xref: /freebsd/sys/vm/vm_fault.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #define PFBAK 4
101 #define PFFOR 4
102 #define PAGEORDER_SIZE (PFBAK+PFFOR)
103 
104 static int prefault_pageorder[] = {
105 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
106 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
107 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
108 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
109 };
110 
111 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
112 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
113 
114 #define VM_FAULT_READ_AHEAD 8
115 #define VM_FAULT_READ_BEHIND 7
116 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
117 
118 struct faultstate {
119 	vm_page_t m;
120 	vm_object_t object;
121 	vm_pindex_t pindex;
122 	vm_page_t first_m;
123 	vm_object_t	first_object;
124 	vm_pindex_t first_pindex;
125 	vm_map_t map;
126 	vm_map_entry_t entry;
127 	int lookup_still_valid;
128 	struct vnode *vp;
129 };
130 
131 static __inline void
132 release_page(struct faultstate *fs)
133 {
134 	vm_page_lock_queues();
135 	vm_page_wakeup(fs->m);
136 	vm_page_deactivate(fs->m);
137 	vm_page_unlock_queues();
138 	fs->m = NULL;
139 }
140 
141 static __inline void
142 unlock_map(struct faultstate *fs)
143 {
144 	if (fs->lookup_still_valid) {
145 		vm_map_lookup_done(fs->map, fs->entry);
146 		fs->lookup_still_valid = FALSE;
147 	}
148 }
149 
150 static void
151 _unlock_things(struct faultstate *fs, int dealloc)
152 {
153 
154 	vm_object_pip_wakeup(fs->object);
155 	VM_OBJECT_UNLOCK(fs->object);
156 	if (fs->object != fs->first_object) {
157 		VM_OBJECT_LOCK(fs->first_object);
158 		vm_page_lock_queues();
159 		vm_page_free(fs->first_m);
160 		vm_page_unlock_queues();
161 		vm_object_pip_wakeup(fs->first_object);
162 		VM_OBJECT_UNLOCK(fs->first_object);
163 		fs->first_m = NULL;
164 	}
165 	if (dealloc) {
166 		vm_object_deallocate(fs->first_object);
167 	}
168 	unlock_map(fs);
169 	if (fs->vp != NULL) {
170 		vput(fs->vp);
171 		fs->vp = NULL;
172 	}
173 	if (dealloc)
174 		mtx_unlock(&Giant);
175 }
176 
177 #define unlock_things(fs) _unlock_things(fs, 0)
178 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
179 
180 /*
181  * TRYPAGER - used by vm_fault to calculate whether the pager for the
182  *	      current object *might* contain the page.
183  *
184  *	      default objects are zero-fill, there is no real pager.
185  */
186 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
187 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
188 
189 /*
190  *	vm_fault:
191  *
192  *	Handle a page fault occurring at the given address,
193  *	requiring the given permissions, in the map specified.
194  *	If successful, the page is inserted into the
195  *	associated physical map.
196  *
197  *	NOTE: the given address should be truncated to the
198  *	proper page address.
199  *
200  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
201  *	a standard error specifying why the fault is fatal is returned.
202  *
203  *
204  *	The map in question must be referenced, and remains so.
205  *	Caller may hold no locks.
206  */
207 int
208 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
209 	 int fault_flags)
210 {
211 	vm_prot_t prot;
212 	int is_first_object_locked, result;
213 	boolean_t growstack, wired;
214 	int map_generation;
215 	vm_object_t next_object;
216 	vm_page_t marray[VM_FAULT_READ];
217 	int hardfault;
218 	int faultcount;
219 	struct faultstate fs;
220 
221 	hardfault = 0;
222 	growstack = TRUE;
223 	atomic_add_int(&cnt.v_vm_faults, 1);
224 
225 RetryFault:;
226 
227 	/*
228 	 * Find the backing store object and offset into it to begin the
229 	 * search.
230 	 */
231 	fs.map = map;
232 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
233 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
234 	if (result != KERN_SUCCESS) {
235 		if (result != KERN_PROTECTION_FAILURE ||
236 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
237 			if (growstack && result == KERN_INVALID_ADDRESS &&
238 			    map != kernel_map && curproc != NULL) {
239 				result = vm_map_growstack(curproc, vaddr);
240 				if (result != KERN_SUCCESS)
241 					return (KERN_FAILURE);
242 				growstack = FALSE;
243 				goto RetryFault;
244 			}
245 			return (result);
246 		}
247 
248 		/*
249    		 * If we are user-wiring a r/w segment, and it is COW, then
250    		 * we need to do the COW operation.  Note that we don't COW
251    		 * currently RO sections now, because it is NOT desirable
252    		 * to COW .text.  We simply keep .text from ever being COW'ed
253    		 * and take the heat that one cannot debug wired .text sections.
254    		 */
255 		result = vm_map_lookup(&fs.map, vaddr,
256 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
257 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
258 		if (result != KERN_SUCCESS)
259 			return (result);
260 
261 		/*
262 		 * If we don't COW now, on a user wire, the user will never
263 		 * be able to write to the mapping.  If we don't make this
264 		 * restriction, the bookkeeping would be nearly impossible.
