xref: /freebsd/sys/vm/vm_fault.c (revision 1b6c76a2fe091c74f08427e6c870851025a9cf67)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD$
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/kernel.h>
79 #include <sys/lock.h>
80 #include <sys/mutex.h>
81 #include <sys/proc.h>
82 #include <sys/resourcevar.h>
83 #include <sys/sysctl.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vnode_pager.h>
97 #include <vm/vm_extern.h>
98 
99 static int vm_fault_additional_pages __P((vm_page_t, int,
100 					  int, vm_page_t *, int *));
101 
102 #define VM_FAULT_READ_AHEAD 8
103 #define VM_FAULT_READ_BEHIND 7
104 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
105 
106 struct faultstate {
107 	vm_page_t m;
108 	vm_object_t object;
109 	vm_pindex_t pindex;
110 	vm_page_t first_m;
111 	vm_object_t	first_object;
112 	vm_pindex_t first_pindex;
113 	vm_map_t map;
114 	vm_map_entry_t entry;
115 	int lookup_still_valid;
116 	struct vnode *vp;
117 };
118 
119 static __inline void
120 release_page(struct faultstate *fs)
121 {
122 	vm_page_wakeup(fs->m);
123 	vm_page_deactivate(fs->m);
124 	fs->m = NULL;
125 }
126 
127 static __inline void
128 unlock_map(struct faultstate *fs)
129 {
130 	if (fs->lookup_still_valid) {
131 		vm_map_lookup_done(fs->map, fs->entry);
132 		fs->lookup_still_valid = FALSE;
133 	}
134 }
135 
136 static void
137 _unlock_things(struct faultstate *fs, int dealloc)
138 {
139 
140     	mtx_assert(&vm_mtx, MA_OWNED);
141     	mtx_assert(&Giant, MA_OWNED);
142 	vm_object_pip_wakeup(fs->object);
143 	if (fs->object != fs->first_object) {
144 		vm_page_free(fs->first_m);
145 		vm_object_pip_wakeup(fs->first_object);
146 		fs->first_m = NULL;
147 	}
148 	if (dealloc) {
149 		vm_object_deallocate(fs->first_object);
150 	}
151 	unlock_map(fs);
152 	if (fs->vp != NULL) {
153 		struct vnode	*vp;
154 
155 		vp = fs->vp;
156 		fs->vp = NULL;
157 		mtx_unlock(&vm_mtx);
158 		vput(vp);
159 		mtx_lock(&vm_mtx);
160 	}
161 }
162 
163 #define unlock_things(fs) _unlock_things(fs, 0)
164 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
165 
166 /*
167  * TRYPAGER - used by vm_fault to calculate whether the pager for the
168  *	      current object *might* contain the page.
169  *
170  *	      default objects are zero-fill, there is no real pager.
171  */
172 
173 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
174 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
175 
176 /*
177  *	vm_fault:
178  *
179  *	Handle a page fault occurring at the given address,
180  *	requiring the given permissions, in the map specified.
181  *	If successful, the page is inserted into the
182  *	associated physical map.
183  *
184  *	NOTE: the given address should be truncated to the
185  *	proper page address.
186  *
187  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
188  *	a standard error specifying why the fault is fatal is returned.
189  *
190  *
191  *	The map in question must be referenced, and remains so.
192  *	Caller may hold no locks except the vm_mtx which will be
193  *	locked if needed.
194  */
195 static int vm_fault1 __P((vm_map_t, vm_offset_t, vm_prot_t, int));
196 
197 static int vm_faults_no_vm_mtx;
198 SYSCTL_INT(_vm, OID_AUTO, vm_faults_no_vm_mtx, CTLFLAG_RW,
199 	   &vm_faults_no_vm_mtx, 0, "");
200 
201 static int vm_faults_no_giant;
202 SYSCTL_INT(_vm, OID_AUTO, vm_faults_no_giant, CTLFLAG_RW,
203 	   &vm_faults_no_giant, 0, "");
204 
205 int
206 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
207 	 int fault_flags)
208 {
209 	int hadvmlock, hadgiant, ret;
210 
211 	hadvmlock = mtx_owned(&vm_mtx);
212 	hadgiant = mtx_owned(&Giant);
213 	mtx_lock(&Giant);
214 	if (!hadvmlock) {
215 		mtx_lock(&vm_mtx);
216 		vm_faults_no_vm_mtx++;
217 		if (hadgiant == 0)
218 			vm_faults_no_giant++;
219 	}
220 	ret = vm_fault1(map, vaddr, fault_type, fault_flags);
221 	if (!hadvmlock)
222 		mtx_unlock(&vm_mtx);
223 	mtx_unlock(&Giant);
224 	return (ret);
225 }
226 
227 static int
228 vm_fault1(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
229 	  int fault_flags)
230 {
231 	vm_prot_t prot;
232 	int result;
233 	boolean_t wired;
234 	int map_generation;
235 	vm_object_t next_object;
236 	vm_page_t marray[VM_FAULT_READ];
237 	int hardfault;
238 	int faultcount;
239 	struct faultstate fs;
240 
241 	mtx_assert(&vm_mtx, MA_OWNED);
242 	cnt.v_vm_faults++;
243 	hardfault = 0;
244 
245 RetryFault:;
246 
247 	/*
248 	 * Find the backing store object and offset into it to begin the
249 	 * search.
