1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 int map_generation; 126 bool lookup_still_valid; 127 struct vnode *vp; 128 }; 129 130 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 131 int ahead); 132 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 133 int backward, int forward); 134 135 static inline void 136 release_page(struct faultstate *fs) 137 { 138 139 vm_page_xunbusy(fs->m); 140 vm_page_lock(fs->m); 141 vm_page_deactivate(fs->m); 142 vm_page_unlock(fs->m); 143 fs->m = NULL; 144 } 145 146 static inline void 147 unlock_map(struct faultstate *fs) 148 { 149 150 if (fs->lookup_still_valid) { 151 vm_map_lookup_done(fs->map, fs->entry); 152 fs->lookup_still_valid = false; 153 } 154 } 155 156 static void 157 unlock_vp(struct faultstate *fs) 158 { 159 160 if (fs->vp != NULL) { 161 vput(fs->vp); 162 fs->vp = NULL; 163 } 164 } 165 166 static void 167 unlock_and_deallocate(struct faultstate *fs) 168 { 169 170 vm_object_pip_wakeup(fs->object); 171 VM_OBJECT_WUNLOCK(fs->object); 172 if (fs->object != fs->first_object) { 173 VM_OBJECT_WLOCK(fs->first_object); 174 vm_page_lock(fs->first_m); 175 vm_page_free(fs->first_m); 176 vm_page_unlock(fs->first_m); 177 vm_object_pip_wakeup(fs->first_object); 178 VM_OBJECT_WUNLOCK(fs->first_object); 179 fs->first_m = NULL; 180 } 181 vm_object_deallocate(fs->first_object); 182 unlock_map(fs); 183 unlock_vp(fs); 184 } 185 186 static void 187 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 188 vm_prot_t fault_type, int fault_flags, bool set_wd) 189 { 190 bool need_dirty; 191 192 if (((prot & VM_PROT_WRITE) == 0 && 193 (fault_flags & VM_FAULT_DIRTY) == 0) || 194 (m->oflags & VPO_UNMANAGED) != 0) 195 return; 196 197 VM_OBJECT_ASSERT_LOCKED(m->object); 198 199 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 200 (fault_flags & VM_FAULT_WIRE) == 0) || 201 (fault_flags & VM_FAULT_DIRTY) != 0; 202 203 if (set_wd) 204 vm_object_set_writeable_dirty(m->object); 205 else 206 /* 207 * If two callers of vm_fault_dirty() with set_wd == 208 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 209 * flag set, other with flag clear, race, it is 210 * possible for the no-NOSYNC thread to see m->dirty 211 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 212 * around manipulation of VPO_NOSYNC and 213 * vm_page_dirty() call, to avoid the race and keep 214 * m->oflags consistent. 215 */ 216 vm_page_lock(m); 217 218 /* 219 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 220 * if the page is already dirty to prevent data written with 221 * the expectation of being synced from not being synced. 222 * Likewise if this entry does not request NOSYNC then make 223 * sure the page isn't marked NOSYNC. Applications sharing 224 * data should use the same flags to avoid ping ponging. 225 */ 226 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 227 if (m->dirty == 0) { 228 m->oflags |= VPO_NOSYNC; 229 } 230 } else { 231 m->oflags &= ~VPO_NOSYNC; 232 } 233 234 /* 235 * If the fault is a write, we know that this page is being 236 * written NOW so dirty it explicitly to save on 237 * pmap_is_modified() calls later. 238 * 239 * Also, since the page is now dirty, we can possibly tell 240 * the pager to release any swap backing the page. Calling 241 * the pager requires a write lock on the object. 242 */ 243 if (need_dirty) 244 vm_page_dirty(m); 245 if (!set_wd) 246 vm_page_unlock(m); 247 else if (need_dirty) 248 vm_pager_page_unswapped(m); 249 } 250 251 static void 252 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m) 253 { 254 255 if (m_hold != NULL) { 256 *m_hold = m; 257 vm_page_lock(m); 258 vm_page_hold(m); 259 vm_page_unlock(m); 260 } 261 } 262 263 /* 264 * Unlocks fs.first_object and fs.map on success. 265 */ 266 static int 267 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 268 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 269 { 270 vm_page_t m, m_map; 271 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 272 vm_page_t m_super; 273 int flags; 274 #endif 275 int psind, rv; 276 277 MPASS(fs->vp == NULL); 278 m = vm_page_lookup(fs->first_object, fs->first_pindex); 279 /* A busy page can be mapped for read|execute access. */ 280 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 281 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 282 return (KERN_FAILURE); 283 m_map = m; 284 psind = 0; 285 #if defined(__amd64__) && VM_NRESERVLEVEL > 0 286 if ((m->flags & PG_FICTITIOUS) == 0 && 287 (m_super = vm_reserv_to_superpage(m)) != NULL && 288 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 289 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 290 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 291 (pagesizes[m_super->psind] - 1)) && 292 pmap_ps_enabled(fs->map->pmap)) { 293 flags = PS_ALL_VALID; 294 if ((prot & VM_PROT_WRITE) != 0) { 295 /* 296 * Create a superpage mapping allowing write access 297 * only if none of the constituent pages are busy and 298 * all of them are already dirty (except possibly for 299 * the page that was faulted on). 300 */ 301 flags |= PS_NONE_BUSY; 302 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 303 flags |= PS_ALL_DIRTY; 304 } 305 if (vm_page_ps_test(m_super, flags, m)) { 306 m_map = m_super; 307 psind = m_super->psind; 308 vaddr = rounddown2(vaddr, pagesizes[psind]); 309 /* Preset the modified bit for dirty superpages. */ 310 if ((flags & PS_ALL_DIRTY) != 0) 311 fault_type |= VM_PROT_WRITE; 312 } 313 } 314 #endif 315 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 316 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 317 if (rv != KERN_SUCCESS) 318 return (rv); 319 vm_fault_fill_hold(m_hold, m); 320 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 321 VM_OBJECT_RUNLOCK(fs->first_object); 322 if (psind == 0 && !wired) 323 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR); 324 vm_map_lookup_done(fs->map, fs->entry); 325 curthread->td_ru.ru_minflt++; 326 return (KERN_SUCCESS); 327 } 328 329 static void 330 vm_fault_restore_map_lock(struct faultstate *fs) 331 { 332 333 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 334 MPASS(fs->first_object->paging_in_progress > 0); 335 336 if (!vm_map_trylock_read(fs->map)) { 337 VM_OBJECT_WUNLOCK(fs->first_object); 338 vm_map_lock_read(fs->map); 339 VM_OBJECT_WLOCK(fs->first_object); 340 } 341 fs->lookup_still_valid = true; 342 } 343 344 static void 345 vm_fault_populate_check_page(vm_page_t m) 346 { 347 348 /* 349 * Check each page to ensure that the pager is obeying the 350 * interface: the page must be installed in the object, fully 351 * valid, and exclusively busied. 