xref: /freebsd/sys/vm/vm_fault.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include "opt_vm.h"
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/lock.h>
83 #include <sys/mutex.h>
84 #include <sys/proc.h>
85 #include <sys/resourcevar.h>
86 #include <sys/sysctl.h>
87 #include <sys/vmmeter.h>
88 #include <sys/vnode.h>
89 
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <vm/pmap.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_pager.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/vm_extern.h>
101 
102 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
103 
104 #define PFBAK 4
105 #define PFFOR 4
106 #define PAGEORDER_SIZE (PFBAK+PFFOR)
107 
108 static int prefault_pageorder[] = {
109 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
110 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
111 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
112 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
113 };
114 
115 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
116 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
117 
118 #define VM_FAULT_READ_AHEAD 8
119 #define VM_FAULT_READ_BEHIND 7
120 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
121 
122 struct faultstate {
123 	vm_page_t m;
124 	vm_object_t object;
125 	vm_pindex_t pindex;
126 	vm_page_t first_m;
127 	vm_object_t	first_object;
128 	vm_pindex_t first_pindex;
129 	vm_map_t map;
130 	vm_map_entry_t entry;
131 	int lookup_still_valid;
132 	struct vnode *vp;
133 };
134 
135 static inline void
136 release_page(struct faultstate *fs)
137 {
138 	vm_page_wakeup(fs->m);
139 	vm_page_lock_queues();
140 	vm_page_deactivate(fs->m);
141 	vm_page_unlock_queues();
142 	fs->m = NULL;
143 }
144 
145 static inline void
146 unlock_map(struct faultstate *fs)
147 {
148 	if (fs->lookup_still_valid) {
149 		vm_map_lookup_done(fs->map, fs->entry);
150 		fs->lookup_still_valid = FALSE;
151 	}
152 }
153 
154 static void
155 unlock_and_deallocate(struct faultstate *fs)
156 {
157 
158 	vm_object_pip_wakeup(fs->object);
159 	VM_OBJECT_UNLOCK(fs->object);
160 	if (fs->object != fs->first_object) {
161 		VM_OBJECT_LOCK(fs->first_object);
162 		vm_page_lock_queues();
163 		vm_page_free(fs->first_m);
164 		vm_page_unlock_queues();
165 		vm_object_pip_wakeup(fs->first_object);
166 		VM_OBJECT_UNLOCK(fs->first_object);
167 		fs->first_m = NULL;
168 	}
169 	vm_object_deallocate(fs->first_object);
170 	unlock_map(fs);
171 	if (fs->vp != NULL) {
172 		int vfslocked;
173 
174 		vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
175 		vput(fs->vp);
176 		fs->vp = NULL;
177 		VFS_UNLOCK_GIANT(vfslocked);
178 	}
179 }
180 
181 /*
182  * TRYPAGER - used by vm_fault to calculate whether the pager for the
183  *	      current object *might* contain the page.
184  *
185  *	      default objects are zero-fill, there is no real pager.
186  */
187 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
188 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
189 
190 /*
191  *	vm_fault:
192  *
193  *	Handle a page fault occurring at the given address,
194  *	requiring the given permissions, in the map specified.
195  *	If successful, the page is inserted into the
196  *	associated physical map.
197  *
198  *	NOTE: the given address should be truncated to the
199  *	proper page address.
200  *
201  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
202  *	a standard error specifying why the fault is fatal is returned.
203  *
204  *
205  *	The map in question must be referenced, and remains so.
206  *	Caller may hold no locks.
207  */
208 int
209 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
210 	 int fault_flags)
211 {
212 	vm_prot_t prot;
213 	int is_first_object_locked, result;
214 	boolean_t growstack, wired;
215 	int map_generation;
216 	vm_object_t next_object;
217 	vm_page_t marray[VM_FAULT_READ];
218 	int hardfault;
219 	int faultcount;
220 	struct faultstate fs;
221 
222 	hardfault = 0;
223 	growstack = TRUE;
224 	PCPU_INC(cnt.v_vm_faults);
225 
226 RetryFault:;
227 
228 	/*
229 	 * Find the backing store object and offset into it to begin the
230 	 * search.
231 	 */
232 	fs.map = map;
233 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
234 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
235 	if (result != KERN_SUCCESS) {
236 		if (result != KERN_PROTECTION_FAILURE ||
237 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
238 			if (growstack && result == KERN_INVALID_ADDRESS &&
239 			    map != kernel_map && curproc != NULL) {
240 				result = vm_map_growstack(curproc, vaddr);
241 				if (result != KERN_SUCCESS)
242 					return (KERN_FAILURE);
243 				growstack = FALSE;
244 				goto RetryFault;
245 			}
246 			return (result);
247 		}
248 
249 		/*
250    		 * If we are user-wiring a r/w segment, and it is COW, then
251    		 * we need to do the COW operation.  Note that we don't COW
252    		 * currently RO sections now, because it is NOT desirable
253    		 * to COW .text.  We simply keep .text from ever being COW'ed
254    		 * and take the heat that one cannot debug wired .text sections.