250 	 */
251 	fs.map = map;
252 	if ((result = vm_map_lookup(&fs.map, vaddr,
253 		fault_type, &fs.entry, &fs.first_object,
254 		&fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
255 		if ((result != KERN_PROTECTION_FAILURE) ||
256 			((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
257 			return result;
258 		}
259 
260 		/*
261    		 * If we are user-wiring a r/w segment, and it is COW, then
262    		 * we need to do the COW operation.  Note that we don't COW
263    		 * currently RO sections now, because it is NOT desirable
264    		 * to COW .text.  We simply keep .text from ever being COW'ed
265    		 * and take the heat that one cannot debug wired .text sections.
266    		 */
267 		result = vm_map_lookup(&fs.map, vaddr,
268 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
269 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
270 		if (result != KERN_SUCCESS) {
271 			return result;
272 		}
273 
274 		/*
275 		 * If we don't COW now, on a user wire, the user will never
276 		 * be able to write to the mapping.  If we don't make this
277 		 * restriction, the bookkeeping would be nearly impossible.
278 		 */
279 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
280 			fs.entry->max_protection &= ~VM_PROT_WRITE;
281 	}
282 
283 	map_generation = fs.map->timestamp;
284 
285 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
286 		panic("vm_fault: fault on nofault entry, addr: %lx",
287 		    (u_long)vaddr);
288 	}
289 
290 	/*
291 	 * Make a reference to this object to prevent its disposal while we
292 	 * are messing with it.  Once we have the reference, the map is free
293 	 * to be diddled.  Since objects reference their shadows (and copies),
294 	 * they will stay around as well.
295 	 */
296 	vm_object_reference(fs.first_object);
297 	vm_object_pip_add(fs.first_object, 1);
298 
299 	mtx_unlock(&vm_mtx);
300 	fs.vp = vnode_pager_lock(fs.first_object);
301 	mtx_lock(&vm_mtx);
302 	if ((fault_type & VM_PROT_WRITE) &&
303 		(fs.first_object->type == OBJT_VNODE)) {
304 		vm_freeze_copyopts(fs.first_object,
305 			fs.first_pindex, fs.first_pindex + 1);
306 	}
307 
308 	fs.lookup_still_valid = TRUE;
309 
310 	if (wired)
311 		fault_type = prot;
312 
313 	fs.first_m = NULL;
314 
315 	/*
316 	 * Search for the page at object/offset.
317 	 */
318 
319 	fs.object = fs.first_object;
320 	fs.pindex = fs.first_pindex;
321 
322 	while (TRUE) {
323 		/*
324 		 * If the object is dead, we stop here
325 		 */
326 
327 		if (fs.object->flags & OBJ_DEAD) {
328 			unlock_and_deallocate(&fs);
329 			return (KERN_PROTECTION_FAILURE);
330 		}
331 
332 		/*
333 		 * See if page is resident
334 		 */
335 
336 		fs.m = vm_page_lookup(fs.object, fs.pindex);
337 		if (fs.m != NULL) {
338 			int queue, s;
339 			/*
340 			 * Wait/Retry if the page is busy.  We have to do this
341 			 * if the page is busy via either PG_BUSY or
342 			 * vm_page_t->busy because the vm_pager may be using
343 			 * vm_page_t->busy for pageouts ( and even pageins if
344 			 * it is the vnode pager ), and we could end up trying
345 			 * to pagein and pageout the same page simultaneously.
346 			 *
347 			 * We can theoretically allow the busy case on a read
348 			 * fault if the page is marked valid, but since such
349 			 * pages are typically already pmap'd, putting that
350 			 * special case in might be more effort then it is
351 			 * worth.  We cannot under any circumstances mess
352 			 * around with a vm_page_t->busy page except, perhaps,
353 			 * to pmap it.
354 			 */
355 			if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
356 				unlock_things(&fs);
357 				(void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
358 				cnt.v_intrans++;
359 				vm_object_deallocate(fs.first_object);
360 				goto RetryFault;
361 			}
362 
363 			queue = fs.m->queue;
364 			s = splvm();
365 			vm_page_unqueue_nowakeup(fs.m);
366 			splx(s);
367 
368 			if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
369 				vm_page_activate(fs.m);
370 				unlock_and_deallocate(&fs);
371 				VM_WAIT;
372 				goto RetryFault;
373 			}
374 
375 			/*
376 			 * Mark page busy for other processes, and the
377 			 * pagedaemon.  If it still isn't completely valid
378 			 * (readable), jump to readrest, else break-out ( we
379 			 * found the page ).