265 		 *
266 		 * XXX The following assignment modifies the map without
267 		 * holding a write lock on it.
268 		 */
269 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
270 			fs.entry->max_protection &= ~VM_PROT_WRITE;
271 	}
272 
273 	map_generation = fs.map->timestamp;
274 
275 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
276 		panic("vm_fault: fault on nofault entry, addr: %lx",
277 		    (u_long)vaddr);
278 	}
279 
280 	/*
281 	 * Make a reference to this object to prevent its disposal while we
282 	 * are messing with it.  Once we have the reference, the map is free
283 	 * to be diddled.  Since objects reference their shadows (and copies),
284 	 * they will stay around as well.
285 	 *
286 	 * Bump the paging-in-progress count to prevent size changes (e.g.
287 	 * truncation operations) during I/O.  This must be done after
288 	 * obtaining the vnode lock in order to avoid possible deadlocks.
289 	 *
290 	 * XXX vnode_pager_lock() can block without releasing the map lock.
291 	 */
292 	mtx_lock(&Giant);
293 	VM_OBJECT_LOCK(fs.first_object);
294 	vm_object_reference_locked(fs.first_object);
295 	fs.vp = vnode_pager_lock(fs.first_object);
296 	vm_object_pip_add(fs.first_object, 1);
297 
298 	fs.lookup_still_valid = TRUE;
299 
300 	if (wired)
301 		fault_type = prot;
302 
303 	fs.first_m = NULL;
304 
305 	/*
306 	 * Search for the page at object/offset.
307 	 */
308 	fs.object = fs.first_object;
309 	fs.pindex = fs.first_pindex;
310 	while (TRUE) {
311 		/*
312 		 * If the object is dead, we stop here
313 		 */
314 		if (fs.object->flags & OBJ_DEAD) {
315 			unlock_and_deallocate(&fs);
316 			return (KERN_PROTECTION_FAILURE);
317 		}
318 
319 		/*
320 		 * See if page is resident
321 		 */
322 		fs.m = vm_page_lookup(fs.object, fs.pindex);
323 		if (fs.m != NULL) {
324 			int queue, s;
325 
326 			/*
327 			 * check for page-based copy on write.
328 			 * We check fs.object == fs.first_object so
329 			 * as to ensure the legacy COW mechanism is
330 			 * used when the page in question is part of
331 			 * a shadow object.  Otherwise, vm_page_cowfault()
332 			 * removes the page from the backing object,
333 			 * which is not what we want.
334 			 */
335 			vm_page_lock_queues();
336 			if ((fs.m->cow) &&
337 			    (fault_type & VM_PROT_WRITE) &&
338 			    (fs.object == fs.first_object)) {
339 				s = splvm();
340 				vm_page_cowfault(fs.m);
341 				splx(s);
342 				vm_page_unlock_queues();
343 				unlock_and_deallocate(&fs);
344 				goto RetryFault;
345 			}
346 
347 			/*
348 			 * Wait/Retry if the page is busy.  We have to do this
349 			 * if the page is busy via either PG_BUSY or
350 			 * vm_page_t->busy because the vm_pager may be using
351 			 * vm_page_t->busy for pageouts ( and even pageins if
352 			 * it is the vnode pager ), and we could end up trying
353 			 * to pagein and pageout the same page simultaneously.
354 			 *
355 			 * We can theoretically allow the busy case on a read
356 			 * fault if the page is marked valid, but since such
357 			 * pages are typically already pmap'd, putting that
358 			 * special case in might be more effort then it is
359 			 * worth.  We cannot under any circumstances mess
360 			 * around with a vm_page_t->busy page except, perhaps,
361 			 * to pmap it.
362 			 */
363 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
364 				vm_page_unlock_queues();
365 				unlock_things(&fs);
366 				vm_page_lock_queues();
367 				if (!vm_page_sleep_if_busy(fs.m, TRUE, "vmpfw"))
368 					vm_page_unlock_queues();
369 				cnt.v_intrans++;
370 				mtx_unlock(&Giant);
371 				vm_object_deallocate(fs.first_object);
372 				goto RetryFault;
373 			}
374 			queue = fs.m->queue;
375 
376 			s = splvm();
377 			vm_pageq_remove_nowakeup(fs.m);
378 			splx(s);
379 
380 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
381 				vm_page_activate(fs.m);
382 				vm_page_unlock_queues();
383 				unlock_and_deallocate(&fs);
384 				VM_WAITPFAULT;
385 				goto RetryFault;
386 			}
387 
388 			/*
389 			 * Mark page busy for other processes, and the
390 			 * pagedaemon.  If it still isn't completely valid
391 			 * (readable), jump to readrest, else break-out ( we
392 			 * found the page ).
393 			 */
394 			vm_page_busy(fs.m);
395 			vm_page_unlock_queues();
396 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
397 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
398 				goto readrest;
399 			}
400 
401 			break;
402 		}
403 
404 		/*
405 		 * Page is not resident, If this is the search termination
406 		 * or the pager might contain the page, allocate a new page.
407 		 */
408 		if (TRYPAGER || fs.object == fs.first_object) {
409 			if (fs.pindex >= fs.object->size) {
410 				unlock_and_deallocate(&fs);
411 				return (KERN_PROTECTION_FAILURE);
412 			}
413 
414 			/*
415 			 * Allocate a new page for this object/offset pair.