255    		 */
256 		result = vm_map_lookup(&fs.map, vaddr,
257 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
258 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
259 		if (result != KERN_SUCCESS)
260 			return (result);
261 
262 		/*
263 		 * If we don't COW now, on a user wire, the user will never
264 		 * be able to write to the mapping.  If we don't make this
265 		 * restriction, the bookkeeping would be nearly impossible.
266 		 *
267 		 * XXX The following assignment modifies the map without
268 		 * holding a write lock on it.
269 		 */
270 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
271 			fs.entry->max_protection &= ~VM_PROT_WRITE;
272 	}
273 
274 	map_generation = fs.map->timestamp;
275 
276 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
277 		panic("vm_fault: fault on nofault entry, addr: %lx",
278 		    (u_long)vaddr);
279 	}
280 
281 	/*
282 	 * Make a reference to this object to prevent its disposal while we
283 	 * are messing with it.  Once we have the reference, the map is free
284 	 * to be diddled.  Since objects reference their shadows (and copies),
285 	 * they will stay around as well.
286 	 *
287 	 * Bump the paging-in-progress count to prevent size changes (e.g.
288 	 * truncation operations) during I/O.  This must be done after
289 	 * obtaining the vnode lock in order to avoid possible deadlocks.
290 	 *
291 	 * XXX vnode_pager_lock() can block without releasing the map lock.
292 	 */
293 	if (fs.first_object->flags & OBJ_NEEDGIANT)
294 		mtx_lock(&Giant);
295 	VM_OBJECT_LOCK(fs.first_object);
296 	vm_object_reference_locked(fs.first_object);
297 	fs.vp = vnode_pager_lock(fs.first_object);
298 	KASSERT(fs.vp == NULL || !fs.map->system_map,
299 	    ("vm_fault: vnode-backed object mapped by system map"));
300 	KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
301 	    !fs.map->system_map,
302 	    ("vm_fault: Object requiring giant mapped by system map"));
303 	if (fs.first_object->flags & OBJ_NEEDGIANT)
304 		mtx_unlock(&Giant);
305 	vm_object_pip_add(fs.first_object, 1);
306 
307 	fs.lookup_still_valid = TRUE;
308 
309 	if (wired)
310 		fault_type = prot;
311 
312 	fs.first_m = NULL;
313 
314 	/*
315 	 * Search for the page at object/offset.
316 	 */
317 	fs.object = fs.first_object;
318 	fs.pindex = fs.first_pindex;
319 	while (TRUE) {
320 		/*
321 		 * If the object is dead, we stop here
322 		 */
323 		if (fs.object->flags & OBJ_DEAD) {
324 			unlock_and_deallocate(&fs);
325 			return (KERN_PROTECTION_FAILURE);
326 		}
327 
328 		/*
329 		 * See if page is resident
330 		 */
331 		fs.m = vm_page_lookup(fs.object, fs.pindex);
332 		if (fs.m != NULL) {
333 			/*
334 			 * check for page-based copy on write.
335 			 * We check fs.object == fs.first_object so
336 			 * as to ensure the legacy COW mechanism is
337 			 * used when the page in question is part of
338 			 * a shadow object.  Otherwise, vm_page_cowfault()
339 			 * removes the page from the backing object,
340 			 * which is not what we want.
341 			 */
342 			vm_page_lock_queues();
343 			if ((fs.m->cow) &&
344 			    (fault_type & VM_PROT_WRITE) &&
345 			    (fs.object == fs.first_object)) {
346 				vm_page_cowfault(fs.m);
347 				vm_page_unlock_queues();
348 				unlock_and_deallocate(&fs);
349 				goto RetryFault;
350 			}
351 
352 			/*
353 			 * Wait/Retry if the page is busy.  We have to do this
354 			 * if the page is busy via either VPO_BUSY or
355 			 * vm_page_t->busy because the vm_pager may be using
356 			 * vm_page_t->busy for pageouts ( and even pageins if
357 			 * it is the vnode pager ), and we could end up trying
358 			 * to pagein and pageout the same page simultaneously.
359 			 *
360 			 * We can theoretically allow the busy case on a read
361 			 * fault if the page is marked valid, but since such
362 			 * pages are typically already pmap'd, putting that
363 			 * special case in might be more effort then it is
364 			 * worth.  We cannot under any circumstances mess
365 			 * around with a vm_page_t->busy page except, perhaps,
366 			 * to pmap it.
367 			 */
368 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
369 				vm_page_unlock_queues();
370 				VM_OBJECT_UNLOCK(fs.object);
371 				if (fs.object != fs.first_object) {
372 					VM_OBJECT_LOCK(fs.first_object);
373 					vm_page_lock_queues();
374 					vm_page_free(fs.first_m);
375 					vm_page_unlock_queues();
376 					vm_object_pip_wakeup(fs.first_object);
377 					VM_OBJECT_UNLOCK(fs.first_object);
378 					fs.first_m = NULL;
379 				}
380 				unlock_map(&fs);
381 				if (fs.vp != NULL) {
382 					int vfslck;
383 
384 					vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
385 					vput(fs.vp);
386 					fs.vp = NULL;
387 					VFS_UNLOCK_GIANT(vfslck);
388 				}
389 				VM_OBJECT_LOCK(fs.object);
390 				if (fs.m == vm_page_lookup(fs.object,
391 				    fs.pindex)) {
392 					vm_page_sleep_if_busy(fs.m, TRUE,
393 					    "vmpfw");
394 				}
395 				vm_object_pip_wakeup(fs.object);
396 				VM_OBJECT_UNLOCK(fs.object);
397 				PCPU_INC(cnt.v_intrans);
398 				vm_object_deallocate(fs.first_object);
399 				goto RetryFault;
400 			}
401 			vm_pageq_remove(fs.m);
402 			vm_page_unlock_queues();
403 
404 			/*
405 			 * Mark page busy for other processes, and the
406 			 * pagedaemon.  If it still isn't completely valid
407 			 * (readable), jump to readrest, else break-out ( we
408 			 * found the page ).