380 			 */
381 
382 			vm_page_busy(fs.m);
383 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
384 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
385 				goto readrest;
386 			}
387 
388 			break;
389 		}
390 
391 		/*
392 		 * Page is not resident, If this is the search termination
393 		 * or the pager might contain the page, allocate a new page.
394 		 */
395 
396 		if (TRYPAGER || fs.object == fs.first_object) {
397 			if (fs.pindex >= fs.object->size) {
398 				unlock_and_deallocate(&fs);
399 				return (KERN_PROTECTION_FAILURE);
400 			}
401 
402 			/*
403 			 * Allocate a new page for this object/offset pair.
404 			 */
405 			fs.m = NULL;
406 			if (!vm_page_count_severe()) {
407 				fs.m = vm_page_alloc(fs.object, fs.pindex,
408 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
409 			}
410 			if (fs.m == NULL) {
411 				unlock_and_deallocate(&fs);
412 				VM_WAIT;
413 				goto RetryFault;
414 			}
415 		}
416 
417 readrest:
418 		/*
419 		 * We have found a valid page or we have allocated a new page.
420 		 * The page thus may not be valid or may not be entirely
421 		 * valid.
422 		 *
423 		 * Attempt to fault-in the page if there is a chance that the
424 		 * pager has it, and potentially fault in additional pages
425 		 * at the same time.
426 		 */
427 
428 		if (TRYPAGER) {
429 			int rv;
430 			int reqpage;
431 			int ahead, behind;
432 			u_char behavior = vm_map_entry_behavior(fs.entry);
433 
434 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
435 				ahead = 0;
436 				behind = 0;
437 			} else {
438 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
439 				if (behind > VM_FAULT_READ_BEHIND)
440 					behind = VM_FAULT_READ_BEHIND;
441 
442 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
443 				if (ahead > VM_FAULT_READ_AHEAD)
444 					ahead = VM_FAULT_READ_AHEAD;
445 			}
446 
447 			if ((fs.first_object->type != OBJT_DEVICE) &&
448 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
449                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
450                                 fs.pindex >= fs.entry->lastr &&
451                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
452 			) {
453 				vm_pindex_t firstpindex, tmppindex;
454 
455 				if (fs.first_pindex < 2 * VM_FAULT_READ)
456 					firstpindex = 0;
457 				else
458 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
459 
460 				/*
461 				 * note: partially valid pages cannot be
462 				 * included in the lookahead - NFS piecemeal
463 				 * writes will barf on it badly.
464 				 */
465 
466 				for(tmppindex = fs.first_pindex - 1;
467 					tmppindex >= firstpindex;
468 					--tmppindex) {
469 					vm_page_t mt;
470 					mt = vm_page_lookup( fs.first_object, tmppindex);
471 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
472 						break;
473 					if (mt->busy ||
474 						(mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
475 						mt->hold_count ||
476 						mt->wire_count)
477 						continue;
478 					if (mt->dirty == 0)
479 						vm_page_test_dirty(mt);
480 					if (mt->dirty) {
481 						vm_page_protect(mt, VM_PROT_NONE);
482 						vm_page_deactivate(mt);
483 					} else {
484 						vm_page_cache(mt);
485 					}
486 				}
487 
488 				ahead += behind;
489 				behind = 0;
490 			}
491 
492 			/*
493 			 * now we find out if any other pages should be paged
494 			 * in at this time this routine checks to see if the
495 			 * pages surrounding this fault reside in the same
496 			 * object as the page for this fault.  If they do,
497 			 * then they are faulted in also into the object.  The
498 			 * array "marray" returned contains an array of
499 			 * vm_page_t structs where one of them is the
500 			 * vm_page_t passed to the routine.  The reqpage
501 			 * return value is the index into the marray for the
502 			 * vm_page_t passed to the routine.
503 			 *
504 			 * fs.m plus the additional pages are PG_BUSY'd.
505 			 */
506 			faultcount = vm_fault_additional_pages(
507 			    fs.m, behind, ahead, marray, &reqpage);
508 
509 			/*
510 			 * update lastr imperfectly (we do not know how much
511 			 * getpages will actually read), but good enough.
512 			 */
513 			fs.entry->lastr = fs.pindex + faultcount - behind;
514 
515 			/*
516 			 * Call the pager to retrieve the data, if any, after
517 			 * releasing the lock on the map.  We hold a ref on
518 			 * fs.object and the pages are PG_BUSY'd.
