1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 #include "opt_ktrace.h" 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/lock.h> 82 #include <sys/mman.h> 83 #include <sys/mutex.h> 84 #include <sys/pctrie.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/refcount.h> 88 #include <sys/resourcevar.h> 89 #include <sys/rwlock.h> 90 #include <sys/signalvar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysent.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #include <vm/vm.h> 100 #include <vm/vm_param.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pageout.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_reserv.h> 111 112 #define PFBAK 4 113 #define PFFOR 4 114 115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 116 117 #define VM_FAULT_DONTNEED_MIN 1048576 118 119 struct faultstate { 120 /* Fault parameters. */ 121 vm_offset_t vaddr; 122 vm_page_t *m_hold; 123 vm_prot_t fault_type; 124 vm_prot_t prot; 125 int fault_flags; 126 boolean_t wired; 127 128 /* Control state. */ 129 struct timeval oom_start_time; 130 bool oom_started; 131 int nera; 132 bool can_read_lock; 133 134 /* Page reference for cow. */ 135 vm_page_t m_cow; 136 137 /* Current object. */ 138 vm_object_t object; 139 vm_pindex_t pindex; 140 vm_page_t m; 141 142 /* Top-level map object. */ 143 vm_object_t first_object; 144 vm_pindex_t first_pindex; 145 vm_page_t first_m; 146 147 /* Map state. */ 148 vm_map_t map; 149 vm_map_entry_t entry; 150 int map_generation; 151 bool lookup_still_valid; 152 153 /* Vnode if locked. */ 154 struct vnode *vp; 155 }; 156 157 /* 158 * Return codes for internal fault routines. 159 */ 160 enum fault_status { 161 FAULT_SUCCESS = 10000, /* Return success to user. */ 162 FAULT_FAILURE, /* Return failure to user. */ 163 FAULT_CONTINUE, /* Continue faulting. */ 164 FAULT_RESTART, /* Restart fault. */ 165 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 166 FAULT_HARD, /* Performed I/O. */ 167 FAULT_SOFT, /* Found valid page. */ 168 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 169 }; 170 171 enum fault_next_status { 172 FAULT_NEXT_GOTOBJ = 1, 173 FAULT_NEXT_NOOBJ, 174 FAULT_NEXT_RESTART, 175 }; 176 177 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 178 int ahead); 179 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 180 int backward, int forward, bool obj_locked); 181 182 static int vm_pfault_oom_attempts = 3; 183 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 184 &vm_pfault_oom_attempts, 0, 185 "Number of page allocation attempts in page fault handler before it " 186 "triggers OOM handling"); 187 188 static int vm_pfault_oom_wait = 10; 189 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 190 &vm_pfault_oom_wait, 0, 191 "Number of seconds to wait for free pages before retrying " 192 "the page fault handler"); 193 194 static inline void 195 vm_fault_page_release(vm_page_t *mp) 196 { 197 vm_page_t m; 198 199 m = *mp; 200 if (m != NULL) { 201 /* 202 * We are likely to loop around again and attempt to busy 203 * this page. Deactivating it leaves it available for 204 * pageout while optimizing fault restarts. 205 */ 206 vm_page_deactivate(m); 207 vm_page_xunbusy(m); 208 *mp = NULL; 209 } 210 } 211 212 static inline void 213 vm_fault_page_free(vm_page_t *mp) 214 { 215 vm_page_t m; 216 217 m = *mp; 218 if (m != NULL) { 219 VM_OBJECT_ASSERT_WLOCKED(m->object); 220 if (!vm_page_wired(m)) 221 vm_page_free(m); 222 else 223 vm_page_xunbusy(m); 224 *mp = NULL; 225 } 226 } 227 228 /* 229 * Return true if a vm_pager_get_pages() call is needed in order to check 230 * whether the pager might have a particular page, false if it can be determined 231 * immediately that the pager can not have a copy. For swap objects, this can 232 * be checked quickly. 233 */ 234 static inline bool 235 vm_fault_object_needs_getpages(vm_object_t object) 236 { 237 VM_OBJECT_ASSERT_LOCKED(object); 238 239 return ((object->flags & OBJ_SWAP) == 0 || 240 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 241 } 242 243 static inline void 244 vm_fault_unlock_map(struct faultstate *fs) 245 { 246 247 if (fs->lookup_still_valid) { 248 vm_map_lookup_done(fs->map, fs->entry); 249 fs->lookup_still_valid = false; 250 } 251 } 252 253 static void 254 vm_fault_unlock_vp(struct faultstate *fs) 255 { 256 257 if (fs->vp != NULL) { 258 vput(fs->vp); 259 fs->vp = NULL; 260 } 261 } 262 263 static void 264 vm_fault_deallocate(struct faultstate *fs) 265 { 266 267 vm_fault_page_release(&fs->m_cow); 268 vm_fault_page_release(&fs->m); 269 vm_object_pip_wakeup(fs->object); 270 if (fs->object != fs->first_object) { 271 VM_OBJECT_WLOCK(fs->first_object); 272 vm_fault_page_free(&fs->first_m); 273 VM_OBJECT_WUNLOCK(fs->first_object); 274 vm_object_pip_wakeup(fs->first_object); 275 } 276 vm_object_deallocate(fs->first_object); 277 vm_fault_unlock_map(fs); 278 vm_fault_unlock_vp(fs); 279 } 280 281 static void 282 vm_fault_unlock_and_deallocate(struct faultstate *fs) 283 { 284 285 VM_OBJECT_UNLOCK(fs->object); 286 vm_fault_deallocate(fs); 287 } 288 289 static void 290 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 291 { 292 bool need_dirty; 293 294 if (((fs->prot & VM_PROT_WRITE) == 0 && 295 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 296 (m->oflags & VPO_UNMANAGED) != 0) 297 return; 298 299 VM_PAGE_OBJECT_BUSY_ASSERT(m); 300 301 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 302 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 303 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 304 305 vm_object_set_writeable_dirty(m->object); 306 307 /* 308 * If the fault is a write, we know that this page is being 309 * written NOW so dirty it explicitly to save on 310 * pmap_is_modified() calls later. 311 * 312 * Also, since the page is now dirty, we can possibly tell 313 * the pager to release any swap backing the page. 314 */ 315 if (need_dirty && vm_page_set_dirty(m) == 0) { 316 /* 317 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 318 * if the page is already dirty to prevent data written with 319 * the expectation of being synced from not being synced. 320 * Likewise if this entry does not request NOSYNC then make 321 * sure the page isn't marked NOSYNC. Applications sharing 322 * data should use the same flags to avoid ping ponging. 323 */ 324 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 325 vm_page_aflag_set(m, PGA_NOSYNC); 326 else 327 vm_page_aflag_clear(m, PGA_NOSYNC); 328 } 329 330 } 331 332 /* 333 * Unlocks fs.first_object and fs.map on success. 334 */ 335 static enum fault_status 336 vm_fault_soft_fast(struct faultstate *fs) 337 { 338 vm_page_t m, m_map; 339 #if VM_NRESERVLEVEL > 0 340 vm_page_t m_super; 341 int flags; 342 #endif 343 int psind; 344 vm_offset_t vaddr; 345 346 MPASS(fs->vp == NULL); 347 348 /* 349 * If we fail, vast majority of the time it is because the page is not 350 * there to begin with. Opportunistically perform the lookup and 351 * subsequent checks without the object lock, revalidate later. 352 * 353 * Note: a busy page can be mapped for read|execute access. 354 */ 355 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 356 if (m == NULL || !vm_page_all_valid(m) || 357 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 358 VM_OBJECT_WLOCK(fs->first_object); 359 return (FAULT_FAILURE); 360 } 361 362 vaddr = fs->vaddr; 363 364 VM_OBJECT_RLOCK(fs->first_object); 365 366 /* 367 * Now that we stabilized the state, revalidate the page is in the shape 368 * we encountered above. 369 */ 370 371 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 372 goto fail; 373 374 vm_object_busy(fs->first_object); 375 376 if (!vm_page_all_valid(m) || 377 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 378 goto fail_busy; 379 380 m_map = m; 381 psind = 0; 382 #if VM_NRESERVLEVEL > 0 383 if ((m->flags & PG_FICTITIOUS) == 0 && 384 (m_super = vm_reserv_to_superpage(m)) != NULL) { 385 psind = m_super->psind; 386 KASSERT(psind > 0, 387 ("psind %d of m_super %p < 1", psind, m_super)); 388 flags = PS_ALL_VALID; 389 if ((fs->prot & VM_PROT_WRITE) != 0) { 390 /* 391 * Create a superpage mapping allowing write access 392 * only if none of the constituent pages are busy and 393 * all of them are already dirty (except possibly for 394 * the page that was faulted on). 