416 			 */
417 			fs.m = NULL;
418 			if (!vm_page_count_severe()) {
419 				fs.m = vm_page_alloc(fs.object, fs.pindex,
420 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
421 			}
422 			if (fs.m == NULL) {
423 				unlock_and_deallocate(&fs);
424 				VM_WAITPFAULT;
425 				goto RetryFault;
426 			}
427 		}
428 
429 readrest:
430 		/*
431 		 * We have found a valid page or we have allocated a new page.
432 		 * The page thus may not be valid or may not be entirely
433 		 * valid.
434 		 *
435 		 * Attempt to fault-in the page if there is a chance that the
436 		 * pager has it, and potentially fault in additional pages
437 		 * at the same time.
438 		 */
439 		if (TRYPAGER) {
440 			int rv;
441 			int reqpage;
442 			int ahead, behind;
443 			u_char behavior = vm_map_entry_behavior(fs.entry);
444 
445 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
446 				ahead = 0;
447 				behind = 0;
448 			} else {
449 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
450 				if (behind > VM_FAULT_READ_BEHIND)
451 					behind = VM_FAULT_READ_BEHIND;
452 
453 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
454 				if (ahead > VM_FAULT_READ_AHEAD)
455 					ahead = VM_FAULT_READ_AHEAD;
456 			}
457 			is_first_object_locked = FALSE;
458 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
459 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
460 			      fs.pindex >= fs.entry->lastr &&
461 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
462 			    (fs.first_object == fs.object ||
463 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
464 			    fs.first_object->type != OBJT_DEVICE) {
465 				vm_pindex_t firstpindex, tmppindex;
466 
467 				if (fs.first_pindex < 2 * VM_FAULT_READ)
468 					firstpindex = 0;
469 				else
470 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
471 
472 				vm_page_lock_queues();
473 				/*
474 				 * note: partially valid pages cannot be
475 				 * included in the lookahead - NFS piecemeal
476 				 * writes will barf on it badly.
477 				 */
478 				for (tmppindex = fs.first_pindex - 1;
479 					tmppindex >= firstpindex;
480 					--tmppindex) {
481 					vm_page_t mt;
482 
483 					mt = vm_page_lookup(fs.first_object, tmppindex);
484 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
485 						break;
486 					if (mt->busy ||
487 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
488 						mt->hold_count ||
489 						mt->wire_count)
490 						continue;
491 					pmap_remove_all(mt);
492 					if (mt->dirty) {
493 						vm_page_deactivate(mt);
494 					} else {
495 						vm_page_cache(mt);
496 					}
497 				}
498 				vm_page_unlock_queues();
499 				ahead += behind;
500 				behind = 0;
501 			}
502 			if (is_first_object_locked)
503 				VM_OBJECT_UNLOCK(fs.first_object);
504 			/*
505 			 * now we find out if any other pages should be paged
506 			 * in at this time this routine checks to see if the
507 			 * pages surrounding this fault reside in the same
508 			 * object as the page for this fault.  If they do,
509 			 * then they are faulted in also into the object.  The
510 			 * array "marray" returned contains an array of
511 			 * vm_page_t structs where one of them is the
512 			 * vm_page_t passed to the routine.  The reqpage
513 			 * return value is the index into the marray for the
514 			 * vm_page_t passed to the routine.
515 			 *
516 			 * fs.m plus the additional pages are PG_BUSY'd.
517 			 *
518 			 * XXX vm_fault_additional_pages() can block
519 			 * without releasing the map lock.
520 			 */
521 			faultcount = vm_fault_additional_pages(
522 			    fs.m, behind, ahead, marray, &reqpage);
523 
524 			/*
525 			 * update lastr imperfectly (we do not know how much
526 			 * getpages will actually read), but good enough.
527 			 *
528 			 * XXX The following assignment modifies the map
529 			 * without holding a write lock on it.
530 			 */
531 			fs.entry->lastr = fs.pindex + faultcount - behind;
532 
533 			/*
534 			 * Call the pager to retrieve the data, if any, after
535 			 * releasing the lock on the map.  We hold a ref on
536 			 * fs.object and the pages are PG_BUSY'd.
537 			 */
538 			unlock_map(&fs);
539 
540 			rv = faultcount ?
541 			    vm_pager_get_pages(fs.object, marray, faultcount,
542 				reqpage) : VM_PAGER_FAIL;
543 
544 			if (rv == VM_PAGER_OK) {
545 				/*
546 				 * Found the page. Leave it busy while we play
547 				 * with it.
548 				 */
549 
550 				/*
551 				 * Relookup in case pager changed page. Pager
552 				 * is responsible for disposition of old page
553 				 * if moved.
554 				 */
555 				fs.m = vm_page_lookup(fs.object, fs.pindex);
556 				if (!fs.m) {
557 					unlock_and_deallocate(&fs);
558 					goto RetryFault;
559 				}
560 
561 				hardfault++;
562 				break; /* break to PAGE HAS BEEN FOUND */
563 			}
564 			/*
565 			 * Remove the bogus page (which does not exist at this
566 			 * object/offset); before doing so, we must get back
567 			 * our object lock to preserve our invariant.
