xref: /freebsd/sys/vm/vm_fault.c (revision 1b647f44bcb39b5249e197f1c8d028a7304b44cd)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 
70 /*
71  *	Page fault handling module.
72  */
73 
74 #include <sys/cdefs.h>
75 __FBSDID("$FreeBSD$");
76 
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/lock.h>
81 #include <sys/mutex.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/sysctl.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vnode.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99 
100 #include <sys/mount.h>	/* XXX Temporary for VFS_LOCK_GIANT() */
101 
102 #define PFBAK 4
103 #define PFFOR 4
104 #define PAGEORDER_SIZE (PFBAK+PFFOR)
105 
106 static int prefault_pageorder[] = {
107 	-1 * PAGE_SIZE, 1 * PAGE_SIZE,
108 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
109 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
110 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
111 };
112 
113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *);
114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t);
115 
116 #define VM_FAULT_READ_AHEAD 8
117 #define VM_FAULT_READ_BEHIND 7
118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
119 
120 struct faultstate {
121 	vm_page_t m;
122 	vm_object_t object;
123 	vm_pindex_t pindex;
124 	vm_page_t first_m;
125 	vm_object_t	first_object;
126 	vm_pindex_t first_pindex;
127 	vm_map_t map;
128 	vm_map_entry_t entry;
129 	int lookup_still_valid;
130 	struct vnode *vp;
131 };
132 
133 static inline void
134 release_page(struct faultstate *fs)
135 {
136 	vm_page_wakeup(fs->m);
137 	vm_page_lock_queues();
138 	vm_page_deactivate(fs->m);
139 	vm_page_unlock_queues();
140 	fs->m = NULL;
141 }
142 
143 static inline void
144 unlock_map(struct faultstate *fs)
145 {
146 	if (fs->lookup_still_valid) {
147 		vm_map_lookup_done(fs->map, fs->entry);
148 		fs->lookup_still_valid = FALSE;
149 	}
150 }
151 
152 static void
153 unlock_and_deallocate(struct faultstate *fs)
154 {
155 
156 	vm_object_pip_wakeup(fs->object);
157 	VM_OBJECT_UNLOCK(fs->object);
158 	if (fs->object != fs->first_object) {
159 		VM_OBJECT_LOCK(fs->first_object);
160 		vm_page_lock_queues();
161 		vm_page_free(fs->first_m);
162 		vm_page_unlock_queues();
163 		vm_object_pip_wakeup(fs->first_object);
164 		VM_OBJECT_UNLOCK(fs->first_object);
165 		fs->first_m = NULL;
166 	}
167 	vm_object_deallocate(fs->first_object);
168 	unlock_map(fs);
169 	if (fs->vp != NULL) {
170 		int vfslocked;
171 
172 		vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount);
173 		vput(fs->vp);
174 		fs->vp = NULL;
175 		VFS_UNLOCK_GIANT(vfslocked);
176 	}
177 }
178 
179 /*
180  * TRYPAGER - used by vm_fault to calculate whether the pager for the
181  *	      current object *might* contain the page.
182  *
183  *	      default objects are zero-fill, there is no real pager.
184  */
185 #define TRYPAGER	(fs.object->type != OBJT_DEFAULT && \
186 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
187 
188 /*
189  *	vm_fault:
190  *
191  *	Handle a page fault occurring at the given address,
192  *	requiring the given permissions, in the map specified.
193  *	If successful, the page is inserted into the
194  *	associated physical map.
195  *
196  *	NOTE: the given address should be truncated to the
197  *	proper page address.
198  *
199  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
200  *	a standard error specifying why the fault is fatal is returned.
201  *
202  *
203  *	The map in question must be referenced, and remains so.
204  *	Caller may hold no locks.
205  */
206 int
207 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
208 	 int fault_flags)
209 {
210 	vm_prot_t prot;
211 	int is_first_object_locked, result;
212 	boolean_t growstack, wired;
213 	int map_generation;
214 	vm_object_t next_object;
215 	vm_page_t marray[VM_FAULT_READ];
216 	int hardfault;
217 	int faultcount;
218 	struct faultstate fs;
219 
220 	hardfault = 0;
221 	growstack = TRUE;
222 	PCPU_INC(cnt.v_vm_faults);
223 
224 RetryFault:;
225 
226 	/*
227 	 * Find the backing store object and offset into it to begin the
228 	 * search.
229 	 */
230 	fs.map = map;
231 	result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry,
232 	    &fs.first_object, &fs.first_pindex, &prot, &wired);
233 	if (result != KERN_SUCCESS) {
234 		if (result != KERN_PROTECTION_FAILURE ||
235 		    (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) {
236 			if (growstack && result == KERN_INVALID_ADDRESS &&
237 			    map != kernel_map && curproc != NULL) {
238 				result = vm_map_growstack(curproc, vaddr);
239 				if (result != KERN_SUCCESS)
240 					return (KERN_FAILURE);
241 				growstack = FALSE;
242 				goto RetryFault;
243 			}
244 			return (result);
245 		}
246 
247 		/*
248    		 * If we are user-wiring a r/w segment, and it is COW, then
249    		 * we need to do the COW operation.  Note that we don't COW
250    		 * currently RO sections now, because it is NOT desirable
251    		 * to COW .text.  We simply keep .text from ever being COW'ed
252    		 * and take the heat that one cannot debug wired .text sections.