395 */ 396 flags |= PS_NONE_BUSY; 397 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 398 flags |= PS_ALL_DIRTY; 399 } 400 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start || 401 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end || 402 (vaddr & (pagesizes[psind] - 1)) != 403 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) || 404 !vm_page_ps_test(m_super, psind, flags, m) || 405 !pmap_ps_enabled(fs->map->pmap)) { 406 psind--; 407 if (psind == 0) 408 break; 409 m_super += rounddown2(m - m_super, 410 atop(pagesizes[psind])); 411 KASSERT(m_super->psind >= psind, 412 ("psind %d of m_super %p < %d", m_super->psind, 413 m_super, psind)); 414 } 415 if (psind > 0) { 416 m_map = m_super; 417 vaddr = rounddown2(vaddr, pagesizes[psind]); 418 /* Preset the modified bit for dirty superpages. */ 419 if ((flags & PS_ALL_DIRTY) != 0) 420 fs->fault_type |= VM_PROT_WRITE; 421 } 422 } 423 #endif 424 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 425 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 426 KERN_SUCCESS) 427 goto fail_busy; 428 if (fs->m_hold != NULL) { 429 (*fs->m_hold) = m; 430 vm_page_wire(m); 431 } 432 if (psind == 0 && !fs->wired) 433 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 434 VM_OBJECT_RUNLOCK(fs->first_object); 435 vm_fault_dirty(fs, m); 436 vm_object_unbusy(fs->first_object); 437 vm_map_lookup_done(fs->map, fs->entry); 438 curthread->td_ru.ru_minflt++; 439 return (FAULT_SUCCESS); 440 fail_busy: 441 vm_object_unbusy(fs->first_object); 442 fail: 443 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 444 VM_OBJECT_RUNLOCK(fs->first_object); 445 VM_OBJECT_WLOCK(fs->first_object); 446 } 447 return (FAULT_FAILURE); 448 } 449 450 static void 451 vm_fault_restore_map_lock(struct faultstate *fs) 452 { 453 454 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 455 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 456 457 if (!vm_map_trylock_read(fs->map)) { 458 VM_OBJECT_WUNLOCK(fs->first_object); 459 vm_map_lock_read(fs->map); 460 VM_OBJECT_WLOCK(fs->first_object); 461 } 462 fs->lookup_still_valid = true; 463 } 464 465 static void 466 vm_fault_populate_check_page(vm_page_t m) 467 { 468 469 /* 470 * Check each page to ensure that the pager is obeying the 471 * interface: the page must be installed in the object, fully 472 * valid, and exclusively busied. 473 */ 474 MPASS(m != NULL); 475 MPASS(vm_page_all_valid(m)); 476 MPASS(vm_page_xbusied(m)); 477 } 478 479 static void 480 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 481 vm_pindex_t last) 482 { 483 vm_page_t m; 484 vm_pindex_t pidx; 485 486 VM_OBJECT_ASSERT_WLOCKED(object); 487 MPASS(first <= last); 488 for (pidx = first, m = vm_page_lookup(object, pidx); 489 pidx <= last; pidx++, m = TAILQ_NEXT(m, listq)) { 490 KASSERT(m != NULL && m->pindex == pidx, 491 ("%s: pindex mismatch", __func__)); 492 vm_fault_populate_check_page(m); 493 vm_page_deactivate(m); 494 vm_page_xunbusy(m); 495 } 496 } 497 498 static enum fault_status 499 vm_fault_populate(struct faultstate *fs) 500 { 501 vm_offset_t vaddr; 502 vm_page_t m; 503 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 504 int bdry_idx, i, npages, psind, rv; 505 enum fault_status res; 506 507 MPASS(fs->object == fs->first_object); 508 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 509 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 510 MPASS(fs->first_object->backing_object == NULL); 511 MPASS(fs->lookup_still_valid); 512 513 pager_first = OFF_TO_IDX(fs->entry->offset); 514 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 515 vm_fault_unlock_map(fs); 516 vm_fault_unlock_vp(fs); 517 518 res = FAULT_SUCCESS; 519 520 /* 521 * Call the pager (driver) populate() method. 522 * 523 * There is no guarantee that the method will be called again 524 * if the current fault is for read, and a future fault is 525 * for write. Report the entry's maximum allowed protection 526 * to the driver. 527 */ 528 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 529 fs->fault_type, fs->entry->max_protection, &pager_first, 530 &pager_last); 531 532 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 533 if (rv == VM_PAGER_BAD) { 534 /* 535 * VM_PAGER_BAD is the backdoor for a pager to request 536 * normal fault handling. 537 */ 538 vm_fault_restore_map_lock(fs); 539 if (fs->map->timestamp != fs->map_generation) 540 return (FAULT_RESTART); 541 return (FAULT_CONTINUE); 542 } 543 if (rv != VM_PAGER_OK) 544 return (FAULT_FAILURE); /* AKA SIGSEGV */ 545 546 /* Ensure that the driver is obeying the interface. */ 547 MPASS(pager_first <= pager_last); 548 MPASS(fs->first_pindex <= pager_last); 549 MPASS(fs->first_pindex >= pager_first); 550 MPASS(pager_last < fs->first_object->size); 551 552 vm_fault_restore_map_lock(fs); 553 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 554 if (fs->map->timestamp != fs->map_generation) { 555 if (bdry_idx == 0) { 556 vm_fault_populate_cleanup(fs->first_object, pager_first, 557 pager_last); 558 } else { 559 m = vm_page_lookup(fs->first_object, pager_first); 560 if (m != fs->m) 561 vm_page_xunbusy(m); 562 } 563 return (FAULT_RESTART); 564 } 565 566 /* 567 * The map is unchanged after our last unlock. Process the fault. 568 * 569 * First, the special case of largepage mappings, where 570 * populate only busies the first page in superpage run. 571 */ 572 if (bdry_idx != 0) { 573 KASSERT(PMAP_HAS_LARGEPAGES, 574 ("missing pmap support for large pages")); 575 m = vm_page_lookup(fs->first_object, pager_first); 576 vm_fault_populate_check_page(m); 577 VM_OBJECT_WUNLOCK(fs->first_object); 578 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 579 fs->entry->offset; 580 /* assert alignment for entry */ 581 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 582 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 583 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 584 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 585 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 586 ("unaligned superpage m %p %#jx", m, 587 (uintmax_t)VM_PAGE_TO_PHYS(m))); 588 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 589 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 590 PMAP_ENTER_LARGEPAGE, bdry_idx); 591 VM_OBJECT_WLOCK(fs->first_object); 592 vm_page_xunbusy(m); 593 if (rv != KERN_SUCCESS) { 594 res = FAULT_FAILURE; 595 goto out; 596 } 597 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 598 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 599 vm_page_wire(m + i); 600 } 601 if (fs->m_hold != NULL) { 602 *fs->m_hold = m + (fs->first_pindex - pager_first); 603 vm_page_wire(*fs->m_hold); 604 } 605 goto out; 606 } 607 608 /* 609 * The range [pager_first, pager_last] that is given to the 610 * pager is only a hint. The pager may populate any range 611 * within the object that includes the requested page index. 612 * In case the pager expanded the range, clip it to fit into 613 * the map entry. 614 */ 615 map_first = OFF_TO_IDX(fs->entry->offset); 616 if (map_first > pager_first) { 617 vm_fault_populate_cleanup(fs->first_object, pager_first, 618 map_first - 1); 619 pager_first = map_first; 620 } 621 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 622 if (map_last < pager_last) { 623 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 624 pager_last); 625 pager_last = map_last; 626 } 627 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 628 pidx <= pager_last; 629 pidx += npages, m = TAILQ_NEXT(&m[npages - 1], listq)) { 630 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 631 KASSERT(m != NULL && m->pindex == pidx, 632 ("%s: pindex mismatch", __func__)); 633 psind = m->psind; 634 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 635 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 636 !pmap_ps_enabled(fs->map->pmap))) 637 psind--; 638 639 npages = atop(pagesizes[psind]); 640 for (i = 0; i < npages; i++) { 641 vm_fault_populate_check_page(&m[i]); 642 vm_fault_dirty(fs, &m[i]); 643 } 644 VM_OBJECT_WUNLOCK(fs->first_object); 645 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 646 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 647 648 /* 649 * pmap_enter() may fail for a superpage mapping if additional 650 * protection policies prevent the full mapping. 651 * For example, this will happen on amd64 if the entire 652 * address range does not share the same userspace protection 653 * key. Revert to single-page mappings if this happens. 