1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include <sys/param.h> 78 #include <sys/systm.h> 79 #include <sys/kernel.h> 80 #include <sys/lock.h> 81 #include <sys/mutex.h> 82 #include <sys/proc.h> 83 #include <sys/resourcevar.h> 84 #include <sys/sysctl.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vnode.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/vm_extern.h> 99 100 #include <sys/mount.h> /* XXX Temporary for VFS_LOCK_GIANT() */ 101 102 #define PFBAK 4 103 #define PFFOR 4 104 #define PAGEORDER_SIZE (PFBAK+PFFOR) 105 106 static int prefault_pageorder[] = { 107 -1 * PAGE_SIZE, 1 * PAGE_SIZE, 108 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 109 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 110 -4 * PAGE_SIZE, 4 * PAGE_SIZE 111 }; 112 113 static int vm_fault_additional_pages(vm_page_t, int, int, vm_page_t *, int *); 114 static void vm_fault_prefault(pmap_t, vm_offset_t, vm_map_entry_t); 115 116 #define VM_FAULT_READ_AHEAD 8 117 #define VM_FAULT_READ_BEHIND 7 118 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1) 119 120 struct faultstate { 121 vm_page_t m; 122 vm_object_t object; 123 vm_pindex_t pindex; 124 vm_page_t first_m; 125 vm_object_t first_object; 126 vm_pindex_t first_pindex; 127 vm_map_t map; 128 vm_map_entry_t entry; 129 int lookup_still_valid; 130 struct vnode *vp; 131 }; 132 133 static inline void 134 release_page(struct faultstate *fs) 135 { 136 vm_page_wakeup(fs->m); 137 vm_page_lock_queues(); 138 vm_page_deactivate(fs->m); 139 vm_page_unlock_queues(); 140 fs->m = NULL; 141 } 142 143 static inline void 144 unlock_map(struct faultstate *fs) 145 { 146 if (fs->lookup_still_valid) { 147 vm_map_lookup_done(fs->map, fs->entry); 148 fs->lookup_still_valid = FALSE; 149 } 150 } 151 152 static void 153 unlock_and_deallocate(struct faultstate *fs) 154 { 155 156 vm_object_pip_wakeup(fs->object); 157 VM_OBJECT_UNLOCK(fs->object); 158 if (fs->object != fs->first_object) { 159 VM_OBJECT_LOCK(fs->first_object); 160 vm_page_lock_queues(); 161 vm_page_free(fs->first_m); 162 vm_page_unlock_queues(); 163 vm_object_pip_wakeup(fs->first_object); 164 VM_OBJECT_UNLOCK(fs->first_object); 165 fs->first_m = NULL; 166 } 167 vm_object_deallocate(fs->first_object); 168 unlock_map(fs); 169 if (fs->vp != NULL) { 170 int vfslocked; 171 172 vfslocked = VFS_LOCK_GIANT(fs->vp->v_mount); 173 vput(fs->vp); 174 fs->vp = NULL; 175 VFS_UNLOCK_GIANT(vfslocked); 176 } 177 } 178 179 /* 180 * TRYPAGER - used by vm_fault to calculate whether the pager for the 181 * current object *might* contain the page. 182 * 183 * default objects are zero-fill, there is no real pager. 184 */ 185 #define TRYPAGER (fs.object->type != OBJT_DEFAULT && \ 186 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) 187 188 /* 189 * vm_fault: 190 * 191 * Handle a page fault occurring at the given address, 192 * requiring the given permissions, in the map specified. 193 * If successful, the page is inserted into the 194 * associated physical map. 195 * 196 * NOTE: the given address should be truncated to the 197 * proper page address. 198 * 199 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 200 * a standard error specifying why the fault is fatal is returned. 201 * 202 * 203 * The map in question must be referenced, and remains so. 204 * Caller may hold no locks. 205 */ 206 int 207 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 208 int fault_flags) 209 { 210 vm_prot_t prot; 211 int is_first_object_locked, result; 212 boolean_t growstack, wired; 213 int map_generation; 214 vm_object_t next_object; 215 vm_page_t marray[VM_FAULT_READ]; 216 int hardfault; 217 int faultcount; 218 struct faultstate fs; 219 220 hardfault = 0; 221 growstack = TRUE; 222 PCPU_INC(cnt.v_vm_faults); 223 224 RetryFault:; 225 226 /* 227 * Find the backing store object and offset into it to begin the 228 * search. 