409 			 */
410 			vm_page_busy(fs.m);
411 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
412 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
413 				goto readrest;
414 			}
415 
416 			break;
417 		}
418 
419 		/*
420 		 * Page is not resident, If this is the search termination
421 		 * or the pager might contain the page, allocate a new page.
422 		 */
423 		if (TRYPAGER || fs.object == fs.first_object) {
424 			if (fs.pindex >= fs.object->size) {
425 				unlock_and_deallocate(&fs);
426 				return (KERN_PROTECTION_FAILURE);
427 			}
428 
429 			/*
430 			 * Allocate a new page for this object/offset pair.
431 			 */
432 			fs.m = NULL;
433 			if (!vm_page_count_severe()) {
434 #if VM_NRESERVLEVEL > 0
435 				if ((fs.object->flags & OBJ_COLORED) == 0) {
436 					fs.object->flags |= OBJ_COLORED;
437 					fs.object->pg_color = atop(vaddr) -
438 					    fs.pindex;
439 				}
440 #endif
441 				fs.m = vm_page_alloc(fs.object, fs.pindex,
442 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
443 			}
444 			if (fs.m == NULL) {
445 				unlock_and_deallocate(&fs);
446 				VM_WAITPFAULT;
447 				goto RetryFault;
448 			} else if ((fs.m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
449 				break;
450 		}
451 
452 readrest:
453 		/*
454 		 * We have found a valid page or we have allocated a new page.
455 		 * The page thus may not be valid or may not be entirely
456 		 * valid.
457 		 *
458 		 * Attempt to fault-in the page if there is a chance that the
459 		 * pager has it, and potentially fault in additional pages
460 		 * at the same time.
461 		 */
462 		if (TRYPAGER) {
463 			int rv;
464 			int reqpage = 0;
465 			int ahead, behind;
466 			u_char behavior = vm_map_entry_behavior(fs.entry);
467 
468 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
469 				ahead = 0;
470 				behind = 0;
471 			} else {
472 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
473 				if (behind > VM_FAULT_READ_BEHIND)
474 					behind = VM_FAULT_READ_BEHIND;
475 
476 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
477 				if (ahead > VM_FAULT_READ_AHEAD)
478 					ahead = VM_FAULT_READ_AHEAD;
479 			}
480 			is_first_object_locked = FALSE;
481 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
482 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
483 			      fs.pindex >= fs.entry->lastr &&
484 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
485 			    (fs.first_object == fs.object ||
486 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
487 			    fs.first_object->type != OBJT_DEVICE) {
488 				vm_pindex_t firstpindex, tmppindex;
489 
490 				if (fs.first_pindex < 2 * VM_FAULT_READ)
491 					firstpindex = 0;
492 				else
493 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
494 
495 				vm_page_lock_queues();
496 				/*
497 				 * note: partially valid pages cannot be
498 				 * included in the lookahead - NFS piecemeal
499 				 * writes will barf on it badly.
500 				 */
501 				for (tmppindex = fs.first_pindex - 1;
502 					tmppindex >= firstpindex;
503 					--tmppindex) {
504 					vm_page_t mt;
505 
506 					mt = vm_page_lookup(fs.first_object, tmppindex);
507 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
508 						break;
509 					if (mt->busy ||
510 					    (mt->oflags & VPO_BUSY) ||
511 					    (mt->flags & (PG_FICTITIOUS | PG_UNMANAGED)) ||
512 						mt->hold_count ||
513 						mt->wire_count)
514 						continue;
515 					pmap_remove_all(mt);
516 					if (mt->dirty) {
517 						vm_page_deactivate(mt);
518 					} else {
519 						vm_page_cache(mt);
520 					}
521 				}
522 				vm_page_unlock_queues();
523 				ahead += behind;
524 				behind = 0;
525 			}
526 			if (is_first_object_locked)
527 				VM_OBJECT_UNLOCK(fs.first_object);
528 			/*
529 			 * now we find out if any other pages should be paged
530 			 * in at this time this routine checks to see if the
531 			 * pages surrounding this fault reside in the same
532 			 * object as the page for this fault.  If they do,
533 			 * then they are faulted in also into the object.  The
534 			 * array "marray" returned contains an array of
535 			 * vm_page_t structs where one of them is the
536 			 * vm_page_t passed to the routine.  The reqpage
537 			 * return value is the index into the marray for the
538 			 * vm_page_t passed to the routine.
