 	 * back on the active queue until later so that the pageout daemon
900 	 * won't find it (yet).
901 	 */
902 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
903 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
904 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
905 	}
906 	VM_OBJECT_LOCK(fs.object);
907 	vm_page_lock_queues();
908 	vm_page_flag_set(fs.m, PG_REFERENCED);
909 
910 	/*
911 	 * If the page is not wired down, then put it where the pageout daemon
912 	 * can find it.
913 	 */
914 	if (fault_flags & VM_FAULT_WIRE_MASK) {
915 		if (wired)
916 			vm_page_wire(fs.m);
917 		else
918 			vm_page_unwire(fs.m, 1);
919 	} else {
920 		vm_page_activate(fs.m);
921 	}
922 	vm_page_wakeup(fs.m);
923 	vm_page_unlock_queues();
924 
925 	/*
926 	 * Unlock everything, and return
927 	 */
928 	unlock_and_deallocate(&fs);
929 	PROC_LOCK(curproc);
930 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
931 		if (hardfault) {
932 			curproc->p_stats->p_ru.ru_majflt++;
933 		} else {
934 			curproc->p_stats->p_ru.ru_minflt++;
935 		}
936 	}
937 	PROC_UNLOCK(curproc);
938 
939 	return (KERN_SUCCESS);
940 }
941 
942 /*
943  * vm_fault_prefault provides a quick way of clustering
944  * pagefaults into a processes address space.  It is a "cousin"
945  * of vm_map_pmap_enter, except it runs at page fault time instead
946  * of mmap time.
947  */
948 static void
949 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
950 {
951 	int i;
952 	vm_offset_t addr, starta;
953 	vm_pindex_t pindex;
954 	vm_page_t m, mpte;
955 	vm_object_t object;
956 
957 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
958 		return;
959 
960 	object = entry->object.vm_object;
961 
962 	starta = addra - PFBAK * PAGE_SIZE;
963 	if (starta < entry->start) {
964 		starta = entry->start;
965 	} else if (starta > addra) {
966 		starta = 0;
967 	}
968 
969 	mpte = NULL;
970 	for (i = 0; i < PAGEORDER_SIZE; i++) {
971 		vm_object_t backing_object, lobject;
972 
973 		addr = addra + prefault_pageorder[i];
974 		if (addr > addra + (PFFOR * PAGE_SIZE))
975 			addr = 0;
976 
977 		if (addr < starta || addr >= entry->end)
978 			continue;
979 
980 		if (!pmap_is_prefaultable(pmap, addr))
981 			continue;
982 
983 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
984 		lobject = object;
985 		VM_OBJECT_LOCK(lobject);
986 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
987 		    lobject->type == OBJT_DEFAULT &&
988 		    (backing_object = lobject->backing_object) != NULL) {
989 			if (lobject->backing_object_offset & PAGE_MASK)
990 				break;
991 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
992 			VM_OBJECT_LOCK(backing_object);
993 			VM_OBJECT_UNLOCK(lobject);
994 			lobject = backing_object;
995 		}
996 		/*
997 		 * give-up when a page is not in memory
998 		 */
999 		if (m == NULL) {
1000 			VM_OBJECT_UNLOCK(lobject);
1001 			break;
1002 		}
1003 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
1004 			(m->busy == 0) &&
1005 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1006 
1007 			vm_page_lock_queues();
1008 			if ((m->queue - m->pc) == PQ_CACHE)
1009 				vm_page_deactivate(m);
1010 			mpte = pmap_enter_quick(pmap, addr, m,
1011 			    entry->protection, mpte);
1012 			vm_page_unlock_queues();
1013 		}
1014 		VM_OBJECT_UNLOCK(lobject);
1015 	}
1016 }
1017 
1018 /*
1019  *	vm_fault_quick:
1020  *
1021  *	Ensure that the requested virtual address, which may be in userland,
1022  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1023  */
1024 int
1025 vm_fault_quick(caddr_t v, int prot)
1026 {
1027 	int r;
1028 
1029 	if (prot & VM_PROT_WRITE)
1030 		r = subyte(v, fubyte(v));
1031 	else
1032 		r = fubyte(v);
1033 	return(r);
1034 }
1035 
1036 /*
1037  *	vm_fault_wire:
1038  *
1039  *	Wire down a range of virtual addresses in a map.
1040  */
1041 int
1042 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1043     boolean_t user_wire, boolean_t fictitious)
1044 {
1045 	vm_offset_t va;
1046 	int rv;
1047 
1048 	/*
1049 	 * We simulate a fault to get the page and enter it in the physical
1050 	 * map.  For user wiring, we only ask for read access on currently
1051 	 * read-only sections.