519 			 */
520 			unlock_map(&fs);
521 
522 			rv = faultcount ?
523 			    vm_pager_get_pages(fs.object, marray, faultcount,
524 				reqpage) : VM_PAGER_FAIL;
525 
526 			if (rv == VM_PAGER_OK) {
527 				/*
528 				 * Found the page. Leave it busy while we play
529 				 * with it.
530 				 */
531 
532 				/*
533 				 * Relookup in case pager changed page. Pager
534 				 * is responsible for disposition of old page
535 				 * if moved.
536 				 */
537 				fs.m = vm_page_lookup(fs.object, fs.pindex);
538 				if(!fs.m) {
539 					unlock_and_deallocate(&fs);
540 					goto RetryFault;
541 				}
542 
543 				hardfault++;
544 				break; /* break to PAGE HAS BEEN FOUND */
545 			}
546 			/*
547 			 * Remove the bogus page (which does not exist at this
548 			 * object/offset); before doing so, we must get back
549 			 * our object lock to preserve our invariant.
550 			 *
551 			 * Also wake up any other process that may want to bring
552 			 * in this page.
553 			 *
554 			 * If this is the top-level object, we must leave the
555 			 * busy page to prevent another process from rushing
556 			 * past us, and inserting the page in that object at
557 			 * the same time that we are.
558 			 */
559 
560 			if (rv == VM_PAGER_ERROR)
561 				printf("vm_fault: pager read error, pid %d (%s)\n",
562 				    curproc->p_pid, curproc->p_comm);
563 			/*
564 			 * Data outside the range of the pager or an I/O error
565 			 */
566 			/*
567 			 * XXX - the check for kernel_map is a kludge to work
568 			 * around having the machine panic on a kernel space
569 			 * fault w/ I/O error.
570 			 */
571 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
572 				(rv == VM_PAGER_BAD)) {
573 				vm_page_free(fs.m);
574 				fs.m = NULL;
575 				unlock_and_deallocate(&fs);
576 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
577 			}
578 			if (fs.object != fs.first_object) {
579 				vm_page_free(fs.m);
580 				fs.m = NULL;
581 				/*
582 				 * XXX - we cannot just fall out at this
583 				 * point, m has been freed and is invalid!
584 				 */
585 			}
586 		}
587 
588 		/*
589 		 * We get here if the object has default pager (or unwiring)
590 		 * or the pager doesn't have the page.
591 		 */
592 		if (fs.object == fs.first_object)
593 			fs.first_m = fs.m;
594 
595 		/*
596 		 * Move on to the next object.  Lock the next object before
597 		 * unlocking the current one.
598 		 */
599 
600 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
601 		next_object = fs.object->backing_object;
602 		if (next_object == NULL) {
603 			/*
604 			 * If there's no object left, fill the page in the top
605 			 * object with zeros.
606 			 */
607 			if (fs.object != fs.first_object) {
608 				vm_object_pip_wakeup(fs.object);
609 
610 				fs.object = fs.first_object;
611 				fs.pindex = fs.first_pindex;
612 				fs.m = fs.first_m;
613 			}
614 			fs.first_m = NULL;
615 
616 			/*
617 			 * Zero the page if necessary and mark it valid.
618 			 */
619 			if ((fs.m->flags & PG_ZERO) == 0) {
620 				vm_page_zero_fill(fs.m);
621 			} else {
622 				cnt.v_ozfod++;
623 			}
624 			cnt.v_zfod++;
625 			fs.m->valid = VM_PAGE_BITS_ALL;
626 			break;	/* break to PAGE HAS BEEN FOUND */
627 		} else {
628 			if (fs.object != fs.first_object) {
629 				vm_object_pip_wakeup(fs.object);
630 			}
631 			KASSERT(fs.object != next_object, ("object loop %p", next_object));
632 			fs.object = next_object;
633 			vm_object_pip_add(fs.object, 1);
634 		}
635 	}
636 
637 	KASSERT((fs.m->flags & PG_BUSY) != 0,
638 	    ("vm_fault: not busy after main loop"));
639 
640 	/*
641 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
642 	 * is held.]
643 	 */
644 
645 	/*
646 	 * If the page is being written, but isn't already owned by the
647 	 * top-level object, we have to copy it into a new page owned by the
648 	 * top-level object.
649 	 */
650 
651 	if (fs.object != fs.first_object) {
652 		/*
653 		 * We only really need to copy if we want to write it.
654 		 */
655 
656 		if (fault_type & VM_PROT_WRITE) {
657 			/*
658 			 * This allows pages to be virtually copied from a
659 			 * backing_object into the first_object, where the
660 			 * backing object has no other refs to it, and cannot
661 			 * gain any more refs.  Instead of a bcopy, we just
662 			 * move the page from the backing object to the
663 			 * first object.  Note that we must mark the page
664 			 * dirty in the first object so that it will go out
665 			 * to swap when needed.