654 */ 655 MPASS(rv == KERN_SUCCESS || 656 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 657 if (__predict_false(psind > 0 && 658 rv == KERN_PROTECTION_FAILURE)) { 659 MPASS(!fs->wired); 660 for (i = 0; i < npages; i++) { 661 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 662 &m[i], fs->prot, fs->fault_type, 0); 663 MPASS(rv == KERN_SUCCESS); 664 } 665 } 666 667 VM_OBJECT_WLOCK(fs->first_object); 668 for (i = 0; i < npages; i++) { 669 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 670 m[i].pindex == fs->first_pindex) 671 vm_page_wire(&m[i]); 672 else 673 vm_page_activate(&m[i]); 674 if (fs->m_hold != NULL && 675 m[i].pindex == fs->first_pindex) { 676 (*fs->m_hold) = &m[i]; 677 vm_page_wire(&m[i]); 678 } 679 vm_page_xunbusy(&m[i]); 680 } 681 } 682 out: 683 curthread->td_ru.ru_majflt++; 684 return (res); 685 } 686 687 static int prot_fault_translation; 688 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 689 &prot_fault_translation, 0, 690 "Control signal to deliver on protection fault"); 691 692 /* compat definition to keep common code for signal translation */ 693 #define UCODE_PAGEFLT 12 694 #ifdef T_PAGEFLT 695 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 696 #endif 697 698 /* 699 * vm_fault_trap: 700 * 701 * Handle a page fault occurring at the given address, 702 * requiring the given permissions, in the map specified. 703 * If successful, the page is inserted into the 704 * associated physical map. 705 * 706 * NOTE: the given address should be truncated to the 707 * proper page address. 708 * 709 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 710 * a standard error specifying why the fault is fatal is returned. 711 * 712 * The map in question must be referenced, and remains so. 713 * Caller may hold no locks. 714 */ 715 int 716 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 717 int fault_flags, int *signo, int *ucode) 718 { 719 int result; 720 721 MPASS(signo == NULL || ucode != NULL); 722 #ifdef KTRACE 723 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 724 ktrfault(vaddr, fault_type); 725 #endif 726 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 727 NULL); 728 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 729 result == KERN_INVALID_ADDRESS || 730 result == KERN_RESOURCE_SHORTAGE || 731 result == KERN_PROTECTION_FAILURE || 732 result == KERN_OUT_OF_BOUNDS, 733 ("Unexpected Mach error %d from vm_fault()", result)); 734 #ifdef KTRACE 735 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 736 ktrfaultend(result); 737 #endif 738 if (result != KERN_SUCCESS && signo != NULL) { 739 switch (result) { 740 case KERN_FAILURE: 741 case KERN_INVALID_ADDRESS: 742 *signo = SIGSEGV; 743 *ucode = SEGV_MAPERR; 744 break; 745 case KERN_RESOURCE_SHORTAGE: 746 *signo = SIGBUS; 747 *ucode = BUS_OOMERR; 748 break; 749 case KERN_OUT_OF_BOUNDS: 750 *signo = SIGBUS; 751 *ucode = BUS_OBJERR; 752 break; 753 case KERN_PROTECTION_FAILURE: 754 if (prot_fault_translation == 0) { 755 /* 756 * Autodetect. This check also covers 757 * the images without the ABI-tag ELF 758 * note. 759 */ 760 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 761 curproc->p_osrel >= P_OSREL_SIGSEGV) { 762 *signo = SIGSEGV; 763 *ucode = SEGV_ACCERR; 764 } else { 765 *signo = SIGBUS; 766 *ucode = UCODE_PAGEFLT; 767 } 768 } else if (prot_fault_translation == 1) { 769 /* Always compat mode. */ 770 *signo = SIGBUS; 771 *ucode = UCODE_PAGEFLT; 772 } else { 773 /* Always SIGSEGV mode. */ 774 *signo = SIGSEGV; 775 *ucode = SEGV_ACCERR; 776 } 777 break; 778 default: 779 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 780 result)); 781 break; 782 } 783 } 784 return (result); 785 } 786 787 static bool 788 vm_fault_object_ensure_wlocked(struct faultstate *fs) 789 { 790 if (fs->object == fs->first_object) 791 VM_OBJECT_ASSERT_WLOCKED(fs->object); 792 793 if (!fs->can_read_lock) { 794 VM_OBJECT_ASSERT_WLOCKED(fs->object); 795 return (true); 796 } 797 798 if (VM_OBJECT_WOWNED(fs->object)) 799 return (true); 800 801 if (VM_OBJECT_TRYUPGRADE(fs->object)) 802 return (true); 803 804 return (false); 805 } 806 807 static enum fault_status 808 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 809 { 810 struct vnode *vp; 811 int error, locked; 812 813 if (fs->object->type != OBJT_VNODE) 814 return (FAULT_CONTINUE); 815 vp = fs->object->handle; 816 if (vp == fs->vp) { 817 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 818 return (FAULT_CONTINUE); 819 } 820 821 /* 822 * Perform an unlock in case the desired vnode changed while 823 * the map was unlocked during a retry. 824 */ 825 vm_fault_unlock_vp(fs); 826 827 locked = VOP_ISLOCKED(vp); 828 if (locked != LK_EXCLUSIVE) 829 locked = LK_SHARED; 830 831 /* 832 * We must not sleep acquiring the vnode lock while we have 833 * the page exclusive busied or the object's 834 * paging-in-progress count incremented. Otherwise, we could 835 * deadlock. 836 */ 837 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 838 if (error == 0) { 839 fs->vp = vp; 840 return (FAULT_CONTINUE); 841 } 842 843 vhold(vp); 844 if (objlocked) 845 vm_fault_unlock_and_deallocate(fs); 846 else 847 vm_fault_deallocate(fs); 848 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 849 vdrop(vp); 850 fs->vp = vp; 851 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 852 return (FAULT_RESTART); 853 } 854 855 /* 856 * Calculate the desired readahead. Handle drop-behind. 857 * 858 * Returns the number of readahead blocks to pass to the pager. 859 */ 860 static int 861 vm_fault_readahead(struct faultstate *fs) 862 { 863 int era, nera; 864 u_char behavior; 865 866 KASSERT(fs->lookup_still_valid, ("map unlocked")); 867 era = fs->entry->read_ahead; 868 behavior = vm_map_entry_behavior(fs->entry); 869 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 870 nera = 0; 871 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 872 nera = VM_FAULT_READ_AHEAD_MAX; 873 if (fs->vaddr == fs->entry->next_read) 874 vm_fault_dontneed(fs, fs->vaddr, nera); 875 } else if (fs->vaddr == fs->entry->next_read) { 876 /* 877 * This is a sequential fault. Arithmetically 878 * increase the requested number of pages in 879 * the read-ahead window. The requested 880 * number of pages is "# of sequential faults 881 * x (read ahead min + 1) + read ahead min" 882 */ 883 nera = VM_FAULT_READ_AHEAD_MIN; 884 if (era > 0) { 885 nera += era + 1; 886 if (nera > VM_FAULT_READ_AHEAD_MAX) 887 nera = VM_FAULT_READ_AHEAD_MAX; 888 } 889 if (era == VM_FAULT_READ_AHEAD_MAX) 890 vm_fault_dontneed(fs, fs->vaddr, nera); 891 } else { 892 /* 893 * This is a non-sequential fault. 894 */ 895 nera = 0; 896 } 897 if (era != nera) { 898 /* 899 * A read lock on the map suffices to update 900 * the read ahead count safely. 901 */ 902 fs->entry->read_ahead = nera; 903 } 904 905 return (nera); 906 } 907 908 static int 909 vm_fault_lookup(struct faultstate *fs) 910 { 911 int result; 912 913 KASSERT(!fs->lookup_still_valid, 914 ("vm_fault_lookup: Map already locked.")); 915 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 916 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 917 &fs->first_pindex, &fs->prot, &fs->wired); 918 if (result != KERN_SUCCESS) { 919 vm_fault_unlock_vp(fs); 920 return (result); 921 } 922 923 fs->map_generation = fs->map->timestamp; 924 925 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 926 panic("%s: fault on nofault entry, addr: %#lx", 927 __func__, (u_long)fs->vaddr); 928 } 929 930 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 931 fs->entry->wiring_thread != curthread) { 932 vm_map_unlock_read(fs->map); 933 vm_map_lock(fs->map); 934 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 935 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 936 vm_fault_unlock_vp(fs); 937 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 938 vm_map_unlock_and_wait(fs->map, 0); 939 } else 940 vm_map_unlock(fs->map); 941 return (KERN_RESOURCE_SHORTAGE); 942 } 943 944 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 945 946 if (fs->wired) 947 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 948 else 949 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 950 ("!fs->wired && VM_FAULT_WIRE")); 951 fs->lookup_still_valid = true; 952 953 return (KERN_SUCCESS); 954 } 955 956 static int 957 vm_fault_relookup(struct faultstate *fs) 958 { 959 vm_object_t retry_object; 960 vm_pindex_t retry_pindex; 961 vm_prot_t retry_prot; 962 int result; 963 964 if (!vm_map_trylock_read(fs->map)) 965 return (KERN_RESTART); 966 967 fs->lookup_still_valid = true; 968 if (fs->map->timestamp == fs->map_generation) 969 return (KERN_SUCCESS); 970 971 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 972 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 973 &fs->wired); 974 if (result != KERN_SUCCESS) { 975 /* 976 * If retry of map lookup would have blocked then 977 * retry fault from start. 