1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 __FBSDID("$FreeBSD$"); 76 77 #include "opt_ktrace.h" 78 #include "opt_vm.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/kernel.h> 83 #include <sys/lock.h> 84 #include <sys/mman.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/resourcevar.h> 88 #include <sys/rwlock.h> 89 #include <sys/sysctl.h> 90 #include <sys/vmmeter.h> 91 #include <sys/vnode.h> 92 #ifdef KTRACE 93 #include <sys/ktrace.h> 94 #endif 95 96 #include <vm/vm.h> 97 #include <vm/vm_param.h> 98 #include <vm/pmap.h> 99 #include <vm/vm_map.h> 100 #include <vm/vm_object.h> 101 #include <vm/vm_page.h> 102 #include <vm/vm_pageout.h> 103 #include <vm/vm_kern.h> 104 #include <vm/vm_pager.h> 105 #include <vm/vm_extern.h> 106 #include <vm/vm_reserv.h> 107 108 #define PFBAK 4 109 #define PFFOR 4 110 111 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 112 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 113 114 #define VM_FAULT_DONTNEED_MIN 1048576 115 116 struct faultstate { 117 vm_page_t m; 118 vm_object_t object; 119 vm_pindex_t pindex; 120 vm_page_t first_m; 121 vm_object_t first_object; 122 vm_pindex_t first_pindex; 123 vm_map_t map; 124 vm_map_entry_t entry; 125 int lookup_still_valid; 126 struct vnode *vp; 127 }; 128 129 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 130 int ahead); 131 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 132 int backward, int forward); 133 134 static inline void 135 release_page(struct faultstate *fs) 136 { 137 138 vm_page_xunbusy(fs->m); 139 vm_page_lock(fs->m); 140 vm_page_deactivate(fs->m); 141 vm_page_unlock(fs->m); 142 fs->m = NULL; 143 } 144 145 static inline void 146 unlock_map(struct faultstate *fs) 147 { 148 149 if (fs->lookup_still_valid) { 150 vm_map_lookup_done(fs->map, fs->entry); 151 fs->lookup_still_valid = FALSE; 152 } 153 } 154 155 static void 156 unlock_and_deallocate(struct faultstate *fs) 157 { 158 159 vm_object_pip_wakeup(fs->object); 160 VM_OBJECT_WUNLOCK(fs->object); 161 if (fs->object != fs->first_object) { 162 VM_OBJECT_WLOCK(fs->first_object); 163 vm_page_lock(fs->first_m); 164 vm_page_free(fs->first_m); 165 vm_page_unlock(fs->first_m); 166 vm_object_pip_wakeup(fs->first_object); 167 VM_OBJECT_WUNLOCK(fs->first_object); 168 fs->first_m = NULL; 169 } 170 vm_object_deallocate(fs->first_object); 171 unlock_map(fs); 172 if (fs->vp != NULL) { 173 vput(fs->vp); 174 fs->vp = NULL; 175 } 176 } 177 178 static void 179 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 180 vm_prot_t fault_type, int fault_flags, boolean_t set_wd) 181 { 182 boolean_t need_dirty; 183 184 if (((prot & VM_PROT_WRITE) == 0 && 185 (fault_flags & VM_FAULT_DIRTY) == 0) || 186 (m->oflags & VPO_UNMANAGED) != 0) 187 return; 188 189 VM_OBJECT_ASSERT_LOCKED(m->object); 190 191 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 192 (fault_flags & VM_FAULT_WIRE) == 0) || 193 (fault_flags & VM_FAULT_DIRTY) != 0; 194 195 if (set_wd) 196 vm_object_set_writeable_dirty(m->object); 197 else 198 /* 199 * If two callers of vm_fault_dirty() with set_wd == 200 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 201 * flag set, other with flag clear, race, it is 202 * possible for the no-NOSYNC thread to see m->dirty 203 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 204 * around manipulation of VPO_NOSYNC and 205 * vm_page_dirty() call, to avoid the race and keep 206 * m->oflags consistent. 207 */ 208 vm_page_lock(m); 209 210 /* 211 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 212 * if the page is already dirty to prevent data written with 213 * the expectation of being synced from not being synced. 214 * Likewise if this entry does not request NOSYNC then make 215 * sure the page isn't marked NOSYNC. Applications sharing 216 * data should use the same flags to avoid ping ponging. 217 */ 218 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 219 if (m->dirty == 0) { 220 m->oflags |= VPO_NOSYNC; 221 } 222 } else { 223 m->oflags &= ~VPO_NOSYNC; 224 } 225 226 /* 227 * If the fault is a write, we know that this page is being 228 * written NOW so dirty it explicitly to save on 229 * pmap_is_modified() calls later. 230 * 231 * Also tell the backing pager, if any, that it should remove 232 * any swap backing since the page is now dirty. 233 */ 234 if (need_dirty) 235 vm_page_dirty(m); 236 if (!set_wd) 237 vm_page_unlock(m); 238 if (need_dirty) 239 vm_pager_page_unswapped(m); 240 } 241 242 /* 243 * vm_fault: 244 * 245 * Handle a page fault occurring at the given address, 246 * requiring the given permissions, in the map specified. 247 * If successful, the page is inserted into the 248 * associated physical map. 249 * 250 * NOTE: the given address should be truncated to the 251 * proper page address. 252 * 253 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 254 * a standard error specifying why the fault is fatal is returned. 255 * 256 * The map in question must be referenced, and remains so. 257 * Caller may hold no locks. 