1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 bool lookup_still_valid; 126 struct vnode *vp; 127 }; 128 129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 130 int ahead); 131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 132 int backward, int forward); 133 134 static inline void 135 release_page(struct faultstate *fs) 136 { 137 138 vm_page_xunbusy(fs->m); 139 vm_page_lock(fs->m); 140 vm_page_deactivate(fs->m); 141 vm_page_unlock(fs->m); 142 fs->m = NULL; 143 } 144 145 static inline void 146 unlock_map(struct faultstate *fs) 147 { 148 149 if (fs->lookup_still_valid) { 150 vm_map_lookup_done(fs->map, fs->entry); 151 fs->lookup_still_valid = false; 152 } 153 } 154 155 static void 156 unlock_vp(struct faultstate *fs) 157 { 158 159 if (fs->vp != NULL) { 160 vput(fs->vp); 161 fs->vp = NULL; 162 } 163 } 164 165 static void 166 unlock_and_deallocate(struct faultstate *fs) 167 { 168 169 vm_object_pip_wakeup(fs->object); 170 VM_OBJECT_WUNLOCK(fs->object); 171 if (fs->object != fs->first_object) { 172 VM_OBJECT_WLOCK(fs->first_object); 173 vm_page_lock(fs->first_m); 174 vm_page_free(fs->first_m); 175 vm_page_unlock(fs->first_m); 176 vm_object_pip_wakeup(fs->first_object); 177 VM_OBJECT_WUNLOCK(fs->first_object); 178 fs->first_m = NULL; 179 } 180 vm_object_deallocate(fs->first_object); 181 unlock_map(fs); 182 unlock_vp(fs); 183 } 184 185 static void 186 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 187 vm_prot_t fault_type, int fault_flags, bool set_wd) 188 { 189 bool need_dirty; 190 191 if (((prot & VM_PROT_WRITE) == 0 && 192 (fault_flags & VM_FAULT_DIRTY) == 0) || 193 (m->oflags & VPO_UNMANAGED) != 0) 194 return; 195 196 VM_OBJECT_ASSERT_LOCKED(m->object); 197 198 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 199 (fault_flags & VM_FAULT_WIRE) == 0) || 200 (fault_flags & VM_FAULT_DIRTY) != 0; 201 202 if (set_wd) 203 vm_object_set_writeable_dirty(m->object); 204 else 205 /* 206 * If two callers of vm_fault_dirty() with set_wd == 207 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 208 * flag set, other with flag clear, race, it is 209 * possible for the no-NOSYNC thread to see m->dirty 210 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 211 * around manipulation of VPO_NOSYNC and 212 * vm_page_dirty() call, to avoid the race and keep 213 * m->oflags consistent. 214 */ 215 vm_page_lock(m); 216 217 /* 218 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 219 * if the page is already dirty to prevent data written with 220 * the expectation of being synced from not being synced. 221 * Likewise if this entry does not request NOSYNC then make 222 * sure the page isn't marked NOSYNC. Applications sharing 223 * data should use the same flags to avoid ping ponging. 224 */ 225 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 226 if (m->dirty == 0) { 227 m->oflags |= VPO_NOSYNC; 228 } 229 } else { 230 m->oflags &= ~VPO_NOSYNC; 231 } 232 233 /* 234 * If the fault is a write, we know that this page is being 235 * written NOW so dirty it explicitly to save on 236 * pmap_is_modified() calls later. 237 * 238 * Also tell the backing pager, if any, that it should remove 239 * any swap backing since the page is now dirty. 240 */ 241 if (need_dirty) 242 vm_page_dirty(m); 243 if (!set_wd) 244 vm_page_unlock(m); 245 if (need_dirty) 246 vm_pager_page_unswapped(m); 247 } 248 249 static void 250 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m) 251 { 252 253 if (m_hold != NULL) { 254 *m_hold = m; 255 vm_page_lock(m); 256 vm_page_hold(m); 257 vm_page_unlock(m); 258 } 259 } 260 261 /* 262 * Unlocks fs.first_object and fs.map on success. 263 */ 264 static int 265 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 266 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 267 { 268 vm_page_t m; 269 int rv; 270 271 MPASS(fs->vp == NULL); 272 m = vm_page_lookup(fs->first_object, fs->first_pindex); 273 /* A busy page can be mapped for read|execute access. */ 274 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 275 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 276 return (KERN_FAILURE); 277 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | 278 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), 0); 279 if (rv != KERN_SUCCESS) 280 return (rv); 281 vm_fault_fill_hold(m_hold, m); 282 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 283 VM_OBJECT_RUNLOCK(fs->first_object); 284 if (!wired) 285 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR); 286 vm_map_lookup_done(fs->map, fs->entry); 287 curthread->td_ru.ru_minflt++; 288 return (KERN_SUCCESS); 289 } 290 291 /* 292 * vm_fault: 293 * 294 * Handle a page fault occurring at the given address, 295 * requiring the given permissions, in the map specified. 296 * If successful, the page is inserted into the 297 * associated physical map. 298 * 299 * NOTE: the given address should be truncated to the 300 * proper page address. 301 * 302 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 303 * a standard error specifying why the fault is fatal is returned. 304 * 305 * The map in question must be referenced, and remains so. 306 * Caller may hold no locks. 