1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * Copyright (c) 1994 John S. Dyson 5 * All rights reserved. 6 * Copyright (c) 1994 David Greenman 7 * All rights reserved. 8 * 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 * 69 * $Id: vm_fault.c,v 1.85 1998/07/22 09:38:04 dg Exp $ 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/proc.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 #include <sys/vmmeter.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_prot.h> 86 #include <sys/lock.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_pageout.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_pager.h> 94 #include <vm/vnode_pager.h> 95 #include <vm/vm_extern.h> 96 97 static int vm_fault_additional_pages __P((vm_page_t, int, 98 int, vm_page_t *, int *)); 99 100 #define VM_FAULT_READ_AHEAD 8 101 #define VM_FAULT_READ_BEHIND 7 102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1) 103 104 struct faultstate { 105 vm_page_t m; 106 vm_object_t object; 107 vm_pindex_t pindex; 108 vm_page_t first_m; 109 vm_object_t first_object; 110 vm_pindex_t first_pindex; 111 vm_map_t map; 112 vm_map_entry_t entry; 113 int lookup_still_valid; 114 struct vnode *vp; 115 }; 116 117 static void 118 release_page(struct faultstate *fs) 119 { 120 PAGE_WAKEUP(fs->m); 121 vm_page_deactivate(fs->m); 122 fs->m = NULL; 123 } 124 125 static void 126 unlock_map(struct faultstate *fs) 127 { 128 if (fs->lookup_still_valid) { 129 vm_map_lookup_done(fs->map, fs->entry); 130 fs->lookup_still_valid = FALSE; 131 } 132 } 133 134 static void 135 _unlock_things(struct faultstate *fs, int dealloc) 136 { 137 vm_object_pip_wakeup(fs->object); 138 if (fs->object != fs->first_object) { 139 vm_page_free(fs->first_m); 140 vm_object_pip_wakeup(fs->first_object); 141 fs->first_m = NULL; 142 } 143 if (dealloc) { 144 vm_object_deallocate(fs->first_object); 145 } 146 unlock_map(fs); 147 if (fs->vp != NULL) { 148 vput(fs->vp); 149 fs->vp = NULL; 150 } 151 } 152 153 #define unlock_things(fs) _unlock_things(fs, 0) 154 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 155 156 /* 157 * vm_fault: 158 * 159 * Handle a page fault occuring at the given address, 160 * requiring the given permissions, in the map specified. 161 * If successful, the page is inserted into the 162 * associated physical map. 163 * 164 * NOTE: the given address should be truncated to the 165 * proper page address. 166 * 167 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 168 * a standard error specifying why the fault is fatal is returned. 169 * 170 * 171 * The map in question must be referenced, and remains so. 172 * Caller may hold no locks. 173 */ 174 int 175 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 176 { 177 vm_prot_t prot; 178 int result; 179 boolean_t wired; 180 int map_generation; 181 vm_page_t old_m; 182 vm_object_t next_object; 183 vm_page_t marray[VM_FAULT_READ]; 184 int hardfault; 185 int faultcount; 186 struct proc *p = curproc; /* XXX */ 187 struct faultstate fs; 188 189 cnt.v_vm_faults++; /* needs lock XXX */ 190 hardfault = 0; 191 192 RetryFault:; 193 fs.map = map; 194 195 /* 196 * Find the backing store object and offset into it to begin the 197 * search. 198 */ 199 if ((result = vm_map_lookup(&fs.map, vaddr, 200 fault_type, &fs.entry, &fs.first_object, 201 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) { 202 if ((result != KERN_PROTECTION_FAILURE) || 203 ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) { 204 return result; 205 } 206 207 /* 208 * If we are user-wiring a r/w segment, and it is COW, then 209 * we need to do the COW operation. Note that we don't COW 210 * currently RO sections now, because it is NOT desirable 211 * to COW .text. We simply keep .text from ever being COW'ed 212 * and take the heat that one cannot debug wired .text sections. 