352 */ 353 MPASS(m != NULL); 354 MPASS(m->valid == VM_PAGE_BITS_ALL); 355 MPASS(vm_page_xbusied(m)); 356 } 357 358 static void 359 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 360 vm_pindex_t last) 361 { 362 vm_page_t m; 363 vm_pindex_t pidx; 364 365 VM_OBJECT_ASSERT_WLOCKED(object); 366 MPASS(first <= last); 367 for (pidx = first, m = vm_page_lookup(object, pidx); 368 pidx <= last; pidx++, m = vm_page_next(m)) { 369 vm_fault_populate_check_page(m); 370 vm_page_lock(m); 371 vm_page_deactivate(m); 372 vm_page_unlock(m); 373 vm_page_xunbusy(m); 374 } 375 } 376 377 static int 378 vm_fault_populate(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 379 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 380 { 381 vm_page_t m; 382 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 383 int rv; 384 385 MPASS(fs->object == fs->first_object); 386 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 387 MPASS(fs->first_object->paging_in_progress > 0); 388 MPASS(fs->first_object->backing_object == NULL); 389 MPASS(fs->lookup_still_valid); 390 391 pager_first = OFF_TO_IDX(fs->entry->offset); 392 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 393 unlock_map(fs); 394 unlock_vp(fs); 395 396 /* 397 * Call the pager (driver) populate() method. 398 * 399 * There is no guarantee that the method will be called again 400 * if the current fault is for read, and a future fault is 401 * for write. Report the entry's maximum allowed protection 402 * to the driver. 403 */ 404 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 405 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 406 407 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 408 if (rv == VM_PAGER_BAD) { 409 /* 410 * VM_PAGER_BAD is the backdoor for a pager to request 411 * normal fault handling. 412 */ 413 vm_fault_restore_map_lock(fs); 414 if (fs->map->timestamp != fs->map_generation) 415 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 416 return (KERN_NOT_RECEIVER); 417 } 418 if (rv != VM_PAGER_OK) 419 return (KERN_FAILURE); /* AKA SIGSEGV */ 420 421 /* Ensure that the driver is obeying the interface. */ 422 MPASS(pager_first <= pager_last); 423 MPASS(fs->first_pindex <= pager_last); 424 MPASS(fs->first_pindex >= pager_first); 425 MPASS(pager_last < fs->first_object->size); 426 427 vm_fault_restore_map_lock(fs); 428 if (fs->map->timestamp != fs->map_generation) { 429 vm_fault_populate_cleanup(fs->first_object, pager_first, 430 pager_last); 431 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 432 } 433 434 /* 435 * The map is unchanged after our last unlock. Process the fault. 436 * 437 * The range [pager_first, pager_last] that is given to the 438 * pager is only a hint. The pager may populate any range 439 * within the object that includes the requested page index. 440 * In case the pager expanded the range, clip it to fit into 441 * the map entry. 442 */ 443 map_first = OFF_TO_IDX(fs->entry->offset); 444 if (map_first > pager_first) { 445 vm_fault_populate_cleanup(fs->first_object, pager_first, 446 map_first - 1); 447 pager_first = map_first; 448 } 449 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 450 if (map_last < pager_last) { 451 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 452 pager_last); 453 pager_last = map_last; 454 } 455 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 456 pidx <= pager_last; pidx++, m = vm_page_next(m)) { 457 vm_fault_populate_check_page(m); 458 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, 459 true); 460 VM_OBJECT_WUNLOCK(fs->first_object); 461 pmap_enter(fs->map->pmap, fs->entry->start + IDX_TO_OFF(pidx) - 462 fs->entry->offset, m, prot, fault_type | (wired ? 463 PMAP_ENTER_WIRED : 0), 0); 464 VM_OBJECT_WLOCK(fs->first_object); 465 if (pidx == fs->first_pindex) 466 vm_fault_fill_hold(m_hold, m); 467 vm_page_lock(m); 468 if ((fault_flags & VM_FAULT_WIRE) != 0) { 469 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 470 vm_page_wire(m); 471 } else { 472 vm_page_activate(m); 473 } 474 vm_page_unlock(m); 475 vm_page_xunbusy(m); 476 } 477 curthread->td_ru.ru_majflt++; 478 return (KERN_SUCCESS); 479 } 480 481 /* 482 * vm_fault: 483 * 484 * Handle a page fault occurring at the given address, 485 * requiring the given permissions, in the map specified. 486 * If successful, the page is inserted into the 487 * associated physical map. 488 * 489 * NOTE: the given address should be truncated to the 490 * proper page address. 491 * 492 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 493 * a standard error specifying why the fault is fatal is returned. 494 * 495 * The map in question must be referenced, and remains so. 496 * Caller may hold no locks. 497 */ 498 int 499 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 500 int fault_flags) 501 { 502 struct thread *td; 503 int result; 504 505 td = curthread; 506 if ((td->td_pflags & TDP_NOFAULTING) != 0) 507 return (KERN_PROTECTION_FAILURE); 508 #ifdef KTRACE 509 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 510 ktrfault(vaddr, fault_type); 511 #endif 512 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 513 NULL); 514 #ifdef KTRACE 515 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 516 ktrfaultend(result); 517 #endif 518 return (result); 519 } 520 521 int 522 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 523 int fault_flags, vm_page_t *m_hold) 524 { 525 struct faultstate fs; 526 struct vnode *vp; 527 vm_object_t next_object, retry_object; 528 vm_offset_t e_end, e_start; 529 vm_pindex_t retry_pindex; 530 vm_prot_t prot, retry_prot; 531 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 532 int locked, nera, result, rv; 533 u_char behavior; 534 boolean_t wired; /* Passed by reference. */ 535 bool dead, hardfault, is_first_object_locked; 536 537 VM_CNT_INC(v_vm_faults); 538 fs.vp = NULL; 539 faultcount = 0; 540 nera = -1; 541 hardfault = false; 542 543 RetryFault:; 544 545 /* 546 * Find the backing store object and offset into it to begin the 547 * search. 