568 			 *
569 			 * Also wake up any other process that may want to bring
570 			 * in this page.
571 			 *
572 			 * If this is the top-level object, we must leave the
573 			 * busy page to prevent another process from rushing
574 			 * past us, and inserting the page in that object at
575 			 * the same time that we are.
576 			 */
577 			if (rv == VM_PAGER_ERROR)
578 				printf("vm_fault: pager read error, pid %d (%s)\n",
579 				    curproc->p_pid, curproc->p_comm);
580 			/*
581 			 * Data outside the range of the pager or an I/O error
582 			 */
583 			/*
584 			 * XXX - the check for kernel_map is a kludge to work
585 			 * around having the machine panic on a kernel space
586 			 * fault w/ I/O error.
587 			 */
588 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
589 				(rv == VM_PAGER_BAD)) {
590 				vm_page_lock_queues();
591 				vm_page_free(fs.m);
592 				vm_page_unlock_queues();
593 				fs.m = NULL;
594 				unlock_and_deallocate(&fs);
595 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
596 			}
597 			if (fs.object != fs.first_object) {
598 				vm_page_lock_queues();
599 				vm_page_free(fs.m);
600 				vm_page_unlock_queues();
601 				fs.m = NULL;
602 				/*
603 				 * XXX - we cannot just fall out at this
604 				 * point, m has been freed and is invalid!
605 				 */
606 			}
607 		}
608 
609 		/*
610 		 * We get here if the object has default pager (or unwiring)
611 		 * or the pager doesn't have the page.
612 		 */
613 		if (fs.object == fs.first_object)
614 			fs.first_m = fs.m;
615 
616 		/*
617 		 * Move on to the next object.  Lock the next object before
618 		 * unlocking the current one.
619 		 */
620 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
621 		next_object = fs.object->backing_object;
622 		if (next_object == NULL) {
623 			/*
624 			 * If there's no object left, fill the page in the top
625 			 * object with zeros.
626 			 */
627 			if (fs.object != fs.first_object) {
628 				vm_object_pip_wakeup(fs.object);
629 				VM_OBJECT_UNLOCK(fs.object);
630 
631 				fs.object = fs.first_object;
632 				fs.pindex = fs.first_pindex;
633 				fs.m = fs.first_m;
634 				VM_OBJECT_LOCK(fs.object);
635 			}
636 			fs.first_m = NULL;
637 
638 			/*
639 			 * Zero the page if necessary and mark it valid.
640 			 */
641 			if ((fs.m->flags & PG_ZERO) == 0) {
642 				pmap_zero_page(fs.m);
643 			} else {
644 				cnt.v_ozfod++;
645 			}
646 			cnt.v_zfod++;
647 			fs.m->valid = VM_PAGE_BITS_ALL;
648 			break;	/* break to PAGE HAS BEEN FOUND */
649 		} else {
650 			KASSERT(fs.object != next_object,
651 			    ("object loop %p", next_object));
652 			VM_OBJECT_LOCK(next_object);
653 			vm_object_pip_add(next_object, 1);
654 			if (fs.object != fs.first_object)
655 				vm_object_pip_wakeup(fs.object);
656 			VM_OBJECT_UNLOCK(fs.object);
657 			fs.object = next_object;
658 		}
659 	}
660 
661 	KASSERT((fs.m->flags & PG_BUSY) != 0,
662 	    ("vm_fault: not busy after main loop"));
663 
664 	/*
665 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
666 	 * is held.]
667 	 */
668 
669 	/*
670 	 * If the page is being written, but isn't already owned by the
671 	 * top-level object, we have to copy it into a new page owned by the
672 	 * top-level object.
673 	 */
674 	if (fs.object != fs.first_object) {
675 		/*
676 		 * We only really need to copy if we want to write it.
677 		 */
678 		if (fault_type & VM_PROT_WRITE) {
679 			/*
680 			 * This allows pages to be virtually copied from a
681 			 * backing_object into the first_object, where the
682 			 * backing object has no other refs to it, and cannot
683 			 * gain any more refs.  Instead of a bcopy, we just
684 			 * move the page from the backing object to the
685 			 * first object.  Note that we must mark the page
686 			 * dirty in the first object so that it will go out
687 			 * to swap when needed.
688 			 */
689 			is_first_object_locked = FALSE;
690 			if (
691 				/*
692 				 * Only one shadow object
693 				 */
694 				(fs.object->shadow_count == 1) &&
695 				/*
696 				 * No COW refs, except us
697 				 */
698 				(fs.object->ref_count == 1) &&
699 				/*
700 				 * No one else can look this object up
701 				 */
702 				(fs.object->handle == NULL) &&
703 				/*
704 				 * No other ways to look the object up
705 				 */
706 				((fs.object->type == OBJT_DEFAULT) ||
707 				 (fs.object->type == OBJT_SWAP)) &&
708 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
709 				/*
710 				 * We don't chase down the shadow chain
711 				 */
712 			    fs.object == fs.first_object->backing_object) {
713 				vm_page_lock_queues();
714 				/*
715 				 * get rid of the unnecessary page
716 				 */
717 				pmap_remove_all(fs.first_m);
718 				vm_page_free(fs.first_m);
719 				/*
720 				 * grab the page and put it into the
721 				 * process'es object.  The page is
722 				 * automatically made dirty.