978 */ 979 if (result == KERN_FAILURE) 980 return (KERN_RESTART); 981 return (result); 982 } 983 if (retry_object != fs->first_object || 984 retry_pindex != fs->first_pindex) 985 return (KERN_RESTART); 986 987 /* 988 * Check whether the protection has changed or the object has 989 * been copied while we left the map unlocked. Changing from 990 * read to write permission is OK - we leave the page 991 * write-protected, and catch the write fault. Changing from 992 * write to read permission means that we can't mark the page 993 * write-enabled after all. 994 */ 995 fs->prot &= retry_prot; 996 fs->fault_type &= retry_prot; 997 if (fs->prot == 0) 998 return (KERN_RESTART); 999 1000 /* Reassert because wired may have changed. */ 1001 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 1002 ("!wired && VM_FAULT_WIRE")); 1003 1004 return (KERN_SUCCESS); 1005 } 1006 1007 static void 1008 vm_fault_cow(struct faultstate *fs) 1009 { 1010 bool is_first_object_locked; 1011 1012 KASSERT(fs->object != fs->first_object, 1013 ("source and target COW objects are identical")); 1014 1015 /* 1016 * This allows pages to be virtually copied from a backing_object 1017 * into the first_object, where the backing object has no other 1018 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1019 * we just move the page from the backing object to the first 1020 * object. Note that we must mark the page dirty in the first 1021 * object so that it will go out to swap when needed. 1022 */ 1023 is_first_object_locked = false; 1024 if ( 1025 /* 1026 * Only one shadow object and no other refs. 1027 */ 1028 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1029 /* 1030 * No other ways to look the object up 1031 */ 1032 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 && 1033 /* 1034 * We don't chase down the shadow chain and we can acquire locks. 1035 */ 1036 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) && 1037 fs->object == fs->first_object->backing_object && 1038 VM_OBJECT_TRYWLOCK(fs->object)) { 1039 /* 1040 * Remove but keep xbusy for replace. fs->m is moved into 1041 * fs->first_object and left busy while fs->first_m is 1042 * conditionally freed. 1043 */ 1044 vm_page_remove_xbusy(fs->m); 1045 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1046 fs->first_m); 1047 vm_page_dirty(fs->m); 1048 #if VM_NRESERVLEVEL > 0 1049 /* 1050 * Rename the reservation. 1051 */ 1052 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1053 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1054 #endif 1055 VM_OBJECT_WUNLOCK(fs->object); 1056 VM_OBJECT_WUNLOCK(fs->first_object); 1057 fs->first_m = fs->m; 1058 fs->m = NULL; 1059 VM_CNT_INC(v_cow_optim); 1060 } else { 1061 if (is_first_object_locked) 1062 VM_OBJECT_WUNLOCK(fs->first_object); 1063 /* 1064 * Oh, well, lets copy it. 1065 */ 1066 pmap_copy_page(fs->m, fs->first_m); 1067 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1068 vm_page_wire(fs->first_m); 1069 vm_page_unwire(fs->m, PQ_INACTIVE); 1070 } 1071 /* 1072 * Save the COW page to be released after pmap_enter is 1073 * complete. The new copy will be marked valid when we're ready 1074 * to map it. 1075 */ 1076 fs->m_cow = fs->m; 1077 fs->m = NULL; 1078 1079 /* 1080 * Typically, the shadow object is either private to this 1081 * address space (OBJ_ONEMAPPING) or its pages are read only. 1082 * In the highly unusual case where the pages of a shadow object 1083 * are read/write shared between this and other address spaces, 1084 * we need to ensure that any pmap-level mappings to the 1085 * original, copy-on-write page from the backing object are 1086 * removed from those other address spaces. 1087 * 1088 * The flag check is racy, but this is tolerable: if 1089 * OBJ_ONEMAPPING is cleared after the check, the busy state 1090 * ensures that new mappings of m_cow can't be created. 1091 * pmap_enter() will replace an existing mapping in the current 1092 * address space. If OBJ_ONEMAPPING is set after the check, 1093 * removing mappings will at worse trigger some unnecessary page 1094 * faults. 1095 */ 1096 vm_page_assert_xbusied(fs->m_cow); 1097 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1098 pmap_remove_all(fs->m_cow); 1099 } 1100 1101 vm_object_pip_wakeup(fs->object); 1102 1103 /* 1104 * Only use the new page below... 1105 */ 1106 fs->object = fs->first_object; 1107 fs->pindex = fs->first_pindex; 1108 fs->m = fs->first_m; 1109 VM_CNT_INC(v_cow_faults); 1110 curthread->td_cow++; 1111 } 1112 1113 static enum fault_next_status 1114 vm_fault_next(struct faultstate *fs) 1115 { 1116 vm_object_t next_object; 1117 1118 if (fs->object == fs->first_object || !fs->can_read_lock) 1119 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1120 else 1121 VM_OBJECT_ASSERT_LOCKED(fs->object); 1122 1123 /* 1124 * The requested page does not exist at this object/ 1125 * offset. Remove the invalid page from the object, 1126 * waking up anyone waiting for it, and continue on to 1127 * the next object. However, if this is the top-level 1128 * object, we must leave the busy page in place to 1129 * prevent another process from rushing past us, and 1130 * inserting the page in that object at the same time 1131 * that we are. 1132 */ 1133 if (fs->object == fs->first_object) { 1134 fs->first_m = fs->m; 1135 fs->m = NULL; 1136 } else if (fs->m != NULL) { 1137 if (!vm_fault_object_ensure_wlocked(fs)) { 1138 fs->can_read_lock = false; 1139 vm_fault_unlock_and_deallocate(fs); 1140 return (FAULT_NEXT_RESTART); 1141 } 1142 vm_fault_page_free(&fs->m); 1143 } 1144 1145 /* 1146 * Move on to the next object. Lock the next object before 1147 * unlocking the current one. 1148 */ 1149 next_object = fs->object->backing_object; 1150 if (next_object == NULL) 1151 return (FAULT_NEXT_NOOBJ); 1152 MPASS(fs->first_m != NULL); 1153 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1154 if (fs->can_read_lock) 1155 VM_OBJECT_RLOCK(next_object); 1156 else 1157 VM_OBJECT_WLOCK(next_object); 1158 vm_object_pip_add(next_object, 1); 1159 if (fs->object != fs->first_object) 1160 vm_object_pip_wakeup(fs->object); 1161 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1162 VM_OBJECT_UNLOCK(fs->object); 1163 fs->object = next_object; 1164 1165 return (FAULT_NEXT_GOTOBJ); 1166 } 1167 1168 static void 1169 vm_fault_zerofill(struct faultstate *fs) 1170 { 1171 1172 /* 1173 * If there's no object left, fill the page in the top 1174 * object with zeros. 1175 */ 1176 if (fs->object != fs->first_object) { 1177 vm_object_pip_wakeup(fs->object); 1178 fs->object = fs->first_object; 1179 fs->pindex = fs->first_pindex; 1180 } 1181 MPASS(fs->first_m != NULL); 1182 MPASS(fs->m == NULL); 1183 fs->m = fs->first_m; 1184 fs->first_m = NULL; 1185 1186 /* 1187 * Zero the page if necessary and mark it valid. 1188 */ 1189 if ((fs->m->flags & PG_ZERO) == 0) { 1190 pmap_zero_page(fs->m); 1191 } else { 1192 VM_CNT_INC(v_ozfod); 1193 } 1194 VM_CNT_INC(v_zfod); 1195 vm_page_valid(fs->m); 1196 } 1197 1198 /* 1199 * Initiate page fault after timeout. Returns true if caller should 1200 * do vm_waitpfault() after the call. 1201 */ 1202 static bool 1203 vm_fault_allocate_oom(struct faultstate *fs) 1204 { 1205 struct timeval now; 1206 1207 vm_fault_unlock_and_deallocate(fs); 1208 if (vm_pfault_oom_attempts < 0) 1209 return (true); 1210 if (!fs->oom_started) { 1211 fs->oom_started = true; 1212 getmicrotime(&fs->oom_start_time); 1213 return (true); 1214 } 1215 1216 getmicrotime(&now); 1217 timevalsub(&now, &fs->oom_start_time); 1218 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1219 return (true); 1220 1221 if (bootverbose) 1222 printf( 1223 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1224 curproc->p_pid, curproc->p_comm); 1225 vm_pageout_oom(VM_OOM_MEM_PF); 1226 fs->oom_started = false; 1227 return (false); 1228 } 1229 1230 /* 1231 * Allocate a page directly or via the object populate method. 1232 */ 1233 static enum fault_status 1234 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages) 1235 { 1236 struct domainset *dset; 1237 enum fault_status res; 1238 1239 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1240 res = vm_fault_lock_vnode(fs, true); 1241 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1242 if (res == FAULT_RESTART) 1243 return (res); 1244 } 1245 1246 if (fs->pindex >= fs->object->size) { 1247 vm_fault_unlock_and_deallocate(fs); 1248 return (FAULT_OUT_OF_BOUNDS); 1249 } 1250 1251 if (fs->object == fs->first_object && 1252 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1253 fs->first_object->shadow_count == 0) { 1254 res = vm_fault_populate(fs); 1255 switch (res) { 1256 case FAULT_SUCCESS: 1257 case FAULT_FAILURE: 1258 case FAULT_RESTART: 1259 vm_fault_unlock_and_deallocate(fs); 1260 return (res); 1261 case FAULT_CONTINUE: 1262 /* 1263 * Pager's populate() method 1264 * returned VM_PAGER_BAD. 1265 */ 1266 break; 1267 default: 1268 panic("inconsistent return codes"); 1269 } 1270 } 1271 1272 /* 1273 * Allocate a new page for this object/offset pair. 1274 * 1275 * If the process has a fatal signal pending, prioritize the allocation 1276 * with the expectation that the process will exit shortly and free some 1277 * pages. In particular, the signal may have been posted by the page 1278 * daemon in an attempt to resolve an out-of-memory condition. 