548 */ 549 fs.map = map; 550 result = vm_map_lookup(&fs.map, vaddr, fault_type | 551 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 552 &fs.first_pindex, &prot, &wired); 553 if (result != KERN_SUCCESS) { 554 unlock_vp(&fs); 555 return (result); 556 } 557 558 fs.map_generation = fs.map->timestamp; 559 560 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 561 panic("%s: fault on nofault entry, addr: %#lx", 562 __func__, (u_long)vaddr); 563 } 564 565 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 566 fs.entry->wiring_thread != curthread) { 567 vm_map_unlock_read(fs.map); 568 vm_map_lock(fs.map); 569 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 570 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 571 unlock_vp(&fs); 572 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 573 vm_map_unlock_and_wait(fs.map, 0); 574 } else 575 vm_map_unlock(fs.map); 576 goto RetryFault; 577 } 578 579 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 580 581 if (wired) 582 fault_type = prot | (fault_type & VM_PROT_COPY); 583 else 584 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 585 ("!wired && VM_FAULT_WIRE")); 586 587 /* 588 * Try to avoid lock contention on the top-level object through 589 * special-case handling of some types of page faults, specifically, 590 * those that are both (1) mapping an existing page from the top- 591 * level object and (2) not having to mark that object as containing 592 * dirty pages. Under these conditions, a read lock on the top-level 593 * object suffices, allowing multiple page faults of a similar type to 594 * run in parallel on the same top-level object. 595 */ 596 if (fs.vp == NULL /* avoid locked vnode leak */ && 597 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 598 /* avoid calling vm_object_set_writeable_dirty() */ 599 ((prot & VM_PROT_WRITE) == 0 || 600 (fs.first_object->type != OBJT_VNODE && 601 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 602 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 603 VM_OBJECT_RLOCK(fs.first_object); 604 if ((prot & VM_PROT_WRITE) == 0 || 605 (fs.first_object->type != OBJT_VNODE && 606 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 607 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 608 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 609 fault_flags, wired, m_hold); 610 if (rv == KERN_SUCCESS) 611 return (rv); 612 } 613 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 614 VM_OBJECT_RUNLOCK(fs.first_object); 615 VM_OBJECT_WLOCK(fs.first_object); 616 } 617 } else { 618 VM_OBJECT_WLOCK(fs.first_object); 619 } 620 621 /* 622 * Make a reference to this object to prevent its disposal while we 623 * are messing with it. Once we have the reference, the map is free 624 * to be diddled. Since objects reference their shadows (and copies), 625 * they will stay around as well. 626 * 627 * Bump the paging-in-progress count to prevent size changes (e.g. 628 * truncation operations) during I/O. 629 */ 630 vm_object_reference_locked(fs.first_object); 631 vm_object_pip_add(fs.first_object, 1); 632 633 fs.lookup_still_valid = true; 634 635 fs.first_m = NULL; 636 637 /* 638 * Search for the page at object/offset. 639 */ 640 fs.object = fs.first_object; 641 fs.pindex = fs.first_pindex; 642 while (TRUE) { 643 /* 644 * If the object is marked for imminent termination, 645 * we retry here, since the collapse pass has raced 646 * with us. Otherwise, if we see terminally dead 647 * object, return fail. 648 */ 649 if ((fs.object->flags & OBJ_DEAD) != 0) { 650 dead = fs.object->type == OBJT_DEAD; 651 unlock_and_deallocate(&fs); 652 if (dead) 653 return (KERN_PROTECTION_FAILURE); 654 pause("vmf_de", 1); 655 goto RetryFault; 656 } 657 658 /* 659 * See if page is resident 660 */ 661 fs.m = vm_page_lookup(fs.object, fs.pindex); 662 if (fs.m != NULL) { 663 /* 664 * Wait/Retry if the page is busy. We have to do this 665 * if the page is either exclusive or shared busy 666 * because the vm_pager may be using read busy for 667 * pageouts (and even pageins if it is the vnode 668 * pager), and we could end up trying to pagein and 669 * pageout the same page simultaneously. 670 * 671 * We can theoretically allow the busy case on a read 672 * fault if the page is marked valid, but since such 673 * pages are typically already pmap'd, putting that 674 * special case in might be more effort then it is 675 * worth. We cannot under any circumstances mess 676 * around with a shared busied page except, perhaps, 677 * to pmap it. 678 */ 679 if (vm_page_busied(fs.m)) { 680 /* 681 * Reference the page before unlocking and 682 * sleeping so that the page daemon is less 683 * likely to reclaim it. 684 */ 685 vm_page_aflag_set(fs.m, PGA_REFERENCED); 686 if (fs.object != fs.first_object) { 687 if (!VM_OBJECT_TRYWLOCK( 688 fs.first_object)) { 689 VM_OBJECT_WUNLOCK(fs.object); 690 VM_OBJECT_WLOCK(fs.first_object); 691 VM_OBJECT_WLOCK(fs.object); 692 } 693 vm_page_lock(fs.first_m); 694 vm_page_free(fs.first_m); 695 vm_page_unlock(fs.first_m); 696 vm_object_pip_wakeup(fs.first_object); 697 VM_OBJECT_WUNLOCK(fs.first_object); 698 fs.first_m = NULL; 699 } 700 unlock_map(&fs); 701 if (fs.m == vm_page_lookup(fs.object, 702 fs.pindex)) { 703 vm_page_sleep_if_busy(fs.m, "vmpfw"); 704 } 705 vm_object_pip_wakeup(fs.object); 706 VM_OBJECT_WUNLOCK(fs.object); 707 VM_CNT_INC(v_intrans); 708 vm_object_deallocate(fs.first_object); 709 goto RetryFault; 710 } 711 vm_page_lock(fs.m); 712 vm_page_remque(fs.m); 713 vm_page_unlock(fs.m); 714 715 /* 716 * Mark page busy for other processes, and the 717 * pagedaemon. If it still isn't completely valid 718 * (readable), jump to readrest, else break-out ( we 719 * found the page ). 