723 				 */
724 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
725 				vm_page_busy(fs.m);
726 				vm_page_unlock_queues();
727 				fs.first_m = fs.m;
728 				fs.m = NULL;
729 				cnt.v_cow_optim++;
730 			} else {
731 				/*
732 				 * Oh, well, lets copy it.
733 				 */
734 				pmap_copy_page(fs.m, fs.first_m);
735 				fs.first_m->valid = VM_PAGE_BITS_ALL;
736 			}
737 			if (fs.m) {
738 				/*
739 				 * We no longer need the old page or object.
740 				 */
741 				release_page(&fs);
742 			}
743 			/*
744 			 * fs.object != fs.first_object due to above
745 			 * conditional
746 			 */
747 			vm_object_pip_wakeup(fs.object);
748 			VM_OBJECT_UNLOCK(fs.object);
749 			/*
750 			 * Only use the new page below...
751 			 */
752 			fs.object = fs.first_object;
753 			fs.pindex = fs.first_pindex;
754 			fs.m = fs.first_m;
755 			if (!is_first_object_locked)
756 				VM_OBJECT_LOCK(fs.object);
757 			cnt.v_cow_faults++;
758 		} else {
759 			prot &= ~VM_PROT_WRITE;
760 		}
761 	}
762 
763 	/*
764 	 * We must verify that the maps have not changed since our last
765 	 * lookup.
766 	 */
767 	if (!fs.lookup_still_valid &&
768 		(fs.map->timestamp != map_generation)) {
769 		vm_object_t retry_object;
770 		vm_pindex_t retry_pindex;
771 		vm_prot_t retry_prot;
772 
773 		/*
774 		 * Since map entries may be pageable, make sure we can take a
775 		 * page fault on them.
776 		 */
777 
778 		/*
779 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
780 		 * avoid a deadlock between the inode and exec_map that can
781 		 * occur due to locks being obtained in different orders.
782 		 */
783 		if (fs.vp != NULL) {
784 			vput(fs.vp);
785 			fs.vp = NULL;
786 		}
787 
788 		if (fs.map->infork) {
789 			release_page(&fs);
790 			unlock_and_deallocate(&fs);
791 			goto RetryFault;
792 		}
793 		VM_OBJECT_UNLOCK(fs.object);
794 
795 		/*
796 		 * To avoid trying to write_lock the map while another process
797 		 * has it read_locked (in vm_map_wire), we do not try for
798 		 * write permission.  If the page is still writable, we will
799 		 * get write permission.  If it is not, or has been marked
800 		 * needs_copy, we enter the mapping without write permission,
801 		 * and will merely take another fault.
802 		 */
803 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
804 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
805 		map_generation = fs.map->timestamp;
806 
807 		VM_OBJECT_LOCK(fs.object);
808 		/*
809 		 * If we don't need the page any longer, put it on the active
810 		 * list (the easiest thing to do here).  If no one needs it,
811 		 * pageout will grab it eventually.
812 		 */
813 		if (result != KERN_SUCCESS) {
814 			release_page(&fs);
815 			unlock_and_deallocate(&fs);
816 			return (result);
817 		}
818 		fs.lookup_still_valid = TRUE;
819 
820 		if ((retry_object != fs.first_object) ||
821 		    (retry_pindex != fs.first_pindex)) {
822 			release_page(&fs);
823 			unlock_and_deallocate(&fs);
824 			goto RetryFault;
825 		}
826 		/*
827 		 * Check whether the protection has changed or the object has
828 		 * been copied while we left the map unlocked. Changing from
829 		 * read to write permission is OK - we leave the page
830 		 * write-protected, and catch the write fault. Changing from
831 		 * write to read permission means that we can't mark the page
832 		 * write-enabled after all.
833 		 */
834 		prot &= retry_prot;
835 	}
836 
837 	/*
838 	 * Put this page into the physical map. We had to do the unlock above
839 	 * because pmap_enter may cause other faults.   We don't put the page
840 	 * back on the active queue until later so that the page-out daemon
841 	 * won't find us (yet).
842 	 */
843 
844 	if (prot & VM_PROT_WRITE) {
845 		vm_page_lock_queues();
846 		vm_page_flag_set(fs.m, PG_WRITEABLE);
847 		vm_object_set_writeable_dirty(fs.m->object);
848 
849 		/*
850 		 * If the fault is a write, we know that this page is being
851 		 * written NOW so dirty it explicitly to save on
852 		 * pmap_is_modified() calls later.
853 		 *
854 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
855 		 * if the page is already dirty to prevent data written with
856 		 * the expectation of being synced from not being synced.
857 		 * Likewise if this entry does not request NOSYNC then make
858 		 * sure the page isn't marked NOSYNC.  Applications sharing
859 		 * data should use the same flags to avoid ping ponging.
860 		 *
861 		 * Also tell the backing pager, if any, that it should remove
862 		 * any swap backing since the page is now dirty.