229 */ 230 fs.map = map; 231 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 232 &fs.first_object, &fs.first_pindex, &prot, &wired); 233 if (result != KERN_SUCCESS) { 234 if (result != KERN_PROTECTION_FAILURE || 235 (fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) { 236 if (growstack && result == KERN_INVALID_ADDRESS && 237 map != kernel_map && curproc != NULL) { 238 result = vm_map_growstack(curproc, vaddr); 239 if (result != KERN_SUCCESS) 240 return (KERN_FAILURE); 241 growstack = FALSE; 242 goto RetryFault; 243 } 244 return (result); 245 } 246 247 /* 248 * If we are user-wiring a r/w segment, and it is COW, then 249 * we need to do the COW operation. Note that we don't COW 250 * currently RO sections now, because it is NOT desirable 251 * to COW .text. We simply keep .text from ever being COW'ed 252 * and take the heat that one cannot debug wired .text sections. 253 */ 254 result = vm_map_lookup(&fs.map, vaddr, 255 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE, 256 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired); 257 if (result != KERN_SUCCESS) 258 return (result); 259 260 /* 261 * If we don't COW now, on a user wire, the user will never 262 * be able to write to the mapping. If we don't make this 263 * restriction, the bookkeeping would be nearly impossible. 264 * 265 * XXX The following assignment modifies the map without 266 * holding a write lock on it. 267 */ 268 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 269 fs.entry->max_protection &= ~VM_PROT_WRITE; 270 } 271 272 map_generation = fs.map->timestamp; 273 274 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 275 panic("vm_fault: fault on nofault entry, addr: %lx", 276 (u_long)vaddr); 277 } 278 279 /* 280 * Make a reference to this object to prevent its disposal while we 281 * are messing with it. Once we have the reference, the map is free 282 * to be diddled. Since objects reference their shadows (and copies), 283 * they will stay around as well. 284 * 285 * Bump the paging-in-progress count to prevent size changes (e.g. 286 * truncation operations) during I/O. This must be done after 287 * obtaining the vnode lock in order to avoid possible deadlocks. 288 * 289 * XXX vnode_pager_lock() can block without releasing the map lock. 290 */ 291 if (fs.first_object->flags & OBJ_NEEDGIANT) 292 mtx_lock(&Giant); 293 VM_OBJECT_LOCK(fs.first_object); 294 vm_object_reference_locked(fs.first_object); 295 fs.vp = vnode_pager_lock(fs.first_object); 296 KASSERT(fs.vp == NULL || !fs.map->system_map, 297 ("vm_fault: vnode-backed object mapped by system map")); 298 KASSERT((fs.first_object->flags & OBJ_NEEDGIANT) == 0 || 299 !fs.map->system_map, 300 ("vm_fault: Object requiring giant mapped by system map")); 301 if (fs.first_object->flags & OBJ_NEEDGIANT) 302 mtx_unlock(&Giant); 303 vm_object_pip_add(fs.first_object, 1); 304 305 fs.lookup_still_valid = TRUE; 306 307 if (wired) 308 fault_type = prot; 309 310 fs.first_m = NULL; 311 312 /* 313 * Search for the page at object/offset. 314 */ 315 fs.object = fs.first_object; 316 fs.pindex = fs.first_pindex; 317 while (TRUE) { 318 /* 319 * If the object is dead, we stop here 320 */ 321 if (fs.object->flags & OBJ_DEAD) { 322 unlock_and_deallocate(&fs); 323 return (KERN_PROTECTION_FAILURE); 324 } 325 326 /* 327 * See if page is resident 328 */ 329 fs.m = vm_page_lookup(fs.object, fs.pindex); 330 if (fs.m != NULL) { 331 /* 332 * check for page-based copy on write. 333 * We check fs.object == fs.first_object so 334 * as to ensure the legacy COW mechanism is 335 * used when the page in question is part of 336 * a shadow object. Otherwise, vm_page_cowfault() 337 * removes the page from the backing object, 338 * which is not what we want. 339 */ 340 vm_page_lock_queues(); 341 if ((fs.m->cow) && 342 (fault_type & VM_PROT_WRITE) && 343 (fs.object == fs.first_object)) { 344 vm_page_cowfault(fs.m); 345 vm_page_unlock_queues(); 346 unlock_and_deallocate(&fs); 347 goto RetryFault; 348 } 349 350 /* 351 * Wait/Retry if the page is busy. We have to do this 352 * if the page is busy via either VPO_BUSY or 353 * vm_page_t->busy because the vm_pager may be using 354 * vm_page_t->busy for pageouts ( and even pageins if 355 * it is the vnode pager ), and we could end up trying 356 * to pagein and pageout the same page simultaneously. 