666 			 */
667 			if (map_generation == fs.map->timestamp &&
668 				/*
669 				 * Only one shadow object
670 				 */
671 				(fs.object->shadow_count == 1) &&
672 				/*
673 				 * No COW refs, except us
674 				 */
675 				(fs.object->ref_count == 1) &&
676 				/*
677 				 * No one else can look this object up
678 				 */
679 				(fs.object->handle == NULL) &&
680 				/*
681 				 * No other ways to look the object up
682 				 */
683 				((fs.object->type == OBJT_DEFAULT) ||
684 				 (fs.object->type == OBJT_SWAP)) &&
685 				/*
686 				 * We don't chase down the shadow chain
687 				 */
688 				(fs.object == fs.first_object->backing_object) &&
689 
690 				/*
691 				 * grab the lock if we need to
692 				 */
693 				(fs.lookup_still_valid ||
694 				 lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0)
695 			    ) {
696 
697 				fs.lookup_still_valid = 1;
698 				/*
699 				 * get rid of the unnecessary page
700 				 */
701 				vm_page_protect(fs.first_m, VM_PROT_NONE);
702 				vm_page_free(fs.first_m);
703 				fs.first_m = NULL;
704 
705 				/*
706 				 * grab the page and put it into the
707 				 * process'es object.  The page is
708 				 * automatically made dirty.
709 				 */
710 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
711 				fs.first_m = fs.m;
712 				vm_page_busy(fs.first_m);
713 				fs.m = NULL;
714 				cnt.v_cow_optim++;
715 			} else {
716 				/*
717 				 * Oh, well, lets copy it.
718 				 */
719 				vm_page_copy(fs.m, fs.first_m);
720 			}
721 
722 			if (fs.m) {
723 				/*
724 				 * We no longer need the old page or object.
725 				 */
726 				release_page(&fs);
727 			}
728 
729 			/*
730 			 * fs.object != fs.first_object due to above
731 			 * conditional
732 			 */
733 
734 			vm_object_pip_wakeup(fs.object);
735 
736 			/*
737 			 * Only use the new page below...
738 			 */
739 
740 			cnt.v_cow_faults++;
741 			fs.m = fs.first_m;
742 			fs.object = fs.first_object;
743 			fs.pindex = fs.first_pindex;
744 
745 		} else {
746 			prot &= ~VM_PROT_WRITE;
747 		}
748 	}
749 
750 	/*
751 	 * We must verify that the maps have not changed since our last
752 	 * lookup.
753 	 */
754 
755 	if (!fs.lookup_still_valid &&
756 		(fs.map->timestamp != map_generation)) {
757 		vm_object_t retry_object;
758 		vm_pindex_t retry_pindex;
759 		vm_prot_t retry_prot;
760 
761 		/*
762 		 * Since map entries may be pageable, make sure we can take a
763 		 * page fault on them.
764 		 */
765 
766 		/*
767 		 * Unlock vnode before the lookup to avoid deadlock.   E.G.
768 		 * avoid a deadlock between the inode and exec_map that can
769 		 * occur due to locks being obtained in different orders.
770 		 */
771 
772 		if (fs.vp != NULL) {
773 			mtx_unlock(&vm_mtx);
774 			vput(fs.vp);
775 			mtx_lock(&vm_mtx);
776 			fs.vp = NULL;
777 		}
778 
779 		if (fs.map->infork) {
780 			release_page(&fs);
781 			unlock_and_deallocate(&fs);
782 			goto RetryFault;
783 		}
784 
785 		/*
786 		 * To avoid trying to write_lock the map while another process
787 		 * has it read_locked (in vm_map_pageable), we do not try for
788 		 * write permission.  If the page is still writable, we will
789 		 * get write permission.  If it is not, or has been marked
790 		 * needs_copy, we enter the mapping without write permission,
791 		 * and will merely take another fault.
792 		 */
793 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
794 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
795 		map_generation = fs.map->timestamp;
796 
797 		/*
798 		 * If we don't need the page any longer, put it on the active
799 		 * list (the easiest thing to do here).  If no one needs it,
800 		 * pageout will grab it eventually.
801 		 */
802 
803 		if (result != KERN_SUCCESS) {
804 			release_page(&fs);
805 			unlock_and_deallocate(&fs);
806 			return (result);
807 		}
808 		fs.lookup_still_valid = TRUE;
809 
810 		if ((retry_object != fs.first_object) ||
811 		    (retry_pindex != fs.first_pindex)) {
812 			release_page(&fs);
813 			unlock_and_deallocate(&fs);
814 			goto RetryFault;
815 		}
816 		/*
817 		 * Check whether the protection has changed or the object has
818 		 * been copied while we left the map unlocked. Changing from
819 		 * read to write permission is OK - we leave the page
820 		 * write-protected, and catch the write fault. Changing from
821 		 * write to read permission means that we can't mark the page
822 		 * write-enabled after all.