539 			 *
540 			 * fs.m plus the additional pages are VPO_BUSY'd.
541 			 *
542 			 * XXX vm_fault_additional_pages() can block
543 			 * without releasing the map lock.
544 			 */
545 			faultcount = vm_fault_additional_pages(
546 			    fs.m, behind, ahead, marray, &reqpage);
547 
548 			/*
549 			 * update lastr imperfectly (we do not know how much
550 			 * getpages will actually read), but good enough.
551 			 *
552 			 * XXX The following assignment modifies the map
553 			 * without holding a write lock on it.
554 			 */
555 			fs.entry->lastr = fs.pindex + faultcount - behind;
556 
557 			/*
558 			 * Call the pager to retrieve the data, if any, after
559 			 * releasing the lock on the map.  We hold a ref on
560 			 * fs.object and the pages are VPO_BUSY'd.
561 			 */
562 			unlock_map(&fs);
563 
564 			rv = faultcount ?
565 			    vm_pager_get_pages(fs.object, marray, faultcount,
566 				reqpage) : VM_PAGER_FAIL;
567 
568 			if (rv == VM_PAGER_OK) {
569 				/*
570 				 * Found the page. Leave it busy while we play
571 				 * with it.
572 				 */
573 
574 				/*
575 				 * Relookup in case pager changed page. Pager
576 				 * is responsible for disposition of old page
577 				 * if moved.
578 				 */
579 				fs.m = vm_page_lookup(fs.object, fs.pindex);
580 				if (!fs.m) {
581 					unlock_and_deallocate(&fs);
582 					goto RetryFault;
583 				}
584 
585 				hardfault++;
586 				break; /* break to PAGE HAS BEEN FOUND */
587 			}
588 			/*
589 			 * Remove the bogus page (which does not exist at this
590 			 * object/offset); before doing so, we must get back
591 			 * our object lock to preserve our invariant.
592 			 *
593 			 * Also wake up any other process that may want to bring
594 			 * in this page.
595 			 *
596 			 * If this is the top-level object, we must leave the
597 			 * busy page to prevent another process from rushing
598 			 * past us, and inserting the page in that object at
599 			 * the same time that we are.
600 			 */
601 			if (rv == VM_PAGER_ERROR)
602 				printf("vm_fault: pager read error, pid %d (%s)\n",
603 				    curproc->p_pid, curproc->p_comm);
604 			/*
605 			 * Data outside the range of the pager or an I/O error
606 			 */
607 			/*
608 			 * XXX - the check for kernel_map is a kludge to work
609 			 * around having the machine panic on a kernel space
610 			 * fault w/ I/O error.
611 			 */
612 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
613 				(rv == VM_PAGER_BAD)) {
614 				vm_page_lock_queues();
615 				vm_page_free(fs.m);
616 				vm_page_unlock_queues();
617 				fs.m = NULL;
618 				unlock_and_deallocate(&fs);
619 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
620 			}
621 			if (fs.object != fs.first_object) {
622 				vm_page_lock_queues();
623 				vm_page_free(fs.m);
624 				vm_page_unlock_queues();
625 				fs.m = NULL;
626 				/*
627 				 * XXX - we cannot just fall out at this
628 				 * point, m has been freed and is invalid!
629 				 */
630 			}
631 		}
632 
633 		/*
634 		 * We get here if the object has default pager (or unwiring)
635 		 * or the pager doesn't have the page.
636 		 */
637 		if (fs.object == fs.first_object)
638 			fs.first_m = fs.m;
639 
640 		/*
641 		 * Move on to the next object.  Lock the next object before
642 		 * unlocking the current one.
643 		 */
644 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
645 		next_object = fs.object->backing_object;
646 		if (next_object == NULL) {
647 			/*
648 			 * If there's no object left, fill the page in the top
649 			 * object with zeros.
650 			 */
651 			if (fs.object != fs.first_object) {
652 				vm_object_pip_wakeup(fs.object);
653 				VM_OBJECT_UNLOCK(fs.object);
654 
655 				fs.object = fs.first_object;
656 				fs.pindex = fs.first_pindex;
657 				fs.m = fs.first_m;
658 				VM_OBJECT_LOCK(fs.object);
659 			}
660 			fs.first_m = NULL;
661 
662 			/*
663 			 * Zero the page if necessary and mark it valid.
664 			 */
665 			if ((fs.m->flags & PG_ZERO) == 0) {
666 				pmap_zero_page(fs.m);
667 			} else {
668 				PCPU_INC(cnt.v_ozfod);
669 			}
670 			PCPU_INC(cnt.v_zfod);
671 			fs.m->valid = VM_PAGE_BITS_ALL;
672 			break;	/* break to PAGE HAS BEEN FOUND */
673 		} else {
674 			KASSERT(fs.object != next_object,
675 			    ("object loop %p", next_object));
676 			VM_OBJECT_LOCK(next_object);
677 			vm_object_pip_add(next_object, 1);
678 			if (fs.object != fs.first_object)
679 				vm_object_pip_wakeup(fs.object);
680 			VM_OBJECT_UNLOCK(fs.object);
681 			fs.object = next_object;
682 		}
683 	}
684 
685 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
686 	    ("vm_fault: not busy after main loop"));
687 
688 	/*
689 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
690 	 * is held.]