863 		 */
864 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
865 			if (fs.m->dirty == 0)
866 				vm_page_flag_set(fs.m, PG_NOSYNC);
867 		} else {
868 			vm_page_flag_clear(fs.m, PG_NOSYNC);
869 		}
870 		vm_page_unlock_queues();
871 		if (fault_flags & VM_FAULT_DIRTY) {
872 			int s;
873 			vm_page_dirty(fs.m);
874 			s = splvm();
875 			vm_pager_page_unswapped(fs.m);
876 			splx(s);
877 		}
878 	}
879 
880 	/*
881 	 * Page had better still be busy
882 	 */
883 	KASSERT(fs.m->flags & PG_BUSY,
884 		("vm_fault: page %p not busy!", fs.m));
885 	/*
886 	 * Sanity check: page must be completely valid or it is not fit to
887 	 * map into user space.  vm_pager_get_pages() ensures this.
888 	 */
889 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
890 		vm_page_zero_invalid(fs.m, TRUE);
891 		printf("Warning: page %p partially invalid on fault\n", fs.m);
892 	}
893 	unlock_things(&fs);
894 
895 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
896 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
897 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
898 	}
899 	mtx_unlock(&Giant);
900 	vm_page_lock_queues();
901 	vm_page_flag_set(fs.m, PG_REFERENCED);
902 
903 	/*
904 	 * If the page is not wired down, then put it where the pageout daemon
905 	 * can find it.
906 	 */
907 	if (fault_flags & VM_FAULT_WIRE_MASK) {
908 		if (wired)
909 			vm_page_wire(fs.m);
910 		else
911 			vm_page_unwire(fs.m, 1);
912 	} else {
913 		vm_page_activate(fs.m);
914 	}
915 	vm_page_wakeup(fs.m);
916 	vm_page_unlock_queues();
917 
918 	PROC_LOCK(curproc);
919 	if ((curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
920 		if (hardfault) {
921 			curproc->p_stats->p_ru.ru_majflt++;
922 		} else {
923 			curproc->p_stats->p_ru.ru_minflt++;
924 		}
925 	}
926 	PROC_UNLOCK(curproc);
927 
928 	/*
929 	 * Unlock everything, and return
930 	 */
931 	vm_object_deallocate(fs.first_object);
932 	return (KERN_SUCCESS);
933 }
934 
935 /*
936  * vm_fault_prefault provides a quick way of clustering
937  * pagefaults into a processes address space.  It is a "cousin"
938  * of vm_map_pmap_enter, except it runs at page fault time instead
939  * of mmap time.
940  */
941 static void
942 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
943 {
944 	int i;
945 	vm_offset_t addr, starta;
946 	vm_pindex_t pindex;
947 	vm_page_t m, mpte;
948 	vm_object_t object;
949 
950 	if (!curthread || (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)))
951 		return;
952 
953 	object = entry->object.vm_object;
954 
955 	starta = addra - PFBAK * PAGE_SIZE;
956 	if (starta < entry->start) {
957 		starta = entry->start;
958 	} else if (starta > addra) {
959 		starta = 0;
960 	}
961 
962 	mpte = NULL;
963 	for (i = 0; i < PAGEORDER_SIZE; i++) {
964 		vm_object_t backing_object, lobject;
965 
966 		addr = addra + prefault_pageorder[i];
967 		if (addr > addra + (PFFOR * PAGE_SIZE))
968 			addr = 0;
969 
970 		if (addr < starta || addr >= entry->end)
971 			continue;
972 
973 		if (!pmap_is_prefaultable(pmap, addr))
974 			continue;
975 
976 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
977 		lobject = object;
978 		VM_OBJECT_LOCK(lobject);
979 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
980 		    lobject->type == OBJT_DEFAULT &&
981 		    (backing_object = lobject->backing_object) != NULL) {
982 			if (lobject->backing_object_offset & PAGE_MASK)
983 				break;
984 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
985 			VM_OBJECT_LOCK(backing_object);
986 			VM_OBJECT_UNLOCK(lobject);
987 			lobject = backing_object;
988 		}
989 		/*
990 		 * give-up when a page is not in memory
991 		 */
992 		if (m == NULL) {
993 			VM_OBJECT_UNLOCK(lobject);
994 			break;
995 		}
996 		vm_page_lock_queues();
997 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
998 			(m->busy == 0) &&
999 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
1000 
1001 			if ((m->queue - m->pc) == PQ_CACHE) {
1002 				vm_page_deactivate(m);
1003 			}
1004 			vm_page_busy(m);
1005 			vm_page_unlock_queues();
1006 			VM_OBJECT_UNLOCK(lobject);
1007 			mpte = pmap_enter_quick(pmap, addr, m, mpte);
1008 			VM_OBJECT_LOCK(lobject);
1009 			vm_page_lock_queues();
1010 			vm_page_wakeup(m);
1011 		}
1012 		vm_page_unlock_queues();
1013 		VM_OBJECT_UNLOCK(lobject);
1014 	}
1015 }
1016 
1017 /*
1018  *	vm_fault_quick:
1019  *
1020  *	Ensure that the requested virtual address, which may be in userland,
1021  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1022  */
1023 int
1024 vm_fault_quick(caddr_t v, int prot)
1025 {
1026 	int r;
1027 
1028 	if (prot & VM_PROT_WRITE)
1029 		r = subyte(v, fubyte(v));
1030 	else
1031 		r = fubyte(v);
1032 	return(r);
1033 }
1034 
1035 /*
1036  *	vm_fault_wire:
1037  *
1038  *	Wire down a range of virtual addresses in a map.