307 */ 308 int 309 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 310 int fault_flags) 311 { 312 struct thread *td; 313 int result; 314 315 td = curthread; 316 if ((td->td_pflags & TDP_NOFAULTING) != 0) 317 return (KERN_PROTECTION_FAILURE); 318 #ifdef KTRACE 319 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 320 ktrfault(vaddr, fault_type); 321 #endif 322 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 323 NULL); 324 #ifdef KTRACE 325 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 326 ktrfaultend(result); 327 #endif 328 return (result); 329 } 330 331 int 332 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 333 int fault_flags, vm_page_t *m_hold) 334 { 335 struct faultstate fs; 336 struct vnode *vp; 337 vm_object_t next_object, retry_object; 338 vm_offset_t e_end, e_start; 339 vm_pindex_t retry_pindex; 340 vm_prot_t prot, retry_prot; 341 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 342 int locked, map_generation, nera, result, rv; 343 u_char behavior; 344 boolean_t wired; /* Passed by reference. */ 345 bool dead, growstack, hardfault, is_first_object_locked; 346 347 PCPU_INC(cnt.v_vm_faults); 348 fs.vp = NULL; 349 faultcount = 0; 350 nera = -1; 351 growstack = true; 352 hardfault = false; 353 354 RetryFault:; 355 356 /* 357 * Find the backing store object and offset into it to begin the 358 * search. 359 */ 360 fs.map = map; 361 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 362 &fs.first_object, &fs.first_pindex, &prot, &wired); 363 if (result != KERN_SUCCESS) { 364 if (growstack && result == KERN_INVALID_ADDRESS && 365 map != kernel_map) { 366 result = vm_map_growstack(curproc, vaddr); 367 if (result != KERN_SUCCESS) 368 return (KERN_FAILURE); 369 growstack = false; 370 goto RetryFault; 371 } 372 unlock_vp(&fs); 373 return (result); 374 } 375 376 map_generation = fs.map->timestamp; 377 378 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 379 panic("vm_fault: fault on nofault entry, addr: %lx", 380 (u_long)vaddr); 381 } 382 383 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 384 fs.entry->wiring_thread != curthread) { 385 vm_map_unlock_read(fs.map); 386 vm_map_lock(fs.map); 387 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 388 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 389 unlock_vp(&fs); 390 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 391 vm_map_unlock_and_wait(fs.map, 0); 392 } else 393 vm_map_unlock(fs.map); 394 goto RetryFault; 395 } 396 397 if (wired) 398 fault_type = prot | (fault_type & VM_PROT_COPY); 399 else 400 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 401 ("!wired && VM_FAULT_WIRE")); 402 403 /* 404 * Try to avoid lock contention on the top-level object through 405 * special-case handling of some types of page faults, specifically, 406 * those that are both (1) mapping an existing page from the top- 407 * level object and (2) not having to mark that object as containing 408 * dirty pages. Under these conditions, a read lock on the top-level 409 * object suffices, allowing multiple page faults of a similar type to 410 * run in parallel on the same top-level object. 411 */ 412 if (fs.vp == NULL /* avoid locked vnode leak */ && 413 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 414 /* avoid calling vm_object_set_writeable_dirty() */ 415 ((prot & VM_PROT_WRITE) == 0 || 416 (fs.first_object->type != OBJT_VNODE && 417 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 418 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 419 VM_OBJECT_RLOCK(fs.first_object); 420 if ((prot & VM_PROT_WRITE) == 0 || 421 (fs.first_object->type != OBJT_VNODE && 422 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 423 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 424 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 425 fault_flags, wired, m_hold); 426 if (rv == KERN_SUCCESS) 427 return (rv); 428 } 429 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 430 VM_OBJECT_RUNLOCK(fs.first_object); 431 VM_OBJECT_WLOCK(fs.first_object); 432 } 433 } else { 434 VM_OBJECT_WLOCK(fs.first_object); 435 } 436 437 /* 438 * Make a reference to this object to prevent its disposal while we 439 * are messing with it. Once we have the reference, the map is free 440 * to be diddled. Since objects reference their shadows (and copies), 441 * they will stay around as well. 442 * 443 * Bump the paging-in-progress count to prevent size changes (e.g. 444 * truncation operations) during I/O. 445 */ 446 vm_object_reference_locked(fs.first_object); 447 vm_object_pip_add(fs.first_object, 1); 448 449 fs.lookup_still_valid = true; 450 451 fs.first_m = NULL; 452 453 /* 454 * Search for the page at object/offset. 455 */ 456 fs.object = fs.first_object; 457 fs.pindex = fs.first_pindex; 458 while (TRUE) { 459 /* 460 * If the object is marked for imminent termination, 461 * we retry here, since the collapse pass has raced 462 * with us. Otherwise, if we see terminally dead 463 * object, return fail. 464 */ 465 if ((fs.object->flags & OBJ_DEAD) != 0) { 466 dead = fs.object->type == OBJT_DEAD; 467 unlock_and_deallocate(&fs); 468 if (dead) 469 return (KERN_PROTECTION_FAILURE); 470 pause("vmf_de", 1); 471 goto RetryFault; 472 } 473 474 /* 475 * See if page is resident 476 */ 477 fs.m = vm_page_lookup(fs.object, fs.pindex); 478 if (fs.m != NULL) { 479 /* 480 * Wait/Retry if the page is busy. We have to do this 481 * if the page is either exclusive or shared busy 482 * because the vm_pager may be using read busy for 483 * pageouts (and even pageins if it is the vnode 484 * pager), and we could end up trying to pagein and 485 * pageout the same page simultaneously. 