691 	 */
692 
693 	/*
694 	 * If the page is being written, but isn't already owned by the
695 	 * top-level object, we have to copy it into a new page owned by the
696 	 * top-level object.
697 	 */
698 	if (fs.object != fs.first_object) {
699 		/*
700 		 * We only really need to copy if we want to write it.
701 		 */
702 		if (fault_type & VM_PROT_WRITE) {
703 			/*
704 			 * This allows pages to be virtually copied from a
705 			 * backing_object into the first_object, where the
706 			 * backing object has no other refs to it, and cannot
707 			 * gain any more refs.  Instead of a bcopy, we just
708 			 * move the page from the backing object to the
709 			 * first object.  Note that we must mark the page
710 			 * dirty in the first object so that it will go out
711 			 * to swap when needed.
712 			 */
713 			is_first_object_locked = FALSE;
714 			if (
715 				/*
716 				 * Only one shadow object
717 				 */
718 				(fs.object->shadow_count == 1) &&
719 				/*
720 				 * No COW refs, except us
721 				 */
722 				(fs.object->ref_count == 1) &&
723 				/*
724 				 * No one else can look this object up
725 				 */
726 				(fs.object->handle == NULL) &&
727 				/*
728 				 * No other ways to look the object up
729 				 */
730 				((fs.object->type == OBJT_DEFAULT) ||
731 				 (fs.object->type == OBJT_SWAP)) &&
732 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
733 				/*
734 				 * We don't chase down the shadow chain
735 				 */
736 			    fs.object == fs.first_object->backing_object) {
737 				vm_page_lock_queues();
738 				/*
739 				 * get rid of the unnecessary page
740 				 */
741 				vm_page_free(fs.first_m);
742 				/*
743 				 * grab the page and put it into the
744 				 * process'es object.  The page is
745 				 * automatically made dirty.
746 				 */
747 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
748 				vm_page_unlock_queues();
749 				vm_page_busy(fs.m);
750 				fs.first_m = fs.m;
751 				fs.m = NULL;
752 				PCPU_INC(cnt.v_cow_optim);
753 			} else {
754 				/*
755 				 * Oh, well, lets copy it.
756 				 */
757 				pmap_copy_page(fs.m, fs.first_m);
758 				fs.first_m->valid = VM_PAGE_BITS_ALL;
759 			}
760 			if (fs.m) {
761 				/*
762 				 * We no longer need the old page or object.
763 				 */
764 				release_page(&fs);
765 			}
766 			/*
767 			 * fs.object != fs.first_object due to above
768 			 * conditional
769 			 */
770 			vm_object_pip_wakeup(fs.object);
771 			VM_OBJECT_UNLOCK(fs.object);
772 			/*
773 			 * Only use the new page below...
774 			 */
775 			fs.object = fs.first_object;
776 			fs.pindex = fs.first_pindex;
777 			fs.m = fs.first_m;
778 			if (!is_first_object_locked)
779 				VM_OBJECT_LOCK(fs.object);
780 			PCPU_INC(cnt.v_cow_faults);
781 		} else {
782 			prot &= ~VM_PROT_WRITE;
783 		}
784 	}
785 
786 	/*
787 	 * We must verify that the maps have not changed since our last
788 	 * lookup.
789 	 */
790 	if (!fs.lookup_still_valid) {
791 		vm_object_t retry_object;
792 		vm_pindex_t retry_pindex;
793 		vm_prot_t retry_prot;
794 
795 		if (!vm_map_trylock_read(fs.map)) {
796 			release_page(&fs);
797 			unlock_and_deallocate(&fs);
798 			goto RetryFault;
799 		}
800 		fs.lookup_still_valid = TRUE;
801 		if (fs.map->timestamp != map_generation) {
802 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
803 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
804 
805 			/*
806 			 * If we don't need the page any longer, put it on the inactive
807 			 * list (the easiest thing to do here).  If no one needs it,
808 			 * pageout will grab it eventually.
809 			 */
810 			if (result != KERN_SUCCESS) {
811 				release_page(&fs);
812 				unlock_and_deallocate(&fs);
813 
814 				/*
815 				 * If retry of map lookup would have blocked then
816 				 * retry fault from start.
817 				 */
818 				if (result == KERN_FAILURE)
819 					goto RetryFault;
820 				return (result);
821 			}
822 			if ((retry_object != fs.first_object) ||
823 			    (retry_pindex != fs.first_pindex)) {
824 				release_page(&fs);
825 				unlock_and_deallocate(&fs);
826 				goto RetryFault;
827 			}
828 
829 			/*
830 			 * Check whether the protection has changed or the object has
831 			 * been copied while we left the map unlocked. Changing from
832 			 * read to write permission is OK - we leave the page
833 			 * write-protected, and catch the write fault. Changing from
834 			 * write to read permission means that we can't mark the page
835 			 * write-enabled after all.
836 			 */
837 			prot &= retry_prot;
838 		}
839 	}
840 	if (prot & VM_PROT_WRITE) {
841 		vm_object_set_writeable_dirty(fs.object);
842 
843 		/*
844 		 * If the fault is a write, we know that this page is being
845 		 * written NOW so dirty it explicitly to save on
846 		 * pmap_is_modified() calls later.