253    		 */
254 		result = vm_map_lookup(&fs.map, vaddr,
255 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
256 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
257 		if (result != KERN_SUCCESS)
258 			return (result);
259 
260 		/*
261 		 * If we don't COW now, on a user wire, the user will never
262 		 * be able to write to the mapping.  If we don't make this
263 		 * restriction, the bookkeeping would be nearly impossible.
264 		 *
265 		 * XXX The following assignment modifies the map without
266 		 * holding a write lock on it.
267 		 */
268 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
269 			fs.entry->max_protection &= ~VM_PROT_WRITE;
270 	}
271 
272 	map_generation = fs.map->timestamp;
273 
274 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
275 		panic("vm_fault: fault on nofault entry, addr: %lx",
276 		    (u_long)vaddr);
277 	}
278 
279 	/*
280 	 * Make a reference to this object to prevent its disposal while we
281 	 * are messing with it.  Once we have the reference, the map is free
282 	 * to be diddled.  Since objects reference their shadows (and copies),
283 	 * they will stay around as well.
284 	 *
285 	 * Bump the paging-in-progress count to prevent size changes (e.g.
286 	 * truncation operations) during I/O.  This must be done after
287 	 * obtaining the vnode lock in order to avoid possible deadlocks.
288 	 *
289 	 * XXX vnode_pager_lock() can block without releasing the map lock.
290 	 */
291 	if (fs.first_object->flags & OBJ_NEEDGIANT)
292 		mtx_lock(&Giant);
293 	VM_OBJECT_LOCK(fs.first_object);
294 	vm_object_reference_locked(fs.first_object);
295 	fs.vp = vnode_pager_lock(fs.first_object);
296 	KASSERT(fs.vp == NULL || !fs.map->system_map,
297 	    ("vm_fault: vnode-backed object mapped by system map"));
298 	KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 ||
299 	    !fs.map->system_map,
300 	    ("vm_fault: Object requiring giant mapped by system map"));
301 	if (fs.first_object->flags & OBJ_NEEDGIANT)
302 		mtx_unlock(&Giant);
303 	vm_object_pip_add(fs.first_object, 1);
304 
305 	fs.lookup_still_valid = TRUE;
306 
307 	if (wired)
308 		fault_type = prot;
309 
310 	fs.first_m = NULL;
311 
312 	/*
313 	 * Search for the page at object/offset.
314 	 */
315 	fs.object = fs.first_object;
316 	fs.pindex = fs.first_pindex;
317 	while (TRUE) {
318 		/*
319 		 * If the object is dead, we stop here
320 		 */
321 		if (fs.object->flags & OBJ_DEAD) {
322 			unlock_and_deallocate(&fs);
323 			return (KERN_PROTECTION_FAILURE);
324 		}
325 
326 		/*
327 		 * See if page is resident
328 		 */
329 		fs.m = vm_page_lookup(fs.object, fs.pindex);
330 		if (fs.m != NULL) {
331 			/*
332 			 * check for page-based copy on write.
333 			 * We check fs.object == fs.first_object so
334 			 * as to ensure the legacy COW mechanism is
335 			 * used when the page in question is part of
336 			 * a shadow object.  Otherwise, vm_page_cowfault()
337 			 * removes the page from the backing object,
338 			 * which is not what we want.
339 			 */
340 			vm_page_lock_queues();
341 			if ((fs.m->cow) &&
342 			    (fault_type & VM_PROT_WRITE) &&
343 			    (fs.object == fs.first_object)) {
344 				vm_page_cowfault(fs.m);
345 				vm_page_unlock_queues();
346 				unlock_and_deallocate(&fs);
347 				goto RetryFault;
348 			}
349 
350 			/*
351 			 * Wait/Retry if the page is busy.  We have to do this
352 			 * if the page is busy via either VPO_BUSY or
353 			 * vm_page_t->busy because the vm_pager may be using
354 			 * vm_page_t->busy for pageouts ( and even pageins if
355 			 * it is the vnode pager ), and we could end up trying
356 			 * to pagein and pageout the same page simultaneously.
357 			 *
358 			 * We can theoretically allow the busy case on a read
359 			 * fault if the page is marked valid, but since such
360 			 * pages are typically already pmap'd, putting that
361 			 * special case in might be more effort then it is
362 			 * worth.  We cannot under any circumstances mess
363 			 * around with a vm_page_t->busy page except, perhaps,
364 			 * to pmap it.