213 */ 214 result = vm_map_lookup(&fs.map, vaddr, 215 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE, 216 &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired); 217 if (result != KERN_SUCCESS) { 218 return result; 219 } 220 221 /* 222 * If we don't COW now, on a user wire, the user will never 223 * be able to write to the mapping. If we don't make this 224 * restriction, the bookkeeping would be nearly impossible. 225 */ 226 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 227 fs.entry->max_protection &= ~VM_PROT_WRITE; 228 } 229 230 map_generation = fs.map->timestamp; 231 232 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 233 panic("vm_fault: fault on nofault entry, addr: %lx", 234 (u_long)vaddr); 235 } 236 237 /* 238 * Make a reference to this object to prevent its disposal while we 239 * are messing with it. Once we have the reference, the map is free 240 * to be diddled. Since objects reference their shadows (and copies), 241 * they will stay around as well. 242 */ 243 vm_object_reference(fs.first_object); 244 vm_object_pip_add(fs.first_object, 1); 245 246 fs.vp = vnode_pager_lock(fs.first_object); 247 if ((fault_type & VM_PROT_WRITE) && 248 (fs.first_object->type == OBJT_VNODE)) { 249 vm_freeze_copyopts(fs.first_object, 250 fs.first_pindex, fs.first_pindex + 1); 251 } 252 253 fs.lookup_still_valid = TRUE; 254 255 if (wired) 256 fault_type = prot; 257 258 fs.first_m = NULL; 259 260 /* 261 * Search for the page at object/offset. 262 */ 263 264 fs.object = fs.first_object; 265 fs.pindex = fs.first_pindex; 266 267 /* 268 * See whether this page is resident 269 */ 270 while (TRUE) { 271 272 if (fs.object->flags & OBJ_DEAD) { 273 unlock_and_deallocate(&fs); 274 return (KERN_PROTECTION_FAILURE); 275 } 276 277 fs.m = vm_page_lookup(fs.object, fs.pindex); 278 if (fs.m != NULL) { 279 int queue; 280 /* 281 * If the page is being brought in, wait for it and 282 * then retry. 283 */ 284 if ((fs.m->flags & PG_BUSY) || 285 (fs.m->busy && 286 (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 287 int s; 288 289 unlock_things(&fs); 290 s = splvm(); 291 if ((fs.m->flags & PG_BUSY) || 292 (fs.m->busy && 293 (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 294 fs.m->flags |= PG_WANTED | PG_REFERENCED; 295 cnt.v_intrans++; 296 tsleep(fs.m, PSWP, "vmpfw", 0); 297 } 298 splx(s); 299 vm_object_deallocate(fs.first_object); 300 goto RetryFault; 301 } 302 303 queue = fs.m->queue; 304 vm_page_unqueue_nowakeup(fs.m); 305 306 /* 307 * Mark page busy for other processes, and the pagedaemon. 308 */ 309 if (((queue - fs.m->pc) == PQ_CACHE) && 310 (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) { 311 vm_page_activate(fs.m); 312 unlock_and_deallocate(&fs); 313 VM_WAIT; 314 goto RetryFault; 315 } 316 317 fs.m->flags |= PG_BUSY; 318 if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) && 319 fs.m->object != kernel_object && fs.m->object != kmem_object) { 320 goto readrest; 321 } 322 323 break; 324 } 325 if (((fs.object->type != OBJT_DEFAULT) && 326 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) 327 || (fs.object == fs.first_object)) { 328 329 if (fs.pindex >= fs.object->size) { 330 unlock_and_deallocate(&fs); 331 return (KERN_PROTECTION_FAILURE); 332 } 333 334 /* 335 * Allocate a new page for this object/offset pair. 336 */ 337 fs.m = vm_page_alloc(fs.object, fs.pindex, 338 (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO); 339 340 if (fs.m == NULL) { 341 unlock_and_deallocate(&fs); 342 VM_WAIT; 343 goto RetryFault; 344 } 345 } 346 347 readrest: 348 