357 * 358 * We can theoretically allow the busy case on a read 359 * fault if the page is marked valid, but since such 360 * pages are typically already pmap'd, putting that 361 * special case in might be more effort then it is 362 * worth. We cannot under any circumstances mess 363 * around with a vm_page_t->busy page except, perhaps, 364 * to pmap it. 365 */ 366 if ((fs.m->oflags & VPO_BUSY) || fs.m->busy) { 367 vm_page_unlock_queues(); 368 VM_OBJECT_UNLOCK(fs.object); 369 if (fs.object != fs.first_object) { 370 VM_OBJECT_LOCK(fs.first_object); 371 vm_page_lock_queues(); 372 vm_page_free(fs.first_m); 373 vm_page_unlock_queues(); 374 vm_object_pip_wakeup(fs.first_object); 375 VM_OBJECT_UNLOCK(fs.first_object); 376 fs.first_m = NULL; 377 } 378 unlock_map(&fs); 379 if (fs.vp != NULL) { 380 int vfslck; 381 382 vfslck = VFS_LOCK_GIANT(fs.vp->v_mount); 383 vput(fs.vp); 384 fs.vp = NULL; 385 VFS_UNLOCK_GIANT(vfslck); 386 } 387 VM_OBJECT_LOCK(fs.object); 388 if (fs.m == vm_page_lookup(fs.object, 389 fs.pindex)) { 390 vm_page_sleep_if_busy(fs.m, TRUE, 391 "vmpfw"); 392 } 393 vm_object_pip_wakeup(fs.object); 394 VM_OBJECT_UNLOCK(fs.object); 395 PCPU_INC(cnt.v_intrans); 396 vm_object_deallocate(fs.first_object); 397 goto RetryFault; 398 } 399 vm_pageq_remove(fs.m); 400 vm_page_unlock_queues(); 401 402 /* 403 * Mark page busy for other processes, and the 404 * pagedaemon. If it still isn't completely valid 405 * (readable), jump to readrest, else break-out ( we 406 * found the page ). 407 */ 408 vm_page_busy(fs.m); 409 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) && 410 fs.m->object != kernel_object && fs.m->object != kmem_object) { 411 goto readrest; 412 } 413 414 break; 415 } 416 417 /* 418 * Page is not resident, If this is the search termination 419 * or the pager might contain the page, allocate a new page. 420 */ 421 if (TRYPAGER || fs.object == fs.first_object) { 422 if (fs.pindex >= fs.object->size) { 423 unlock_and_deallocate(&fs); 424 return (KERN_PROTECTION_FAILURE); 425 } 426 427 /* 428 * Allocate a new page for this object/offset pair. 429 */ 430 fs.m = NULL; 431 if (!vm_page_count_severe()) { 432 fs.m = vm_page_alloc(fs.object, fs.pindex, 433 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO); 434 if ((fs.m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) 435 break; 436 } 437 if (fs.m == NULL) { 438 unlock_and_deallocate(&fs); 439 VM_WAITPFAULT; 440 goto RetryFault; 441 } 442 } 443 444 readrest: 445 /* 446 * We have found a valid page or we have allocated a new page. 447 * The page thus may not be valid or may not be entirely 448 * valid. 449 * 450 * Attempt to fault-in the page if there is a chance that the 451 * pager has it, and potentially fault in additional pages 452 * at the same time. 453 */ 454 if (TRYPAGER) { 455 int rv; 456 int reqpage = 0; 457 int ahead, behind; 458 u_char behavior = vm_map_entry_behavior(fs.entry); 459 460 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 461 ahead = 0; 462 behind = 0; 463 } else { 464 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT; 465 if (behind > VM_FAULT_READ_BEHIND) 466 behind = VM_FAULT_READ_BEHIND; 467 468 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1; 469 if (ahead > VM_FAULT_READ_AHEAD) 470 ahead = VM_FAULT_READ_AHEAD; 471 } 472 is_first_object_locked = FALSE; 473 if ((behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 474 (behavior != MAP_ENTRY_BEHAV_RANDOM && 475 fs.pindex >= fs.entry->lastr && 476 fs.pindex < fs.entry->lastr + VM_FAULT_READ)) && 477 (fs.first_object == fs.object || 478 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object))) && 479 fs.first_object->type != OBJT_DEVICE) { 480 vm_pindex_t firstpindex, tmppindex; 481 482 if (fs.first_pindex < 2 * VM_FAULT_READ) 483 firstpindex = 0; 484 else 485 firstpindex = fs.first_pindex - 2 * VM_FAULT_READ; 486 487 vm_page_lock_queues(); 488 /* 489 * note: partially valid pages cannot be 490 * included in the lookahead - NFS piecemeal 491 * writes will barf on it badly. 492 */ 493 for (tmppindex = fs.first_pindex - 1; 494 tmppindex >= firstpindex; 495 --tmppindex) { 496 vm_page_t mt; 497 498 mt = vm_page_lookup(fs.first_object, tmppindex); 499 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL)) 500 break; 501 if (mt->busy || 502 (mt->oflags & VPO_BUSY) || 503 (mt->flags & (PG_FICTITIOUS | PG_UNMANAGED)) || 504 mt->hold_count || 505 mt->wire_count) 506 continue; 507 pmap_remove_all(mt); 508 if (mt->dirty) { 509 vm_page_deactivate(mt); 510 } else { 511 vm_page_cache(mt); 512 } 513 } 514 vm_page_unlock_queues(); 515 ahead += behind; 516 behind = 0; 517 } 518 if (is_first_object_locked) 519 VM_OBJECT_UNLOCK(fs.first_object); 520 /* 521 * now we find out if any other pages should be paged 522 * in at this time this routine checks to see if the 523 * pages surrounding this fault reside in the same 524 * object as the page for this fault. If they do, 525 * then they are faulted in also into the object. The 526 * array "marray" returned contains an array of 527 * vm_page_t structs where one of them is the 528 * vm_page_t passed to the routine. The reqpage 529 * return value is the index into the marray for the 530 * vm_page_t passed to the routine. 