486 * 487 * We can theoretically allow the busy case on a read 488 * fault if the page is marked valid, but since such 489 * pages are typically already pmap'd, putting that 490 * special case in might be more effort then it is 491 * worth. We cannot under any circumstances mess 492 * around with a shared busied page except, perhaps, 493 * to pmap it. 494 */ 495 if (vm_page_busied(fs.m)) { 496 /* 497 * Reference the page before unlocking and 498 * sleeping so that the page daemon is less 499 * likely to reclaim it. 500 */ 501 vm_page_aflag_set(fs.m, PGA_REFERENCED); 502 if (fs.object != fs.first_object) { 503 if (!VM_OBJECT_TRYWLOCK( 504 fs.first_object)) { 505 VM_OBJECT_WUNLOCK(fs.object); 506 VM_OBJECT_WLOCK(fs.first_object); 507 VM_OBJECT_WLOCK(fs.object); 508 } 509 vm_page_lock(fs.first_m); 510 vm_page_free(fs.first_m); 511 vm_page_unlock(fs.first_m); 512 vm_object_pip_wakeup(fs.first_object); 513 VM_OBJECT_WUNLOCK(fs.first_object); 514 fs.first_m = NULL; 515 } 516 unlock_map(&fs); 517 if (fs.m == vm_page_lookup(fs.object, 518 fs.pindex)) { 519 vm_page_sleep_if_busy(fs.m, "vmpfw"); 520 } 521 vm_object_pip_wakeup(fs.object); 522 VM_OBJECT_WUNLOCK(fs.object); 523 PCPU_INC(cnt.v_intrans); 524 vm_object_deallocate(fs.first_object); 525 goto RetryFault; 526 } 527 vm_page_lock(fs.m); 528 vm_page_remque(fs.m); 529 vm_page_unlock(fs.m); 530 531 /* 532 * Mark page busy for other processes, and the 533 * pagedaemon. If it still isn't completely valid 534 * (readable), jump to readrest, else break-out ( we 535 * found the page ). 536 */ 537 vm_page_xbusy(fs.m); 538 if (fs.m->valid != VM_PAGE_BITS_ALL) 539 goto readrest; 540 break; 541 } 542 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 543 544 /* 545 * Page is not resident. If the pager might contain the page 546 * or this is the beginning of the search, allocate a new 547 * page. (Default objects are zero-fill, so there is no real 548 * pager for them.) 549 */ 550 if (fs.object->type != OBJT_DEFAULT || 551 fs.object == fs.first_object) { 552 if (fs.pindex >= fs.object->size) { 553 unlock_and_deallocate(&fs); 554 return (KERN_PROTECTION_FAILURE); 555 } 556 557 /* 558 * Allocate a new page for this object/offset pair. 559 * 560 * Unlocked read of the p_flag is harmless. At 561 * worst, the P_KILLED might be not observed 562 * there, and allocation can fail, causing 563 * restart and new reading of the p_flag. 564 */ 565 if (!vm_page_count_severe() || P_KILLED(curproc)) { 566 #if VM_NRESERVLEVEL > 0 567 vm_object_color(fs.object, atop(vaddr) - 568 fs.pindex); 569 #endif 570 alloc_req = P_KILLED(curproc) ? 571 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 572 if (fs.object->type != OBJT_VNODE && 573 fs.object->backing_object == NULL) 574 alloc_req |= VM_ALLOC_ZERO; 575 fs.m = vm_page_alloc(fs.object, fs.pindex, 576 alloc_req); 577 } 578 if (fs.m == NULL) { 579 unlock_and_deallocate(&fs); 580 VM_WAITPFAULT; 581 goto RetryFault; 582 } 583 } 584 585 readrest: 586 /* 587 * At this point, we have either allocated a new page or found 588 * an existing page that is only partially valid. 589 * 590 * We hold a reference on the current object and the page is 591 * exclusive busied. 592 */ 593 594 /* 595 * If the pager for the current object might have the page, 596 * then determine the number of additional pages to read and 597 * potentially reprioritize previously read pages for earlier 598 * reclamation. These operations should only be performed 599 * once per page fault. Even if the current pager doesn't 600 * have the page, the number of additional pages to read will 601 * apply to subsequent objects in the shadow chain. 602 */ 603 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 604 !P_KILLED(curproc)) { 605 KASSERT(fs.lookup_still_valid, ("map unlocked")); 606 era = fs.entry->read_ahead; 607 behavior = vm_map_entry_behavior(fs.entry); 608 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 609 nera = 0; 610 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 611 nera = VM_FAULT_READ_AHEAD_MAX; 612 if (vaddr == fs.entry->next_read) 613 vm_fault_dontneed(&fs, vaddr, nera); 614 } else if (vaddr == fs.entry->next_read) { 615 /* 616 * This is a sequential fault. Arithmetically 617 * increase the requested number of pages in 618 * the read-ahead window. The requested 619 * number of pages is "# of sequential faults 620 * x (read ahead min + 1) + read ahead min" 621 */ 622 nera = VM_FAULT_READ_AHEAD_MIN; 623 if (era > 0) { 624 nera += era + 1; 625 if (nera > VM_FAULT_READ_AHEAD_MAX) 626 nera = VM_FAULT_READ_AHEAD_MAX; 627 } 628 if (era == VM_FAULT_READ_AHEAD_MAX) 629 vm_fault_dontneed(&fs, vaddr, nera); 630 } else { 631 /* 632 * This is a non-sequential fault. 633 */ 634 nera = 0; 635 } 636 if (era != nera) { 637 /* 638 * A read lock on the map suffices to update 639 * the read ahead count safely. 640 */ 641 fs.entry->read_ahead = nera; 642 } 643 644 /* 645 * Prepare for unlocking the map. Save the map 646 * entry's start and end addresses, which are used to 647 * optimize the size of the pager operation below. 