1279 * 1280 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1281 * might be not observed here, and allocation fails, causing a restart 1282 * and new reading of the p_flag. 1283 */ 1284 dset = fs->object->domain.dr_policy; 1285 if (dset == NULL) 1286 dset = curthread->td_domain.dr_policy; 1287 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1288 #if VM_NRESERVLEVEL > 0 1289 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1290 #endif 1291 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1292 vm_fault_unlock_and_deallocate(fs); 1293 return (FAULT_FAILURE); 1294 } 1295 fs->m = vm_page_alloc_after(fs->object, pages, fs->pindex, 1296 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, 1297 vm_radix_iter_lookup_lt(pages, fs->pindex)); 1298 } 1299 if (fs->m == NULL) { 1300 if (vm_fault_allocate_oom(fs)) 1301 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1302 return (FAULT_RESTART); 1303 } 1304 fs->oom_started = false; 1305 1306 return (FAULT_CONTINUE); 1307 } 1308 1309 /* 1310 * Call the pager to retrieve the page if there is a chance 1311 * that the pager has it, and potentially retrieve additional 1312 * pages at the same time. 1313 */ 1314 static enum fault_status 1315 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1316 { 1317 vm_offset_t e_end, e_start; 1318 int ahead, behind, cluster_offset, rv; 1319 enum fault_status status; 1320 u_char behavior; 1321 1322 /* 1323 * Prepare for unlocking the map. Save the map 1324 * entry's start and end addresses, which are used to 1325 * optimize the size of the pager operation below. 1326 * Even if the map entry's addresses change after 1327 * unlocking the map, using the saved addresses is 1328 * safe. 1329 */ 1330 e_start = fs->entry->start; 1331 e_end = fs->entry->end; 1332 behavior = vm_map_entry_behavior(fs->entry); 1333 1334 /* 1335 * If the pager for the current object might have 1336 * the page, then determine the number of additional 1337 * pages to read and potentially reprioritize 1338 * previously read pages for earlier reclamation. 1339 * These operations should only be performed once per 1340 * page fault. Even if the current pager doesn't 1341 * have the page, the number of additional pages to 1342 * read will apply to subsequent objects in the 1343 * shadow chain. 1344 */ 1345 if (fs->nera == -1 && !P_KILLED(curproc)) 1346 fs->nera = vm_fault_readahead(fs); 1347 1348 /* 1349 * Release the map lock before locking the vnode or 1350 * sleeping in the pager. (If the current object has 1351 * a shadow, then an earlier iteration of this loop 1352 * may have already unlocked the map.) 1353 */ 1354 vm_fault_unlock_map(fs); 1355 1356 status = vm_fault_lock_vnode(fs, false); 1357 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1358 if (status == FAULT_RESTART) 1359 return (status); 1360 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map), 1361 ("vm_fault: vnode-backed object mapped by system map")); 1362 1363 /* 1364 * Page in the requested page and hint the pager, 1365 * that it may bring up surrounding pages. 1366 */ 1367 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1368 P_KILLED(curproc)) { 1369 behind = 0; 1370 ahead = 0; 1371 } else { 1372 /* Is this a sequential fault? */ 1373 if (fs->nera > 0) { 1374 behind = 0; 1375 ahead = fs->nera; 1376 } else { 1377 /* 1378 * Request a cluster of pages that is 1379 * aligned to a VM_FAULT_READ_DEFAULT 1380 * page offset boundary within the 1381 * object. Alignment to a page offset 1382 * boundary is more likely to coincide 1383 * with the underlying file system 1384 * block than alignment to a virtual 1385 * address boundary. 1386 */ 1387 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1388 behind = ulmin(cluster_offset, 1389 atop(fs->vaddr - e_start)); 1390 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1391 } 1392 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1393 } 1394 *behindp = behind; 1395 *aheadp = ahead; 1396 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1397 if (rv == VM_PAGER_OK) 1398 return (FAULT_HARD); 1399 if (rv == VM_PAGER_ERROR) 1400 printf("vm_fault: pager read error, pid %d (%s)\n", 1401 curproc->p_pid, curproc->p_comm); 1402 /* 1403 * If an I/O error occurred or the requested page was 1404 * outside the range of the pager, clean up and return 1405 * an error. 1406 */ 1407 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1408 VM_OBJECT_WLOCK(fs->object); 1409 vm_fault_page_free(&fs->m); 1410 vm_fault_unlock_and_deallocate(fs); 1411 return (FAULT_OUT_OF_BOUNDS); 1412 } 1413 KASSERT(rv == VM_PAGER_FAIL, 1414 ("%s: unexpected pager error %d", __func__, rv)); 1415 return (FAULT_CONTINUE); 1416 } 1417 1418 /* 1419 * Wait/Retry if the page is busy. We have to do this if the page is 1420 * either exclusive or shared busy because the vm_pager may be using 1421 * read busy for pageouts (and even pageins if it is the vnode pager), 1422 * and we could end up trying to pagein and pageout the same page 1423 * simultaneously. 1424 * 1425 * We can theoretically allow the busy case on a read fault if the page 1426 * is marked valid, but since such pages are typically already pmap'd, 1427 * putting that special case in might be more effort then it is worth. 1428 * We cannot under any circumstances mess around with a shared busied 1429 * page except, perhaps, to pmap it. 1430 */ 1431 static void 1432 vm_fault_busy_sleep(struct faultstate *fs) 1433 { 1434 /* 1435 * Reference the page before unlocking and 1436 * sleeping so that the page daemon is less 1437 * likely to reclaim it. 1438 */ 1439 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1440 if (fs->object != fs->first_object) { 1441 vm_fault_page_release(&fs->first_m); 1442 vm_object_pip_wakeup(fs->first_object); 1443 } 1444 vm_object_pip_wakeup(fs->object); 1445 vm_fault_unlock_map(fs); 1446 if (fs->m != vm_page_lookup(fs->object, fs->pindex) || 1447 !vm_page_busy_sleep(fs->m, "vmpfw", 0)) 1448 VM_OBJECT_UNLOCK(fs->object); 1449 VM_CNT_INC(v_intrans); 1450 vm_object_deallocate(fs->first_object); 1451 } 1452 1453 /* 1454 * Handle page lookup, populate, allocate, page-in for the current 1455 * object. 1456 * 1457 * The object is locked on entry and will remain locked with a return 1458 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1459 * Otherwise, the object will be unlocked upon return. 1460 */ 1461 static enum fault_status 1462 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1463 { 1464 struct pctrie_iter pages; 1465 enum fault_status res; 1466 bool dead; 1467 1468 if (fs->object == fs->first_object || !fs->can_read_lock) 1469 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1470 else 1471 VM_OBJECT_ASSERT_LOCKED(fs->object); 1472 1473 /* 1474 * If the object is marked for imminent termination, we retry 1475 * here, since the collapse pass has raced with us. Otherwise, 1476 * if we see terminally dead object, return fail. 1477 */ 1478 if ((fs->object->flags & OBJ_DEAD) != 0) { 1479 dead = fs->object->type == OBJT_DEAD; 1480 vm_fault_unlock_and_deallocate(fs); 1481 if (dead) 1482 return (FAULT_PROTECTION_FAILURE); 1483 pause("vmf_de", 1); 1484 return (FAULT_RESTART); 1485 } 1486 1487 /* 1488 * See if the page is resident. 1489 */ 1490 vm_page_iter_init(&pages, fs->object); 1491 fs->m = vm_radix_iter_lookup(&pages, fs->pindex); 1492 if (fs->m != NULL) { 1493 if (!vm_page_tryxbusy(fs->m)) { 1494 vm_fault_busy_sleep(fs); 1495 return (FAULT_RESTART); 1496 } 1497 1498 /* 1499 * The page is marked busy for other processes and the 1500 * pagedaemon. If it is still completely valid we are 1501 * done. 1502 */ 1503 if (vm_page_all_valid(fs->m)) { 1504 VM_OBJECT_UNLOCK(fs->object); 1505 return (FAULT_SOFT); 1506 } 1507 } 1508 1509 /* 1510 * Page is not resident. If the pager might contain the page 1511 * or this is the beginning of the search, allocate a new 1512 * page. 1513 */ 1514 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1515 fs->object == fs->first_object)) { 1516 if (!vm_fault_object_ensure_wlocked(fs)) { 1517 fs->can_read_lock = false; 1518 vm_fault_unlock_and_deallocate(fs); 1519 return (FAULT_RESTART); 1520 } 1521 res = vm_fault_allocate(fs, &pages); 1522 if (res != FAULT_CONTINUE) 1523 return (res); 1524 } 1525 1526 /* 1527 * Check to see if the pager can possibly satisfy this fault. 