258 */ 259 int 260 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 261 int fault_flags) 262 { 263 struct thread *td; 264 int result; 265 266 td = curthread; 267 if ((td->td_pflags & TDP_NOFAULTING) != 0) 268 return (KERN_PROTECTION_FAILURE); 269 #ifdef KTRACE 270 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 271 ktrfault(vaddr, fault_type); 272 #endif 273 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 274 NULL); 275 #ifdef KTRACE 276 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 277 ktrfaultend(result); 278 #endif 279 return (result); 280 } 281 282 int 283 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 284 int fault_flags, vm_page_t *m_hold) 285 { 286 vm_prot_t prot; 287 int alloc_req, era, faultcount, nera, result; 288 boolean_t growstack, is_first_object_locked, wired; 289 int map_generation; 290 vm_object_t next_object; 291 int hardfault; 292 struct faultstate fs; 293 struct vnode *vp; 294 vm_page_t m; 295 int ahead, behind, cluster_offset, error, locked; 296 297 hardfault = 0; 298 growstack = TRUE; 299 PCPU_INC(cnt.v_vm_faults); 300 fs.vp = NULL; 301 faultcount = 0; 302 303 RetryFault:; 304 305 /* 306 * Find the backing store object and offset into it to begin the 307 * search. 308 */ 309 fs.map = map; 310 result = vm_map_lookup(&fs.map, vaddr, fault_type, &fs.entry, 311 &fs.first_object, &fs.first_pindex, &prot, &wired); 312 if (result != KERN_SUCCESS) { 313 if (growstack && result == KERN_INVALID_ADDRESS && 314 map != kernel_map) { 315 result = vm_map_growstack(curproc, vaddr); 316 if (result != KERN_SUCCESS) 317 return (KERN_FAILURE); 318 growstack = FALSE; 319 goto RetryFault; 320 } 321 return (result); 322 } 323 324 map_generation = fs.map->timestamp; 325 326 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 327 panic("vm_fault: fault on nofault entry, addr: %lx", 328 (u_long)vaddr); 329 } 330 331 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 332 fs.entry->wiring_thread != curthread) { 333 vm_map_unlock_read(fs.map); 334 vm_map_lock(fs.map); 335 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 336 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 337 if (fs.vp != NULL) { 338 vput(fs.vp); 339 fs.vp = NULL; 340 } 341 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 342 vm_map_unlock_and_wait(fs.map, 0); 343 } else 344 vm_map_unlock(fs.map); 345 goto RetryFault; 346 } 347 348 if (wired) 349 fault_type = prot | (fault_type & VM_PROT_COPY); 350 else 351 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 352 ("!wired && VM_FAULT_WIRE")); 353 354 if (fs.vp == NULL /* avoid locked vnode leak */ && 355 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 356 /* avoid calling vm_object_set_writeable_dirty() */ 357 ((prot & VM_PROT_WRITE) == 0 || 358 (fs.first_object->type != OBJT_VNODE && 359 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 360 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 361 VM_OBJECT_RLOCK(fs.first_object); 362 if ((prot & VM_PROT_WRITE) != 0 && 363 (fs.first_object->type == OBJT_VNODE || 364 (fs.first_object->flags & OBJ_TMPFS_NODE) != 0) && 365 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) == 0) 366 goto fast_failed; 367 m = vm_page_lookup(fs.first_object, fs.first_pindex); 368 /* A busy page can be mapped for read|execute access. */ 369 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 370 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 371 goto fast_failed; 372 result = pmap_enter(fs.map->pmap, vaddr, m, prot, 373 fault_type | PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 374 0), 0); 375 if (result != KERN_SUCCESS) 376 goto fast_failed; 377 if (m_hold != NULL) { 378 *m_hold = m; 379 vm_page_lock(m); 380 vm_page_hold(m); 381 vm_page_unlock(m); 382 } 383 vm_fault_dirty(fs.entry, m, prot, fault_type, fault_flags, 384 FALSE); 385 VM_OBJECT_RUNLOCK(fs.first_object); 386 if (!wired) 387 vm_fault_prefault(&fs, vaddr, PFBAK, PFFOR); 388 vm_map_lookup_done(fs.map, fs.entry); 389 curthread->td_ru.ru_minflt++; 390 return (KERN_SUCCESS); 391 fast_failed: 392 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 393 VM_OBJECT_RUNLOCK(fs.first_object); 394 VM_OBJECT_WLOCK(fs.first_object); 395 } 396 } else { 397 VM_OBJECT_WLOCK(fs.first_object); 398 } 399 400 /* 401 * Make a reference to this object to prevent its disposal while we 402 * are messing with it. Once we have the reference, the map is free 403 * to be diddled. Since objects reference their shadows (and copies), 404 * they will stay around as well. 405 * 406 * Bump the paging-in-progress count to prevent size changes (e.g. 407 * truncation operations) during I/O. This must be done after 408 * obtaining the vnode lock in order to avoid possible deadlocks. 409 */ 410 vm_object_reference_locked(fs.first_object); 411 vm_object_pip_add(fs.first_object, 1); 412 413 fs.lookup_still_valid = TRUE; 414 415 fs.first_m = NULL; 416 417 /* 418 * Search for the page at object/offset. 419 */ 420 fs.object = fs.first_object; 421 fs.pindex = fs.first_pindex; 422 while (TRUE) { 423 /* 424 * If the object is dead, we stop here 425 */ 426 if (fs.object->flags & OBJ_DEAD) { 427 unlock_and_deallocate(&fs); 428 return (KERN_PROTECTION_FAILURE); 429 } 430 431 /* 432 * See if page is resident 433 */ 434 fs.m = vm_page_lookup(fs.object, fs.pindex); 435 if (fs.m != NULL) { 436 /* 437 * Wait/Retry if the page is busy. We have to do this 438 * if the page is either exclusive or shared busy 439 * because the vm_pager may be using read busy for 440 * pageouts (and even pageins if it is the vnode 441 * pager), and we could end up trying to pagein and 442 * pageout the same page simultaneously. 