847 		 *
848 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
849 		 * if the page is already dirty to prevent data written with
850 		 * the expectation of being synced from not being synced.
851 		 * Likewise if this entry does not request NOSYNC then make
852 		 * sure the page isn't marked NOSYNC.  Applications sharing
853 		 * data should use the same flags to avoid ping ponging.
854 		 *
855 		 * Also tell the backing pager, if any, that it should remove
856 		 * any swap backing since the page is now dirty.
857 		 */
858 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
859 			if (fs.m->dirty == 0)
860 				fs.m->oflags |= VPO_NOSYNC;
861 		} else {
862 			fs.m->oflags &= ~VPO_NOSYNC;
863 		}
864 		if (fault_flags & VM_FAULT_DIRTY) {
865 			vm_page_dirty(fs.m);
866 			vm_pager_page_unswapped(fs.m);
867 		}
868 	}
869 
870 	/*
871 	 * Page had better still be busy
872 	 */
873 	KASSERT(fs.m->oflags & VPO_BUSY,
874 		("vm_fault: page %p not busy!", fs.m));
875 	/*
876 	 * Sanity check: page must be completely valid or it is not fit to
877 	 * map into user space.  vm_pager_get_pages() ensures this.
878 	 */
879 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
880 		vm_page_zero_invalid(fs.m, TRUE);
881 		printf("Warning: page %p partially invalid on fault\n", fs.m);
882 	}
883 	VM_OBJECT_UNLOCK(fs.object);
884 
885 	/*
886 	 * Put this page into the physical map.  We had to do the unlock above
887 	 * because pmap_enter() may sleep.  We don't put the page
888 	 * back on the active queue until later so that the pageout daemon
889 	 * won't find it (yet).
890 	 */
891 	pmap_enter(fs.map->pmap, vaddr, fault_type, fs.m, prot, wired);
892 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
893 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
894 	}
895 	VM_OBJECT_LOCK(fs.object);
896 	vm_page_lock_queues();
897 	vm_page_flag_set(fs.m, PG_REFERENCED);
898 
899 	/*
900 	 * If the page is not wired down, then put it where the pageout daemon
901 	 * can find it.
902 	 */
903 	if (fault_flags & VM_FAULT_WIRE_MASK) {
904 		if (wired)
905 			vm_page_wire(fs.m);
906 		else
907 			vm_page_unwire(fs.m, 1);
908 	} else {
909 		vm_page_activate(fs.m);
910 	}
911 	vm_page_unlock_queues();
912 	vm_page_wakeup(fs.m);
913 
914 	/*
915 	 * Unlock everything, and return
916 	 */
917 	unlock_and_deallocate(&fs);
918 	if (hardfault)
919 		curthread->td_ru.ru_majflt++;
920 	else
921 		curthread->td_ru.ru_minflt++;
922 
923 	return (KERN_SUCCESS);
924 }
925 
926 /*
927  * vm_fault_prefault provides a quick way of clustering
928  * pagefaults into a processes address space.  It is a "cousin"
929  * of vm_map_pmap_enter, except it runs at page fault time instead
930  * of mmap time.
931  */
932 static void
933 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
934 {
935 	int i;
936 	vm_offset_t addr, starta;
937 	vm_pindex_t pindex;
938 	vm_page_t m;
939 	vm_object_t object;
940 
941 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
942 		return;
943 
944 	object = entry->object.vm_object;
945 
946 	starta = addra - PFBAK * PAGE_SIZE;
947 	if (starta < entry->start) {
948 		starta = entry->start;
949 	} else if (starta > addra) {
950 		starta = 0;
951 	}
952 
953 	for (i = 0; i < PAGEORDER_SIZE; i++) {
954 		vm_object_t backing_object, lobject;
955 
956 		addr = addra + prefault_pageorder[i];
957 		if (addr > addra + (PFFOR * PAGE_SIZE))
958 			addr = 0;
959 
960 		if (addr < starta || addr >= entry->end)
961 			continue;
962 
963 		if (!pmap_is_prefaultable(pmap, addr))
964 			continue;
965 
966 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
967 		lobject = object;
968 		VM_OBJECT_LOCK(lobject);
969 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
970 		    lobject->type == OBJT_DEFAULT &&
971 		    (backing_object = lobject->backing_object) != NULL) {
972 			if (lobject->backing_object_offset & PAGE_MASK)
973 				break;
974 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
975 			VM_OBJECT_LOCK(backing_object);
976 			VM_OBJECT_UNLOCK(lobject);
977 			lobject = backing_object;
978 		}
979 		/*
980 		 * give-up when a page is not in memory
981 		 */
982 		if (m == NULL) {
983 			VM_OBJECT_UNLOCK(lobject);
984 			break;
985 		}
986 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
987 			(m->busy == 0) &&
988 		    (m->flags & PG_FICTITIOUS) == 0) {
989 
990 			vm_page_lock_queues();
991 			pmap_enter_quick(pmap, addr, m, entry->protection);
992 			vm_page_unlock_queues();
993 		}
994 		VM_OBJECT_UNLOCK(lobject);
995 	}
996 }
997 
998 /*
999  *	vm_fault_quick:
1000  *
1001  *	Ensure that the requested virtual address, which may be in userland,
1002  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
1003  */
1004 int
1005 vm_fault_quick(caddr_t v, int prot)
1006 {
1007 	int r;
1008 
1009 	if (prot & VM_PROT_WRITE)
1010 		r = subyte(v, fubyte(v));
1011 	else
1012 		r = fubyte(v);
1013 	return(r);
1014 }
1015 
1016 /*
1017  *	vm_fault_wire:
1018  *
1019  *	Wire down a range of virtual addresses in a map.