648 * Even if the map entry's addresses change after 649 * unlocking the map, using the saved addresses is 650 * safe. 651 */ 652 e_start = fs.entry->start; 653 e_end = fs.entry->end; 654 } 655 656 /* 657 * Call the pager to retrieve the page if there is a chance 658 * that the pager has it, and potentially retrieve additional 659 * pages at the same time. 660 */ 661 if (fs.object->type != OBJT_DEFAULT) { 662 /* 663 * Release the map lock before locking the vnode or 664 * sleeping in the pager. (If the current object has 665 * a shadow, then an earlier iteration of this loop 666 * may have already unlocked the map.) 667 */ 668 unlock_map(&fs); 669 670 if (fs.object->type == OBJT_VNODE && 671 (vp = fs.object->handle) != fs.vp) { 672 /* 673 * Perform an unlock in case the desired vnode 674 * changed while the map was unlocked during a 675 * retry. 676 */ 677 unlock_vp(&fs); 678 679 locked = VOP_ISLOCKED(vp); 680 if (locked != LK_EXCLUSIVE) 681 locked = LK_SHARED; 682 683 /* 684 * We must not sleep acquiring the vnode lock 685 * while we have the page exclusive busied or 686 * the object's paging-in-progress count 687 * incremented. Otherwise, we could deadlock. 688 */ 689 error = vget(vp, locked | LK_CANRECURSE | 690 LK_NOWAIT, curthread); 691 if (error != 0) { 692 vhold(vp); 693 release_page(&fs); 694 unlock_and_deallocate(&fs); 695 error = vget(vp, locked | LK_RETRY | 696 LK_CANRECURSE, curthread); 697 vdrop(vp); 698 fs.vp = vp; 699 KASSERT(error == 0, 700 ("vm_fault: vget failed")); 701 goto RetryFault; 702 } 703 fs.vp = vp; 704 } 705 KASSERT(fs.vp == NULL || !fs.map->system_map, 706 ("vm_fault: vnode-backed object mapped by system map")); 707 708 /* 709 * Page in the requested page and hint the pager, 710 * that it may bring up surrounding pages. 711 */ 712 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 713 P_KILLED(curproc)) { 714 behind = 0; 715 ahead = 0; 716 } else { 717 /* Is this a sequential fault? */ 718 if (nera > 0) { 719 behind = 0; 720 ahead = nera; 721 } else { 722 /* 723 * Request a cluster of pages that is 724 * aligned to a VM_FAULT_READ_DEFAULT 725 * page offset boundary within the 726 * object. Alignment to a page offset 727 * boundary is more likely to coincide 728 * with the underlying file system 729 * block than alignment to a virtual 730 * address boundary. 731 */ 732 cluster_offset = fs.pindex % 733 VM_FAULT_READ_DEFAULT; 734 behind = ulmin(cluster_offset, 735 atop(vaddr - e_start)); 736 ahead = VM_FAULT_READ_DEFAULT - 1 - 737 cluster_offset; 738 } 739 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 740 } 741 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 742 &behind, &ahead); 743 if (rv == VM_PAGER_OK) { 744 faultcount = behind + 1 + ahead; 745 hardfault = true; 746 break; /* break to PAGE HAS BEEN FOUND */ 747 } 748 if (rv == VM_PAGER_ERROR) 749 printf("vm_fault: pager read error, pid %d (%s)\n", 750 curproc->p_pid, curproc->p_comm); 751 752 /* 753 * If an I/O error occurred or the requested page was 754 * outside the range of the pager, clean up and return 755 * an error. 756 */ 757 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 758 vm_page_lock(fs.m); 759 if (fs.m->wire_count == 0) 760 vm_page_free(fs.m); 761 else 762 vm_page_xunbusy_maybelocked(fs.m); 763 vm_page_unlock(fs.m); 764 fs.m = NULL; 765 unlock_and_deallocate(&fs); 766 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 767 KERN_PROTECTION_FAILURE); 768 } 769 770 /* 771 * The requested page does not exist at this object/ 772 * offset. Remove the invalid page from the object, 773 * waking up anyone waiting for it, and continue on to 774 * the next object. However, if this is the top-level 775 * object, we must leave the busy page in place to 776 * prevent another process from rushing past us, and 777 * inserting the page in that object at the same time 778 * that we are. 779 */ 780 if (fs.object != fs.first_object) { 781 vm_page_lock(fs.m); 782 if (fs.m->wire_count == 0) 783 vm_page_free(fs.m); 784 else 785 vm_page_xunbusy_maybelocked(fs.m); 786 vm_page_unlock(fs.m); 787 fs.m = NULL; 788 } 789 } 790 791 /* 792 * We get here if the object has default pager (or unwiring) 793 * or the pager doesn't have the page. 794 */ 795 if (fs.object == fs.first_object) 796 fs.first_m = fs.m; 797 798 /* 799 * Move on to the next object. Lock the next object before 800 * unlocking the current one. 801 */ 802 next_object = fs.object->backing_object; 803 if (next_object == NULL) { 804 /* 805 * If there's no object left, fill the page in the top 806 * object with zeros. 807 */ 808 if (fs.object != fs.first_object) { 809 vm_object_pip_wakeup(fs.object); 810 VM_OBJECT_WUNLOCK(fs.object); 811 812 fs.object = fs.first_object; 813 fs.pindex = fs.first_pindex; 814 fs.m = fs.first_m; 815 VM_OBJECT_WLOCK(fs.object); 816 } 817 fs.first_m = NULL; 818 819 /* 820 * Zero the page if necessary and mark it valid. 821 */ 822 if ((fs.m->flags & PG_ZERO) == 0) { 823 pmap_zero_page(fs.m); 824 } else { 825 PCPU_INC(cnt.v_ozfod); 826 } 827 PCPU_INC(cnt.v_zfod); 828 fs.m->valid = VM_PAGE_BITS_ALL; 829 /* Don't try to prefault neighboring pages. */ 830 faultcount = 1; 831 break; /* break to PAGE HAS BEEN FOUND */ 832 } else { 833 KASSERT(fs.object != next_object, 834 ("object loop %p", next_object)); 835 VM_OBJECT_WLOCK(next_object); 836 vm_object_pip_add(next_object, 1); 837 if (fs.object != fs.first_object) 838 vm_object_pip_wakeup(fs.object); 839 fs.pindex += 840 OFF_TO_IDX(fs.object->backing_object_offset); 841 VM_OBJECT_WUNLOCK(fs.object); 842 fs.object = next_object; 843 } 844 } 845 846 vm_page_assert_xbusied(fs.m); 847 848 /* 849 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 850 * is held.] 851 */ 852 853 /* 854 * If the page is being written, but isn't already owned by the 855 * top-level object, we have to copy it into a new page owned by the 856 * top-level object. 