443 * 444 * We can theoretically allow the busy case on a read 445 * fault if the page is marked valid, but since such 446 * pages are typically already pmap'd, putting that 447 * special case in might be more effort then it is 448 * worth. We cannot under any circumstances mess 449 * around with a shared busied page except, perhaps, 450 * to pmap it. 451 */ 452 if (vm_page_busied(fs.m)) { 453 /* 454 * Reference the page before unlocking and 455 * sleeping so that the page daemon is less 456 * likely to reclaim it. 457 */ 458 vm_page_aflag_set(fs.m, PGA_REFERENCED); 459 if (fs.object != fs.first_object) { 460 if (!VM_OBJECT_TRYWLOCK( 461 fs.first_object)) { 462 VM_OBJECT_WUNLOCK(fs.object); 463 VM_OBJECT_WLOCK(fs.first_object); 464 VM_OBJECT_WLOCK(fs.object); 465 } 466 vm_page_lock(fs.first_m); 467 vm_page_free(fs.first_m); 468 vm_page_unlock(fs.first_m); 469 vm_object_pip_wakeup(fs.first_object); 470 VM_OBJECT_WUNLOCK(fs.first_object); 471 fs.first_m = NULL; 472 } 473 unlock_map(&fs); 474 if (fs.m == vm_page_lookup(fs.object, 475 fs.pindex)) { 476 vm_page_sleep_if_busy(fs.m, "vmpfw"); 477 } 478 vm_object_pip_wakeup(fs.object); 479 VM_OBJECT_WUNLOCK(fs.object); 480 PCPU_INC(cnt.v_intrans); 481 vm_object_deallocate(fs.first_object); 482 goto RetryFault; 483 } 484 vm_page_lock(fs.m); 485 vm_page_remque(fs.m); 486 vm_page_unlock(fs.m); 487 488 /* 489 * Mark page busy for other processes, and the 490 * pagedaemon. If it still isn't completely valid 491 * (readable), jump to readrest, else break-out ( we 492 * found the page ). 493 */ 494 vm_page_xbusy(fs.m); 495 if (fs.m->valid != VM_PAGE_BITS_ALL) 496 goto readrest; 497 break; 498 } 499 500 /* 501 * Page is not resident. If this is the search termination 502 * or the pager might contain the page, allocate a new page. 503 * Default objects are zero-fill, there is no real pager. 504 */ 505 if (fs.object->type != OBJT_DEFAULT || 506 fs.object == fs.first_object) { 507 if (fs.pindex >= fs.object->size) { 508 unlock_and_deallocate(&fs); 509 return (KERN_PROTECTION_FAILURE); 510 } 511 512 /* 513 * Allocate a new page for this object/offset pair. 514 * 515 * Unlocked read of the p_flag is harmless. At 516 * worst, the P_KILLED might be not observed 517 * there, and allocation can fail, causing 518 * restart and new reading of the p_flag. 519 */ 520 fs.m = NULL; 521 if (!vm_page_count_severe() || P_KILLED(curproc)) { 522 #if VM_NRESERVLEVEL > 0 523 vm_object_color(fs.object, atop(vaddr) - 524 fs.pindex); 525 #endif 526 alloc_req = P_KILLED(curproc) ? 527 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 528 if (fs.object->type != OBJT_VNODE && 529 fs.object->backing_object == NULL) 530 alloc_req |= VM_ALLOC_ZERO; 531 fs.m = vm_page_alloc(fs.object, fs.pindex, 532 alloc_req); 533 } 534 if (fs.m == NULL) { 535 unlock_and_deallocate(&fs); 536 VM_WAITPFAULT; 537 goto RetryFault; 538 } else if (fs.m->valid == VM_PAGE_BITS_ALL) 539 break; 540 } 541 542 readrest: 543 /* 544 * We have found a valid page or we have allocated a new page. 545 * The page thus may not be valid or may not be entirely 546 * valid. 547 * 548 * Attempt to fault-in the page if there is a chance that the 549 * pager has it, and potentially fault in additional pages 550 * at the same time. For default objects simply provide 551 * zero-filled pages. 552 */ 553 if (fs.object->type != OBJT_DEFAULT) { 554 int rv; 555 u_char behavior = vm_map_entry_behavior(fs.entry); 556 557 era = fs.entry->read_ahead; 558 if (behavior == MAP_ENTRY_BEHAV_RANDOM || 559 P_KILLED(curproc)) { 560 behind = 0; 561 nera = 0; 562 ahead = 0; 563 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 564 behind = 0; 565 nera = VM_FAULT_READ_AHEAD_MAX; 566 ahead = nera; 567 if (fs.pindex == fs.entry->next_read) 568 vm_fault_dontneed(&fs, vaddr, ahead); 569 } else if (fs.pindex == fs.entry->next_read) { 570 /* 571 * This is a sequential fault. Arithmetically 572 * increase the requested number of pages in 573 * the read-ahead window. The requested 574 * number of pages is "# of sequential faults 575 * x (read ahead min + 1) + read ahead min" 576 */ 577 behind = 0; 578 nera = VM_FAULT_READ_AHEAD_MIN; 579 if (era > 0) { 580 nera += era + 1; 581 if (nera > VM_FAULT_READ_AHEAD_MAX) 582 nera = VM_FAULT_READ_AHEAD_MAX; 583 } 584 ahead = nera; 585 if (era == VM_FAULT_READ_AHEAD_MAX) 586 vm_fault_dontneed(&fs, vaddr, ahead); 587 } else { 588 /* 589 * This is a non-sequential fault. Request a 590 * cluster of pages that is aligned to a 591 * VM_FAULT_READ_DEFAULT page offset boundary 592 * within the object. Alignment to a page 593 * offset boundary is more likely to coincide 594 * with the underlying file system block than 595 * alignment to a virtual address boundary. 