365 			 */
366 			if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) {
367 				vm_page_unlock_queues();
368 				VM_OBJECT_UNLOCK(fs.object);
369 				if (fs.object != fs.first_object) {
370 					VM_OBJECT_LOCK(fs.first_object);
371 					vm_page_lock_queues();
372 					vm_page_free(fs.first_m);
373 					vm_page_unlock_queues();
374 					vm_object_pip_wakeup(fs.first_object);
375 					VM_OBJECT_UNLOCK(fs.first_object);
376 					fs.first_m = NULL;
377 				}
378 				unlock_map(&fs);
379 				if (fs.vp != NULL) {
380 					int vfslck;
381 
382 					vfslck = VFS_LOCK_GIANT(fs.vp->v_mount);
383 					vput(fs.vp);
384 					fs.vp = NULL;
385 					VFS_UNLOCK_GIANT(vfslck);
386 				}
387 				VM_OBJECT_LOCK(fs.object);
388 				if (fs.m == vm_page_lookup(fs.object,
389 				    fs.pindex)) {
390 					vm_page_sleep_if_busy(fs.m, TRUE,
391 					    "vmpfw");
392 				}
393 				vm_object_pip_wakeup(fs.object);
394 				VM_OBJECT_UNLOCK(fs.object);
395 				PCPU_INC(cnt.v_intrans);
396 				vm_object_deallocate(fs.first_object);
397 				goto RetryFault;
398 			}
399 			vm_pageq_remove(fs.m);
400 			vm_page_unlock_queues();
401 
402 			/*
403 			 * Mark page busy for other processes, and the
404 			 * pagedaemon.  If it still isn't completely valid
405 			 * (readable), jump to readrest, else break-out ( we
406 			 * found the page ).
407 			 */
408 			vm_page_busy(fs.m);
409 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
410 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
411 				goto readrest;
412 			}
413 
414 			break;
415 		}
416 
417 		/*
418 		 * Page is not resident, If this is the search termination
419 		 * or the pager might contain the page, allocate a new page.
420 		 */
421 		if (TRYPAGER || fs.object == fs.first_object) {
422 			if (fs.pindex >= fs.object->size) {
423 				unlock_and_deallocate(&fs);
424 				return (KERN_PROTECTION_FAILURE);
425 			}
426 
427 			/*
428 			 * Allocate a new page for this object/offset pair.
429 			 */
430 			fs.m = NULL;
431 			if (!vm_page_count_severe()) {
432 				fs.m = vm_page_alloc(fs.object, fs.pindex,
433 				    (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
434 				if ((fs.m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL)
435 					break;
436 			}
437 			if (fs.m == NULL) {
438 				unlock_and_deallocate(&fs);
439 				VM_WAITPFAULT;
440 				goto RetryFault;
441 			}
442 		}
443 
444 readrest:
445 		/*
446 		 * We have found a valid page or we have allocated a new page.
447 		 * The page thus may not be valid or may not be entirely
448 		 * valid.
449 		 *
450 		 * Attempt to fault-in the page if there is a chance that the
451 		 * pager has it, and potentially fault in additional pages
452 		 * at the same time.
453 		 */
454 		if (TRYPAGER) {
455 			int rv;
456 			int reqpage = 0;
457 			int ahead, behind;
458 			u_char behavior = vm_map_entry_behavior(fs.entry);
459 
460 			if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
461 				ahead = 0;
462 				behind = 0;
463 			} else {
464 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
465 				if (behind > VM_FAULT_READ_BEHIND)
466 					behind = VM_FAULT_READ_BEHIND;
467 
468 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
469 				if (ahead > VM_FAULT_READ_AHEAD)
470 					ahead = VM_FAULT_READ_AHEAD;
471 			}
472 			is_first_object_locked = FALSE;
473 			if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
474 			     (behavior != MAP_ENTRY_BEHAV_RANDOM &&
475 			      fs.pindex >= fs.entry->lastr &&
476 			      fs.pindex < fs.entry->lastr + VM_FAULT_READ)) &&
477 			    (fs.first_object == fs.object ||
478 			     (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) &&
479 			    fs.first_object->type != OBJT_DEVICE) {
480 				vm_pindex_t firstpindex, tmppindex;
481 
482 				if (fs.first_pindex < 2 * VM_FAULT_READ)
483 					firstpindex = 0;
484 				else
485 					firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
486 
487 				vm_page_lock_queues();
488 				/*
489 				 * note: partially valid pages cannot be
490 				 * included in the lookahead - NFS piecemeal
491 				 * writes will barf on it badly.
492 				 */
493 				for (tmppindex = fs.first_pindex - 1;
494 					tmppindex >= firstpindex;
495 					--tmppindex) {
496 					vm_page_t mt;
497 
498 					mt = vm_page_lookup(fs.first_object, tmppindex);
499 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
500 						break;
501 					if (mt->busy ||
502 					    (mt->oflags & VPO_BUSY) ||
503 					    (mt->flags & (PG_FICTITIOUS | PG_UNMANAGED)) ||
504 						mt->hold_count ||
505 						mt->wire_count)
506 						continue;
507 					pmap_remove_all(mt);
508 					if (mt->dirty) {
509 						vm_page_deactivate(mt);
510 					} else {
511 						vm_page_cache(mt);
512 					}
513 				}
514 				vm_page_unlock_queues();
515 				ahead += behind;
516 				behind = 0;
517 			}
518 			if (is_first_object_locked)
519 				VM_OBJECT_UNLOCK(fs.first_object);
520 			/*
521 			 * now we find out if any other pages should be paged
522 			 * in at this time this routine checks to see if the
523 			 * pages surrounding this fault reside in the same
524 			 * object as the page for this fault.  If they do,
525 			 * then they are faulted in also into the object.  The
526 			 * array "marray" returned contains an array of
527 			 * vm_page_t structs where one of them is the
528 			 * vm_page_t passed to the routine.  The reqpage
529 			 * return value is the index into the marray for the
530 			 * vm_page_t passed to the routine.