531 * 532 * fs.m plus the additional pages are VPO_BUSY'd. 533 * 534 * XXX vm_fault_additional_pages() can block 535 * without releasing the map lock. 536 */ 537 faultcount = vm_fault_additional_pages( 538 fs.m, behind, ahead, marray, &reqpage); 539 540 /* 541 * update lastr imperfectly (we do not know how much 542 * getpages will actually read), but good enough. 543 * 544 * XXX The following assignment modifies the map 545 * without holding a write lock on it. 546 */ 547 fs.entry->lastr = fs.pindex + faultcount - behind; 548 549 /* 550 * Call the pager to retrieve the data, if any, after 551 * releasing the lock on the map. We hold a ref on 552 * fs.object and the pages are VPO_BUSY'd. 553 */ 554 unlock_map(&fs); 555 556 rv = faultcount ? 557 vm_pager_get_pages(fs.object, marray, faultcount, 558 reqpage) : VM_PAGER_FAIL; 559 560 if (rv == VM_PAGER_OK) { 561 /* 562 * Found the page. Leave it busy while we play 563 * with it. 564 */ 565 566 /* 567 * Relookup in case pager changed page. Pager 568 * is responsible for disposition of old page 569 * if moved. 570 */ 571 fs.m = vm_page_lookup(fs.object, fs.pindex); 572 if (!fs.m) { 573 unlock_and_deallocate(&fs); 574 goto RetryFault; 575 } 576 577 hardfault++; 578 break; /* break to PAGE HAS BEEN FOUND */ 579 } 580 /* 581 * Remove the bogus page (which does not exist at this 582 * object/offset); before doing so, we must get back 583 * our object lock to preserve our invariant. 584 * 585 * Also wake up any other process that may want to bring 586 * in this page. 587 * 588 * If this is the top-level object, we must leave the 589 * busy page to prevent another process from rushing 590 * past us, and inserting the page in that object at 591 * the same time that we are. 592 */ 593 if (rv == VM_PAGER_ERROR) 594 printf("vm_fault: pager read error, pid %d (%s)\n", 595 curproc->p_pid, curproc->p_comm); 596 /* 597 * Data outside the range of the pager or an I/O error 598 */ 599 /* 600 * XXX - the check for kernel_map is a kludge to work 601 * around having the machine panic on a kernel space 602 * fault w/ I/O error. 603 */ 604 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 605 (rv == VM_PAGER_BAD)) { 606 vm_page_lock_queues(); 607 vm_page_free(fs.m); 608 vm_page_unlock_queues(); 609 fs.m = NULL; 610 unlock_and_deallocate(&fs); 611 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 612 } 613 if (fs.object != fs.first_object) { 614 vm_page_lock_queues(); 615 vm_page_free(fs.m); 616 vm_page_unlock_queues(); 617 fs.m = NULL; 618 /* 619 * XXX - we cannot just fall out at this 620 * point, m has been freed and is invalid! 621 */ 622 } 623 } 624 625 /* 626 * We get here if the object has default pager (or unwiring) 627 * or the pager doesn't have the page. 628 */ 629 if (fs.object == fs.first_object) 630 fs.first_m = fs.m; 631 632 /* 633 * Move on to the next object. Lock the next object before 634 * unlocking the current one. 635 */ 636 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 637 next_object = fs.object->backing_object; 638 if (next_object == NULL) { 639 /* 640 * If there's no object left, fill the page in the top 641 * object with zeros. 642 */ 643 if (fs.object != fs.first_object) { 644 vm_object_pip_wakeup(fs.object); 645 VM_OBJECT_UNLOCK(fs.object); 646 647 fs.object = fs.first_object; 648 fs.pindex = fs.first_pindex; 649 fs.m = fs.first_m; 650 VM_OBJECT_LOCK(fs.object); 651 } 652 fs.first_m = NULL; 653 654 /* 655 * Zero the page if necessary and mark it valid. 