596 */ 597 cluster_offset = fs.pindex % 598 VM_FAULT_READ_DEFAULT; 599 behind = ulmin(cluster_offset, 600 atop(vaddr - fs.entry->start)); 601 nera = 0; 602 ahead = VM_FAULT_READ_DEFAULT - 1 - 603 cluster_offset; 604 } 605 ahead = ulmin(ahead, atop(fs.entry->end - vaddr) - 1); 606 if (era != nera) 607 fs.entry->read_ahead = nera; 608 609 /* 610 * Call the pager to retrieve the data, if any, after 611 * releasing the lock on the map. We hold a ref on 612 * fs.object and the pages are exclusive busied. 613 */ 614 unlock_map(&fs); 615 616 if (fs.object->type == OBJT_VNODE) { 617 vp = fs.object->handle; 618 if (vp == fs.vp) 619 goto vnode_locked; 620 else if (fs.vp != NULL) { 621 vput(fs.vp); 622 fs.vp = NULL; 623 } 624 locked = VOP_ISLOCKED(vp); 625 626 if (locked != LK_EXCLUSIVE) 627 locked = LK_SHARED; 628 /* Do not sleep for vnode lock while fs.m is busy */ 629 error = vget(vp, locked | LK_CANRECURSE | 630 LK_NOWAIT, curthread); 631 if (error != 0) { 632 vhold(vp); 633 release_page(&fs); 634 unlock_and_deallocate(&fs); 635 error = vget(vp, locked | LK_RETRY | 636 LK_CANRECURSE, curthread); 637 vdrop(vp); 638 fs.vp = vp; 639 KASSERT(error == 0, 640 ("vm_fault: vget failed")); 641 goto RetryFault; 642 } 643 fs.vp = vp; 644 } 645 vnode_locked: 646 KASSERT(fs.vp == NULL || !fs.map->system_map, 647 ("vm_fault: vnode-backed object mapped by system map")); 648 649 /* 650 * Page in the requested page and hint the pager, 651 * that it may bring up surrounding pages. 652 */ 653 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 654 &behind, &ahead); 655 if (rv == VM_PAGER_OK) { 656 faultcount = behind + 1 + ahead; 657 hardfault++; 658 break; /* break to PAGE HAS BEEN FOUND */ 659 } 660 if (rv == VM_PAGER_ERROR) 661 printf("vm_fault: pager read error, pid %d (%s)\n", 662 curproc->p_pid, curproc->p_comm); 663 664 /* 665 * If an I/O error occurred or the requested page was 666 * outside the range of the pager, clean up and return 667 * an error. 668 */ 669 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 670 vm_page_lock(fs.m); 671 vm_page_free(fs.m); 672 vm_page_unlock(fs.m); 673 fs.m = NULL; 674 unlock_and_deallocate(&fs); 675 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 676 KERN_PROTECTION_FAILURE); 677 } 678 679 /* 680 * The requested page does not exist at this object/ 681 * offset. Remove the invalid page from the object, 682 * waking up anyone waiting for it, and continue on to 683 * the next object. However, if this is the top-level 684 * object, we must leave the busy page in place to 685 * prevent another process from rushing past us, and 686 * inserting the page in that object at the same time 687 * that we are. 688 */ 689 if (fs.object != fs.first_object) { 690 vm_page_lock(fs.m); 691 vm_page_free(fs.m); 692 vm_page_unlock(fs.m); 693 fs.m = NULL; 694 } 695 } 696 697 /* 698 * We get here if the object has default pager (or unwiring) 699 * or the pager doesn't have the page. 700 */ 701 if (fs.object == fs.first_object) 702 fs.first_m = fs.m; 703 704 /* 705 * Move on to the next object. Lock the next object before 706 * unlocking the current one. 707 */ 708 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 709 next_object = fs.object->backing_object; 710 if (next_object == NULL) { 711 /* 712 * If there's no object left, fill the page in the top 713 * object with zeros. 714 */ 715 if (fs.object != fs.first_object) { 716 vm_object_pip_wakeup(fs.object); 717 VM_OBJECT_WUNLOCK(fs.object); 718 719 fs.object = fs.first_object; 720 fs.pindex = fs.first_pindex; 721 fs.m = fs.first_m; 722 VM_OBJECT_WLOCK(fs.object); 723 } 724 fs.first_m = NULL; 725 726 /* 727 * Zero the page if necessary and mark it valid. 728 */ 729 if ((fs.m->flags & PG_ZERO) == 0) { 730 pmap_zero_page(fs.m); 731 } else { 732 PCPU_INC(cnt.v_ozfod); 733 } 734 PCPU_INC(cnt.v_zfod); 735 fs.m->valid = VM_PAGE_BITS_ALL; 736 /* Don't try to prefault neighboring pages. */ 737 faultcount = 1; 738 break; /* break to PAGE HAS BEEN FOUND */ 739 } else { 740 KASSERT(fs.object != next_object, 741 ("object loop %p", next_object)); 742 VM_OBJECT_WLOCK(next_object); 743 vm_object_pip_add(next_object, 1); 744 if (fs.object != fs.first_object) 745 vm_object_pip_wakeup(fs.object); 746 VM_OBJECT_WUNLOCK(fs.object); 747 fs.object = next_object; 748 } 749 } 750 751 vm_page_assert_xbusied(fs.m); 752 753 /* 754 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 755 * is held.] 756 */ 757 758 /* 759 * If the page is being written, but isn't already owned by the 760 * top-level object, we have to copy it into a new page owned by the 761 * top-level object. 762 */ 763 if (fs.object != fs.first_object) { 764 /* 765 * We only really need to copy if we want to write it. 766 */ 767 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 768 /* 769 * This allows pages to be virtually copied from a 770 * backing_object into the first_object, where the 771 * backing object has no other refs to it, and cannot 772 * gain any more refs. Instead of a bcopy, we just 773 * move the page from the backing object to the 774 * first object. Note that we must mark the page 775 * dirty in the first object so that it will go out 776 * to swap when needed. 