531 			 *
532 			 * fs.m plus the additional pages are VPO_BUSY'd.
533 			 *
534 			 * XXX vm_fault_additional_pages() can block
535 			 * without releasing the map lock.
536 			 */
537 			faultcount = vm_fault_additional_pages(
538 			    fs.m, behind, ahead, marray, &reqpage);
539 
540 			/*
541 			 * update lastr imperfectly (we do not know how much
542 			 * getpages will actually read), but good enough.
543 			 *
544 			 * XXX The following assignment modifies the map
545 			 * without holding a write lock on it.
546 			 */
547 			fs.entry->lastr = fs.pindex + faultcount - behind;
548 
549 			/*
550 			 * Call the pager to retrieve the data, if any, after
551 			 * releasing the lock on the map.  We hold a ref on
552 			 * fs.object and the pages are VPO_BUSY'd.
553 			 */
554 			unlock_map(&fs);
555 
556 			rv = faultcount ?
557 			    vm_pager_get_pages(fs.object, marray, faultcount,
558 				reqpage) : VM_PAGER_FAIL;
559 
560 			if (rv == VM_PAGER_OK) {
561 				/*
562 				 * Found the page. Leave it busy while we play
563 				 * with it.
564 				 */
565 
566 				/*
567 				 * Relookup in case pager changed page. Pager
568 				 * is responsible for disposition of old page
569 				 * if moved.
570 				 */
571 				fs.m = vm_page_lookup(fs.object, fs.pindex);
572 				if (!fs.m) {
573 					unlock_and_deallocate(&fs);
574 					goto RetryFault;
575 				}
576 
577 				hardfault++;
578 				break; /* break to PAGE HAS BEEN FOUND */
579 			}
580 			/*
581 			 * Remove the bogus page (which does not exist at this
582 			 * object/offset); before doing so, we must get back
583 			 * our object lock to preserve our invariant.
584 			 *
585 			 * Also wake up any other process that may want to bring
586 			 * in this page.
587 			 *
588 			 * If this is the top-level object, we must leave the
589 			 * busy page to prevent another process from rushing
590 			 * past us, and inserting the page in that object at
591 			 * the same time that we are.
592 			 */
593 			if (rv == VM_PAGER_ERROR)
594 				printf("vm_fault: pager read error, pid %d (%s)\n",
595 				    curproc->p_pid, curproc->p_comm);
596 			/*
597 			 * Data outside the range of the pager or an I/O error
598 			 */
599 			/*
600 			 * XXX - the check for kernel_map is a kludge to work
601 			 * around having the machine panic on a kernel space
602 			 * fault w/ I/O error.
603 			 */
604 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
605 				(rv == VM_PAGER_BAD)) {
606 				vm_page_lock_queues();
607 				vm_page_free(fs.m);
608 				vm_page_unlock_queues();
609 				fs.m = NULL;
610 				unlock_and_deallocate(&fs);
611 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
612 			}
613 			if (fs.object != fs.first_object) {
614 				vm_page_lock_queues();
615 				vm_page_free(fs.m);
616 				vm_page_unlock_queues();
617 				fs.m = NULL;
618 				/*
619 				 * XXX - we cannot just fall out at this
620 				 * point, m has been freed and is invalid!
621 				 */
622 			}
623 		}
624 
625 		/*
626 		 * We get here if the object has default pager (or unwiring)
627 		 * or the pager doesn't have the page.
628 		 */
629 		if (fs.object == fs.first_object)
630 			fs.first_m = fs.m;
631 
632 		/*
633 		 * Move on to the next object.  Lock the next object before
634 		 * unlocking the current one.
635 		 */
636 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
637 		next_object = fs.object->backing_object;
638 		if (next_object == NULL) {
639 			/*
640 			 * If there's no object left, fill the page in the top
641 			 * object with zeros.
642 			 */
643 			if (fs.object != fs.first_object) {
644 				vm_object_pip_wakeup(fs.object);
645 				VM_OBJECT_UNLOCK(fs.object);
646 
647 				fs.object = fs.first_object;
648 				fs.pindex = fs.first_pindex;
649 				fs.m = fs.first_m;
650 				VM_OBJECT_LOCK(fs.object);
651 			}
652 			fs.first_m = NULL;
653 
654 			/*
655 			 * Zero the page if necessary and mark it valid.
656 			 */
657 			if ((fs.m->flags & PG_ZERO) == 0) {
658 				pmap_zero_page(fs.m);
659 			} else {
660 				PCPU_INC(cnt.v_ozfod);
661 			}
662 			PCPU_INC(cnt.v_zfod);
663 			fs.m->valid = VM_PAGE_BITS_ALL;
664 			break;	/* break to PAGE HAS BEEN FOUND */
665 		} else {
666 			KASSERT(fs.object != next_object,
667 			    ("object loop %p", next_object));
668 			VM_OBJECT_LOCK(next_object);
669 			vm_object_pip_add(next_object, 1);
670 			if (fs.object != fs.first_object)
671 				vm_object_pip_wakeup(fs.object);
672 			VM_OBJECT_UNLOCK(fs.object);
673 			fs.object = next_object;
674 		}
675 	}
676 
677 	KASSERT((fs.m->oflags & VPO_BUSY) != 0,
678 	    ("vm_fault: not busy after main loop"));
679 
680 	/*
681 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
682 	 * is held.]