823 		 */
824 		prot &= retry_prot;
825 	}
826 
827 	/*
828 	 * Put this page into the physical map. We had to do the unlock above
829 	 * because pmap_enter may cause other faults.   We don't put the page
830 	 * back on the active queue until later so that the page-out daemon
831 	 * won't find us (yet).
832 	 */
833 
834 	if (prot & VM_PROT_WRITE) {
835 		vm_page_flag_set(fs.m, PG_WRITEABLE);
836 		vm_object_set_flag(fs.m->object,
837 				   OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
838 
839 		/*
840 		 * If the fault is a write, we know that this page is being
841 		 * written NOW so dirty it explicitly to save on
842 		 * pmap_is_modified() calls later.
843 		 *
844 		 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
845 		 * if the page is already dirty to prevent data written with
846 		 * the expectation of being synced from not being synced.
847 		 * Likewise if this entry does not request NOSYNC then make
848 		 * sure the page isn't marked NOSYNC.  Applications sharing
849 		 * data should use the same flags to avoid ping ponging.
850 		 *
851 		 * Also tell the backing pager, if any, that it should remove
852 		 * any swap backing since the page is now dirty.
853 		 */
854 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
855 			if (fs.m->dirty == 0)
856 				vm_page_flag_set(fs.m, PG_NOSYNC);
857 		} else {
858 			vm_page_flag_clear(fs.m, PG_NOSYNC);
859 		}
860 		if (fault_flags & VM_FAULT_DIRTY) {
861 			int s;
862 			vm_page_dirty(fs.m);
863 			s = splvm();
864 			vm_pager_page_unswapped(fs.m);
865 			splx(s);
866 		}
867 	}
868 
869 	/*
870 	 * Page had better still be busy
871 	 */
872 
873 	KASSERT(fs.m->flags & PG_BUSY,
874 		("vm_fault: page %p not busy!", fs.m));
875 
876 	unlock_things(&fs);
877 
878 	/*
879 	 * Sanity check: page must be completely valid or it is not fit to
880 	 * map into user space.  vm_pager_get_pages() ensures this.
881 	 */
882 
883 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
884 		vm_page_zero_invalid(fs.m, TRUE);
885 		printf("Warning: page %p partially invalid on fault\n", fs.m);
886 	}
887 
888 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
889 
890 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
891 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
892 	}
893 
894 	vm_page_flag_clear(fs.m, PG_ZERO);
895 	vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
896 	if (fault_flags & VM_FAULT_HOLD)
897 		vm_page_hold(fs.m);
898 
899 	/*
900 	 * If the page is not wired down, then put it where the pageout daemon
901 	 * can find it.
902 	 */
903 
904 	if (fault_flags & VM_FAULT_WIRE_MASK) {
905 		if (wired)
906 			vm_page_wire(fs.m);
907 		else
908 			vm_page_unwire(fs.m, 1);
909 	} else {
910 		vm_page_activate(fs.m);
911 	}
912 
913 	mtx_lock_spin(&sched_lock);
914 	if (curproc && (curproc->p_sflag & PS_INMEM) && curproc->p_stats) {
915 		if (hardfault) {
916 			curproc->p_stats->p_ru.ru_majflt++;
917 		} else {
918 			curproc->p_stats->p_ru.ru_minflt++;
919 		}
920 	}
921 	mtx_unlock_spin(&sched_lock);
922 
923 	/*
924 	 * Unlock everything, and return
925 	 */
926 
927 	vm_page_wakeup(fs.m);
928 	vm_object_deallocate(fs.first_object);
929 
930 	return (KERN_SUCCESS);
931 
932 }
933 
934 /*
935  *	vm_fault_wire:
936  *
937  *	Wire down a range of virtual addresses in a map.
938  */
939 int
940 vm_fault_wire(map, start, end)
941 	vm_map_t map;
942 	vm_offset_t start, end;
943 {
944 
945 	register vm_offset_t va;
946 	register pmap_t pmap;
947 	int rv;
948 
949 	pmap = vm_map_pmap(map);
950 
951 	/*
952 	 * Inform the physical mapping system that the range of addresses may
953 	 * not fault, so that page tables and such can be locked down as well.
954 	 */
955 
956 	pmap_pageable(pmap, start, end, FALSE);
957 
958 	/*
959 	 * We simulate a fault to get the page and enter it in the physical
960 	 * map.