777 */ 778 is_first_object_locked = FALSE; 779 if ( 780 /* 781 * Only one shadow object 782 */ 783 (fs.object->shadow_count == 1) && 784 /* 785 * No COW refs, except us 786 */ 787 (fs.object->ref_count == 1) && 788 /* 789 * No one else can look this object up 790 */ 791 (fs.object->handle == NULL) && 792 /* 793 * No other ways to look the object up 794 */ 795 ((fs.object->type == OBJT_DEFAULT) || 796 (fs.object->type == OBJT_SWAP)) && 797 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 798 /* 799 * We don't chase down the shadow chain 800 */ 801 fs.object == fs.first_object->backing_object) { 802 /* 803 * get rid of the unnecessary page 804 */ 805 vm_page_lock(fs.first_m); 806 vm_page_remove(fs.first_m); 807 vm_page_unlock(fs.first_m); 808 /* 809 * grab the page and put it into the 810 * process'es object. The page is 811 * automatically made dirty. 812 */ 813 if (vm_page_rename(fs.m, fs.first_object, 814 fs.first_pindex)) { 815 VM_OBJECT_WUNLOCK(fs.first_object); 816 unlock_and_deallocate(&fs); 817 goto RetryFault; 818 } 819 vm_page_lock(fs.first_m); 820 vm_page_free(fs.first_m); 821 vm_page_unlock(fs.first_m); 822 #if VM_NRESERVLEVEL > 0 823 /* 824 * Rename the reservation. 825 */ 826 vm_reserv_rename(fs.m, fs.first_object, 827 fs.object, OFF_TO_IDX( 828 fs.first_object->backing_object_offset)); 829 #endif 830 vm_page_xbusy(fs.m); 831 fs.first_m = fs.m; 832 fs.m = NULL; 833 PCPU_INC(cnt.v_cow_optim); 834 } else { 835 /* 836 * Oh, well, lets copy it. 837 */ 838 pmap_copy_page(fs.m, fs.first_m); 839 fs.first_m->valid = VM_PAGE_BITS_ALL; 840 if (wired && (fault_flags & 841 VM_FAULT_WIRE) == 0) { 842 vm_page_lock(fs.first_m); 843 vm_page_wire(fs.first_m); 844 vm_page_unlock(fs.first_m); 845 846 vm_page_lock(fs.m); 847 vm_page_unwire(fs.m, PQ_INACTIVE); 848 vm_page_unlock(fs.m); 849 } 850 /* 851 * We no longer need the old page or object. 852 */ 853 release_page(&fs); 854 } 855 /* 856 * fs.object != fs.first_object due to above 857 * conditional 858 */ 859 vm_object_pip_wakeup(fs.object); 860 VM_OBJECT_WUNLOCK(fs.object); 861 /* 862 * Only use the new page below... 863 */ 864 fs.object = fs.first_object; 865 fs.pindex = fs.first_pindex; 866 fs.m = fs.first_m; 867 if (!is_first_object_locked) 868 VM_OBJECT_WLOCK(fs.object); 869 PCPU_INC(cnt.v_cow_faults); 870 curthread->td_cow++; 871 } else { 872 prot &= ~VM_PROT_WRITE; 873 } 874 } 875 876 /* 877 * We must verify that the maps have not changed since our last 878 * lookup. 879 */ 880 if (!fs.lookup_still_valid) { 881 vm_object_t retry_object; 882 vm_pindex_t retry_pindex; 883 vm_prot_t retry_prot; 884 885 if (!vm_map_trylock_read(fs.map)) { 886 release_page(&fs); 887 unlock_and_deallocate(&fs); 888 goto RetryFault; 889 } 890 fs.lookup_still_valid = TRUE; 891 if (fs.map->timestamp != map_generation) { 892 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 893 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 894 895 /* 896 * If we don't need the page any longer, put it on the inactive 897 * list (the easiest thing to do here). If no one needs it, 898 * pageout will grab it eventually. 899 */ 900 if (result != KERN_SUCCESS) { 901 release_page(&fs); 902 unlock_and_deallocate(&fs); 903 904 /* 905 * If retry of map lookup would have blocked then 906 * retry fault from start. 907 */ 908 if (result == KERN_FAILURE) 909 goto RetryFault; 910 return (result); 911 } 912 if ((retry_object != fs.first_object) || 913 (retry_pindex != fs.first_pindex)) { 914 release_page(&fs); 915 unlock_and_deallocate(&fs); 916 goto RetryFault; 917 } 918 919 /* 920 * Check whether the protection has changed or the object has 921 * been copied while we left the map unlocked. Changing from 922 * read to write permission is OK - we leave the page 923 * write-protected, and catch the write fault. Changing from 924 * write to read permission means that we can't mark the page 925 * write-enabled after all. 926 */ 927 prot &= retry_prot; 928 } 929 } 930 /* 931 * If the page was filled by a pager, update the map entry's 932 * last read offset. 933 * 934 * XXX The following assignment modifies the map 935 * without holding a write lock on it. 936 */ 937 if (hardfault) 938 fs.entry->next_read = fs.pindex + ahead + 1; 939 940 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, TRUE); 941 vm_page_assert_xbusied(fs.m); 942 943 /* 944 * Page must be completely valid or it is not fit to 945 * map into user space. vm_pager_get_pages() ensures this. 946 */ 947 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 948 ("vm_fault: page %p partially invalid", fs.m)); 949 VM_OBJECT_WUNLOCK(fs.object); 950 951 /* 952 * Put this page into the physical map. We had to do the unlock above 953 * because pmap_enter() may sleep. We don't put the page 954 * back on the active queue until later so that the pageout daemon 955 * won't find it (yet). 