720 */ 721 vm_page_xbusy(fs.m); 722 if (fs.m->valid != VM_PAGE_BITS_ALL) 723 goto readrest; 724 break; 725 } 726 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 727 728 /* 729 * Page is not resident. If the pager might contain the page 730 * or this is the beginning of the search, allocate a new 731 * page. (Default objects are zero-fill, so there is no real 732 * pager for them.) 733 */ 734 if (fs.object->type != OBJT_DEFAULT || 735 fs.object == fs.first_object) { 736 if (fs.pindex >= fs.object->size) { 737 unlock_and_deallocate(&fs); 738 return (KERN_PROTECTION_FAILURE); 739 } 740 741 if (fs.object == fs.first_object && 742 (fs.first_object->flags & OBJ_POPULATE) != 0 && 743 fs.first_object->shadow_count == 0) { 744 rv = vm_fault_populate(&fs, vaddr, prot, 745 fault_type, fault_flags, wired, m_hold); 746 switch (rv) { 747 case KERN_SUCCESS: 748 case KERN_FAILURE: 749 unlock_and_deallocate(&fs); 750 return (rv); 751 case KERN_RESOURCE_SHORTAGE: 752 unlock_and_deallocate(&fs); 753 goto RetryFault; 754 case KERN_NOT_RECEIVER: 755 /* 756 * Pager's populate() method 757 * returned VM_PAGER_BAD. 758 */ 759 break; 760 default: 761 panic("inconsistent return codes"); 762 } 763 } 764 765 /* 766 * Allocate a new page for this object/offset pair. 767 * 768 * Unlocked read of the p_flag is harmless. At 769 * worst, the P_KILLED might be not observed 770 * there, and allocation can fail, causing 771 * restart and new reading of the p_flag. 772 */ 773 if (!vm_page_count_severe() || P_KILLED(curproc)) { 774 #if VM_NRESERVLEVEL > 0 775 vm_object_color(fs.object, atop(vaddr) - 776 fs.pindex); 777 #endif 778 alloc_req = P_KILLED(curproc) ? 779 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 780 if (fs.object->type != OBJT_VNODE && 781 fs.object->backing_object == NULL) 782 alloc_req |= VM_ALLOC_ZERO; 783 fs.m = vm_page_alloc(fs.object, fs.pindex, 784 alloc_req); 785 } 786 if (fs.m == NULL) { 787 unlock_and_deallocate(&fs); 788 VM_WAITPFAULT; 789 goto RetryFault; 790 } 791 } 792 793 readrest: 794 /* 795 * At this point, we have either allocated a new page or found 796 * an existing page that is only partially valid. 797 * 798 * We hold a reference on the current object and the page is 799 * exclusive busied. 800 */ 801 802 /* 803 * If the pager for the current object might have the page, 804 * then determine the number of additional pages to read and 805 * potentially reprioritize previously read pages for earlier 806 * reclamation. These operations should only be performed 807 * once per page fault. Even if the current pager doesn't 808 * have the page, the number of additional pages to read will 809 * apply to subsequent objects in the shadow chain. 810 */ 811 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 812 !P_KILLED(curproc)) { 813 KASSERT(fs.lookup_still_valid, ("map unlocked")); 814 era = fs.entry->read_ahead; 815 behavior = vm_map_entry_behavior(fs.entry); 816 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 817 nera = 0; 818 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 819 nera = VM_FAULT_READ_AHEAD_MAX; 820 if (vaddr == fs.entry->next_read) 821 vm_fault_dontneed(&fs, vaddr, nera); 822 } else if (vaddr == fs.entry->next_read) { 823 /* 824 * This is a sequential fault. Arithmetically 825 * increase the requested number of pages in 826 * the read-ahead window. The requested 827 * number of pages is "# of sequential faults 828 * x (read ahead min + 1) + read ahead min" 829 */ 830 nera = VM_FAULT_READ_AHEAD_MIN; 831 if (era > 0) { 832 nera += era + 1; 833 if (nera > VM_FAULT_READ_AHEAD_MAX) 834 nera = VM_FAULT_READ_AHEAD_MAX; 835 } 836 if (era == VM_FAULT_READ_AHEAD_MAX) 837 vm_fault_dontneed(&fs, vaddr, nera); 838 } else { 839 /* 840 * This is a non-sequential fault. 841 */ 842 nera = 0; 843 } 844 if (era != nera) { 845 /* 846 * A read lock on the map suffices to update 847 * the read ahead count safely. 848 */ 849 fs.entry->read_ahead = nera; 850 } 851 852 /* 853 * Prepare for unlocking the map. Save the map 854 * entry's start and end addresses, which are used to 855 * optimize the size of the pager operation below. 856 * Even if the map entry's addresses change after 857 * unlocking the map, using the saved addresses is 858 * safe. 859 */ 860 e_start = fs.entry->start; 861 e_end = fs.entry->end; 862 } 863 864 /* 865 * Call the pager to retrieve the page if there is a chance 866 * that the pager has it, and potentially retrieve additional 867 * pages at the same time. 868 */ 869 if (fs.object->type != OBJT_DEFAULT) { 870 /* 871 * Release the map lock before locking the vnode or 872 * sleeping in the pager. (If the current object has 873 * a shadow, then an earlier iteration of this loop 874 * may have already unlocked the map.) 875 */ 876 unlock_map(&fs); 877 878 if (fs.object->type == OBJT_VNODE && 879 (vp = fs.object->handle) != fs.vp) { 880 /* 881 * Perform an unlock in case the desired vnode 882 * changed while the map was unlocked during a 883 * retry. 884 */ 885 unlock_vp(&fs); 886 887 locked = VOP_ISLOCKED(vp); 888 if (locked != LK_EXCLUSIVE) 889 locked = LK_SHARED; 890 891 /* 892 * We must not sleep acquiring the vnode lock 893 * while we have the page exclusive busied or 894 * the object's paging-in-progress count 895 * incremented. Otherwise, we could deadlock. 896 */ 897 error = vget(vp, locked | LK_CANRECURSE | 898 LK_NOWAIT, curthread); 899 if (error != 0) { 900 vhold(vp); 901 release_page(&fs); 902 unlock_and_deallocate(&fs); 903 error = vget(vp, locked | LK_RETRY | 904 LK_CANRECURSE, curthread); 905 vdrop(vp); 906 fs.vp = vp; 907 KASSERT(error == 0, 908 ("vm_fault: vget failed")); 909 goto RetryFault; 910 } 911 fs.vp = vp; 912 } 913 KASSERT(fs.vp == NULL || !fs.map->system_map, 914 ("vm_fault: vnode-backed object mapped by system map")); 915 916 /* 917 * Page in the requested page and hint the pager, 918 * that it may bring up surrounding pages. 919 */ 920 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 921 P_KILLED(curproc)) { 922 behind = 0; 923 ahead = 0; 924 } else { 925 /* Is this a sequential fault? */ 926 if (nera > 0) { 927 behind = 0; 928 ahead = nera; 929 } else { 930 /* 931 * Request a cluster of pages that is 932 * aligned to a VM_FAULT_READ_DEFAULT 933 * page offset boundary within the 934 * object. Alignment to a page offset 935 * boundary is more likely to coincide 936 * with the underlying file system 937 * block than alignment to a virtual 938 * address boundary. 