1528 * If not, skip to the next object without dropping the lock to 1529 * preserve atomicity of shadow faults. 1530 */ 1531 if (vm_fault_object_needs_getpages(fs->object)) { 1532 /* 1533 * At this point, we have either allocated a new page 1534 * or found an existing page that is only partially 1535 * valid. 1536 * 1537 * We hold a reference on the current object and the 1538 * page is exclusive busied. The exclusive busy 1539 * prevents simultaneous faults and collapses while 1540 * the object lock is dropped. 1541 */ 1542 VM_OBJECT_UNLOCK(fs->object); 1543 res = vm_fault_getpages(fs, behindp, aheadp); 1544 if (res == FAULT_CONTINUE) 1545 VM_OBJECT_WLOCK(fs->object); 1546 } else { 1547 res = FAULT_CONTINUE; 1548 } 1549 return (res); 1550 } 1551 1552 int 1553 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1554 int fault_flags, vm_page_t *m_hold) 1555 { 1556 struct pctrie_iter pages; 1557 struct faultstate fs; 1558 int ahead, behind, faultcount, rv; 1559 enum fault_status res; 1560 enum fault_next_status res_next; 1561 bool hardfault; 1562 1563 VM_CNT_INC(v_vm_faults); 1564 1565 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1566 return (KERN_PROTECTION_FAILURE); 1567 1568 fs.vp = NULL; 1569 fs.vaddr = vaddr; 1570 fs.m_hold = m_hold; 1571 fs.fault_flags = fault_flags; 1572 fs.map = map; 1573 fs.lookup_still_valid = false; 1574 fs.oom_started = false; 1575 fs.nera = -1; 1576 fs.can_read_lock = true; 1577 faultcount = 0; 1578 hardfault = false; 1579 1580 RetryFault: 1581 fs.fault_type = fault_type; 1582 1583 /* 1584 * Find the backing store object and offset into it to begin the 1585 * search. 1586 */ 1587 rv = vm_fault_lookup(&fs); 1588 if (rv != KERN_SUCCESS) { 1589 if (rv == KERN_RESOURCE_SHORTAGE) 1590 goto RetryFault; 1591 return (rv); 1592 } 1593 1594 /* 1595 * Try to avoid lock contention on the top-level object through 1596 * special-case handling of some types of page faults, specifically, 1597 * those that are mapping an existing page from the top-level object. 1598 * Under this condition, a read lock on the object suffices, allowing 1599 * multiple page faults of a similar type to run in parallel. 1600 */ 1601 if (fs.vp == NULL /* avoid locked vnode leak */ && 1602 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1603 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1604 res = vm_fault_soft_fast(&fs); 1605 if (res == FAULT_SUCCESS) { 1606 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1607 return (KERN_SUCCESS); 1608 } 1609 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1610 } else { 1611 vm_page_iter_init(&pages, fs.first_object); 1612 VM_OBJECT_WLOCK(fs.first_object); 1613 } 1614 1615 /* 1616 * Make a reference to this object to prevent its disposal while we 1617 * are messing with it. Once we have the reference, the map is free 1618 * to be diddled. Since objects reference their shadows (and copies), 1619 * they will stay around as well. 1620 * 1621 * Bump the paging-in-progress count to prevent size changes (e.g. 1622 * truncation operations) during I/O. 1623 */ 1624 vm_object_reference_locked(fs.first_object); 1625 vm_object_pip_add(fs.first_object, 1); 1626 1627 fs.m_cow = fs.m = fs.first_m = NULL; 1628 1629 /* 1630 * Search for the page at object/offset. 1631 */ 1632 fs.object = fs.first_object; 1633 fs.pindex = fs.first_pindex; 1634 1635 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1636 res = vm_fault_allocate(&fs, &pages); 1637 switch (res) { 1638 case FAULT_RESTART: 1639 goto RetryFault; 1640 case FAULT_SUCCESS: 1641 return (KERN_SUCCESS); 1642 case FAULT_FAILURE: 1643 return (KERN_FAILURE); 1644 case FAULT_OUT_OF_BOUNDS: 1645 return (KERN_OUT_OF_BOUNDS); 1646 case FAULT_CONTINUE: 1647 break; 1648 default: 1649 panic("vm_fault: Unhandled status %d", res); 1650 } 1651 } 1652 1653 while (TRUE) { 1654 KASSERT(fs.m == NULL, 1655 ("page still set %p at loop start", fs.m)); 1656 1657 res = vm_fault_object(&fs, &behind, &ahead); 1658 switch (res) { 1659 case FAULT_SOFT: 1660 goto found; 1661 case FAULT_HARD: 1662 faultcount = behind + 1 + ahead; 1663 hardfault = true; 1664 goto found; 1665 case FAULT_RESTART: 1666 goto RetryFault; 1667 case FAULT_SUCCESS: 1668 return (KERN_SUCCESS); 1669 case FAULT_FAILURE: 1670 return (KERN_FAILURE); 1671 case FAULT_OUT_OF_BOUNDS: 1672 return (KERN_OUT_OF_BOUNDS); 1673 case FAULT_PROTECTION_FAILURE: 1674 return (KERN_PROTECTION_FAILURE); 1675 case FAULT_CONTINUE: 1676 break; 1677 default: 1678 panic("vm_fault: Unhandled status %d", res); 1679 } 1680 1681 /* 1682 * The page was not found in the current object. Try to 1683 * traverse into a backing object or zero fill if none is 1684 * found. 1685 */ 1686 res_next = vm_fault_next(&fs); 1687 if (res_next == FAULT_NEXT_RESTART) 1688 goto RetryFault; 1689 else if (res_next == FAULT_NEXT_GOTOBJ) 1690 continue; 1691 MPASS(res_next == FAULT_NEXT_NOOBJ); 1692 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1693 if (fs.first_object == fs.object) 1694 vm_fault_page_free(&fs.first_m); 1695 vm_fault_unlock_and_deallocate(&fs); 1696 return (KERN_OUT_OF_BOUNDS); 1697 } 1698 VM_OBJECT_UNLOCK(fs.object); 1699 vm_fault_zerofill(&fs); 1700 /* Don't try to prefault neighboring pages. */ 1701 faultcount = 1; 1702 break; 1703 } 1704 1705 found: 1706 /* 1707 * A valid page has been found and exclusively busied. The 1708 * object lock must no longer be held. 1709 */ 1710 vm_page_assert_xbusied(fs.m); 1711 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1712 1713 /* 1714 * If the page is being written, but isn't already owned by the 1715 * top-level object, we have to copy it into a new page owned by the 1716 * top-level object. 1717 */ 1718 if (fs.object != fs.first_object) { 1719 /* 1720 * We only really need to copy if we want to write it. 1721 */ 1722 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1723 vm_fault_cow(&fs); 1724 /* 1725 * We only try to prefault read-only mappings to the 1726 * neighboring pages when this copy-on-write fault is 1727 * a hard fault. In other cases, trying to prefault 1728 * is typically wasted effort. 1729 */ 1730 if (faultcount == 0) 1731 faultcount = 1; 1732 1733 } else { 1734 fs.prot &= ~VM_PROT_WRITE; 1735 } 1736 } 1737 1738 /* 1739 * We must verify that the maps have not changed since our last 1740 * lookup. 1741 */ 1742 if (!fs.lookup_still_valid) { 1743 rv = vm_fault_relookup(&fs); 1744 if (rv != KERN_SUCCESS) { 1745 vm_fault_deallocate(&fs); 1746 if (rv == KERN_RESTART) 1747 goto RetryFault; 1748 return (rv); 1749 } 1750 } 1751 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1752 1753 /* 1754 * If the page was filled by a pager, save the virtual address that 1755 * should be faulted on next under a sequential access pattern to the 1756 * map entry. A read lock on the map suffices to update this address 1757 * safely. 1758 */ 1759 if (hardfault) 1760 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1761 1762 /* 1763 * If the page to be mapped was copied from a backing object, we defer 1764 * marking it valid until here, where the fault handler is guaranteed to 1765 * succeed. Otherwise we can end up with a shadowed, mapped page in the 1766 * backing object, which violates an invariant of vm_object_collapse() 1767 * that shadowed pages are not mapped. 1768 */ 1769 if (fs.m_cow != NULL) { 1770 KASSERT(vm_page_none_valid(fs.m), 1771 ("vm_fault: page %p is already valid", fs.m_cow)); 1772 vm_page_valid(fs.m); 1773 } 1774 1775 /* 1776 * Page must be completely valid or it is not fit to 1777 * map into user space. vm_pager_get_pages() ensures this. 1778 */ 1779 vm_page_assert_xbusied(fs.m); 1780 KASSERT(vm_page_all_valid(fs.m), 1781 ("vm_fault: page %p partially invalid", fs.m)); 1782 1783 vm_fault_dirty(&fs, fs.m); 1784 1785 /* 1786 * Put this page into the physical map. We had to do the unlock above 1787 * because pmap_enter() may sleep. We don't put the page 1788 * back on the active queue until later so that the pageout daemon 1789 * won't find it (yet). 