1039  */
1040 int
1041 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1042     boolean_t user_wire, boolean_t fictitious)
1043 {
1044 	vm_offset_t va;
1045 	int rv;
1046 
1047 	/*
1048 	 * We simulate a fault to get the page and enter it in the physical
1049 	 * map.  For user wiring, we only ask for read access on currently
1050 	 * read-only sections.
1051 	 */
1052 	for (va = start; va < end; va += PAGE_SIZE) {
1053 		rv = vm_fault(map, va,
1054 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1055 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1056 		if (rv) {
1057 			if (va != start)
1058 				vm_fault_unwire(map, start, va, fictitious);
1059 			return (rv);
1060 		}
1061 	}
1062 	return (KERN_SUCCESS);
1063 }
1064 
1065 /*
1066  *	vm_fault_unwire:
1067  *
1068  *	Unwire a range of virtual addresses in a map.
1069  */
1070 void
1071 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1072     boolean_t fictitious)
1073 {
1074 	vm_paddr_t pa;
1075 	vm_offset_t va;
1076 	pmap_t pmap;
1077 
1078 	pmap = vm_map_pmap(map);
1079 
1080 	if (pmap != kernel_pmap)
1081 		mtx_lock(&Giant);
1082 	/*
1083 	 * Since the pages are wired down, we must be able to get their
1084 	 * mappings from the physical map system.
1085 	 */
1086 	for (va = start; va < end; va += PAGE_SIZE) {
1087 		pa = pmap_extract(pmap, va);
1088 		if (pa != 0) {
1089 			pmap_change_wiring(pmap, va, FALSE);
1090 			if (!fictitious) {
1091 				vm_page_lock_queues();
1092 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1093 				vm_page_unlock_queues();
1094 			}
1095 		}
1096 	}
1097 	if (pmap != kernel_pmap)
1098 		mtx_unlock(&Giant);
1099 }
1100 
1101 /*
1102  *	Routine:
1103  *		vm_fault_copy_entry
1104  *	Function:
1105  *		Copy all of the pages from a wired-down map entry to another.
1106  *
1107  *	In/out conditions:
1108  *		The source and destination maps must be locked for write.
1109  *		The source map entry must be wired down (or be a sharing map
1110  *		entry corresponding to a main map entry that is wired down).
1111  */
1112 void
1113 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1114 	vm_map_t dst_map;
1115 	vm_map_t src_map;
1116 	vm_map_entry_t dst_entry;
1117 	vm_map_entry_t src_entry;
1118 {
1119 	vm_object_t backing_object, dst_object, object;
1120 	vm_object_t src_object;
1121 	vm_ooffset_t dst_offset;
1122 	vm_ooffset_t src_offset;
1123 	vm_pindex_t pindex;
1124 	vm_prot_t prot;
1125 	vm_offset_t vaddr;
1126 	vm_page_t dst_m;
1127 	vm_page_t src_m;
1128 
1129 #ifdef	lint
1130 	src_map++;
1131 #endif	/* lint */
1132 
1133 	src_object = src_entry->object.vm_object;
1134 	src_offset = src_entry->offset;
1135 
1136 	/*
1137 	 * Create the top-level object for the destination entry. (Doesn't
1138 	 * actually shadow anything - we copy the pages directly.)
1139 	 */
1140 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1141 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1142 
1143 	VM_OBJECT_LOCK(dst_object);
1144 	dst_entry->object.vm_object = dst_object;
1145 	dst_entry->offset = 0;
1146 
1147 	prot = dst_entry->max_protection;
1148 
1149 	/*
1150 	 * Loop through all of the pages in the entry's range, copying each
1151 	 * one from the source object (it should be there) to the destination
1152 	 * object.
1153 	 */
1154 	for (vaddr = dst_entry->start, dst_offset = 0;
1155 	    vaddr < dst_entry->end;
1156 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1157 
1158 		/*
1159 		 * Allocate a page in the destination object
1160 		 */
1161 		do {
1162 			dst_m = vm_page_alloc(dst_object,
1163 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1164 			if (dst_m == NULL) {
1165 				VM_OBJECT_UNLOCK(dst_object);
1166 				VM_WAIT;
1167 				VM_OBJECT_LOCK(dst_object);
1168 			}
1169 		} while (dst_m == NULL);
1170 
1171 		/*
1172 		 * Find the page in the source object, and copy it in.
1173 		 * (Because the source is wired down, the page will be in
1174 		 * memory.)
1175 		 */
1176 		VM_OBJECT_LOCK(src_object);
1177 		object = src_object;
1178 		pindex = 0;
1179 		while ((src_m = vm_page_lookup(object, pindex +
1180 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1181 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1182 		    (backing_object = object->backing_object) != NULL) {
1183 			/*
1184 			 * Allow fallback to backing objects if we are reading.