956 */ 957 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 958 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 959 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 960 wired == 0) 961 vm_fault_prefault(&fs, vaddr, 962 faultcount > 0 ? behind : PFBAK, 963 faultcount > 0 ? ahead : PFFOR); 964 VM_OBJECT_WLOCK(fs.object); 965 vm_page_lock(fs.m); 966 967 /* 968 * If the page is not wired down, then put it where the pageout daemon 969 * can find it. 970 */ 971 if ((fault_flags & VM_FAULT_WIRE) != 0) { 972 KASSERT(wired, ("VM_FAULT_WIRE && !wired")); 973 vm_page_wire(fs.m); 974 } else 975 vm_page_activate(fs.m); 976 if (m_hold != NULL) { 977 *m_hold = fs.m; 978 vm_page_hold(fs.m); 979 } 980 vm_page_unlock(fs.m); 981 vm_page_xunbusy(fs.m); 982 983 /* 984 * Unlock everything, and return 985 */ 986 unlock_and_deallocate(&fs); 987 if (hardfault) { 988 PCPU_INC(cnt.v_io_faults); 989 curthread->td_ru.ru_majflt++; 990 #ifdef RACCT 991 if (racct_enable && fs.object->type == OBJT_VNODE) { 992 PROC_LOCK(curproc); 993 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 994 racct_add_force(curproc, RACCT_WRITEBPS, 995 PAGE_SIZE + behind * PAGE_SIZE); 996 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 997 } else { 998 racct_add_force(curproc, RACCT_READBPS, 999 PAGE_SIZE + ahead * PAGE_SIZE); 1000 racct_add_force(curproc, RACCT_READIOPS, 1); 1001 } 1002 PROC_UNLOCK(curproc); 1003 } 1004 #endif 1005 } else 1006 curthread->td_ru.ru_minflt++; 1007 1008 return (KERN_SUCCESS); 1009 } 1010 1011 /* 1012 * Speed up the reclamation of pages that precede the faulting pindex within 1013 * the first object of the shadow chain. Essentially, perform the equivalent 1014 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1015 * the faulting pindex by the cluster size when the pages read by vm_fault() 1016 * cross a cluster-size boundary. The cluster size is the greater of the 1017 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1018 * 1019 * When "fs->first_object" is a shadow object, the pages in the backing object 1020 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1021 * function must only be concerned with pages in the first object. 1022 */ 1023 static void 1024 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1025 { 1026 vm_map_entry_t entry; 1027 vm_object_t first_object, object; 1028 vm_offset_t end, start; 1029 vm_page_t m, m_next; 1030 vm_pindex_t pend, pstart; 1031 vm_size_t size; 1032 1033 object = fs->object; 1034 VM_OBJECT_ASSERT_WLOCKED(object); 1035 first_object = fs->first_object; 1036 if (first_object != object) { 1037 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1038 VM_OBJECT_WUNLOCK(object); 1039 VM_OBJECT_WLOCK(first_object); 1040 VM_OBJECT_WLOCK(object); 1041 } 1042 } 1043 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1044 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1045 size = VM_FAULT_DONTNEED_MIN; 1046 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1047 size = pagesizes[1]; 1048 end = rounddown2(vaddr, size); 1049 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1050 (entry = fs->entry)->start < end) { 1051 if (end - entry->start < size) 1052 start = entry->start; 1053 else 1054 start = end - size; 1055 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1056 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1057 entry->start); 1058 m_next = vm_page_find_least(first_object, pstart); 1059 pend = OFF_TO_IDX(entry->offset) + atop(end - 1060 entry->start); 1061 while ((m = m_next) != NULL && m->pindex < pend) { 1062 m_next = TAILQ_NEXT(m, listq); 1063 if (m->valid != VM_PAGE_BITS_ALL || 1064 vm_page_busied(m)) 1065 continue; 1066 1067 /* 1068 * Don't clear PGA_REFERENCED, since it would 1069 * likely represent a reference by a different 1070 * process. 1071 * 1072 * Typically, at this point, prefetched pages 1073 * are still in the inactive queue. Only 1074 * pages that triggered page faults are in the 1075 * active queue. 1076 */ 1077 vm_page_lock(m); 1078 vm_page_deactivate(m); 1079 vm_page_unlock(m); 1080 } 1081 } 1082 } 1083 if (first_object != object) 1084 VM_OBJECT_WUNLOCK(first_object); 1085 } 1086 1087 /* 1088 * vm_fault_prefault provides a quick way of clustering 1089 * pagefaults into a processes address space. It is a "cousin" 1090 * of vm_map_pmap_enter, except it runs at page fault time instead 1091 * of mmap time. 1092 */ 1093 static void 1094 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1095 int backward, int forward) 1096 { 1097 pmap_t pmap; 1098 vm_map_entry_t entry; 1099 vm_object_t backing_object, lobject; 1100 vm_offset_t addr, starta; 1101 vm_pindex_t pindex; 1102 vm_page_t m; 1103 int i; 1104 1105 pmap = fs->map->pmap; 1106 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1107 return; 1108 1109 entry = fs->entry; 1110 1111 starta = addra - backward * PAGE_SIZE; 1112 if (starta < entry->start) { 1113 starta = entry->start; 1114 } else if (starta > addra) { 1115 starta = 0; 1116 } 1117 1118 /* 1119 * Generate the sequence of virtual addresses that are candidates for 1120 * prefaulting in an outward spiral from the faulting virtual address, 1121 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1122 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1123 * If the candidate address doesn't have a backing physical page, then 1124 * the loop immediately terminates. 