1790 */ 1791 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1792 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1793 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1794 fs.wired == 0) 1795 vm_fault_prefault(&fs, vaddr, 1796 faultcount > 0 ? behind : PFBAK, 1797 faultcount > 0 ? ahead : PFFOR, false); 1798 1799 /* 1800 * If the page is not wired down, then put it where the pageout daemon 1801 * can find it. 1802 */ 1803 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1804 vm_page_wire(fs.m); 1805 else 1806 vm_page_activate(fs.m); 1807 if (fs.m_hold != NULL) { 1808 (*fs.m_hold) = fs.m; 1809 vm_page_wire(fs.m); 1810 } 1811 vm_page_xunbusy(fs.m); 1812 fs.m = NULL; 1813 1814 /* 1815 * Unlock everything, and return 1816 */ 1817 vm_fault_deallocate(&fs); 1818 if (hardfault) { 1819 VM_CNT_INC(v_io_faults); 1820 curthread->td_ru.ru_majflt++; 1821 #ifdef RACCT 1822 if (racct_enable && fs.object->type == OBJT_VNODE) { 1823 PROC_LOCK(curproc); 1824 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1825 racct_add_force(curproc, RACCT_WRITEBPS, 1826 PAGE_SIZE + behind * PAGE_SIZE); 1827 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1828 } else { 1829 racct_add_force(curproc, RACCT_READBPS, 1830 PAGE_SIZE + ahead * PAGE_SIZE); 1831 racct_add_force(curproc, RACCT_READIOPS, 1); 1832 } 1833 PROC_UNLOCK(curproc); 1834 } 1835 #endif 1836 } else 1837 curthread->td_ru.ru_minflt++; 1838 1839 return (KERN_SUCCESS); 1840 } 1841 1842 /* 1843 * Speed up the reclamation of pages that precede the faulting pindex within 1844 * the first object of the shadow chain. Essentially, perform the equivalent 1845 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1846 * the faulting pindex by the cluster size when the pages read by vm_fault() 1847 * cross a cluster-size boundary. The cluster size is the greater of the 1848 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1849 * 1850 * When "fs->first_object" is a shadow object, the pages in the backing object 1851 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1852 * function must only be concerned with pages in the first object. 1853 */ 1854 static void 1855 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1856 { 1857 vm_map_entry_t entry; 1858 vm_object_t first_object; 1859 vm_offset_t end, start; 1860 vm_page_t m, m_next; 1861 vm_pindex_t pend, pstart; 1862 vm_size_t size; 1863 1864 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1865 first_object = fs->first_object; 1866 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1867 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1868 VM_OBJECT_RLOCK(first_object); 1869 size = VM_FAULT_DONTNEED_MIN; 1870 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1871 size = pagesizes[1]; 1872 end = rounddown2(vaddr, size); 1873 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1874 (entry = fs->entry)->start < end) { 1875 if (end - entry->start < size) 1876 start = entry->start; 1877 else 1878 start = end - size; 1879 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1880 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1881 entry->start); 1882 m_next = vm_page_find_least(first_object, pstart); 1883 pend = OFF_TO_IDX(entry->offset) + atop(end - 1884 entry->start); 1885 while ((m = m_next) != NULL && m->pindex < pend) { 1886 m_next = TAILQ_NEXT(m, listq); 1887 if (!vm_page_all_valid(m) || 1888 vm_page_busied(m)) 1889 continue; 1890 1891 /* 1892 * Don't clear PGA_REFERENCED, since it would 1893 * likely represent a reference by a different 1894 * process. 1895 * 1896 * Typically, at this point, prefetched pages 1897 * are still in the inactive queue. Only 1898 * pages that triggered page faults are in the 1899 * active queue. The test for whether the page 1900 * is in the inactive queue is racy; in the 1901 * worst case we will requeue the page 1902 * unnecessarily. 1903 */ 1904 if (!vm_page_inactive(m)) 1905 vm_page_deactivate(m); 1906 } 1907 } 1908 VM_OBJECT_RUNLOCK(first_object); 1909 } 1910 } 1911 1912 /* 1913 * vm_fault_prefault provides a quick way of clustering 1914 * pagefaults into a processes address space. It is a "cousin" 1915 * of vm_map_pmap_enter, except it runs at page fault time instead 1916 * of mmap time. 1917 */ 1918 static void 1919 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1920 int backward, int forward, bool obj_locked) 1921 { 1922 pmap_t pmap; 1923 vm_map_entry_t entry; 1924 vm_object_t backing_object, lobject; 1925 vm_offset_t addr, starta; 1926 vm_pindex_t pindex; 1927 vm_page_t m; 1928 vm_prot_t prot; 1929 int i; 1930 1931 pmap = fs->map->pmap; 1932 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1933 return; 1934 1935 entry = fs->entry; 1936 1937 if (addra < backward * PAGE_SIZE) { 1938 starta = entry->start; 1939 } else { 1940 starta = addra - backward * PAGE_SIZE; 1941 if (starta < entry->start) 1942 starta = entry->start; 1943 } 1944 prot = entry->protection; 1945 1946 /* 1947 * If pmap_enter() has enabled write access on a nearby mapping, then 1948 * don't attempt promotion, because it will fail. 1949 */ 1950 if ((fs->prot & VM_PROT_WRITE) != 0) 1951 prot |= VM_PROT_NO_PROMOTE; 1952 1953 /* 1954 * Generate the sequence of virtual addresses that are candidates for 1955 * prefaulting in an outward spiral from the faulting virtual address, 1956 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1957 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1958 * If the candidate address doesn't have a backing physical page, then 1959 * the loop immediately terminates. 1960 */ 1961 for (i = 0; i < 2 * imax(backward, forward); i++) { 1962 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1963 PAGE_SIZE); 1964 if (addr > addra + forward * PAGE_SIZE) 1965 addr = 0; 1966 1967 if (addr < starta || addr >= entry->end) 1968 continue; 1969 1970 if (!pmap_is_prefaultable(pmap, addr)) 1971 continue; 1972 1973 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1974 lobject = entry->object.vm_object; 1975 if (!obj_locked) 1976 VM_OBJECT_RLOCK(lobject); 1977 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1978 !vm_fault_object_needs_getpages(lobject) && 1979 (backing_object = lobject->backing_object) != NULL) { 1980 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1981 0, ("vm_fault_prefault: unaligned object offset")); 1982 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1983 VM_OBJECT_RLOCK(backing_object); 1984 if (!obj_locked || lobject != entry->object.vm_object) 1985 VM_OBJECT_RUNLOCK(lobject); 1986 lobject = backing_object; 1987 } 1988 if (m == NULL) { 1989 if (!obj_locked || lobject != entry->object.vm_object) 1990 VM_OBJECT_RUNLOCK(lobject); 1991 break; 1992 } 1993 if (vm_page_all_valid(m) && 1994 (m->flags & PG_FICTITIOUS) == 0) 1995 pmap_enter_quick(pmap, addr, m, prot); 1996 if (!obj_locked || lobject != entry->object.vm_object) 1997 VM_OBJECT_RUNLOCK(lobject); 1998 } 1999 } 2000 2001 /* 2002 * Hold each of the physical pages that are mapped by the specified range of 2003 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 2004 * and allow the specified types of access, "prot". If all of the implied 2005 * pages are successfully held, then the number of held pages is returned 2006 * together with pointers to those pages in the array "ma". However, if any 2007 * of the pages cannot be held, -1 is returned. 2008 */ 2009 int 2010 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2011 vm_prot_t prot, vm_page_t *ma, int max_count) 2012 { 2013 vm_offset_t end, va; 2014 vm_page_t *mp; 2015 int count; 2016 boolean_t pmap_failed; 2017 2018 if (len == 0) 2019 return (0); 2020 end = round_page(addr + len); 2021 addr = trunc_page(addr); 2022 2023 if (!vm_map_range_valid(map, addr, end)) 2024 return (-1); 2025 2026 if (atop(end - addr) > max_count) 2027 panic("vm_fault_quick_hold_pages: count > max_count"); 2028 count = atop(end - addr); 2029 2030 /* 2031 * Most likely, the physical pages are resident in the pmap, so it is 2032 * faster to try pmap_extract_and_hold() first. 2033 */ 2034 pmap_failed = FALSE; 2035 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2036 *mp = pmap_extract_and_hold(map->pmap, va, prot); 2037 if (*mp == NULL) 2038 pmap_failed = TRUE; 2039 else if ((prot & VM_PROT_WRITE) != 0 && 2040 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2041 /* 2042 * Explicitly dirty the physical page. Otherwise, the 2043 * caller's changes may go unnoticed because they are 2044 * performed through an unmanaged mapping or by a DMA 2045 * operation. 2046 * 2047 * The object lock is not held here. 2048 * See vm_page_clear_dirty_mask(). 2049 */ 2050 vm_page_dirty(*mp); 2051 } 2052 } 2053 if (pmap_failed) { 2054 /* 2055 * One or more pages could not be held by the pmap. Either no 2056 * page was mapped at the specified virtual address or that 2057 * mapping had insufficient permissions. Attempt to fault in 2058 * and hold these pages. 2059 * 2060 * If vm_fault_disable_pagefaults() was called, 2061 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2062 * acquire MD VM locks, which means we must not call 2063 * vm_fault(). Some (out of tree) callers mark 2064 * too wide a code area with vm_fault_disable_pagefaults() 2065 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2066 * the proper behaviour explicitly. 