857 */ 858 if (fs.object != fs.first_object) { 859 /* 860 * We only really need to copy if we want to write it. 861 */ 862 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 863 /* 864 * This allows pages to be virtually copied from a 865 * backing_object into the first_object, where the 866 * backing object has no other refs to it, and cannot 867 * gain any more refs. Instead of a bcopy, we just 868 * move the page from the backing object to the 869 * first object. Note that we must mark the page 870 * dirty in the first object so that it will go out 871 * to swap when needed. 872 */ 873 is_first_object_locked = false; 874 if ( 875 /* 876 * Only one shadow object 877 */ 878 (fs.object->shadow_count == 1) && 879 /* 880 * No COW refs, except us 881 */ 882 (fs.object->ref_count == 1) && 883 /* 884 * No one else can look this object up 885 */ 886 (fs.object->handle == NULL) && 887 /* 888 * No other ways to look the object up 889 */ 890 ((fs.object->type == OBJT_DEFAULT) || 891 (fs.object->type == OBJT_SWAP)) && 892 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 893 /* 894 * We don't chase down the shadow chain 895 */ 896 fs.object == fs.first_object->backing_object) { 897 vm_page_lock(fs.m); 898 vm_page_remove(fs.m); 899 vm_page_unlock(fs.m); 900 vm_page_lock(fs.first_m); 901 vm_page_replace_checked(fs.m, fs.first_object, 902 fs.first_pindex, fs.first_m); 903 vm_page_free(fs.first_m); 904 vm_page_unlock(fs.first_m); 905 vm_page_dirty(fs.m); 906 #if VM_NRESERVLEVEL > 0 907 /* 908 * Rename the reservation. 909 */ 910 vm_reserv_rename(fs.m, fs.first_object, 911 fs.object, OFF_TO_IDX( 912 fs.first_object->backing_object_offset)); 913 #endif 914 /* 915 * Removing the page from the backing object 916 * unbusied it. 917 */ 918 vm_page_xbusy(fs.m); 919 fs.first_m = fs.m; 920 fs.m = NULL; 921 PCPU_INC(cnt.v_cow_optim); 922 } else { 923 /* 924 * Oh, well, lets copy it. 925 */ 926 pmap_copy_page(fs.m, fs.first_m); 927 fs.first_m->valid = VM_PAGE_BITS_ALL; 928 if (wired && (fault_flags & 929 VM_FAULT_WIRE) == 0) { 930 vm_page_lock(fs.first_m); 931 vm_page_wire(fs.first_m); 932 vm_page_unlock(fs.first_m); 933 934 vm_page_lock(fs.m); 935 vm_page_unwire(fs.m, PQ_INACTIVE); 936 vm_page_unlock(fs.m); 937 } 938 /* 939 * We no longer need the old page or object. 940 */ 941 release_page(&fs); 942 } 943 /* 944 * fs.object != fs.first_object due to above 945 * conditional 946 */ 947 vm_object_pip_wakeup(fs.object); 948 VM_OBJECT_WUNLOCK(fs.object); 949 /* 950 * Only use the new page below... 951 */ 952 fs.object = fs.first_object; 953 fs.pindex = fs.first_pindex; 954 fs.m = fs.first_m; 955 if (!is_first_object_locked) 956 VM_OBJECT_WLOCK(fs.object); 957 PCPU_INC(cnt.v_cow_faults); 958 curthread->td_cow++; 959 } else { 960 prot &= ~VM_PROT_WRITE; 961 } 962 } 963 964 /* 965 * We must verify that the maps have not changed since our last 966 * lookup. 967 */ 968 if (!fs.lookup_still_valid) { 969 if (!vm_map_trylock_read(fs.map)) { 970 release_page(&fs); 971 unlock_and_deallocate(&fs); 972 goto RetryFault; 973 } 974 fs.lookup_still_valid = true; 975 if (fs.map->timestamp != map_generation) { 976 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 977 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 978 979 /* 980 * If we don't need the page any longer, put it on the inactive 981 * list (the easiest thing to do here). If no one needs it, 982 * pageout will grab it eventually. 983 */ 984 if (result != KERN_SUCCESS) { 985 release_page(&fs); 986 unlock_and_deallocate(&fs); 987 988 /* 989 * If retry of map lookup would have blocked then 990 * retry fault from start. 991 */ 992 if (result == KERN_FAILURE) 993 goto RetryFault; 994 return (result); 995 } 996 if ((retry_object != fs.first_object) || 997 (retry_pindex != fs.first_pindex)) { 998 release_page(&fs); 999 unlock_and_deallocate(&fs); 1000 goto RetryFault; 1001 } 1002 1003 /* 1004 * Check whether the protection has changed or the object has 1005 * been copied while we left the map unlocked. Changing from 1006 * read to write permission is OK - we leave the page 1007 * write-protected, and catch the write fault. Changing from 1008 * write to read permission means that we can't mark the page 1009 * write-enabled after all. 1010 */ 1011 prot &= retry_prot; 1012 } 1013 } 1014 1015 /* 1016 * If the page was filled by a pager, save the virtual address that 1017 * should be faulted on next under a sequential access pattern to the 1018 * map entry. A read lock on the map suffices to update this address 1019 * safely. 1020 */ 1021 if (hardfault) 1022 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1023 1024 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1025 vm_page_assert_xbusied(fs.m); 1026 1027 /* 1028 * Page must be completely valid or it is not fit to 1029 * map into user space. vm_pager_get_pages() ensures this. 1030 */ 1031 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1032 ("vm_fault: page %p partially invalid", fs.m)); 1033 VM_OBJECT_WUNLOCK(fs.object); 1034 1035 /* 1036 * Put this page into the physical map. We had to do the unlock above 1037 * because pmap_enter() may sleep. We don't put the page 1038 * back on the active queue until later so that the pageout daemon 1039 * won't find it (yet). 