1020  */
1021 int
1022 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1023     boolean_t user_wire, boolean_t fictitious)
1024 {
1025 	vm_offset_t va;
1026 	int rv;
1027 
1028 	/*
1029 	 * We simulate a fault to get the page and enter it in the physical
1030 	 * map.  For user wiring, we only ask for read access on currently
1031 	 * read-only sections.
1032 	 */
1033 	for (va = start; va < end; va += PAGE_SIZE) {
1034 		rv = vm_fault(map, va,
1035 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1036 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1037 		if (rv) {
1038 			if (va != start)
1039 				vm_fault_unwire(map, start, va, fictitious);
1040 			return (rv);
1041 		}
1042 	}
1043 	return (KERN_SUCCESS);
1044 }
1045 
1046 /*
1047  *	vm_fault_unwire:
1048  *
1049  *	Unwire a range of virtual addresses in a map.
1050  */
1051 void
1052 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1053     boolean_t fictitious)
1054 {
1055 	vm_paddr_t pa;
1056 	vm_offset_t va;
1057 	pmap_t pmap;
1058 
1059 	pmap = vm_map_pmap(map);
1060 
1061 	/*
1062 	 * Since the pages are wired down, we must be able to get their
1063 	 * mappings from the physical map system.
1064 	 */
1065 	for (va = start; va < end; va += PAGE_SIZE) {
1066 		pa = pmap_extract(pmap, va);
1067 		if (pa != 0) {
1068 			pmap_change_wiring(pmap, va, FALSE);
1069 			if (!fictitious) {
1070 				vm_page_lock_queues();
1071 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1072 				vm_page_unlock_queues();
1073 			}
1074 		}
1075 	}
1076 }
1077 
1078 /*
1079  *	Routine:
1080  *		vm_fault_copy_entry
1081  *	Function:
1082  *		Copy all of the pages from a wired-down map entry to another.
1083  *
1084  *	In/out conditions:
1085  *		The source and destination maps must be locked for write.
1086  *		The source map entry must be wired down (or be a sharing map
1087  *		entry corresponding to a main map entry that is wired down).
1088  */
1089 void
1090 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1091 	vm_map_t dst_map;
1092 	vm_map_t src_map;
1093 	vm_map_entry_t dst_entry;
1094 	vm_map_entry_t src_entry;
1095 {
1096 	vm_object_t backing_object, dst_object, object;
1097 	vm_object_t src_object;
1098 	vm_ooffset_t dst_offset;
1099 	vm_ooffset_t src_offset;
1100 	vm_pindex_t pindex;
1101 	vm_prot_t prot;
1102 	vm_offset_t vaddr;
1103 	vm_page_t dst_m;
1104 	vm_page_t src_m;
1105 
1106 #ifdef	lint
1107 	src_map++;
1108 #endif	/* lint */
1109 
1110 	src_object = src_entry->object.vm_object;
1111 	src_offset = src_entry->offset;
1112 
1113 	/*
1114 	 * Create the top-level object for the destination entry. (Doesn't
1115 	 * actually shadow anything - we copy the pages directly.)
1116 	 */
1117 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1118 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1119 #if VM_NRESERVLEVEL > 0
1120 	dst_object->flags |= OBJ_COLORED;
1121 	dst_object->pg_color = atop(dst_entry->start);
1122 #endif
1123 
1124 	VM_OBJECT_LOCK(dst_object);
1125 	dst_entry->object.vm_object = dst_object;
1126 	dst_entry->offset = 0;
1127 
1128 	prot = dst_entry->max_protection;
1129 
1130 	/*
1131 	 * Loop through all of the pages in the entry's range, copying each
1132 	 * one from the source object (it should be there) to the destination
1133 	 * object.
1134 	 */
1135 	for (vaddr = dst_entry->start, dst_offset = 0;
1136 	    vaddr < dst_entry->end;
1137 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1138 
1139 		/*
1140 		 * Allocate a page in the destination object
1141 		 */
1142 		do {
1143 			dst_m = vm_page_alloc(dst_object,
1144 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1145 			if (dst_m == NULL) {
1146 				VM_OBJECT_UNLOCK(dst_object);
1147 				VM_WAIT;
1148 				VM_OBJECT_LOCK(dst_object);
1149 			}
1150 		} while (dst_m == NULL);
1151 
1152 		/*
1153 		 * Find the page in the source object, and copy it in.
1154 		 * (Because the source is wired down, the page will be in
1155 		 * memory.)