1052 	 */
1053 	for (va = start; va < end; va += PAGE_SIZE) {
1054 		rv = vm_fault(map, va,
1055 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1056 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1057 		if (rv) {
1058 			if (va != start)
1059 				vm_fault_unwire(map, start, va, fictitious);
1060 			return (rv);
1061 		}
1062 	}
1063 	return (KERN_SUCCESS);
1064 }
1065 
1066 /*
1067  *	vm_fault_unwire:
1068  *
1069  *	Unwire a range of virtual addresses in a map.
1070  */
1071 void
1072 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1073     boolean_t fictitious)
1074 {
1075 	vm_paddr_t pa;
1076 	vm_offset_t va;
1077 	pmap_t pmap;
1078 
1079 	pmap = vm_map_pmap(map);
1080 
1081 	/*
1082 	 * Since the pages are wired down, we must be able to get their
1083 	 * mappings from the physical map system.
1084 	 */
1085 	for (va = start; va < end; va += PAGE_SIZE) {
1086 		pa = pmap_extract(pmap, va);
1087 		if (pa != 0) {
1088 			pmap_change_wiring(pmap, va, FALSE);
1089 			if (!fictitious) {
1090 				vm_page_lock_queues();
1091 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1092 				vm_page_unlock_queues();
1093 			}
1094 		}
1095 	}
1096 }
1097 
1098 /*
1099  *	Routine:
1100  *		vm_fault_copy_entry
1101  *	Function:
1102  *		Copy all of the pages from a wired-down map entry to another.
1103  *
1104  *	In/out conditions:
1105  *		The source and destination maps must be locked for write.
1106  *		The source map entry must be wired down (or be a sharing map
1107  *		entry corresponding to a main map entry that is wired down).
1108  */
1109 void
1110 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1111 	vm_map_t dst_map;
1112 	vm_map_t src_map;
1113 	vm_map_entry_t dst_entry;
1114 	vm_map_entry_t src_entry;
1115 {
1116 	vm_object_t backing_object, dst_object, object;
1117 	vm_object_t src_object;
1118 	vm_ooffset_t dst_offset;
1119 	vm_ooffset_t src_offset;
1120 	vm_pindex_t pindex;
1121 	vm_prot_t prot;
1122 	vm_offset_t vaddr;
1123 	vm_page_t dst_m;
1124 	vm_page_t src_m;
1125 
1126 #ifdef	lint
1127 	src_map++;
1128 #endif	/* lint */
1129 
1130 	src_object = src_entry->object.vm_object;
1131 	src_offset = src_entry->offset;
1132 
1133 	/*
1134 	 * Create the top-level object for the destination entry. (Doesn't
1135 	 * actually shadow anything - we copy the pages directly.)
1136 	 */
1137 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1138 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1139 
1140 	VM_OBJECT_LOCK(dst_object);
1141 	dst_entry->object.vm_object = dst_object;
1142 	dst_entry->offset = 0;
1143 
1144 	prot = dst_entry->max_protection;
1145 
1146 	/*
1147 	 * Loop through all of the pages in the entry's range, copying each
1148 	 * one from the source object (it should be there) to the destination
1149 	 * object.
1150 	 */
1151 	for (vaddr = dst_entry->start, dst_offset = 0;
1152 	    vaddr < dst_entry->end;
1153 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1154 
1155 		/*
1156 		 * Allocate a page in the destination object
1157 		 */
1158 		do {
1159 			dst_m = vm_page_alloc(dst_object,
1160 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1161 			if (dst_m == NULL) {
1162 				VM_OBJECT_UNLOCK(dst_object);
1163 				VM_WAIT;
1164 				VM_OBJECT_LOCK(dst_object);
1165 			}
1166 		} while (dst_m == NULL);
1167 
1168 		/*
1169 		 * Find the page in the source object, and copy it in.
1170 		 * (Because the source is wired down, the page will be in
1171 		 * memory.)
1172 		 */
1173 		VM_OBJECT_LOCK(src_object);
1174 		object = src_object;
1175 		pindex = 0;
1176 		while ((src_m = vm_page_lookup(object, pindex +
1177 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1178 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1179 		    (backing_object = object->backing_object) != NULL) {
1180 			/*
1181 			 * Allow fallback to backing objects if we are reading.
1182 			 */
1183 			VM_OBJECT_LOCK(backing_object);
1184 			pindex += OFF_TO_IDX(object->backing_object_offset);
1185 			VM_OBJECT_UNLOCK(object);
1186 			object = backing_object;
1187 		}
1188 		if (src_m == NULL)
1189 			panic("vm_fault_copy_wired: page missing");
1190 		pmap_copy_page(src_m, dst_m);
1191 		VM_OBJECT_UNLOCK(object);
1192 		dst_m->valid = VM_PAGE_BITS_ALL;
1193 		VM_OBJECT_UNLOCK(dst_object);
1194 
1195 		/*
1196 		 * Enter it in the pmap...