683 	 */
684 
685 	/*
686 	 * If the page is being written, but isn't already owned by the
687 	 * top-level object, we have to copy it into a new page owned by the
688 	 * top-level object.
689 	 */
690 	if (fs.object != fs.first_object) {
691 		/*
692 		 * We only really need to copy if we want to write it.
693 		 */
694 		if (fault_type & VM_PROT_WRITE) {
695 			/*
696 			 * This allows pages to be virtually copied from a
697 			 * backing_object into the first_object, where the
698 			 * backing object has no other refs to it, and cannot
699 			 * gain any more refs.  Instead of a bcopy, we just
700 			 * move the page from the backing object to the
701 			 * first object.  Note that we must mark the page
702 			 * dirty in the first object so that it will go out
703 			 * to swap when needed.
704 			 */
705 			is_first_object_locked = FALSE;
706 			if (
707 				/*
708 				 * Only one shadow object
709 				 */
710 				(fs.object->shadow_count == 1) &&
711 				/*
712 				 * No COW refs, except us
713 				 */
714 				(fs.object->ref_count == 1) &&
715 				/*
716 				 * No one else can look this object up
717 				 */
718 				(fs.object->handle == NULL) &&
719 				/*
720 				 * No other ways to look the object up
721 				 */
722 				((fs.object->type == OBJT_DEFAULT) ||
723 				 (fs.object->type == OBJT_SWAP)) &&
724 			    (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) &&
725 				/*
726 				 * We don't chase down the shadow chain
727 				 */
728 			    fs.object == fs.first_object->backing_object) {
729 				vm_page_lock_queues();
730 				/*
731 				 * get rid of the unnecessary page
732 				 */
733 				vm_page_free(fs.first_m);
734 				/*
735 				 * grab the page and put it into the
736 				 * process'es object.  The page is
737 				 * automatically made dirty.
738 				 */
739 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
740 				vm_page_unlock_queues();
741 				vm_page_busy(fs.m);
742 				fs.first_m = fs.m;
743 				fs.m = NULL;
744 				PCPU_INC(cnt.v_cow_optim);
745 			} else {
746 				/*
747 				 * Oh, well, lets copy it.
748 				 */
749 				pmap_copy_page(fs.m, fs.first_m);
750 				fs.first_m->valid = VM_PAGE_BITS_ALL;
751 			}
752 			if (fs.m) {
753 				/*
754 				 * We no longer need the old page or object.
755 				 */
756 				release_page(&fs);
757 			}
758 			/*
759 			 * fs.object != fs.first_object due to above
760 			 * conditional
761 			 */
762 			vm_object_pip_wakeup(fs.object);
763 			VM_OBJECT_UNLOCK(fs.object);
764 			/*
765 			 * Only use the new page below...
766 			 */
767 			fs.object = fs.first_object;
768 			fs.pindex = fs.first_pindex;
769 			fs.m = fs.first_m;
770 			if (!is_first_object_locked)
771 				VM_OBJECT_LOCK(fs.object);
772 			PCPU_INC(cnt.v_cow_faults);
773 		} else {
774 			prot &= ~VM_PROT_WRITE;
775 		}
776 	}
777 
778 	/*
779 	 * We must verify that the maps have not changed since our last
780 	 * lookup.
781 	 */
782 	if (!fs.lookup_still_valid) {
783 		vm_object_t retry_object;
784 		vm_pindex_t retry_pindex;
785 		vm_prot_t retry_prot;
786 
787 		if (!vm_map_trylock_read(fs.map)) {
788 			release_page(&fs);
789 			unlock_and_deallocate(&fs);
790 			goto RetryFault;
791 		}
792 		fs.lookup_still_valid = TRUE;
793 		if (fs.map->timestamp != map_generation) {
794 			result = vm_map_lookup_locked(&fs.map, vaddr, fault_type,
795 			    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
796 
797 			/*
798 			 * If we don't need the page any longer, put it on the inactive
799 			 * list (the easiest thing to do here).  If no one needs it,
800 			 * pageout will grab it eventually.
801 			 */
802 			if (result != KERN_SUCCESS) {
803 				release_page(&fs);
804 				unlock_and_deallocate(&fs);
805 
806 				/*
807 				 * If retry of map lookup would have blocked then
808 				 * retry fault from start.
809 				 */
810 				if (result == KERN_FAILURE)
811 					goto RetryFault;
812 				return (result);
813 			}
814 			if ((retry_object != fs.first_object) ||
815 			    (retry_pindex != fs.first_pindex)) {
816 				release_page(&fs);
817 				unlock_and_deallocate(&fs);
818 				goto RetryFault;
819 			}
820 
821 			/*
822 			 * Check whether the protection has changed or the object has
823 			 * been copied while we left the map unlocked. Changing from
824 			 * read to write permission is OK - we leave the page
825 			 * write-protected, and catch the write fault. Changing from
826 			 * write to read permission means that we can't mark the page
827 			 * write-enabled after all.