if (fs.object->type != OBJT_DEFAULT && 349 (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) { 350 int rv; 351 int reqpage; 352 int ahead, behind; 353 354 if (fs.first_object->behavior == OBJ_RANDOM) { 355 ahead = 0; 356 behind = 0; 357 } else { 358 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT; 359 if (behind > VM_FAULT_READ_BEHIND) 360 behind = VM_FAULT_READ_BEHIND; 361 362 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1; 363 if (ahead > VM_FAULT_READ_AHEAD) 364 ahead = VM_FAULT_READ_AHEAD; 365 } 366 367 if ((fs.first_object->type != OBJT_DEVICE) && 368 (fs.first_object->behavior == OBJ_SEQUENTIAL)) { 369 vm_pindex_t firstpindex, tmppindex; 370 if (fs.first_pindex < 371 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1)) 372 firstpindex = 0; 373 else 374 firstpindex = fs.first_pindex - 375 2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1); 376 377 for(tmppindex = fs.first_pindex - 1; 378 tmppindex >= firstpindex; 379 --tmppindex) { 380 vm_page_t mt; 381 mt = vm_page_lookup( fs.first_object, tmppindex); 382 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL)) 383 break; 384 if (mt->busy || 385 (mt->flags & (PG_BUSY | PG_FICTITIOUS)) || 386 mt->hold_count || 387 mt->wire_count) 388 continue; 389 if (mt->dirty == 0) 390 vm_page_test_dirty(mt); 391 if (mt->dirty) { 392 vm_page_protect(mt, VM_PROT_NONE); 393 vm_page_deactivate(mt); 394 } else { 395 vm_page_cache(mt); 396 } 397 } 398 399 ahead += behind; 400 behind = 0; 401 } 402 403 /* 404 * now we find out if any other pages should be paged 405 * in at this time this routine checks to see if the 406 * pages surrounding this fault reside in the same 407 * object as the page for this fault. If they do, 408 * then they are faulted in also into the object. The 409 * array "marray" returned contains an array of 410 * vm_page_t structs where one of them is the 411 * vm_page_t passed to the routine. The reqpage 412 * return value is the index into the marray for the 413 * vm_page_t passed to the routine. 414 */ 415 faultcount = vm_fault_additional_pages( 416 fs.m, behind, ahead, marray, &reqpage); 417 418 /* 419 * Call the pager to retrieve the data, if any, after 420 * releasing the lock on the map. 421 */ 422 unlock_map(&fs); 423 424 rv = faultcount ? 425 vm_pager_get_pages(fs.object, marray, faultcount, 426 reqpage) : VM_PAGER_FAIL; 427 428 if (rv == VM_PAGER_OK) { 429 /* 430 * Found the page. Leave it busy while we play 431 * with it. 432 */ 433 434 /* 435 * Relookup in case pager changed page. Pager 436 * is responsible for disposition of old page 437 * if moved. 438 */ 439 fs.m = vm_page_lookup(fs.object, fs.pindex); 440 if(!fs.m) { 441 unlock_and_deallocate(&fs); 442 goto RetryFault; 443 } 444 445 hardfault++; 446 break; 447 } 448 /* 449 * Remove the bogus page (which does not exist at this 450 * object/offset); before doing so, we must get back 451 * our object lock to preserve our invariant. 452 * 453 * Also wake up any other process that may want to bring 454 * in this page. 455 * 456 * If this is the top-level object, we must leave the 457 * busy page to prevent another process from rushing 458 * past us, and inserting the page in that object at 459 * the same time that we are. 460 */ 461 462 if (rv == VM_PAGER_ERROR) 463 printf("vm_fault: pager read error, pid %d (%s)\n", 464 curproc->p_pid, curproc->p_comm); 465 /* 466 * Data outside the range of the pager or an I/O error 467 */ 468 /* 469 * XXX - the check for kernel_map is a kludge to work 470 * around having the machine panic on a kernel space 471 * fault w/ I/O error. 