1156 		 */
1157 		VM_OBJECT_LOCK(src_object);
1158 		object = src_object;
1159 		pindex = 0;
1160 		while ((src_m = vm_page_lookup(object, pindex +
1161 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1162 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1163 		    (backing_object = object->backing_object) != NULL) {
1164 			/*
1165 			 * Allow fallback to backing objects if we are reading.
1166 			 */
1167 			VM_OBJECT_LOCK(backing_object);
1168 			pindex += OFF_TO_IDX(object->backing_object_offset);
1169 			VM_OBJECT_UNLOCK(object);
1170 			object = backing_object;
1171 		}
1172 		if (src_m == NULL)
1173 			panic("vm_fault_copy_wired: page missing");
1174 		pmap_copy_page(src_m, dst_m);
1175 		VM_OBJECT_UNLOCK(object);
1176 		dst_m->valid = VM_PAGE_BITS_ALL;
1177 		VM_OBJECT_UNLOCK(dst_object);
1178 
1179 		/*
1180 		 * Enter it in the pmap as a read and/or execute access.
1181 		 */
1182 		pmap_enter(dst_map->pmap, vaddr, prot & ~VM_PROT_WRITE, dst_m,
1183 		    prot, FALSE);
1184 
1185 		/*
1186 		 * Mark it no longer busy, and put it on the active list.
1187 		 */
1188 		VM_OBJECT_LOCK(dst_object);
1189 		vm_page_lock_queues();
1190 		vm_page_activate(dst_m);
1191 		vm_page_unlock_queues();
1192 		vm_page_wakeup(dst_m);
1193 	}
1194 	VM_OBJECT_UNLOCK(dst_object);
1195 }
1196 
1197 
1198 /*
1199  * This routine checks around the requested page for other pages that
1200  * might be able to be faulted in.  This routine brackets the viable
1201  * pages for the pages to be paged in.
1202  *
1203  * Inputs:
1204  *	m, rbehind, rahead
1205  *
1206  * Outputs:
1207  *  marray (array of vm_page_t), reqpage (index of requested page)
1208  *
1209  * Return value:
1210  *  number of pages in marray
1211  *
1212  * This routine can't block.
1213  */
1214 static int
1215 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1216 	vm_page_t m;
1217 	int rbehind;
1218 	int rahead;
1219 	vm_page_t *marray;
1220 	int *reqpage;
1221 {
1222 	int i,j;
1223 	vm_object_t object;
1224 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1225 	vm_page_t rtm;
1226 	int cbehind, cahead;
1227 
1228 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1229 
1230 	object = m->object;
1231 	pindex = m->pindex;
1232 	cbehind = cahead = 0;
1233 
1234 	/*
1235 	 * if the requested page is not available, then give up now
1236 	 */
1237 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1238 		return 0;
1239 	}
1240 
1241 	if ((cbehind == 0) && (cahead == 0)) {
1242 		*reqpage = 0;
1243 		marray[0] = m;
1244 		return 1;
1245 	}
1246 
1247 	if (rahead > cahead) {
1248 		rahead = cahead;
1249 	}
1250 
1251 	if (rbehind > cbehind) {
1252 		rbehind = cbehind;
1253 	}
1254 
1255 	/*
1256 	 * scan backward for the read behind pages -- in memory
1257 	 */
1258 	if (pindex > 0) {
1259 		if (rbehind > pindex) {
1260 			rbehind = pindex;
1261 			startpindex = 0;
1262 		} else {
1263 			startpindex = pindex - rbehind;
1264 		}
1265 
1266 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1267 		    rtm->pindex >= startpindex)
1268 			startpindex = rtm->pindex + 1;
1269 
1270 		/* tpindex is unsigned; beware of numeric underflow. */
1271 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1272 		    tpindex < pindex; i++, tpindex--) {
1273 
1274 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1275 			    VM_ALLOC_IFNOTCACHED);
1276 			if (rtm == NULL) {
1277 				/*
1278 				 * Shift the allocated pages to the
1279 				 * beginning of the array.
1280 				 */
1281 				for (j = 0; j < i; j++) {
1282 					marray[j] = marray[j + tpindex + 1 -
1283 					    startpindex];
1284 				}
1285 				break;
1286 			}
1287 
1288 			marray[tpindex - startpindex] = rtm;
1289 		}
1290 	} else {
1291 		startpindex = 0;
1292 		i = 0;
1293 	}
1294 
1295 	marray[i] = m;
1296 	/* page offset of the required page */
1297 	*reqpage = i;
1298 
1299 	tpindex = pindex + 1;
1300 	i++;
1301 
1302 	/*
1303 	 * scan forward for the read ahead pages
1304 	 */
1305 	endpindex = tpindex + rahead;
1306 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1307 		endpindex = rtm->pindex;
1308 	if (endpindex > object->size)
1309 		endpindex = object->size;
1310 
1311 	for (; tpindex < endpindex; i++, tpindex++) {
1312 
1313 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1314 		    VM_ALLOC_IFNOTCACHED);
1315 		if (rtm == NULL) {
1316 			break;
1317 		}
1318 
1319 		marray[i] = rtm;
1320 	}
1321 
1322 	/* return number of pages */
1323 	return i;
1324 }
1325