828 			 */
829 			prot &= retry_prot;
830 		}
831 	}
832 	if (prot & VM_PROT_WRITE) {
833 		vm_object_set_writeable_dirty(fs.object);
834 
835 		/*
836 		 * If the fault is a write, we know that this page is being
837 		 * written NOW so dirty it explicitly to save on
838 		 * pmap_is_modified() calls later.
839 		 *
840 		 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC
841 		 * if the page is already dirty to prevent data written with
842 		 * the expectation of being synced from not being synced.
843 		 * Likewise if this entry does not request NOSYNC then make
844 		 * sure the page isn't marked NOSYNC.  Applications sharing
845 		 * data should use the same flags to avoid ping ponging.
846 		 *
847 		 * Also tell the backing pager, if any, that it should remove
848 		 * any swap backing since the page is now dirty.
849 		 */
850 		if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
851 			if (fs.m->dirty == 0)
852 				fs.m->oflags |= VPO_NOSYNC;
853 		} else {
854 			fs.m->oflags &= ~VPO_NOSYNC;
855 		}
856 		if (fault_flags & VM_FAULT_DIRTY) {
857 			vm_page_dirty(fs.m);
858 			vm_pager_page_unswapped(fs.m);
859 		}
860 	}
861 
862 	/*
863 	 * Page had better still be busy
864 	 */
865 	KASSERT(fs.m->oflags & VPO_BUSY,
866 		("vm_fault: page %p not busy!", fs.m));
867 	/*
868 	 * Sanity check: page must be completely valid or it is not fit to
869 	 * map into user space.  vm_pager_get_pages() ensures this.
870 	 */
871 	if (fs.m->valid != VM_PAGE_BITS_ALL) {
872 		vm_page_zero_invalid(fs.m, TRUE);
873 		printf("Warning: page %p partially invalid on fault\n", fs.m);
874 	}
875 	VM_OBJECT_UNLOCK(fs.object);
876 
877 	/*
878 	 * Put this page into the physical map.  We had to do the unlock above
879 	 * because pmap_enter() may sleep.  We don't put the page
880 	 * back on the active queue until later so that the pageout daemon
881 	 * won't find it (yet).
882 	 */
883 	pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
884 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
885 		vm_fault_prefault(fs.map->pmap, vaddr, fs.entry);
886 	}
887 	VM_OBJECT_LOCK(fs.object);
888 	vm_page_lock_queues();
889 	vm_page_flag_set(fs.m, PG_REFERENCED);
890 
891 	/*
892 	 * If the page is not wired down, then put it where the pageout daemon
893 	 * can find it.
894 	 */
895 	if (fault_flags & VM_FAULT_WIRE_MASK) {
896 		if (wired)
897 			vm_page_wire(fs.m);
898 		else
899 			vm_page_unwire(fs.m, 1);
900 	} else {
901 		vm_page_activate(fs.m);
902 	}
903 	vm_page_unlock_queues();
904 	vm_page_wakeup(fs.m);
905 
906 	/*
907 	 * Unlock everything, and return
908 	 */
909 	unlock_and_deallocate(&fs);
910 	if (hardfault)
911 		curthread->td_ru.ru_majflt++;
912 	else
913 		curthread->td_ru.ru_minflt++;
914 
915 	return (KERN_SUCCESS);
916 }
917 
918 /*
919  * vm_fault_prefault provides a quick way of clustering
920  * pagefaults into a processes address space.  It is a "cousin"
921  * of vm_map_pmap_enter, except it runs at page fault time instead
922  * of mmap time.
923  */
924 static void
925 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry)
926 {
927 	int i;
928 	vm_offset_t addr, starta;
929 	vm_pindex_t pindex;
930 	vm_page_t m;
931 	vm_object_t object;
932 
933 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
934 		return;
935 
936 	object = entry->object.vm_object;
937 
938 	starta = addra - PFBAK * PAGE_SIZE;
939 	if (starta < entry->start) {
940 		starta = entry->start;
941 	} else if (starta > addra) {
942 		starta = 0;
943 	}
944 
945 	for (i = 0; i < PAGEORDER_SIZE; i++) {
946 		vm_object_t backing_object, lobject;
947 
948 		addr = addra + prefault_pageorder[i];
949 		if (addr > addra + (PFFOR * PAGE_SIZE))
950 			addr = 0;
951 
952 		if (addr < starta || addr >= entry->end)
953 			continue;
954 
955 		if (!pmap_is_prefaultable(pmap, addr))
956 			continue;
957 
958 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
959 		lobject = object;
960 		VM_OBJECT_LOCK(lobject);
961 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
962 		    lobject->type == OBJT_DEFAULT &&
963 		    (backing_object = lobject->backing_object) != NULL) {
964 			if (lobject->backing_object_offset & PAGE_MASK)
965 				break;
966 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
967 			VM_OBJECT_LOCK(backing_object);
968 			VM_OBJECT_UNLOCK(lobject);
969 			lobject = backing_object;
970 		}
971 		/*
972 		 * give-up when a page is not in memory
973 		 */
974 		if (m == NULL) {
975 			VM_OBJECT_UNLOCK(lobject);
976 			break;
977 		}
978 		if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
979 			(m->busy == 0) &&
980 		    (m->flags & PG_FICTITIOUS) == 0) {
981 
982 			vm_page_lock_queues();
983 			pmap_enter_quick(pmap, addr, m, entry->protection);
984 			vm_page_unlock_queues();
985 		}
986 		VM_OBJECT_UNLOCK(lobject);
987 	}
988 }
989 
990 /*
991  *	vm_fault_quick:
992  *
993  *	Ensure that the requested virtual address, which may be in userland,
994  *	is valid.  Fault-in the page if necessary.  Return -1 on failure.