961 	 */
962 
963 	for (va = start; va < end; va += PAGE_SIZE) {
964 		rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
965 			VM_FAULT_CHANGE_WIRING);
966 		if (rv) {
967 			if (va != start)
968 				vm_fault_unwire(map, start, va);
969 			return (rv);
970 		}
971 	}
972 	return (KERN_SUCCESS);
973 }
974 
975 /*
976  *	vm_fault_user_wire:
977  *
978  *	Wire down a range of virtual addresses in a map.  This
979  *	is for user mode though, so we only ask for read access
980  *	on currently read only sections.
981  */
982 int
983 vm_fault_user_wire(map, start, end)
984 	vm_map_t map;
985 	vm_offset_t start, end;
986 {
987 
988 	register vm_offset_t va;
989 	register pmap_t pmap;
990 	int rv;
991 
992 	mtx_assert(&vm_mtx, MA_OWNED);
993 	pmap = vm_map_pmap(map);
994 
995 	/*
996 	 * Inform the physical mapping system that the range of addresses may
997 	 * not fault, so that page tables and such can be locked down as well.
998 	 */
999 
1000 	pmap_pageable(pmap, start, end, FALSE);
1001 
1002 	/*
1003 	 * We simulate a fault to get the page and enter it in the physical
1004 	 * map.
1005 	 */
1006 	for (va = start; va < end; va += PAGE_SIZE) {
1007 		rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
1008 		if (rv) {
1009 			if (va != start)
1010 				vm_fault_unwire(map, start, va);
1011 			return (rv);
1012 		}
1013 	}
1014 	return (KERN_SUCCESS);
1015 }
1016 
1017 
1018 /*
1019  *	vm_fault_unwire:
1020  *
1021  *	Unwire a range of virtual addresses in a map.
1022  */
1023 void
1024 vm_fault_unwire(map, start, end)
1025 	vm_map_t map;
1026 	vm_offset_t start, end;
1027 {
1028 
1029 	register vm_offset_t va, pa;
1030 	register pmap_t pmap;
1031 
1032 	pmap = vm_map_pmap(map);
1033 
1034 	/*
1035 	 * Since the pages are wired down, we must be able to get their
1036 	 * mappings from the physical map system.
1037 	 */
1038 
1039 	for (va = start; va < end; va += PAGE_SIZE) {
1040 		pa = pmap_extract(pmap, va);
1041 		if (pa != (vm_offset_t) 0) {
1042 			pmap_change_wiring(pmap, va, FALSE);
1043 			vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * Inform the physical mapping system that the range of addresses may
1049 	 * fault, so that page tables and such may be unwired themselves.
1050 	 */
1051 
1052 	pmap_pageable(pmap, start, end, TRUE);
1053 
1054 }
1055 
1056 /*
1057  *	Routine:
1058  *		vm_fault_copy_entry
1059  *	Function:
1060  *		Copy all of the pages from a wired-down map entry to another.
1061  *
1062  *	In/out conditions:
1063  *		The source and destination maps must be locked for write.
1064  *		The source map entry must be wired down (or be a sharing map
1065  *		entry corresponding to a main map entry that is wired down).
1066  */
1067 
1068 void
1069 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1070 	vm_map_t dst_map;
1071 	vm_map_t src_map;
1072 	vm_map_entry_t dst_entry;
1073 	vm_map_entry_t src_entry;
1074 {
1075 	vm_object_t dst_object;
1076 	vm_object_t src_object;
1077 	vm_ooffset_t dst_offset;
1078 	vm_ooffset_t src_offset;
1079 	vm_prot_t prot;
1080 	vm_offset_t vaddr;
1081 	vm_page_t dst_m;
1082 	vm_page_t src_m;
1083 
1084 #ifdef	lint
1085 	src_map++;
1086 #endif	/* lint */
1087 
1088 	src_object = src_entry->object.vm_object;
1089 	src_offset = src_entry->offset;
1090 
1091 	/*
1092 	 * Create the top-level object for the destination entry. (Doesn't
1093 	 * actually shadow anything - we copy the pages directly.)
1094 	 */
1095 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1096 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1097 
1098 	dst_entry->object.vm_object = dst_object;
1099 	dst_entry->offset = 0;
1100 
1101 	prot = dst_entry->max_protection;
1102 
1103 	/*
1104 	 * Loop through all of the pages in the entry's range, copying each
1105 	 * one from the source object (it should be there) to the destination
1106 	 * object.
1107 	 */
1108 	for (vaddr = dst_entry->start, dst_offset = 0;
1109 	    vaddr < dst_entry->end;
1110 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1111 
1112 		/*
1113 		 * Allocate a page in the destination object
1114 		 */
1115 		do {
1116 			dst_m = vm_page_alloc(dst_object,
1117 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1118 			if (dst_m == NULL) {
1119 				VM_WAIT;
1120 			}
1121 		} while (dst_m == NULL);
1122 
1123 		/*
1124 		 * Find the page in the source object, and copy it in.