1040 */ 1041 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1042 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1043 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1044 wired == 0) 1045 vm_fault_prefault(&fs, vaddr, 1046 faultcount > 0 ? behind : PFBAK, 1047 faultcount > 0 ? ahead : PFFOR); 1048 VM_OBJECT_WLOCK(fs.object); 1049 vm_page_lock(fs.m); 1050 1051 /* 1052 * If the page is not wired down, then put it where the pageout daemon 1053 * can find it. 1054 */ 1055 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1056 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 1057 vm_page_wire(fs.m); 1058 } else 1059 vm_page_activate(fs.m); 1060 if (m_hold != NULL) { 1061 *m_hold = fs.m; 1062 vm_page_hold(fs.m); 1063 } 1064 vm_page_unlock(fs.m); 1065 vm_page_xunbusy(fs.m); 1066 1067 /* 1068 * Unlock everything, and return 1069 */ 1070 unlock_and_deallocate(&fs); 1071 if (hardfault) { 1072 PCPU_INC(cnt.v_io_faults); 1073 curthread->td_ru.ru_majflt++; 1074 #ifdef RACCT 1075 if (racct_enable && fs.object->type == OBJT_VNODE) { 1076 PROC_LOCK(curproc); 1077 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1078 racct_add_force(curproc, RACCT_WRITEBPS, 1079 PAGE_SIZE + behind * PAGE_SIZE); 1080 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1081 } else { 1082 racct_add_force(curproc, RACCT_READBPS, 1083 PAGE_SIZE + ahead * PAGE_SIZE); 1084 racct_add_force(curproc, RACCT_READIOPS, 1); 1085 } 1086 PROC_UNLOCK(curproc); 1087 } 1088 #endif 1089 } else 1090 curthread->td_ru.ru_minflt++; 1091 1092 return (KERN_SUCCESS); 1093 } 1094 1095 /* 1096 * Speed up the reclamation of pages that precede the faulting pindex within 1097 * the first object of the shadow chain. Essentially, perform the equivalent 1098 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1099 * the faulting pindex by the cluster size when the pages read by vm_fault() 1100 * cross a cluster-size boundary. The cluster size is the greater of the 1101 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1102 * 1103 * When "fs->first_object" is a shadow object, the pages in the backing object 1104 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1105 * function must only be concerned with pages in the first object. 1106 */ 1107 static void 1108 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1109 { 1110 vm_map_entry_t entry; 1111 vm_object_t first_object, object; 1112 vm_offset_t end, start; 1113 vm_page_t m, m_next; 1114 vm_pindex_t pend, pstart; 1115 vm_size_t size; 1116 1117 object = fs->object; 1118 VM_OBJECT_ASSERT_WLOCKED(object); 1119 first_object = fs->first_object; 1120 if (first_object != object) { 1121 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1122 VM_OBJECT_WUNLOCK(object); 1123 VM_OBJECT_WLOCK(first_object); 1124 VM_OBJECT_WLOCK(object); 1125 } 1126 } 1127 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1128 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1129 size = VM_FAULT_DONTNEED_MIN; 1130 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1131 size = pagesizes[1]; 1132 end = rounddown2(vaddr, size); 1133 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1134 (entry = fs->entry)->start < end) { 1135 if (end - entry->start < size) 1136 start = entry->start; 1137 else 1138 start = end - size; 1139 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1140 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1141 entry->start); 1142 m_next = vm_page_find_least(first_object, pstart); 1143 pend = OFF_TO_IDX(entry->offset) + atop(end - 1144 entry->start); 1145 while ((m = m_next) != NULL && m->pindex < pend) { 1146 m_next = TAILQ_NEXT(m, listq); 1147 if (m->valid != VM_PAGE_BITS_ALL || 1148 vm_page_busied(m)) 1149 continue; 1150 1151 /* 1152 * Don't clear PGA_REFERENCED, since it would 1153 * likely represent a reference by a different 1154 * process. 1155 * 1156 * Typically, at this point, prefetched pages 1157 * are still in the inactive queue. Only 1158 * pages that triggered page faults are in the 1159 * active queue. 1160 */ 1161 vm_page_lock(m); 1162 vm_page_deactivate(m); 1163 vm_page_unlock(m); 1164 } 1165 } 1166 } 1167 if (first_object != object) 1168 VM_OBJECT_WUNLOCK(first_object); 1169 } 1170 1171 /* 1172 * vm_fault_prefault provides a quick way of clustering 1173 * pagefaults into a processes address space. It is a "cousin" 1174 * of vm_map_pmap_enter, except it runs at page fault time instead 1175 * of mmap time. 1176 */ 1177 static void 1178 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1179 int backward, int forward) 1180 { 1181 pmap_t pmap; 1182 vm_map_entry_t entry; 1183 vm_object_t backing_object, lobject; 1184 vm_offset_t addr, starta; 1185 vm_pindex_t pindex; 1186 vm_page_t m; 1187 int i; 1188 1189 pmap = fs->map->pmap; 1190 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1191 return; 1192 1193 entry = fs->entry; 1194 1195 starta = addra - backward * PAGE_SIZE; 1196 if (starta < entry->start) { 1197 starta = entry->start; 1198 } else if (starta > addra) { 1199 starta = 0; 1200 } 1201 1202 /* 1203 * Generate the sequence of virtual addresses that are candidates for 1204 * prefaulting in an outward spiral from the faulting virtual address, 1205 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1206 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1207 * If the candidate address doesn't have a backing physical page, then 1208 * the loop immediately terminates. 