995  */
996 int
997 vm_fault_quick(caddr_t v, int prot)
998 {
999 	int r;
1000 
1001 	if (prot & VM_PROT_WRITE)
1002 		r = subyte(v, fubyte(v));
1003 	else
1004 		r = fubyte(v);
1005 	return(r);
1006 }
1007 
1008 /*
1009  *	vm_fault_wire:
1010  *
1011  *	Wire down a range of virtual addresses in a map.
1012  */
1013 int
1014 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1015     boolean_t user_wire, boolean_t fictitious)
1016 {
1017 	vm_offset_t va;
1018 	int rv;
1019 
1020 	/*
1021 	 * We simulate a fault to get the page and enter it in the physical
1022 	 * map.  For user wiring, we only ask for read access on currently
1023 	 * read-only sections.
1024 	 */
1025 	for (va = start; va < end; va += PAGE_SIZE) {
1026 		rv = vm_fault(map, va,
1027 		    user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE,
1028 		    user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING);
1029 		if (rv) {
1030 			if (va != start)
1031 				vm_fault_unwire(map, start, va, fictitious);
1032 			return (rv);
1033 		}
1034 	}
1035 	return (KERN_SUCCESS);
1036 }
1037 
1038 /*
1039  *	vm_fault_unwire:
1040  *
1041  *	Unwire a range of virtual addresses in a map.
1042  */
1043 void
1044 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1045     boolean_t fictitious)
1046 {
1047 	vm_paddr_t pa;
1048 	vm_offset_t va;
1049 	pmap_t pmap;
1050 
1051 	pmap = vm_map_pmap(map);
1052 
1053 	/*
1054 	 * Since the pages are wired down, we must be able to get their
1055 	 * mappings from the physical map system.
1056 	 */
1057 	for (va = start; va < end; va += PAGE_SIZE) {
1058 		pa = pmap_extract(pmap, va);
1059 		if (pa != 0) {
1060 			pmap_change_wiring(pmap, va, FALSE);
1061 			if (!fictitious) {
1062 				vm_page_lock_queues();
1063 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1064 				vm_page_unlock_queues();
1065 			}
1066 		}
1067 	}
1068 }
1069 
1070 /*
1071  *	Routine:
1072  *		vm_fault_copy_entry
1073  *	Function:
1074  *		Copy all of the pages from a wired-down map entry to another.
1075  *
1076  *	In/out conditions:
1077  *		The source and destination maps must be locked for write.
1078  *		The source map entry must be wired down (or be a sharing map
1079  *		entry corresponding to a main map entry that is wired down).
1080  */
1081 void
1082 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1083 	vm_map_t dst_map;
1084 	vm_map_t src_map;
1085 	vm_map_entry_t dst_entry;
1086 	vm_map_entry_t src_entry;
1087 {
1088 	vm_object_t backing_object, dst_object, object;
1089 	vm_object_t src_object;
1090 	vm_ooffset_t dst_offset;
1091 	vm_ooffset_t src_offset;
1092 	vm_pindex_t pindex;
1093 	vm_prot_t prot;
1094 	vm_offset_t vaddr;
1095 	vm_page_t dst_m;
1096 	vm_page_t src_m;
1097 
1098 #ifdef	lint
1099 	src_map++;
1100 #endif	/* lint */
1101 
1102 	src_object = src_entry->object.vm_object;
1103 	src_offset = src_entry->offset;
1104 
1105 	/*
1106 	 * Create the top-level object for the destination entry. (Doesn't
1107 	 * actually shadow anything - we copy the pages directly.)
1108 	 */
1109 	dst_object = vm_object_allocate(OBJT_DEFAULT,
1110 	    OFF_TO_IDX(dst_entry->end - dst_entry->start));
1111 
1112 	VM_OBJECT_LOCK(dst_object);
1113 	dst_entry->object.vm_object = dst_object;
1114 	dst_entry->offset = 0;
1115 
1116 	prot = dst_entry->max_protection;
1117 
1118 	/*
1119 	 * Loop through all of the pages in the entry's range, copying each
1120 	 * one from the source object (it should be there) to the destination
1121 	 * object.
1122 	 */
1123 	for (vaddr = dst_entry->start, dst_offset = 0;
1124 	    vaddr < dst_entry->end;
1125 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1126 
1127 		/*
1128 		 * Allocate a page in the destination object
1129 		 */
1130 		do {
1131 			dst_m = vm_page_alloc(dst_object,
1132 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1133 			if (dst_m == NULL) {
1134 				VM_OBJECT_UNLOCK(dst_object);
1135 				VM_WAIT;
1136 				VM_OBJECT_LOCK(dst_object);
1137 			}
1138 		} while (dst_m == NULL);
1139 
1140 		/*
1141 		 * Find the page in the source object, and copy it in.
1142 		 * (Because the source is wired down, the page will be in
1143 		 * memory.)