656 */ 657 if ((fs.m->flags & PG_ZERO) == 0) { 658 pmap_zero_page(fs.m); 659 } else { 660 PCPU_INC(cnt.v_ozfod); 661 } 662 PCPU_INC(cnt.v_zfod); 663 fs.m->valid = VM_PAGE_BITS_ALL; 664 break; /* break to PAGE HAS BEEN FOUND */ 665 } else { 666 KASSERT(fs.object != next_object, 667 ("object loop %p", next_object)); 668 VM_OBJECT_LOCK(next_object); 669 vm_object_pip_add(next_object, 1); 670 if (fs.object != fs.first_object) 671 vm_object_pip_wakeup(fs.object); 672 VM_OBJECT_UNLOCK(fs.object); 673 fs.object = next_object; 674 } 675 } 676 677 KASSERT((fs.m->oflags & VPO_BUSY) != 0, 678 ("vm_fault: not busy after main loop")); 679 680 /* 681 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 682 * is held.] 683 */ 684 685 /* 686 * If the page is being written, but isn't already owned by the 687 * top-level object, we have to copy it into a new page owned by the 688 * top-level object. 689 */ 690 if (fs.object != fs.first_object) { 691 /* 692 * We only really need to copy if we want to write it. 693 */ 694 if (fault_type & VM_PROT_WRITE) { 695 /* 696 * This allows pages to be virtually copied from a 697 * backing_object into the first_object, where the 698 * backing object has no other refs to it, and cannot 699 * gain any more refs. Instead of a bcopy, we just 700 * move the page from the backing object to the 701 * first object. Note that we must mark the page 702 * dirty in the first object so that it will go out 703 * to swap when needed. 704 */ 705 is_first_object_locked = FALSE; 706 if ( 707 /* 708 * Only one shadow object 709 */ 710 (fs.object->shadow_count == 1) && 711 /* 712 * No COW refs, except us 713 */ 714 (fs.object->ref_count == 1) && 715 /* 716 * No one else can look this object up 717 */ 718 (fs.object->handle == NULL) && 719 /* 720 * No other ways to look the object up 721 */ 722 ((fs.object->type == OBJT_DEFAULT) || 723 (fs.object->type == OBJT_SWAP)) && 724 (is_first_object_locked = VM_OBJECT_TRYLOCK(fs.first_object)) && 725 /* 726 * We don't chase down the shadow chain 727 */ 728 fs.object == fs.first_object->backing_object) { 729 vm_page_lock_queues(); 730 /* 731 * get rid of the unnecessary page 732 */ 733 vm_page_free(fs.first_m); 734 /* 735 * grab the page and put it into the 736 * process'es object. The page is 737 * automatically made dirty. 738 */ 739 vm_page_rename(fs.m, fs.first_object, fs.first_pindex); 740 vm_page_unlock_queues(); 741 vm_page_busy(fs.m); 742 fs.first_m = fs.m; 743 fs.m = NULL; 744 PCPU_INC(cnt.v_cow_optim); 745 } else { 746 /* 747 * Oh, well, lets copy it. 748 */ 749 pmap_copy_page(fs.m, fs.first_m); 750 fs.first_m->valid = VM_PAGE_BITS_ALL; 751 } 752 if (fs.m) { 753 /* 754 * We no longer need the old page or object. 755 */ 756 release_page(&fs); 757 } 758 /* 759 * fs.object != fs.first_object due to above 760 * conditional 761 */ 762 vm_object_pip_wakeup(fs.object); 763 VM_OBJECT_UNLOCK(fs.object); 764 /* 765 * Only use the new page below... 766 */ 767 fs.object = fs.first_object; 768 fs.pindex = fs.first_pindex; 769 fs.m = fs.first_m; 770 if (!is_first_object_locked) 771 VM_OBJECT_LOCK(fs.object); 772 PCPU_INC(cnt.v_cow_faults); 773 } else { 774 prot &= ~VM_PROT_WRITE; 775 } 776 } 777 778 /* 779 * We must verify that the maps have not changed since our last 780 * lookup. 781 */ 782 if (!fs.lookup_still_valid) { 783 vm_object_t retry_object; 784 vm_pindex_t retry_pindex; 785 vm_prot_t retry_prot; 786 787 if (!vm_map_trylock_read(fs.map)) { 788 release_page(&fs); 789 unlock_and_deallocate(&fs); 790 goto RetryFault; 791 } 792 fs.lookup_still_valid = TRUE; 793 if (fs.map->timestamp != map_generation) { 794 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 795 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 796 797 /* 798 * If we don't need the page any longer, put it on the inactive 799 * list (the easiest thing to do here). If no one needs it, 800 * pageout will grab it eventually. 801 */ 802 if (result != KERN_SUCCESS) { 803 release_page(&fs); 804 unlock_and_deallocate(&fs); 805 806 /* 807 * If retry of map lookup would have blocked then 808 * retry fault from start. 809 */ 810 if (result == KERN_FAILURE) 811 goto RetryFault; 812 return (result); 813 } 814 if ((retry_object != fs.first_object) || 815 (retry_pindex != fs.first_pindex)) { 816 release_page(&fs); 817 unlock_and_deallocate(&fs); 818 goto RetryFault; 819 } 820 821 /* 822 * Check whether the protection has changed or the object has 823 * been copied while we left the map unlocked. Changing from 824 * read to write permission is OK - we leave the page 825 * write-protected, and catch the write fault. Changing from 826 * write to read permission means that we can't mark the page 827 * write-enabled after all. 828 */ 829 prot &= retry_prot; 830 } 831 } 832 if (prot & VM_PROT_WRITE) { 833 vm_object_set_writeable_dirty(fs.object); 834 835 /* 836 * If the fault is a write, we know that this page is being 837 * written NOW so dirty it explicitly to save on 838 * pmap_is_modified() calls later. 