1125 		 * (Because the source is wired down, the page will be in
1126 		 * memory.)
1127 		 */
1128 		src_m = vm_page_lookup(src_object,
1129 			OFF_TO_IDX(dst_offset + src_offset));
1130 		if (src_m == NULL)
1131 			panic("vm_fault_copy_wired: page missing");
1132 
1133 		vm_page_copy(src_m, dst_m);
1134 
1135 		/*
1136 		 * Enter it in the pmap...
1137 		 */
1138 
1139 		vm_page_flag_clear(dst_m, PG_ZERO);
1140 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1141 		vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1142 
1143 		/*
1144 		 * Mark it no longer busy, and put it on the active list.
1145 		 */
1146 		vm_page_activate(dst_m);
1147 		vm_page_wakeup(dst_m);
1148 	}
1149 }
1150 
1151 
1152 /*
1153  * This routine checks around the requested page for other pages that
1154  * might be able to be faulted in.  This routine brackets the viable
1155  * pages for the pages to be paged in.
1156  *
1157  * Inputs:
1158  *	m, rbehind, rahead
1159  *
1160  * Outputs:
1161  *  marray (array of vm_page_t), reqpage (index of requested page)
1162  *
1163  * Return value:
1164  *  number of pages in marray
1165  *
1166  * This routine can't block.
1167  * vm_mtx must be held.
1168  */
1169 static int
1170 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1171 	vm_page_t m;
1172 	int rbehind;
1173 	int rahead;
1174 	vm_page_t *marray;
1175 	int *reqpage;
1176 {
1177 	int i,j;
1178 	vm_object_t object;
1179 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1180 	vm_page_t rtm;
1181 	int cbehind, cahead;
1182 
1183 	mtx_assert(&vm_mtx, MA_OWNED);
1184 
1185 	object = m->object;
1186 	pindex = m->pindex;
1187 
1188 	/*
1189 	 * we don't fault-ahead for device pager
1190 	 */
1191 	if (object->type == OBJT_DEVICE) {
1192 		*reqpage = 0;
1193 		marray[0] = m;
1194 		return 1;
1195 	}
1196 
1197 	/*
1198 	 * if the requested page is not available, then give up now
1199 	 */
1200 
1201 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1202 		return 0;
1203 	}
1204 
1205 	if ((cbehind == 0) && (cahead == 0)) {
1206 		*reqpage = 0;
1207 		marray[0] = m;
1208 		return 1;
1209 	}
1210 
1211 	if (rahead > cahead) {
1212 		rahead = cahead;
1213 	}
1214 
1215 	if (rbehind > cbehind) {
1216 		rbehind = cbehind;
1217 	}
1218 
1219 	/*
1220 	 * try to do any readahead that we might have free pages for.
1221 	 */
1222 	if ((rahead + rbehind) >
1223 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1224 		pagedaemon_wakeup();
1225 		marray[0] = m;
1226 		*reqpage = 0;
1227 		return 1;
1228 	}
1229 
1230 	/*
1231 	 * scan backward for the read behind pages -- in memory
1232 	 */
1233 	if (pindex > 0) {
1234 		if (rbehind > pindex) {
1235 			rbehind = pindex;
1236 			startpindex = 0;
1237 		} else {
1238 			startpindex = pindex - rbehind;
1239 		}
1240 
1241 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1242 			if (vm_page_lookup( object, tpindex)) {
1243 				startpindex = tpindex + 1;
1244 				break;
1245 			}
1246 			if (tpindex == 0)
1247 				break;
1248 		}
1249 
1250 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1251 
1252 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1253 			if (rtm == NULL) {
1254 				for (j = 0; j < i; j++) {
1255 					vm_page_free(marray[j]);
1256 				}
1257 				marray[0] = m;
1258 				*reqpage = 0;
1259 				return 1;
1260 			}
1261 
1262 			marray[i] = rtm;
1263 		}
1264 	} else {
1265 		startpindex = 0;
1266 		i = 0;
1267 	}
1268 
1269 	marray[i] = m;
1270 	/* page offset of the required page */
1271 	*reqpage = i;
1272 
1273 	tpindex = pindex + 1;
1274 	i++;
1275 
1276 	/*
1277 	 * scan forward for the read ahead pages
1278 	 */
1279 	endpindex = tpindex + rahead;
1280 	if (endpindex > object->size)
1281 		endpindex = object->size;
1282 
1283 	for( ; tpindex < endpindex; i++, tpindex++) {
1284 
1285 		if (vm_page_lookup(object, tpindex)) {
1286 			break;
1287 		}
1288 
1289 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1290 		if (rtm == NULL) {
1291 			break;
1292 		}
1293 
1294 		marray[i] = rtm;
1295 	}
1296 
1297 	/* return number of bytes of pages */
1298 	return i;
1299 }
1300