1144 		 */
1145 		VM_OBJECT_LOCK(src_object);
1146 		object = src_object;
1147 		pindex = 0;
1148 		while ((src_m = vm_page_lookup(object, pindex +
1149 		    OFF_TO_IDX(dst_offset + src_offset))) == NULL &&
1150 		    (src_entry->protection & VM_PROT_WRITE) == 0 &&
1151 		    (backing_object = object->backing_object) != NULL) {
1152 			/*
1153 			 * Allow fallback to backing objects if we are reading.
1154 			 */
1155 			VM_OBJECT_LOCK(backing_object);
1156 			pindex += OFF_TO_IDX(object->backing_object_offset);
1157 			VM_OBJECT_UNLOCK(object);
1158 			object = backing_object;
1159 		}
1160 		if (src_m == NULL)
1161 			panic("vm_fault_copy_wired: page missing");
1162 		pmap_copy_page(src_m, dst_m);
1163 		VM_OBJECT_UNLOCK(object);
1164 		dst_m->valid = VM_PAGE_BITS_ALL;
1165 		VM_OBJECT_UNLOCK(dst_object);
1166 
1167 		/*
1168 		 * Enter it in the pmap...
1169 		 */
1170 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1171 
1172 		/*
1173 		 * Mark it no longer busy, and put it on the active list.
1174 		 */
1175 		VM_OBJECT_LOCK(dst_object);
1176 		vm_page_lock_queues();
1177 		vm_page_activate(dst_m);
1178 		vm_page_unlock_queues();
1179 		vm_page_wakeup(dst_m);
1180 	}
1181 	VM_OBJECT_UNLOCK(dst_object);
1182 }
1183 
1184 
1185 /*
1186  * This routine checks around the requested page for other pages that
1187  * might be able to be faulted in.  This routine brackets the viable
1188  * pages for the pages to be paged in.
1189  *
1190  * Inputs:
1191  *	m, rbehind, rahead
1192  *
1193  * Outputs:
1194  *  marray (array of vm_page_t), reqpage (index of requested page)
1195  *
1196  * Return value:
1197  *  number of pages in marray
1198  *
1199  * This routine can't block.
1200  */
1201 static int
1202 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1203 	vm_page_t m;
1204 	int rbehind;
1205 	int rahead;
1206 	vm_page_t *marray;
1207 	int *reqpage;
1208 {
1209 	int i,j;
1210 	vm_object_t object;
1211 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1212 	vm_page_t rtm;
1213 	int cbehind, cahead;
1214 
1215 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1216 
1217 	object = m->object;
1218 	pindex = m->pindex;
1219 	cbehind = cahead = 0;
1220 
1221 	/*
1222 	 * if the requested page is not available, then give up now
1223 	 */
1224 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1225 		return 0;
1226 	}
1227 
1228 	if ((cbehind == 0) && (cahead == 0)) {
1229 		*reqpage = 0;
1230 		marray[0] = m;
1231 		return 1;
1232 	}
1233 
1234 	if (rahead > cahead) {
1235 		rahead = cahead;
1236 	}
1237 
1238 	if (rbehind > cbehind) {
1239 		rbehind = cbehind;
1240 	}
1241 
1242 	/*
1243 	 * scan backward for the read behind pages -- in memory
1244 	 */
1245 	if (pindex > 0) {
1246 		if (rbehind > pindex) {
1247 			rbehind = pindex;
1248 			startpindex = 0;
1249 		} else {
1250 			startpindex = pindex - rbehind;
1251 		}
1252 
1253 		if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL &&
1254 		    rtm->pindex >= startpindex)
1255 			startpindex = rtm->pindex + 1;
1256 
1257 		/* tpindex is unsigned; beware of numeric underflow. */
1258 		for (i = 0, tpindex = pindex - 1; tpindex >= startpindex &&
1259 		    tpindex < pindex; i++, tpindex--) {
1260 
1261 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1262 			    VM_ALLOC_IFNOTCACHED);
1263 			if (rtm == NULL) {
1264 				/*
1265 				 * Shift the allocated pages to the
1266 				 * beginning of the array.
1267 				 */
1268 				for (j = 0; j < i; j++) {
1269 					marray[j] = marray[j + tpindex + 1 -
1270 					    startpindex];
1271 				}
1272 				break;
1273 			}
1274 
1275 			marray[tpindex - startpindex] = rtm;
1276 		}
1277 	} else {
1278 		startpindex = 0;
1279 		i = 0;
1280 	}
1281 
1282 	marray[i] = m;
1283 	/* page offset of the required page */
1284 	*reqpage = i;
1285 
1286 	tpindex = pindex + 1;
1287 	i++;
1288 
1289 	/*
1290 	 * scan forward for the read ahead pages
1291 	 */
1292 	endpindex = tpindex + rahead;
1293 	if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex)
1294 		endpindex = rtm->pindex;
1295 	if (endpindex > object->size)
1296 		endpindex = object->size;
1297 
1298 	for (; tpindex < endpindex; i++, tpindex++) {
1299 
1300 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL |
1301 		    VM_ALLOC_IFNOTCACHED);
1302 		if (rtm == NULL) {
1303 			break;
1304 		}
1305 
1306 		marray[i] = rtm;
1307 	}
1308 
1309 	/* return number of pages */
1310 	return i;
1311 }
1312