839 * 840 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 841 * if the page is already dirty to prevent data written with 842 * the expectation of being synced from not being synced. 843 * Likewise if this entry does not request NOSYNC then make 844 * sure the page isn't marked NOSYNC. Applications sharing 845 * data should use the same flags to avoid ping ponging. 846 * 847 * Also tell the backing pager, if any, that it should remove 848 * any swap backing since the page is now dirty. 849 */ 850 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) { 851 if (fs.m->dirty == 0) 852 fs.m->oflags |= VPO_NOSYNC; 853 } else { 854 fs.m->oflags &= ~VPO_NOSYNC; 855 } 856 if (fault_flags & VM_FAULT_DIRTY) { 857 vm_page_dirty(fs.m); 858 vm_pager_page_unswapped(fs.m); 859 } 860 } 861 862 /* 863 * Page had better still be busy 864 */ 865 KASSERT(fs.m->oflags & VPO_BUSY, 866 ("vm_fault: page %p not busy!", fs.m)); 867 /* 868 * Sanity check: page must be completely valid or it is not fit to 869 * map into user space. vm_pager_get_pages() ensures this. 870 */ 871 if (fs.m->valid != VM_PAGE_BITS_ALL) { 872 vm_page_zero_invalid(fs.m, TRUE); 873 printf("Warning: page %p partially invalid on fault\n", fs.m); 874 } 875 VM_OBJECT_UNLOCK(fs.object); 876 877 /* 878 * Put this page into the physical map. We had to do the unlock above 879 * because pmap_enter() may sleep. We don't put the page 880 * back on the active queue until later so that the pageout daemon 881 * won't find it (yet). 882 */ 883 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired); 884 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) { 885 vm_fault_prefault(fs.map->pmap, vaddr, fs.entry); 886 } 887 VM_OBJECT_LOCK(fs.object); 888 vm_page_lock_queues(); 889 vm_page_flag_set(fs.m, PG_REFERENCED); 890 891 /* 892 * If the page is not wired down, then put it where the pageout daemon 893 * can find it. 894 */ 895 if (fault_flags & VM_FAULT_WIRE_MASK) { 896 if (wired) 897 vm_page_wire(fs.m); 898 else 899 vm_page_unwire(fs.m, 1); 900 } else { 901 vm_page_activate(fs.m); 902 } 903 vm_page_unlock_queues(); 904 vm_page_wakeup(fs.m); 905 906 /* 907 * Unlock everything, and return 908 */ 909 unlock_and_deallocate(&fs); 910 if (hardfault) 911 curthread->td_ru.ru_majflt++; 912 else 913 curthread->td_ru.ru_minflt++; 914 915 return (KERN_SUCCESS); 916 } 917 918 /* 919 * vm_fault_prefault provides a quick way of clustering 920 * pagefaults into a processes address space. It is a "cousin" 921 * of vm_map_pmap_enter, except it runs at page fault time instead 922 * of mmap time. 923 */ 924 static void 925 vm_fault_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry) 926 { 927 int i; 928 vm_offset_t addr, starta; 929 vm_pindex_t pindex; 930 vm_page_t m; 931 vm_object_t object; 932 933 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 934 return; 935 936 object = entry->object.vm_object; 937 938 starta = addra - PFBAK * PAGE_SIZE; 939 if (starta < entry->start) { 940 starta = entry->start; 941 } else if (starta > addra) { 942 starta = 0; 943 } 944 945 for (i = 0; i < PAGEORDER_SIZE; i++) { 946 vm_object_t backing_object, lobject; 947 948 addr = addra + prefault_pageorder[i]; 949 if (addr > addra + (PFFOR * PAGE_SIZE)) 950 addr = 0; 951 952 if (addr < starta || addr >= entry->end) 953 continue; 954 955 if (!pmap_is_prefaultable(pmap, addr)) 956 continue; 957 958 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 959 lobject = object; 960 VM_OBJECT_LOCK(lobject); 961 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 962 lobject->type == OBJT_DEFAULT && 963 (backing_object = lobject->backing_object) != NULL) { 964 if (lobject->backing_object_offset & PAGE_MASK) 965 break; 966 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 967 VM_OBJECT_LOCK(backing_object); 968 VM_OBJECT_UNLOCK(lobject); 969 lobject = backing_object; 970 } 971 /* 972 * give-up when a page is not in memory 973 */ 974 if (m == NULL) { 975 VM_OBJECT_UNLOCK(lobject); 976 break; 977 } 978 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 979 (m->busy == 0) && 980 (m->flags & PG_FICTITIOUS) == 0) { 981 982 vm_page_lock_queues(); 983 pmap_enter_quick(pmap, addr, m, entry->protection); 984 vm_page_unlock_queues(); 985 } 986 VM_OBJECT_UNLOCK(lobject); 987 } 988 } 989 990 /* 991 * vm_fault_quick: 992 * 993 * Ensure that the requested virtual address, which may be in userland, 994 * is valid. Fault-in the page if necessary. Return -1 on failure. 