939 */ 940 cluster_offset = fs.pindex % 941 VM_FAULT_READ_DEFAULT; 942 behind = ulmin(cluster_offset, 943 atop(vaddr - e_start)); 944 ahead = VM_FAULT_READ_DEFAULT - 1 - 945 cluster_offset; 946 } 947 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 948 } 949 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 950 &behind, &ahead); 951 if (rv == VM_PAGER_OK) { 952 faultcount = behind + 1 + ahead; 953 hardfault = true; 954 break; /* break to PAGE HAS BEEN FOUND */ 955 } 956 if (rv == VM_PAGER_ERROR) 957 printf("vm_fault: pager read error, pid %d (%s)\n", 958 curproc->p_pid, curproc->p_comm); 959 960 /* 961 * If an I/O error occurred or the requested page was 962 * outside the range of the pager, clean up and return 963 * an error. 964 */ 965 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 966 vm_page_lock(fs.m); 967 if (fs.m->wire_count == 0) 968 vm_page_free(fs.m); 969 else 970 vm_page_xunbusy_maybelocked(fs.m); 971 vm_page_unlock(fs.m); 972 fs.m = NULL; 973 unlock_and_deallocate(&fs); 974 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 975 KERN_PROTECTION_FAILURE); 976 } 977 978 /* 979 * The requested page does not exist at this object/ 980 * offset. Remove the invalid page from the object, 981 * waking up anyone waiting for it, and continue on to 982 * the next object. However, if this is the top-level 983 * object, we must leave the busy page in place to 984 * prevent another process from rushing past us, and 985 * inserting the page in that object at the same time 986 * that we are. 987 */ 988 if (fs.object != fs.first_object) { 989 vm_page_lock(fs.m); 990 if (fs.m->wire_count == 0) 991 vm_page_free(fs.m); 992 else 993 vm_page_xunbusy_maybelocked(fs.m); 994 vm_page_unlock(fs.m); 995 fs.m = NULL; 996 } 997 } 998 999 /* 1000 * We get here if the object has default pager (or unwiring) 1001 * or the pager doesn't have the page. 1002 */ 1003 if (fs.object == fs.first_object) 1004 fs.first_m = fs.m; 1005 1006 /* 1007 * Move on to the next object. Lock the next object before 1008 * unlocking the current one. 1009 */ 1010 next_object = fs.object->backing_object; 1011 if (next_object == NULL) { 1012 /* 1013 * If there's no object left, fill the page in the top 1014 * object with zeros. 1015 */ 1016 if (fs.object != fs.first_object) { 1017 vm_object_pip_wakeup(fs.object); 1018 VM_OBJECT_WUNLOCK(fs.object); 1019 1020 fs.object = fs.first_object; 1021 fs.pindex = fs.first_pindex; 1022 fs.m = fs.first_m; 1023 VM_OBJECT_WLOCK(fs.object); 1024 } 1025 fs.first_m = NULL; 1026 1027 /* 1028 * Zero the page if necessary and mark it valid. 1029 */ 1030 if ((fs.m->flags & PG_ZERO) == 0) { 1031 pmap_zero_page(fs.m); 1032 } else { 1033 VM_CNT_INC(v_ozfod); 1034 } 1035 VM_CNT_INC(v_zfod); 1036 fs.m->valid = VM_PAGE_BITS_ALL; 1037 /* Don't try to prefault neighboring pages. */ 1038 faultcount = 1; 1039 break; /* break to PAGE HAS BEEN FOUND */ 1040 } else { 1041 KASSERT(fs.object != next_object, 1042 ("object loop %p", next_object)); 1043 VM_OBJECT_WLOCK(next_object); 1044 vm_object_pip_add(next_object, 1); 1045 if (fs.object != fs.first_object) 1046 vm_object_pip_wakeup(fs.object); 1047 fs.pindex += 1048 OFF_TO_IDX(fs.object->backing_object_offset); 1049 VM_OBJECT_WUNLOCK(fs.object); 1050 fs.object = next_object; 1051 } 1052 } 1053 1054 vm_page_assert_xbusied(fs.m); 1055 1056 /* 1057 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1058 * is held.] 1059 */ 1060 1061 /* 1062 * If the page is being written, but isn't already owned by the 1063 * top-level object, we have to copy it into a new page owned by the 1064 * top-level object. 1065 */ 1066 if (fs.object != fs.first_object) { 1067 /* 1068 * We only really need to copy if we want to write it. 1069 */ 1070 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1071 /* 1072 * This allows pages to be virtually copied from a 1073 * backing_object into the first_object, where the 1074 * backing object has no other refs to it, and cannot 1075 * gain any more refs. Instead of a bcopy, we just 1076 * move the page from the backing object to the 1077 * first object. Note that we must mark the page 1078 * dirty in the first object so that it will go out 1079 * to swap when needed. 1080 */ 1081 is_first_object_locked = false; 1082 if ( 1083 /* 1084 * Only one shadow object 1085 */ 1086 (fs.object->shadow_count == 1) && 1087 /* 1088 * No COW refs, except us 1089 */ 1090 (fs.object->ref_count == 1) && 1091 /* 1092 * No one else can look this object up 1093 */ 1094 (fs.object->handle == NULL) && 1095 /* 1096 * No other ways to look the object up 1097 */ 1098 ((fs.object->type == OBJT_DEFAULT) || 1099 (fs.object->type == OBJT_SWAP)) && 1100 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1101 /* 1102 * We don't chase down the shadow chain 1103 */ 1104 fs.object == fs.first_object->backing_object) { 1105 vm_page_lock(fs.m); 1106 vm_page_remove(fs.m); 1107 vm_page_unlock(fs.m); 1108 vm_page_lock(fs.first_m); 1109 vm_page_replace_checked(fs.m, fs.first_object, 1110 fs.first_pindex, fs.first_m); 1111 vm_page_free(fs.first_m); 1112 vm_page_unlock(fs.first_m); 1113 vm_page_dirty(fs.m); 1114 #if VM_NRESERVLEVEL > 0 1115 /* 1116 * Rename the reservation. 1117 */ 1118 vm_reserv_rename(fs.m, fs.first_object, 1119 fs.object, OFF_TO_IDX( 1120 fs.first_object->backing_object_offset)); 1121 #endif 1122 /* 1123 * Removing the page from the backing object 1124 * unbusied it. 1125 */ 1126 vm_page_xbusy(fs.m); 1127 fs.first_m = fs.m; 1128 fs.m = NULL; 1129 VM_CNT_INC(v_cow_optim); 1130 } else { 1131 /* 1132 * Oh, well, lets copy it. 1133 */ 1134 pmap_copy_page(fs.m, fs.first_m); 1135 fs.first_m->valid = VM_PAGE_BITS_ALL; 1136 if (wired && (fault_flags & 1137 VM_FAULT_WIRE) == 0) { 1138 vm_page_lock(fs.first_m); 1139 vm_page_wire(fs.first_m); 1140 vm_page_unlock(fs.first_m); 1141 1142 vm_page_lock(fs.m); 1143 vm_page_unwire(fs.m, PQ_INACTIVE); 1144 vm_page_unlock(fs.m); 1145 } 1146 /* 1147 * We no longer need the old page or object. 1148 */ 1149 release_page(&fs); 1150 } 1151 /* 1152 * fs.object != fs.first_object due to above 1153 * conditional 1154 */ 1155 vm_object_pip_wakeup(fs.object); 1156 VM_OBJECT_WUNLOCK(fs.object); 1157 /* 1158 * Only use the new page below... 1159 */ 1160 fs.object = fs.first_object; 1161 fs.pindex = fs.first_pindex; 1162 fs.m = fs.first_m; 1163 if (!is_first_object_locked) 1164 VM_OBJECT_WLOCK(fs.object); 1165 VM_CNT_INC(v_cow_faults); 1166 curthread->td_cow++; 1167 } else { 1168 prot &= ~VM_PROT_WRITE; 1169 } 1170 } 1171 1172 /* 1173 * We must verify that the maps have not changed since our last 1174 * lookup. 