1125 */ 1126 for (i = 0; i < 2 * imax(backward, forward); i++) { 1127 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1128 PAGE_SIZE); 1129 if (addr > addra + forward * PAGE_SIZE) 1130 addr = 0; 1131 1132 if (addr < starta || addr >= entry->end) 1133 continue; 1134 1135 if (!pmap_is_prefaultable(pmap, addr)) 1136 continue; 1137 1138 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1139 lobject = entry->object.vm_object; 1140 VM_OBJECT_RLOCK(lobject); 1141 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1142 lobject->type == OBJT_DEFAULT && 1143 (backing_object = lobject->backing_object) != NULL) { 1144 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1145 0, ("vm_fault_prefault: unaligned object offset")); 1146 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1147 VM_OBJECT_RLOCK(backing_object); 1148 VM_OBJECT_RUNLOCK(lobject); 1149 lobject = backing_object; 1150 } 1151 if (m == NULL) { 1152 VM_OBJECT_RUNLOCK(lobject); 1153 break; 1154 } 1155 if (m->valid == VM_PAGE_BITS_ALL && 1156 (m->flags & PG_FICTITIOUS) == 0) 1157 pmap_enter_quick(pmap, addr, m, entry->protection); 1158 VM_OBJECT_RUNLOCK(lobject); 1159 } 1160 } 1161 1162 /* 1163 * Hold each of the physical pages that are mapped by the specified range of 1164 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1165 * and allow the specified types of access, "prot". If all of the implied 1166 * pages are successfully held, then the number of held pages is returned 1167 * together with pointers to those pages in the array "ma". However, if any 1168 * of the pages cannot be held, -1 is returned. 1169 */ 1170 int 1171 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1172 vm_prot_t prot, vm_page_t *ma, int max_count) 1173 { 1174 vm_offset_t end, va; 1175 vm_page_t *mp; 1176 int count; 1177 boolean_t pmap_failed; 1178 1179 if (len == 0) 1180 return (0); 1181 end = round_page(addr + len); 1182 addr = trunc_page(addr); 1183 1184 /* 1185 * Check for illegal addresses. 1186 */ 1187 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1188 return (-1); 1189 1190 if (atop(end - addr) > max_count) 1191 panic("vm_fault_quick_hold_pages: count > max_count"); 1192 count = atop(end - addr); 1193 1194 /* 1195 * Most likely, the physical pages are resident in the pmap, so it is 1196 * faster to try pmap_extract_and_hold() first. 1197 */ 1198 pmap_failed = FALSE; 1199 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1200 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1201 if (*mp == NULL) 1202 pmap_failed = TRUE; 1203 else if ((prot & VM_PROT_WRITE) != 0 && 1204 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1205 /* 1206 * Explicitly dirty the physical page. Otherwise, the 1207 * caller's changes may go unnoticed because they are 1208 * performed through an unmanaged mapping or by a DMA 1209 * operation. 1210 * 1211 * The object lock is not held here. 1212 * See vm_page_clear_dirty_mask(). 1213 */ 1214 vm_page_dirty(*mp); 1215 } 1216 } 1217 if (pmap_failed) { 1218 /* 1219 * One or more pages could not be held by the pmap. Either no 1220 * page was mapped at the specified virtual address or that 1221 * mapping had insufficient permissions. Attempt to fault in 1222 * and hold these pages. 1223 */ 1224 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1225 if (*mp == NULL && vm_fault_hold(map, va, prot, 1226 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1227 goto error; 1228 } 1229 return (count); 1230 error: 1231 for (mp = ma; mp < ma + count; mp++) 1232 if (*mp != NULL) { 1233 vm_page_lock(*mp); 1234 vm_page_unhold(*mp); 1235 vm_page_unlock(*mp); 1236 } 1237 return (-1); 1238 } 1239 1240 /* 1241 * Routine: 1242 * vm_fault_copy_entry 1243 * Function: 1244 * Create new shadow object backing dst_entry with private copy of 1245 * all underlying pages. When src_entry is equal to dst_entry, 1246 * function implements COW for wired-down map entry. Otherwise, 1247 * it forks wired entry into dst_map. 1248 * 1249 * In/out conditions: 1250 * The source and destination maps must be locked for write. 1251 * The source map entry must be wired down (or be a sharing map 1252 * entry corresponding to a main map entry that is wired down). 1253 */ 1254 void 1255 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1256 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1257 vm_ooffset_t *fork_charge) 1258 { 1259 vm_object_t backing_object, dst_object, object, src_object; 1260 vm_pindex_t dst_pindex, pindex, src_pindex; 1261 vm_prot_t access, prot; 1262 vm_offset_t vaddr; 1263 vm_page_t dst_m; 1264 vm_page_t src_m; 1265 boolean_t upgrade; 1266 1267 #ifdef lint 1268 src_map++; 1269 #endif /* lint */ 1270 1271 upgrade = src_entry == dst_entry; 1272 access = prot = dst_entry->protection; 1273 1274 src_object = src_entry->object.vm_object; 1275 src_pindex = OFF_TO_IDX(src_entry->offset); 1276 1277 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1278 dst_object = src_object; 1279 vm_object_reference(dst_object); 1280 } else { 1281 /* 1282 * Create the top-level object for the destination entry. (Doesn't 1283 * actually shadow anything - we copy the pages directly.) 