2067 */ 2068 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2069 (curthread->td_pflags & TDP_NOFAULTING) != 0) 2070 goto error; 2071 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 2072 if (*mp == NULL && vm_fault(map, va, prot, 2073 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 2074 goto error; 2075 } 2076 return (count); 2077 error: 2078 for (mp = ma; mp < ma + count; mp++) 2079 if (*mp != NULL) 2080 vm_page_unwire(*mp, PQ_INACTIVE); 2081 return (-1); 2082 } 2083 2084 /* 2085 * Routine: 2086 * vm_fault_copy_entry 2087 * Function: 2088 * Create new object backing dst_entry with private copy of all 2089 * underlying pages. When src_entry is equal to dst_entry, function 2090 * implements COW for wired-down map entry. Otherwise, it forks 2091 * wired entry into dst_map. 2092 * 2093 * In/out conditions: 2094 * The source and destination maps must be locked for write. 2095 * The source map entry must be wired down (or be a sharing map 2096 * entry corresponding to a main map entry that is wired down). 2097 */ 2098 void 2099 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2100 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2101 vm_ooffset_t *fork_charge) 2102 { 2103 struct pctrie_iter pages; 2104 vm_object_t backing_object, dst_object, object, src_object; 2105 vm_pindex_t dst_pindex, pindex, src_pindex; 2106 vm_prot_t access, prot; 2107 vm_offset_t vaddr; 2108 vm_page_t dst_m, mpred; 2109 vm_page_t src_m; 2110 bool upgrade; 2111 2112 upgrade = src_entry == dst_entry; 2113 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2114 ("vm_fault_copy_entry: vm_object not NULL")); 2115 2116 /* 2117 * If not an upgrade, then enter the mappings in the pmap as 2118 * read and/or execute accesses. Otherwise, enter them as 2119 * write accesses. 2120 * 2121 * A writeable large page mapping is only created if all of 2122 * the constituent small page mappings are modified. Marking 2123 * PTEs as modified on inception allows promotion to happen 2124 * without taking potentially large number of soft faults. 2125 */ 2126 access = prot = dst_entry->protection; 2127 if (!upgrade) 2128 access &= ~VM_PROT_WRITE; 2129 2130 src_object = src_entry->object.vm_object; 2131 src_pindex = OFF_TO_IDX(src_entry->offset); 2132 2133 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2134 dst_object = src_object; 2135 vm_object_reference(dst_object); 2136 } else { 2137 /* 2138 * Create the top-level object for the destination entry. 2139 * Doesn't actually shadow anything - we copy the pages 2140 * directly. 2141 */ 2142 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2143 dst_entry->start), NULL, NULL, 0); 2144 #if VM_NRESERVLEVEL > 0 2145 dst_object->flags |= OBJ_COLORED; 2146 dst_object->pg_color = atop(dst_entry->start); 2147 #endif 2148 dst_object->domain = src_object->domain; 2149 dst_object->charge = dst_entry->end - dst_entry->start; 2150 2151 dst_entry->object.vm_object = dst_object; 2152 dst_entry->offset = 0; 2153 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2154 } 2155 2156 VM_OBJECT_WLOCK(dst_object); 2157 if (fork_charge != NULL) { 2158 KASSERT(dst_entry->cred == NULL, 2159 ("vm_fault_copy_entry: leaked swp charge")); 2160 dst_object->cred = curthread->td_ucred; 2161 crhold(dst_object->cred); 2162 *fork_charge += dst_object->charge; 2163 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2164 dst_object->cred == NULL) { 2165 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2166 dst_entry)); 2167 dst_object->cred = dst_entry->cred; 2168 dst_entry->cred = NULL; 2169 } 2170 2171 /* 2172 * Loop through all of the virtual pages within the entry's 2173 * range, copying each page from the source object to the 2174 * destination object. Since the source is wired, those pages 2175 * must exist. In contrast, the destination is pageable. 2176 * Since the destination object doesn't share any backing storage 2177 * with the source object, all of its pages must be dirtied, 2178 * regardless of whether they can be written. 2179 */ 2180 vm_page_iter_init(&pages, dst_object); 2181 mpred = (src_object == dst_object) ? 2182 vm_page_mpred(src_object, src_pindex) : NULL; 2183 for (vaddr = dst_entry->start, dst_pindex = 0; 2184 vaddr < dst_entry->end; 2185 vaddr += PAGE_SIZE, dst_pindex++, mpred = dst_m) { 2186 again: 2187 /* 2188 * Find the page in the source object, and copy it in. 2189 * Because the source is wired down, the page will be 2190 * in memory. 2191 */ 2192 if (src_object != dst_object) 2193 VM_OBJECT_RLOCK(src_object); 2194 object = src_object; 2195 pindex = src_pindex + dst_pindex; 2196 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2197 (backing_object = object->backing_object) != NULL) { 2198 /* 2199 * Unless the source mapping is read-only or 2200 * it is presently being upgraded from 2201 * read-only, the first object in the shadow 2202 * chain should provide all of the pages. In 2203 * other words, this loop body should never be 2204 * executed when the source mapping is already 2205 * read/write. 2206 */ 2207 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2208 upgrade, 2209 ("vm_fault_copy_entry: main object missing page")); 2210 2211 VM_OBJECT_RLOCK(backing_object); 2212 pindex += OFF_TO_IDX(object->backing_object_offset); 2213 if (object != dst_object) 2214 VM_OBJECT_RUNLOCK(object); 2215 object = backing_object; 2216 } 2217 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2218 2219 if (object != dst_object) { 2220 /* 2221 * Allocate a page in the destination object. 2222 */ 2223 pindex = (src_object == dst_object ? src_pindex : 0) + 2224 dst_pindex; 2225 dst_m = vm_page_alloc_after(dst_object, &pages, pindex, 2226 VM_ALLOC_NORMAL, mpred); 2227 if (dst_m == NULL) { 2228 VM_OBJECT_WUNLOCK(dst_object); 2229 VM_OBJECT_RUNLOCK(object); 2230 vm_wait(dst_object); 2231 VM_OBJECT_WLOCK(dst_object); 2232 pctrie_iter_reset(&pages); 2233 mpred = vm_radix_iter_lookup_lt(&pages, pindex); 2234 goto again; 2235 } 2236 2237 /* 2238 * See the comment in vm_fault_cow(). 2239 */ 2240 if (src_object == dst_object && 2241 (object->flags & OBJ_ONEMAPPING) == 0) 2242 pmap_remove_all(src_m); 2243 pmap_copy_page(src_m, dst_m); 2244 2245 /* 2246 * The object lock does not guarantee that "src_m" will 2247 * transition from invalid to valid, but it does ensure 2248 * that "src_m" will not transition from valid to 2249 * invalid. 2250 */ 2251 dst_m->dirty = dst_m->valid = src_m->valid; 2252 VM_OBJECT_RUNLOCK(object); 2253 } else { 2254 dst_m = src_m; 2255 if (vm_page_busy_acquire( 2256 dst_m, VM_ALLOC_WAITFAIL) == 0) { 2257 pctrie_iter_reset(&pages); 2258 goto again; 2259 } 2260 if (dst_m->pindex >= dst_object->size) { 2261 /* 2262 * We are upgrading. Index can occur 2263 * out of bounds if the object type is 2264 * vnode and the file was truncated. 2265 */ 2266 vm_page_xunbusy(dst_m); 2267 break; 2268 } 2269 } 2270 2271 /* 2272 * Enter it in the pmap. If a wired, copy-on-write 2273 * mapping is being replaced by a write-enabled 2274 * mapping, then wire that new mapping. 2275 * 2276 * The page can be invalid if the user called 2277 * msync(MS_INVALIDATE) or truncated the backing vnode 2278 * or shared memory object. In this case, do not 2279 * insert it into pmap, but still do the copy so that 2280 * all copies of the wired map entry have similar 2281 * backing pages. 2282 */ 2283 if (vm_page_all_valid(dst_m)) { 2284 VM_OBJECT_WUNLOCK(dst_object); 2285 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2286 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2287 VM_OBJECT_WLOCK(dst_object); 2288 } 2289 2290 /* 2291 * Mark it no longer busy, and put it on the active list. 2292 */ 2293 if (upgrade) { 2294 if (src_m != dst_m) { 2295 vm_page_unwire(src_m, PQ_INACTIVE); 2296 vm_page_wire(dst_m); 2297 } else { 2298 KASSERT(vm_page_wired(dst_m), 2299 ("dst_m %p is not wired", dst_m)); 2300 } 2301 } else { 2302 vm_page_activate(dst_m); 2303 } 2304 vm_page_xunbusy(dst_m); 2305 } 2306 VM_OBJECT_WUNLOCK(dst_object); 2307 if (upgrade) { 2308 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2309 vm_object_deallocate(src_object); 2310 } 2311 } 2312 2313 /* 2314 * Block entry into the machine-independent layer's page fault handler by 2315 * the calling thread. Subsequent calls to vm_fault() by that thread will 2316 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2317 * spurious page faults. 2318 */ 2319 int 2320 vm_fault_disable_pagefaults(void) 2321 { 2322 2323 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2324 } 2325 2326 void 2327 vm_fault_enable_pagefaults(int save) 2328 { 2329 2330 curthread_pflags_restore(save); 2331 } 2332