1175 */ 1176 if (!fs.lookup_still_valid) { 1177 if (!vm_map_trylock_read(fs.map)) { 1178 release_page(&fs); 1179 unlock_and_deallocate(&fs); 1180 goto RetryFault; 1181 } 1182 fs.lookup_still_valid = true; 1183 if (fs.map->timestamp != fs.map_generation) { 1184 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1185 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1186 1187 /* 1188 * If we don't need the page any longer, put it on the inactive 1189 * list (the easiest thing to do here). If no one needs it, 1190 * pageout will grab it eventually. 1191 */ 1192 if (result != KERN_SUCCESS) { 1193 release_page(&fs); 1194 unlock_and_deallocate(&fs); 1195 1196 /* 1197 * If retry of map lookup would have blocked then 1198 * retry fault from start. 1199 */ 1200 if (result == KERN_FAILURE) 1201 goto RetryFault; 1202 return (result); 1203 } 1204 if ((retry_object != fs.first_object) || 1205 (retry_pindex != fs.first_pindex)) { 1206 release_page(&fs); 1207 unlock_and_deallocate(&fs); 1208 goto RetryFault; 1209 } 1210 1211 /* 1212 * Check whether the protection has changed or the object has 1213 * been copied while we left the map unlocked. Changing from 1214 * read to write permission is OK - we leave the page 1215 * write-protected, and catch the write fault. Changing from 1216 * write to read permission means that we can't mark the page 1217 * write-enabled after all. 1218 */ 1219 prot &= retry_prot; 1220 } 1221 } 1222 1223 /* 1224 * If the page was filled by a pager, save the virtual address that 1225 * should be faulted on next under a sequential access pattern to the 1226 * map entry. A read lock on the map suffices to update this address 1227 * safely. 1228 */ 1229 if (hardfault) 1230 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1231 1232 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1233 vm_page_assert_xbusied(fs.m); 1234 1235 /* 1236 * Page must be completely valid or it is not fit to 1237 * map into user space. vm_pager_get_pages() ensures this. 1238 */ 1239 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1240 ("vm_fault: page %p partially invalid", fs.m)); 1241 VM_OBJECT_WUNLOCK(fs.object); 1242 1243 /* 1244 * Put this page into the physical map. We had to do the unlock above 1245 * because pmap_enter() may sleep. We don't put the page 1246 * back on the active queue until later so that the pageout daemon 1247 * won't find it (yet). 1248 */ 1249 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1250 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1251 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1252 wired == 0) 1253 vm_fault_prefault(&fs, vaddr, 1254 faultcount > 0 ? behind : PFBAK, 1255 faultcount > 0 ? ahead : PFFOR); 1256 VM_OBJECT_WLOCK(fs.object); 1257 vm_page_lock(fs.m); 1258 1259 /* 1260 * If the page is not wired down, then put it where the pageout daemon 1261 * can find it. 1262 */ 1263 if ((fault_flags & VM_FAULT_WIRE) != 0) { 1264 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 1265 vm_page_wire(fs.m); 1266 } else 1267 vm_page_activate(fs.m); 1268 if (m_hold != NULL) { 1269 *m_hold = fs.m; 1270 vm_page_hold(fs.m); 1271 } 1272 vm_page_unlock(fs.m); 1273 vm_page_xunbusy(fs.m); 1274 1275 /* 1276 * Unlock everything, and return 1277 */ 1278 unlock_and_deallocate(&fs); 1279 if (hardfault) { 1280 VM_CNT_INC(v_io_faults); 1281 curthread->td_ru.ru_majflt++; 1282 #ifdef RACCT 1283 if (racct_enable && fs.object->type == OBJT_VNODE) { 1284 PROC_LOCK(curproc); 1285 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1286 racct_add_force(curproc, RACCT_WRITEBPS, 1287 PAGE_SIZE + behind * PAGE_SIZE); 1288 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1289 } else { 1290 racct_add_force(curproc, RACCT_READBPS, 1291 PAGE_SIZE + ahead * PAGE_SIZE); 1292 racct_add_force(curproc, RACCT_READIOPS, 1); 1293 } 1294 PROC_UNLOCK(curproc); 1295 } 1296 #endif 1297 } else 1298 curthread->td_ru.ru_minflt++; 1299 1300 return (KERN_SUCCESS); 1301 } 1302 1303 /* 1304 * Speed up the reclamation of pages that precede the faulting pindex within 1305 * the first object of the shadow chain. Essentially, perform the equivalent 1306 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1307 * the faulting pindex by the cluster size when the pages read by vm_fault() 1308 * cross a cluster-size boundary. The cluster size is the greater of the 1309 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1310 * 1311 * When "fs->first_object" is a shadow object, the pages in the backing object 1312 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1313 * function must only be concerned with pages in the first object. 1314 */ 1315 static void 1316 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1317 { 1318 vm_map_entry_t entry; 1319 vm_object_t first_object, object; 1320 vm_offset_t end, start; 1321 vm_page_t m, m_next; 1322 vm_pindex_t pend, pstart; 1323 vm_size_t size; 1324 1325 object = fs->object; 1326 VM_OBJECT_ASSERT_WLOCKED(object); 1327 first_object = fs->first_object; 1328 if (first_object != object) { 1329 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1330 VM_OBJECT_WUNLOCK(object); 1331 VM_OBJECT_WLOCK(first_object); 1332 VM_OBJECT_WLOCK(object); 1333 } 1334 } 1335 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1336 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1337 size = VM_FAULT_DONTNEED_MIN; 1338 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1339 size = pagesizes[1]; 1340 end = rounddown2(vaddr, size); 1341 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1342 (entry = fs->entry)->start < end) { 1343 if (end - entry->start < size) 1344 start = entry->start; 1345 else 1346 start = end - size; 1347 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1348 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1349 entry->start); 1350 m_next = vm_page_find_least(first_object, pstart); 1351 pend = OFF_TO_IDX(entry->offset) + atop(end - 1352 entry->start); 1353 while ((m = m_next) != NULL && m->pindex < pend) { 1354 m_next = TAILQ_NEXT(m, listq); 1355 if (m->valid != VM_PAGE_BITS_ALL || 1356 vm_page_busied(m)) 1357 continue; 1358 1359 /* 1360 * Don't clear PGA_REFERENCED, since it would 1361 * likely represent a reference by a different 1362 * process. 