1209 */ 1210 for (i = 0; i < 2 * imax(backward, forward); i++) { 1211 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1212 PAGE_SIZE); 1213 if (addr > addra + forward * PAGE_SIZE) 1214 addr = 0; 1215 1216 if (addr < starta || addr >= entry->end) 1217 continue; 1218 1219 if (!pmap_is_prefaultable(pmap, addr)) 1220 continue; 1221 1222 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1223 lobject = entry->object.vm_object; 1224 VM_OBJECT_RLOCK(lobject); 1225 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1226 lobject->type == OBJT_DEFAULT && 1227 (backing_object = lobject->backing_object) != NULL) { 1228 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1229 0, ("vm_fault_prefault: unaligned object offset")); 1230 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1231 VM_OBJECT_RLOCK(backing_object); 1232 VM_OBJECT_RUNLOCK(lobject); 1233 lobject = backing_object; 1234 } 1235 if (m == NULL) { 1236 VM_OBJECT_RUNLOCK(lobject); 1237 break; 1238 } 1239 if (m->valid == VM_PAGE_BITS_ALL && 1240 (m->flags & PG_FICTITIOUS) == 0) 1241 pmap_enter_quick(pmap, addr, m, entry->protection); 1242 VM_OBJECT_RUNLOCK(lobject); 1243 } 1244 } 1245 1246 /* 1247 * Hold each of the physical pages that are mapped by the specified range of 1248 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1249 * and allow the specified types of access, "prot". If all of the implied 1250 * pages are successfully held, then the number of held pages is returned 1251 * together with pointers to those pages in the array "ma". However, if any 1252 * of the pages cannot be held, -1 is returned. 1253 */ 1254 int 1255 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1256 vm_prot_t prot, vm_page_t *ma, int max_count) 1257 { 1258 vm_offset_t end, va; 1259 vm_page_t *mp; 1260 int count; 1261 boolean_t pmap_failed; 1262 1263 if (len == 0) 1264 return (0); 1265 end = round_page(addr + len); 1266 addr = trunc_page(addr); 1267 1268 /* 1269 * Check for illegal addresses. 1270 */ 1271 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1272 return (-1); 1273 1274 if (atop(end - addr) > max_count) 1275 panic("vm_fault_quick_hold_pages: count > max_count"); 1276 count = atop(end - addr); 1277 1278 /* 1279 * Most likely, the physical pages are resident in the pmap, so it is 1280 * faster to try pmap_extract_and_hold() first. 1281 */ 1282 pmap_failed = FALSE; 1283 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1284 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1285 if (*mp == NULL) 1286 pmap_failed = TRUE; 1287 else if ((prot & VM_PROT_WRITE) != 0 && 1288 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1289 /* 1290 * Explicitly dirty the physical page. Otherwise, the 1291 * caller's changes may go unnoticed because they are 1292 * performed through an unmanaged mapping or by a DMA 1293 * operation. 1294 * 1295 * The object lock is not held here. 1296 * See vm_page_clear_dirty_mask(). 1297 */ 1298 vm_page_dirty(*mp); 1299 } 1300 } 1301 if (pmap_failed) { 1302 /* 1303 * One or more pages could not be held by the pmap. Either no 1304 * page was mapped at the specified virtual address or that 1305 * mapping had insufficient permissions. Attempt to fault in 1306 * and hold these pages. 1307 */ 1308 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1309 if (*mp == NULL && vm_fault_hold(map, va, prot, 1310 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1311 goto error; 1312 } 1313 return (count); 1314 error: 1315 for (mp = ma; mp < ma + count; mp++) 1316 if (*mp != NULL) { 1317 vm_page_lock(*mp); 1318 vm_page_unhold(*mp); 1319 vm_page_unlock(*mp); 1320 } 1321 return (-1); 1322 } 1323 1324 /* 1325 * Routine: 1326 * vm_fault_copy_entry 1327 * Function: 1328 * Create new shadow object backing dst_entry with private copy of 1329 * all underlying pages. When src_entry is equal to dst_entry, 1330 * function implements COW for wired-down map entry. Otherwise, 1331 * it forks wired entry into dst_map. 1332 * 1333 * In/out conditions: 1334 * The source and destination maps must be locked for write. 1335 * The source map entry must be wired down (or be a sharing map 1336 * entry corresponding to a main map entry that is wired down). 1337 */ 1338 void 1339 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1340 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1341 vm_ooffset_t *fork_charge) 1342 { 1343 vm_object_t backing_object, dst_object, object, src_object; 1344 vm_pindex_t dst_pindex, pindex, src_pindex; 1345 vm_prot_t access, prot; 1346 vm_offset_t vaddr; 1347 vm_page_t dst_m; 1348 vm_page_t src_m; 1349 boolean_t upgrade; 1350 1351 #ifdef lint 1352 src_map++; 1353 #endif /* lint */ 1354 1355 upgrade = src_entry == dst_entry; 1356 access = prot = dst_entry->protection; 1357 1358 src_object = src_entry->object.vm_object; 1359 src_pindex = OFF_TO_IDX(src_entry->offset); 1360 1361 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1362 dst_object = src_object; 1363 vm_object_reference(dst_object); 1364 } else { 1365 /* 1366 * Create the top-level object for the destination entry. (Doesn't 1367 * actually shadow anything - we copy the pages directly.) 