1185 			 */
1186 			VM_OBJECT_LOCK(backing_object);
1187 			pindex += OFF_TO_IDX(object->backing_object_offset);
1188 			VM_OBJECT_UNLOCK(object);
1189 			object = backing_object;
1190 		}
1191 		if (src_m == NULL)
1192 			panic("vm_fault_copy_wired: page missing");
1193 		pmap_copy_page(src_m, dst_m);
1194 		VM_OBJECT_UNLOCK(object);
1195 		dst_m->valid = VM_PAGE_BITS_ALL;
1196 		VM_OBJECT_UNLOCK(dst_object);
1197 
1198 		/*
1199 		 * Enter it in the pmap...
1200 		 */
1201 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1202 		VM_OBJECT_LOCK(dst_object);
1203 		vm_page_lock_queues();
1204 		if ((prot & VM_PROT_WRITE) != 0)
1205 			vm_page_flag_set(dst_m, PG_WRITEABLE);
1206 
1207 		/*
1208 		 * Mark it no longer busy, and put it on the active list.
1209 		 */
1210 		vm_page_activate(dst_m);
1211 		vm_page_wakeup(dst_m);
1212 		vm_page_unlock_queues();
1213 	}
1214 	VM_OBJECT_UNLOCK(dst_object);
1215 }
1216 
1217 
1218 /*
1219  * This routine checks around the requested page for other pages that
1220  * might be able to be faulted in.  This routine brackets the viable
1221  * pages for the pages to be paged in.
1222  *
1223  * Inputs:
1224  *	m, rbehind, rahead
1225  *
1226  * Outputs:
1227  *  marray (array of vm_page_t), reqpage (index of requested page)
1228  *
1229  * Return value:
1230  *  number of pages in marray
1231  *
1232  * This routine can't block.
1233  */
1234 static int
1235 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1236 	vm_page_t m;
1237 	int rbehind;
1238 	int rahead;
1239 	vm_page_t *marray;
1240 	int *reqpage;
1241 {
1242 	int i,j;
1243 	vm_object_t object;
1244 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1245 	vm_page_t rtm;
1246 	int cbehind, cahead;
1247 
1248 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1249 
1250 	object = m->object;
1251 	pindex = m->pindex;
1252 
1253 	/*
1254 	 * we don't fault-ahead for device pager
1255 	 */
1256 	if (object->type == OBJT_DEVICE) {
1257 		*reqpage = 0;
1258 		marray[0] = m;
1259 		return 1;
1260 	}
1261 
1262 	/*
1263 	 * if the requested page is not available, then give up now
1264 	 */
1265 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1266 		return 0;
1267 	}
1268 
1269 	if ((cbehind == 0) && (cahead == 0)) {
1270 		*reqpage = 0;
1271 		marray[0] = m;
1272 		return 1;
1273 	}
1274 
1275 	if (rahead > cahead) {
1276 		rahead = cahead;
1277 	}
1278 
1279 	if (rbehind > cbehind) {
1280 		rbehind = cbehind;
1281 	}
1282 
1283 	/*
1284 	 * try to do any readahead that we might have free pages for.
1285 	 */
1286 	if ((rahead + rbehind) >
1287 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1288 		pagedaemon_wakeup();
1289 		marray[0] = m;
1290 		*reqpage = 0;
1291 		return 1;
1292 	}
1293 
1294 	/*
1295 	 * scan backward for the read behind pages -- in memory
1296 	 */
1297 	if (pindex > 0) {
1298 		if (rbehind > pindex) {
1299 			rbehind = pindex;
1300 			startpindex = 0;
1301 		} else {
1302 			startpindex = pindex - rbehind;
1303 		}
1304 
1305 		for (tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1306 			if (vm_page_lookup(object, tpindex)) {
1307 				startpindex = tpindex + 1;
1308 				break;
1309 			}
1310 			if (tpindex == 0)
1311 				break;
1312 		}
1313 
1314 		for (i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1315 
1316 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1317 			if (rtm == NULL) {
1318 				vm_page_lock_queues();
1319 				for (j = 0; j < i; j++) {
1320 					vm_page_free(marray[j]);
1321 				}
1322 				vm_page_unlock_queues();
1323 				marray[0] = m;
1324 				*reqpage = 0;
1325 				return 1;
1326 			}
1327 
1328 			marray[i] = rtm;
1329 		}
1330 	} else {
1331 		startpindex = 0;
1332 		i = 0;
1333 	}
1334 
1335 	marray[i] = m;
1336 	/* page offset of the required page */
1337 	*reqpage = i;
1338 
1339 	tpindex = pindex + 1;
1340 	i++;
1341 
1342 	/*
1343 	 * scan forward for the read ahead pages
1344 	 */
1345 	endpindex = tpindex + rahead;
1346 	if (endpindex > object->size)
1347 		endpindex = object->size;
1348 
1349 	for (; tpindex < endpindex; i++, tpindex++) {
1350 
1351 		if (vm_page_lookup(object, tpindex)) {
1352 			break;
1353 		}
1354 
1355 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1356 		if (rtm == NULL) {
1357 			break;
1358 		}
1359 
1360 		marray[i] = rtm;
1361 	}
1362 
1363 	/* return number of bytes of pages */
1364 	return i;
1365 }
1366