1363 * 1364 * Typically, at this point, prefetched pages 1365 * are still in the inactive queue. Only 1366 * pages that triggered page faults are in the 1367 * active queue. 1368 */ 1369 vm_page_lock(m); 1370 vm_page_deactivate(m); 1371 vm_page_unlock(m); 1372 } 1373 } 1374 } 1375 if (first_object != object) 1376 VM_OBJECT_WUNLOCK(first_object); 1377 } 1378 1379 /* 1380 * vm_fault_prefault provides a quick way of clustering 1381 * pagefaults into a processes address space. It is a "cousin" 1382 * of vm_map_pmap_enter, except it runs at page fault time instead 1383 * of mmap time. 1384 */ 1385 static void 1386 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1387 int backward, int forward) 1388 { 1389 pmap_t pmap; 1390 vm_map_entry_t entry; 1391 vm_object_t backing_object, lobject; 1392 vm_offset_t addr, starta; 1393 vm_pindex_t pindex; 1394 vm_page_t m; 1395 int i; 1396 1397 pmap = fs->map->pmap; 1398 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1399 return; 1400 1401 entry = fs->entry; 1402 1403 if (addra < backward * PAGE_SIZE) { 1404 starta = entry->start; 1405 } else { 1406 starta = addra - backward * PAGE_SIZE; 1407 if (starta < entry->start) 1408 starta = entry->start; 1409 } 1410 1411 /* 1412 * Generate the sequence of virtual addresses that are candidates for 1413 * prefaulting in an outward spiral from the faulting virtual address, 1414 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1415 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1416 * If the candidate address doesn't have a backing physical page, then 1417 * the loop immediately terminates. 1418 */ 1419 for (i = 0; i < 2 * imax(backward, forward); i++) { 1420 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1421 PAGE_SIZE); 1422 if (addr > addra + forward * PAGE_SIZE) 1423 addr = 0; 1424 1425 if (addr < starta || addr >= entry->end) 1426 continue; 1427 1428 if (!pmap_is_prefaultable(pmap, addr)) 1429 continue; 1430 1431 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1432 lobject = entry->object.vm_object; 1433 VM_OBJECT_RLOCK(lobject); 1434 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1435 lobject->type == OBJT_DEFAULT && 1436 (backing_object = lobject->backing_object) != NULL) { 1437 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1438 0, ("vm_fault_prefault: unaligned object offset")); 1439 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1440 VM_OBJECT_RLOCK(backing_object); 1441 VM_OBJECT_RUNLOCK(lobject); 1442 lobject = backing_object; 1443 } 1444 if (m == NULL) { 1445 VM_OBJECT_RUNLOCK(lobject); 1446 break; 1447 } 1448 if (m->valid == VM_PAGE_BITS_ALL && 1449 (m->flags & PG_FICTITIOUS) == 0) 1450 pmap_enter_quick(pmap, addr, m, entry->protection); 1451 VM_OBJECT_RUNLOCK(lobject); 1452 } 1453 } 1454 1455 /* 1456 * Hold each of the physical pages that are mapped by the specified range of 1457 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1458 * and allow the specified types of access, "prot". If all of the implied 1459 * pages are successfully held, then the number of held pages is returned 1460 * together with pointers to those pages in the array "ma". However, if any 1461 * of the pages cannot be held, -1 is returned. 1462 */ 1463 int 1464 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1465 vm_prot_t prot, vm_page_t *ma, int max_count) 1466 { 1467 vm_offset_t end, va; 1468 vm_page_t *mp; 1469 int count; 1470 boolean_t pmap_failed; 1471 1472 if (len == 0) 1473 return (0); 1474 end = round_page(addr + len); 1475 addr = trunc_page(addr); 1476 1477 /* 1478 * Check for illegal addresses. 1479 */ 1480 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1481 return (-1); 1482 1483 if (atop(end - addr) > max_count) 1484 panic("vm_fault_quick_hold_pages: count > max_count"); 1485 count = atop(end - addr); 1486 1487 /* 1488 * Most likely, the physical pages are resident in the pmap, so it is 1489 * faster to try pmap_extract_and_hold() first. 1490 */ 1491 pmap_failed = FALSE; 1492 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1493 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1494 if (*mp == NULL) 1495 pmap_failed = TRUE; 1496 else if ((prot & VM_PROT_WRITE) != 0 && 1497 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1498 /* 1499 * Explicitly dirty the physical page. Otherwise, the 1500 * caller's changes may go unnoticed because they are 1501 * performed through an unmanaged mapping or by a DMA 1502 * operation. 1503 * 1504 * The object lock is not held here. 1505 * See vm_page_clear_dirty_mask(). 1506 */ 1507 vm_page_dirty(*mp); 1508 } 1509 } 1510 if (pmap_failed) { 1511 /* 1512 * One or more pages could not be held by the pmap. Either no 1513 * page was mapped at the specified virtual address or that 1514 * mapping had insufficient permissions. Attempt to fault in 1515 * and hold these pages. 1516 */ 1517 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1518 if (*mp == NULL && vm_fault_hold(map, va, prot, 1519 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1520 goto error; 1521 } 1522 return (count); 1523 error: 1524 for (mp = ma; mp < ma + count; mp++) 1525 if (*mp != NULL) { 1526 vm_page_lock(*mp); 1527 vm_page_unhold(*mp); 1528 vm_page_unlock(*mp); 1529 } 1530 return (-1); 1531 } 1532 1533 /* 1534 * Routine: 1535 * vm_fault_copy_entry 1536 * Function: 1537 * Create new shadow object backing dst_entry with private copy of 1538 * all underlying pages. When src_entry is equal to dst_entry, 1539 * function implements COW for wired-down map entry. Otherwise, 1540 * it forks wired entry into dst_map. 1541 * 1542 * In/out conditions: 1543 * The source and destination maps must be locked for write. 1544 * The source map entry must be wired down (or be a sharing map 1545 * entry corresponding to a main map entry that is wired down). 