1368 */ 1369 dst_object = vm_object_allocate(OBJT_DEFAULT, 1370 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1371 #if VM_NRESERVLEVEL > 0 1372 dst_object->flags |= OBJ_COLORED; 1373 dst_object->pg_color = atop(dst_entry->start); 1374 #endif 1375 } 1376 1377 VM_OBJECT_WLOCK(dst_object); 1378 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1379 ("vm_fault_copy_entry: vm_object not NULL")); 1380 if (src_object != dst_object) { 1381 dst_entry->object.vm_object = dst_object; 1382 dst_entry->offset = 0; 1383 dst_object->charge = dst_entry->end - dst_entry->start; 1384 } 1385 if (fork_charge != NULL) { 1386 KASSERT(dst_entry->cred == NULL, 1387 ("vm_fault_copy_entry: leaked swp charge")); 1388 dst_object->cred = curthread->td_ucred; 1389 crhold(dst_object->cred); 1390 *fork_charge += dst_object->charge; 1391 } else if (dst_object->cred == NULL) { 1392 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1393 dst_entry)); 1394 dst_object->cred = dst_entry->cred; 1395 dst_entry->cred = NULL; 1396 } 1397 1398 /* 1399 * If not an upgrade, then enter the mappings in the pmap as 1400 * read and/or execute accesses. Otherwise, enter them as 1401 * write accesses. 1402 * 1403 * A writeable large page mapping is only created if all of 1404 * the constituent small page mappings are modified. Marking 1405 * PTEs as modified on inception allows promotion to happen 1406 * without taking potentially large number of soft faults. 1407 */ 1408 if (!upgrade) 1409 access &= ~VM_PROT_WRITE; 1410 1411 /* 1412 * Loop through all of the virtual pages within the entry's 1413 * range, copying each page from the source object to the 1414 * destination object. Since the source is wired, those pages 1415 * must exist. In contrast, the destination is pageable. 1416 * Since the destination object does share any backing storage 1417 * with the source object, all of its pages must be dirtied, 1418 * regardless of whether they can be written. 1419 */ 1420 for (vaddr = dst_entry->start, dst_pindex = 0; 1421 vaddr < dst_entry->end; 1422 vaddr += PAGE_SIZE, dst_pindex++) { 1423 again: 1424 /* 1425 * Find the page in the source object, and copy it in. 1426 * Because the source is wired down, the page will be 1427 * in memory. 1428 */ 1429 if (src_object != dst_object) 1430 VM_OBJECT_RLOCK(src_object); 1431 object = src_object; 1432 pindex = src_pindex + dst_pindex; 1433 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1434 (backing_object = object->backing_object) != NULL) { 1435 /* 1436 * Unless the source mapping is read-only or 1437 * it is presently being upgraded from 1438 * read-only, the first object in the shadow 1439 * chain should provide all of the pages. In 1440 * other words, this loop body should never be 1441 * executed when the source mapping is already 1442 * read/write. 1443 */ 1444 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1445 upgrade, 1446 ("vm_fault_copy_entry: main object missing page")); 1447 1448 VM_OBJECT_RLOCK(backing_object); 1449 pindex += OFF_TO_IDX(object->backing_object_offset); 1450 if (object != dst_object) 1451 VM_OBJECT_RUNLOCK(object); 1452 object = backing_object; 1453 } 1454 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1455 1456 if (object != dst_object) { 1457 /* 1458 * Allocate a page in the destination object. 1459 */ 1460 dst_m = vm_page_alloc(dst_object, (src_object == 1461 dst_object ? src_pindex : 0) + dst_pindex, 1462 VM_ALLOC_NORMAL); 1463 if (dst_m == NULL) { 1464 VM_OBJECT_WUNLOCK(dst_object); 1465 VM_OBJECT_RUNLOCK(object); 1466 VM_WAIT; 1467 VM_OBJECT_WLOCK(dst_object); 1468 goto again; 1469 } 1470 pmap_copy_page(src_m, dst_m); 1471 VM_OBJECT_RUNLOCK(object); 1472 dst_m->valid = VM_PAGE_BITS_ALL; 1473 dst_m->dirty = VM_PAGE_BITS_ALL; 1474 } else { 1475 dst_m = src_m; 1476 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1477 goto again; 1478 vm_page_xbusy(dst_m); 1479 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1480 ("invalid dst page %p", dst_m)); 1481 } 1482 VM_OBJECT_WUNLOCK(dst_object); 1483 1484 /* 1485 * Enter it in the pmap. If a wired, copy-on-write 1486 * mapping is being replaced by a write-enabled 1487 * mapping, then wire that new mapping. 1488 */ 1489 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1490 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1491 1492 /* 1493 * Mark it no longer busy, and put it on the active list. 1494 */ 1495 VM_OBJECT_WLOCK(dst_object); 1496 1497 if (upgrade) { 1498 if (src_m != dst_m) { 1499 vm_page_lock(src_m); 1500 vm_page_unwire(src_m, PQ_INACTIVE); 1501 vm_page_unlock(src_m); 1502 vm_page_lock(dst_m); 1503 vm_page_wire(dst_m); 1504 vm_page_unlock(dst_m); 1505 } else { 1506 KASSERT(dst_m->wire_count > 0, 1507 ("dst_m %p is not wired", dst_m)); 1508 } 1509 } else { 1510 vm_page_lock(dst_m); 1511 vm_page_activate(dst_m); 1512 vm_page_unlock(dst_m); 1513 } 1514 vm_page_xunbusy(dst_m); 1515 } 1516 VM_OBJECT_WUNLOCK(dst_object); 1517 if (upgrade) { 1518 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1519 vm_object_deallocate(src_object); 1520 } 1521 } 1522 1523 /* 1524 * Block entry into the machine-independent layer's page fault handler by 1525 * the calling thread. Subsequent calls to vm_fault() by that thread will 1526 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1527 * spurious page faults. 1528 */ 1529 int 1530 vm_fault_disable_pagefaults(void) 1531 { 1532 1533 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1534 } 1535 1536 void 1537 vm_fault_enable_pagefaults(int save) 1538 { 1539 1540 curthread_pflags_restore(save); 1541 } 1542