1197 		 */
1198 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1199 		VM_OBJECT_LOCK(dst_object);
1200 		vm_page_lock_queues();
1201 		if ((prot & VM_PROT_WRITE) != 0)
1202 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1203 
1204 		/*
1205 		 * Mark it no longer busy, and put it on the active list.
1206 		 */
1207 		vm_page_activate(dst_m);
1208 		vm_page_wakeup(dst_m);
1209 		vm_page_unlock_queues();
1210 	}
1211 	VM_OBJECT_UNLOCK(dst_object);
1212 }
1213 
1214 
1215 /*
1216  * This routine checks around the requested page for other pages that
1217  * might be able to be faulted in.  This routine brackets the viable
1218  * pages for the pages to be paged in.
1219  *
1220  * Inputs:
1221  *	m, rbehind, rahead
1222  *
1223  * Outputs:
1224  *  marray (array of vm_page_t), reqpage (index of requested page)
1225  *
1226  * Return value:
1227  *  number of pages in marray
1228  *
1229  * This routine can't block.
1230  */
1231 static int
1232 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1233 	vm_page_t m;
1234 	int rbehind;
1235 	int rahead;
1236 	vm_page_t *marray;
1237 	int *reqpage;
1238 {
1239 	int i,j;
1240 	vm_object_t object;
1241 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1242 	vm_page_t rtm;
1243 	int cbehind, cahead;
1244 
1245 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1246 
1247 	object = m->object;
1248 	pindex = m->pindex;
1249 
1250 	/*
1251 	 * we don't fault-ahead for device pager
1252 	 */
1253 	if (object->type == OBJT_DEVICE) {
1254 		*reqpage = 0;
1255 		marray[0] = m;
1256 		return 1;
1257 	}
1258 
1259 	/*
1260 	 * if the requested page is not available, then give up now
1261 	 */
1262 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1263 		return 0;
1264 	}
1265 
1266 	if ((cbehind == 0) && (cahead == 0)) {
1267 		*reqpage = 0;
1268 		marray[0] = m;
1269 		return 1;
1270 	}
1271 
1272 	if (rahead > cahead) {
1273 		rahead = cahead;
1274 	}
1275 
1276 	if (rbehind > cbehind) {
1277 		rbehind = cbehind;
1278 	}
1279 
1280 	/*
1281 	 * try to do any readahead that we might have free pages for.
1282 	 */
1283 	if ((rahead + rbehind) >
1284 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1285 		pagedaemon_wakeup();
1286 		marray[0] = m;
1287 		*reqpage = 0;
1288 		return 1;
1289 	}
1290 
1291 	/*
1292 	 * scan backward for the read behind pages -- in memory
1293 	 */
1294 	if (pindex > 0) {
1295 		if (rbehind > pindex) {
1296 			rbehind = pindex;
1297 			startpindex = 0;
1298 		} else {
1299 			startpindex = pindex - rbehind;
1300 		}
1301 
1302 		for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1303 			if (vm_page_lookup(object, tpindex)) {
1304 				startpindex = tpindex + 1;
1305 				break;
1306 			}
1307 			if (tpindex == 0)
1308 				break;
1309 		}
1310 
1311 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1312 
1313 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1314 			if (rtm == NULL) {
1315 				vm_page_lock_queues();
1316 				for (j = 0; j < i; j++) {
1317 					vm_page_free(marray[j]);
1318 				}
1319 				vm_page_unlock_queues();
1320 				marray[0] = m;
1321 				*reqpage = 0;
1322 				return 1;
1323 			}
1324 
1325 			marray[i] = rtm;
1326 		}
1327 	} else {
1328 		startpindex = 0;
1329 		i = 0;
1330 	}
1331 
1332 	marray[i] = m;
1333 	/* page offset of the required page */
1334 	*reqpage = i;
1335 
1336 	tpindex = pindex + 1;
1337 	i++;
1338 
1339 	/*
1340 	 * scan forward for the read ahead pages
1341 	 */
1342 	endpindex = tpindex + rahead;
1343 	if (endpindex > object->size)
1344 		endpindex = object->size;
1345 
1346 	for (; tpindex < endpindex; i++, tpindex++) {
1347 
1348 		if (vm_page_lookup(object, tpindex)) {
1349 			break;
1350 		}
1351 
1352 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1353 		if (rtm == NULL) {
1354 			break;
1355 		}
1356 
1357 		marray[i] = rtm;
1358 	}
1359 
1360 	/* return number of bytes of pages */
1361 	return i;
1362 }
1363