1284 */ 1285 dst_object = vm_object_allocate(OBJT_DEFAULT, 1286 OFF_TO_IDX(dst_entry->end - dst_entry->start)); 1287 #if VM_NRESERVLEVEL > 0 1288 dst_object->flags |= OBJ_COLORED; 1289 dst_object->pg_color = atop(dst_entry->start); 1290 #endif 1291 } 1292 1293 VM_OBJECT_WLOCK(dst_object); 1294 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1295 ("vm_fault_copy_entry: vm_object not NULL")); 1296 if (src_object != dst_object) { 1297 dst_entry->object.vm_object = dst_object; 1298 dst_entry->offset = 0; 1299 dst_object->charge = dst_entry->end - dst_entry->start; 1300 } 1301 if (fork_charge != NULL) { 1302 KASSERT(dst_entry->cred == NULL, 1303 ("vm_fault_copy_entry: leaked swp charge")); 1304 dst_object->cred = curthread->td_ucred; 1305 crhold(dst_object->cred); 1306 *fork_charge += dst_object->charge; 1307 } else if (dst_object->cred == NULL) { 1308 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1309 dst_entry)); 1310 dst_object->cred = dst_entry->cred; 1311 dst_entry->cred = NULL; 1312 } 1313 1314 /* 1315 * If not an upgrade, then enter the mappings in the pmap as 1316 * read and/or execute accesses. Otherwise, enter them as 1317 * write accesses. 1318 * 1319 * A writeable large page mapping is only created if all of 1320 * the constituent small page mappings are modified. Marking 1321 * PTEs as modified on inception allows promotion to happen 1322 * without taking potentially large number of soft faults. 1323 */ 1324 if (!upgrade) 1325 access &= ~VM_PROT_WRITE; 1326 1327 /* 1328 * Loop through all of the virtual pages within the entry's 1329 * range, copying each page from the source object to the 1330 * destination object. Since the source is wired, those pages 1331 * must exist. In contrast, the destination is pageable. 1332 * Since the destination object does share any backing storage 1333 * with the source object, all of its pages must be dirtied, 1334 * regardless of whether they can be written. 1335 */ 1336 for (vaddr = dst_entry->start, dst_pindex = 0; 1337 vaddr < dst_entry->end; 1338 vaddr += PAGE_SIZE, dst_pindex++) { 1339 again: 1340 /* 1341 * Find the page in the source object, and copy it in. 1342 * Because the source is wired down, the page will be 1343 * in memory. 1344 */ 1345 if (src_object != dst_object) 1346 VM_OBJECT_RLOCK(src_object); 1347 object = src_object; 1348 pindex = src_pindex + dst_pindex; 1349 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1350 (backing_object = object->backing_object) != NULL) { 1351 /* 1352 * Unless the source mapping is read-only or 1353 * it is presently being upgraded from 1354 * read-only, the first object in the shadow 1355 * chain should provide all of the pages. In 1356 * other words, this loop body should never be 1357 * executed when the source mapping is already 1358 * read/write. 1359 */ 1360 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1361 upgrade, 1362 ("vm_fault_copy_entry: main object missing page")); 1363 1364 VM_OBJECT_RLOCK(backing_object); 1365 pindex += OFF_TO_IDX(object->backing_object_offset); 1366 if (object != dst_object) 1367 VM_OBJECT_RUNLOCK(object); 1368 object = backing_object; 1369 } 1370 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1371 1372 if (object != dst_object) { 1373 /* 1374 * Allocate a page in the destination object. 1375 */ 1376 dst_m = vm_page_alloc(dst_object, (src_object == 1377 dst_object ? src_pindex : 0) + dst_pindex, 1378 VM_ALLOC_NORMAL); 1379 if (dst_m == NULL) { 1380 VM_OBJECT_WUNLOCK(dst_object); 1381 VM_OBJECT_RUNLOCK(object); 1382 VM_WAIT; 1383 VM_OBJECT_WLOCK(dst_object); 1384 goto again; 1385 } 1386 pmap_copy_page(src_m, dst_m); 1387 VM_OBJECT_RUNLOCK(object); 1388 dst_m->valid = VM_PAGE_BITS_ALL; 1389 dst_m->dirty = VM_PAGE_BITS_ALL; 1390 } else { 1391 dst_m = src_m; 1392 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1393 goto again; 1394 vm_page_xbusy(dst_m); 1395 KASSERT(dst_m->valid == VM_PAGE_BITS_ALL, 1396 ("invalid dst page %p", dst_m)); 1397 } 1398 VM_OBJECT_WUNLOCK(dst_object); 1399 1400 /* 1401 * Enter it in the pmap. If a wired, copy-on-write 1402 * mapping is being replaced by a write-enabled 1403 * mapping, then wire that new mapping. 1404 */ 1405 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1406 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1407 1408 /* 1409 * Mark it no longer busy, and put it on the active list. 1410 */ 1411 VM_OBJECT_WLOCK(dst_object); 1412 1413 if (upgrade) { 1414 if (src_m != dst_m) { 1415 vm_page_lock(src_m); 1416 vm_page_unwire(src_m, PQ_INACTIVE); 1417 vm_page_unlock(src_m); 1418 vm_page_lock(dst_m); 1419 vm_page_wire(dst_m); 1420 vm_page_unlock(dst_m); 1421 } else { 1422 KASSERT(dst_m->wire_count > 0, 1423 ("dst_m %p is not wired", dst_m)); 1424 } 1425 } else { 1426 vm_page_lock(dst_m); 1427 vm_page_activate(dst_m); 1428 vm_page_unlock(dst_m); 1429 } 1430 vm_page_xunbusy(dst_m); 1431 } 1432 VM_OBJECT_WUNLOCK(dst_object); 1433 if (upgrade) { 1434 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1435 vm_object_deallocate(src_object); 1436 } 1437 } 1438 1439 /* 1440 * Block entry into the machine-independent layer's page fault handler by 1441 * the calling thread. Subsequent calls to vm_fault() by that thread will 1442 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1443 * spurious page faults. 1444 */ 1445 int 1446 vm_fault_disable_pagefaults(void) 1447 { 1448 1449 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1450 } 1451 1452 void 1453 vm_fault_enable_pagefaults(int save) 1454 { 1455 1456 curthread_pflags_restore(save); 1457 } 1458