1546 */ 1547 void 1548 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1549 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1550 vm_ooffset_t *fork_charge) 1551 { 1552 vm_object_t backing_object, dst_object, object, src_object; 1553 vm_pindex_t dst_pindex, pindex, src_pindex; 1554 vm_prot_t access, prot; 1555 vm_offset_t vaddr; 1556 vm_page_t dst_m; 1557 vm_page_t src_m; 1558 boolean_t upgrade; 1559 1560 #ifdef lint 1561 src_map++; 1562 #endif /* lint */ 1563 1564 upgrade = src_entry == dst_entry; 1565 access = prot = dst_entry->protection; 1566 1567 src_object = src_entry->object.vm_object; 1568 src_pindex = OFF_TO_IDX(src_entry->offset); 1569 1570 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1571 dst_object = src_object; 1572 vm_object_reference(dst_object); 1573 } else { 1574 /* 1575 * Create the top-level object for the destination entry. (Doesn't 1576 * actually shadow anything - we copy the pages directly.) 1577 */ 1578 dst_object = vm_object_allocate(OBJT_DEFAULT, 1579 atop(dst_entry->end - dst_entry->start)); 1580 #if VM_NRESERVLEVEL > 0 1581 dst_object->flags |= OBJ_COLORED; 1582 dst_object->pg_color = atop(dst_entry->start); 1583 #endif 1584 } 1585 1586 VM_OBJECT_WLOCK(dst_object); 1587 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1588 ("vm_fault_copy_entry: vm_object not NULL")); 1589 if (src_object != dst_object) { 1590 dst_entry->object.vm_object = dst_object; 1591 dst_entry->offset = 0; 1592 dst_object->charge = dst_entry->end - dst_entry->start; 1593 } 1594 if (fork_charge != NULL) { 1595 KASSERT(dst_entry->cred == NULL, 1596 ("vm_fault_copy_entry: leaked swp charge")); 1597 dst_object->cred = curthread->td_ucred; 1598 crhold(dst_object->cred); 1599 *fork_charge += dst_object->charge; 1600 } else if (dst_object->cred == NULL) { 1601 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1602 dst_entry)); 1603 dst_object->cred = dst_entry->cred; 1604 dst_entry->cred = NULL; 1605 } 1606 1607 /* 1608 * If not an upgrade, then enter the mappings in the pmap as 1609 * read and/or execute accesses. Otherwise, enter them as 1610 * write accesses. 1611 * 1612 * A writeable large page mapping is only created if all of 1613 * the constituent small page mappings are modified. Marking 1614 * PTEs as modified on inception allows promotion to happen 1615 * without taking potentially large number of soft faults. 1616 */ 1617 if (!upgrade) 1618 access &= ~VM_PROT_WRITE; 1619 1620 /* 1621 * Loop through all of the virtual pages within the entry's 1622 * range, copying each page from the source object to the 1623 * destination object. Since the source is wired, those pages 1624 * must exist. In contrast, the destination is pageable. 1625 * Since the destination object does share any backing storage 1626 * with the source object, all of its pages must be dirtied, 1627 * regardless of whether they can be written. 1628 */ 1629 for (vaddr = dst_entry->start, dst_pindex = 0; 1630 vaddr < dst_entry->end; 1631 vaddr += PAGE_SIZE, dst_pindex++) { 1632 again: 1633 /* 1634 * Find the page in the source object, and copy it in. 1635 * Because the source is wired down, the page will be 1636 * in memory. 1637 */ 1638 if (src_object != dst_object) 1639 VM_OBJECT_RLOCK(src_object); 1640 object = src_object; 1641 pindex = src_pindex + dst_pindex; 1642 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1643 (backing_object = object->backing_object) != NULL) { 1644 /* 1645 * Unless the source mapping is read-only or 1646 * it is presently being upgraded from 1647 * read-only, the first object in the shadow 1648 * chain should provide all of the pages. In 1649 * other words, this loop body should never be 1650 * executed when the source mapping is already 1651 * read/write. 1652 */ 1653 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1654 upgrade, 1655 ("vm_fault_copy_entry: main object missing page")); 1656 1657 VM_OBJECT_RLOCK(backing_object); 1658 pindex += OFF_TO_IDX(object->backing_object_offset); 1659 if (object != dst_object) 1660 VM_OBJECT_RUNLOCK(object); 1661 object = backing_object; 1662 } 1663 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1664 1665 if (object != dst_object) { 1666 /* 1667 * Allocate a page in the destination object. 1668 */ 1669 dst_m = vm_page_alloc(dst_object, (src_object == 1670 dst_object ? src_pindex : 0) + dst_pindex, 1671 VM_ALLOC_NORMAL); 1672 if (dst_m == NULL) { 1673 VM_OBJECT_WUNLOCK(dst_object); 1674 VM_OBJECT_RUNLOCK(object); 1675 VM_WAIT; 1676 VM_OBJECT_WLOCK(dst_object); 1677 goto again; 1678 } 1679 pmap_copy_page(src_m, dst_m); 1680 VM_OBJECT_RUNLOCK(object); 1681 dst_m->valid = VM_PAGE_BITS_ALL; 1682 dst_m->dirty = VM_PAGE_BITS_ALL; 1683 } else { 1684 dst_m = src_m; 1685 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1686 goto again; 1687 vm_page_xbusy(dst_m); 1688 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1689 ("invalid dst page %p", dst_m)); 1690 } 1691 VM_OBJECT_WUNLOCK(dst_object); 1692 1693 /* 1694 * Enter it in the pmap. If a wired, copy-on-write 1695 * mapping is being replaced by a write-enabled 1696 * mapping, then wire that new mapping. 1697 */ 1698 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1699 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1700 1701 /* 1702 * Mark it no longer busy, and put it on the active list. 1703 */ 1704 VM_OBJECT_WLOCK(dst_object); 1705 1706 if (upgrade) { 1707 if (src_m != dst_m) { 1708 vm_page_lock(src_m); 1709 vm_page_unwire(src_m, PQ_INACTIVE); 1710 vm_page_unlock(src_m); 1711 vm_page_lock(dst_m); 1712 vm_page_wire(dst_m); 1713 vm_page_unlock(dst_m); 1714 } else { 1715 KASSERT(dst_m->wire_count > 0, 1716 ("dst_m %p is not wired", dst_m)); 1717 } 1718 } else { 1719 vm_page_lock(dst_m); 1720 vm_page_activate(dst_m); 1721 vm_page_unlock(dst_m); 1722 } 1723 vm_page_xunbusy(dst_m); 1724 } 1725 VM_OBJECT_WUNLOCK(dst_object); 1726 if (upgrade) { 1727 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1728 vm_object_deallocate(src_object); 1729 } 1730 } 1731 1732 /* 1733 * Block entry into the machine-independent layer's page fault handler by 1734 * the calling thread. Subsequent calls to vm_fault() by that thread will 1735 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1736 * spurious page faults. 1737 */ 1738 int 1739 vm_fault_disable_pagefaults(void) 1740 { 1741 1742 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1743 } 1744 1745 void 1746 vm_fault_enable_pagefaults(int save) 1747 { 1748 1749 curthread_pflags_restore(save); 1750 } 1751