995 */ 996 int 997 vm_fault_quick(caddr_t v, int prot) 998 { 999 int r; 1000 1001 if (prot & VM_PROT_WRITE) 1002 r = subyte(v, fubyte(v)); 1003 else 1004 r = fubyte(v); 1005 return(r); 1006 } 1007 1008 /* 1009 * vm_fault_wire: 1010 * 1011 * Wire down a range of virtual addresses in a map. 1012 */ 1013 int 1014 vm_fault_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1015 boolean_t user_wire, boolean_t fictitious) 1016 { 1017 vm_offset_t va; 1018 int rv; 1019 1020 /* 1021 * We simulate a fault to get the page and enter it in the physical 1022 * map. For user wiring, we only ask for read access on currently 1023 * read-only sections. 1024 */ 1025 for (va = start; va < end; va += PAGE_SIZE) { 1026 rv = vm_fault(map, va, 1027 user_wire ? VM_PROT_READ : VM_PROT_READ | VM_PROT_WRITE, 1028 user_wire ? VM_FAULT_USER_WIRE : VM_FAULT_CHANGE_WIRING); 1029 if (rv) { 1030 if (va != start) 1031 vm_fault_unwire(map, start, va, fictitious); 1032 return (rv); 1033 } 1034 } 1035 return (KERN_SUCCESS); 1036 } 1037 1038 /* 1039 * vm_fault_unwire: 1040 * 1041 * Unwire a range of virtual addresses in a map. 1042 */ 1043 void 1044 vm_fault_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1045 boolean_t fictitious) 1046 { 1047 vm_paddr_t pa; 1048 vm_offset_t va; 1049 pmap_t pmap; 1050 1051 pmap = vm_map_pmap(map); 1052 1053 /* 1054 * Since the pages are wired down, we must be able to get their 1055 * mappings from the physical map system. 1056 */ 1057 for (va = start; va < end; va += PAGE_SIZE) { 1058 pa = pmap_extract(pmap, va); 1059 if (pa != 0) { 1060 pmap_change_wiring(pmap, va, FALSE); 1061 if (!fictitious) { 1062 vm_page_lock_queues(); 1063 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1064 vm_page_unlock_queues(); 1065 } 1066 } 1067 } 1068 } 1069 1070 /* 1071 * Routine: 1072 * vm_fault_copy_entry 1073 * Function: 1074 * Copy all of the pages from a wired-down map entry to another. 1075 * 1076 * In/out conditions: 1077 * The source and destination maps must be locked for write. 1078 * The source map entry must be wired down (or be a sharing map 1079 * entry corresponding to a main map entry that is wired down). 1080 */ 1081 void 1082 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry) 1083 vm_map_t dst_map; 1084 vm_map_t src_map; 1085 vm_map_entry_t dst_entry; 1086 vm_map_entry_t src_entry; 1087 { 1088 vm_object_t backing_object, dst_object, object; 1089 vm_object_t src_object; 1090 vm_ooffset_t dst_offset; 1091 vm_ooffset_t src_offset; 1092 vm_pindex_t pindex; 1093 vm_prot_t prot; 1094 vm_offset_t vaddr; 1095 vm_page_t dst_m; 1096 vm_page_t src_m; 1097 1098 #ifdef lint 1099 src_map++; 1100 #endif /* lint */ 1101 1102 src_object = src_entry->object.vm_object; 1103 src_offset = src_entry->offset; 1104 1105 /* 1106 * Create the top-level object for the destination entry. (Doesn't 1107 * actually shadow anything - we copy the pages directly.) 1108 */ 1109 dst_object = vm_object_allocate(OBJT_DEFAULT, 1110 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1111 1112 VM_OBJECT_LOCK(dst_object); 1113 dst_entry->object.vm_object = dst_object; 1114 dst_entry->offset = 0; 1115 1116 prot = dst_entry->max_protection; 1117 1118 /* 1119 * Loop through all of the pages in the entry's range, copying each 1120 * one from the source object (it should be there) to the destination 1121 * object. 1122 */ 1123 for (vaddr = dst_entry->start, dst_offset = 0; 1124 vaddr < dst_entry->end; 1125 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 1126 1127 /* 1128 * Allocate a page in the destination object 1129 */ 1130 do { 1131 dst_m = vm_page_alloc(dst_object, 1132 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 1133 if (dst_m == NULL) { 1134 VM_OBJECT_UNLOCK(dst_object); 1135 VM_WAIT; 1136 VM_OBJECT_LOCK(dst_object); 1137 } 1138 } while (dst_m == NULL); 1139 1140 /* 1141 * Find the page in the source object, and copy it in. 1142 * (Because the source is wired down, the page will be in 1143 * memory.) 1144 */ 1145 VM_OBJECT_LOCK(src_object); 1146 object = src_object; 1147 pindex = 0; 1148 while ((src_m = vm_page_lookup(object, pindex + 1149 OFF_TO_IDX(dst_offset + src_offset))) == NULL && 1150 (src_entry->protection & VM_PROT_WRITE) == 0 && 1151 (backing_object = object->backing_object) != NULL) { 1152 /* 1153 * Allow fallback to backing objects if we are reading. 1154 */ 1155 VM_OBJECT_LOCK(backing_object); 1156 pindex += OFF_TO_IDX(object->backing_object_offset); 1157 VM_OBJECT_UNLOCK(object); 1158 object = backing_object; 1159 } 1160 if (src_m == NULL) 1161 panic("vm_fault_copy_wired: page missing"); 1162 pmap_copy_page(src_m, dst_m); 1163 VM_OBJECT_UNLOCK(object); 1164 dst_m->valid = VM_PAGE_BITS_ALL; 1165 VM_OBJECT_UNLOCK(dst_object); 1166 1167 /* 1168 * Enter it in the pmap... 1169 */ 1170 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE); 1171 1172 /* 1173 * Mark it no longer busy, and put it on the active list. 1174 */ 1175 VM_OBJECT_LOCK(dst_object); 1176 vm_page_lock_queues(); 1177 vm_page_activate(dst_m); 1178 vm_page_unlock_queues(); 1179 vm_page_wakeup(dst_m); 1180 } 1181 VM_OBJECT_UNLOCK(dst_object); 1182 } 1183 1184 1185 /* 1186 * This routine checks around the requested page for other pages that 1187 * might be able to be faulted in. This routine brackets the viable 1188 * pages for the pages to be paged in. 1189 * 1190 * Inputs: 1191 * m, rbehind, rahead 1192 * 1193 * Outputs: 1194 * marray (array of vm_page_t), reqpage (index of requested page) 1195 * 1196 * Return value: 1197 * number of pages in marray 1198 * 1199 * This routine can't block. 1200 */ 1201 static int 1202 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 1203 vm_page_t m; 1204 int rbehind; 1205 int rahead; 1206 vm_page_t *marray; 1207 int *reqpage; 1208 { 1209 int i,j; 1210 vm_object_t object; 1211 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1212 vm_page_t rtm; 1213 int cbehind, cahead; 1214 1215 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1216 1217 object = m->object; 1218 pindex = m->pindex; 1219 cbehind = cahead = 0; 1220 1221 /* 1222 * if the requested page is not available, then give up now 1223 */ 1224 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1225 return 0; 1226 } 1227 1228 if ((cbehind == 0) && (cahead == 0)) { 1229 *reqpage = 0; 1230 marray[0] = m; 1231 return 1; 1232 } 1233 1234 if (rahead > cahead) { 1235 rahead = cahead; 1236 } 1237 1238 if (rbehind > cbehind) { 1239 rbehind = cbehind; 1240 } 1241 1242 /* 1243 * scan backward for the read behind pages -- in memory 1244 */ 1245 if (pindex > 0) { 1246 if (rbehind > pindex) { 1247 rbehind = pindex; 1248 startpindex = 0; 1249 } else { 1250 startpindex = pindex - rbehind; 1251 } 1252 1253 if ((rtm = TAILQ_PREV(m, pglist, listq)) != NULL && 1254 rtm->pindex >= startpindex) 1255 startpindex = rtm->pindex + 1; 1256 1257 /* tpindex is unsigned; beware of numeric underflow. */ 1258 for (i = 0, tpindex = pindex - 1; tpindex >= startpindex && 1259 tpindex < pindex; i++, tpindex--) { 1260 1261 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1262 VM_ALLOC_IFNOTCACHED); 1263 if (rtm == NULL) { 1264 /* 1265 * Shift the allocated pages to the 1266 * beginning of the array. 1267 */ 1268 for (j = 0; j < i; j++) { 1269 marray[j] = marray[j + tpindex + 1 - 1270 startpindex]; 1271 } 1272 break; 1273 } 1274 1275 marray[tpindex - startpindex] = rtm; 1276 } 1277 } else { 1278 startpindex = 0; 1279 i = 0; 1280 } 1281 1282 marray[i] = m; 1283 /* page offset of the required page */ 1284 *reqpage = i; 1285 1286 tpindex = pindex + 1; 1287 i++; 1288 1289 /* 1290 * scan forward for the read ahead pages 1291 */ 1292 endpindex = tpindex + rahead; 1293 if ((rtm = TAILQ_NEXT(m, listq)) != NULL && rtm->pindex < endpindex) 1294 endpindex = rtm->pindex; 1295 if (endpindex > object->size) 1296 endpindex = object->size; 1297 1298 for (; tpindex < endpindex; i++, tpindex++) { 1299 1300 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL | 1301 VM_ALLOC_IFNOTCACHED); 1302 if (rtm == NULL) { 1303 break; 1304 } 1305 1306 marray[i] = rtm; 1307 } 1308 1309 /* return number of pages */ 1310 return i; 1311 } 1312