472 */ 473 if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) || 474 (rv == VM_PAGER_BAD)) { 475 vm_page_free(fs.m); 476 fs.m = NULL; 477 unlock_and_deallocate(&fs); 478 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE); 479 } 480 if (fs.object != fs.first_object) { 481 vm_page_free(fs.m); 482 fs.m = NULL; 483 /* 484 * XXX - we cannot just fall out at this 485 * point, m has been freed and is invalid! 486 */ 487 } 488 } 489 /* 490 * We get here if the object has default pager (or unwiring) or the 491 * pager doesn't have the page. 492 */ 493 if (fs.object == fs.first_object) 494 fs.first_m = fs.m; 495 496 /* 497 * Move on to the next object. Lock the next object before 498 * unlocking the current one. 499 */ 500 501 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset); 502 next_object = fs.object->backing_object; 503 if (next_object == NULL) { 504 /* 505 * If there's no object left, fill the page in the top 506 * object with zeros. 507 */ 508 if (fs.object != fs.first_object) { 509 vm_object_pip_wakeup(fs.object); 510 511 fs.object = fs.first_object; 512 fs.pindex = fs.first_pindex; 513 fs.m = fs.first_m; 514 } 515 fs.first_m = NULL; 516 517 if ((fs.m->flags & PG_ZERO) == 0) { 518 vm_page_zero_fill(fs.m); 519 cnt.v_ozfod++; 520 } 521 cnt.v_zfod++; 522 break; 523 } else { 524 if (fs.object != fs.first_object) { 525 vm_object_pip_wakeup(fs.object); 526 } 527 fs.object = next_object; 528 vm_object_pip_add(fs.object, 1); 529 } 530 } 531 532 #if defined(DIAGNOSTIC) 533 if ((fs.m->flags & PG_BUSY) == 0) 534 panic("vm_fault: not busy after main loop"); 535 #endif 536 537 /* 538 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 539 * is held.] 540 */ 541 542 old_m = fs.m; /* save page that would be copied */ 543 544 /* 545 * If the page is being written, but isn't already owned by the 546 * top-level object, we have to copy it into a new page owned by the 547 * top-level object. 548 */ 549 550 if (fs.object != fs.first_object) { 551 /* 552 * We only really need to copy if we want to write it. 553 */ 554 555 if (fault_type & VM_PROT_WRITE) { 556 557 /* 558 * This allows pages to be virtually copied from a backing_object 559 * into the first_object, where the backing object has no other 560 * refs to it, and cannot gain any more refs. Instead of a 561 * bcopy, we just move the page from the backing object to the 562 * first object. Note that we must mark the page dirty in the 563 * first object so that it will go out to swap when needed. 564 */ 565 if (map_generation == fs.map->timestamp && 566 /* 567 * Only one shadow object 568 */ 569 (fs.object->shadow_count == 1) && 570 /* 571 * No COW refs, except us 572 */ 573 (fs.object->ref_count == 1) && 574 /* 575 * Noone else can look this object up 576 */ 577 (fs.object->handle == NULL) && 578 /* 579 * No other ways to look the object up 580 */ 581 ((fs.object->type == OBJT_DEFAULT) || 582 (fs.object->type == OBJT_SWAP)) && 583 /* 584 * We don't chase down the shadow chain 585 */ 586 (fs.object == fs.first_object->backing_object) && 587 588 /* 589 * grab the lock if we need to 590 */ 591 (fs.lookup_still_valid || 592 (((fs.entry->eflags & MAP_ENTRY_IS_A_MAP) == 0) && 593 lockmgr(&fs.map->lock, 594 LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0))) { 595 596 fs.lookup_still_valid = 1; 597 /* 598 * get rid of the unnecessary page 599 */ 600 vm_page_protect(fs.first_m, VM_PROT_NONE); 601 vm_page_free(fs.first_m); 602 fs.first_m = NULL; 603 604 /* 605 * grab the page and put it into the process'es object 606 */ 607 vm_page_rename(fs.m, fs.first_object, fs.first_pindex); 608 fs.first_m = fs.m; 609 fs.first_m->dirty = VM_PAGE_BITS_ALL; 610 fs.first_m->flags |= PG_BUSY; 611 fs.m = NULL; 612 cnt.v_cow_optim++; 613 } else { 614 /* 615 * Oh, well, lets copy it. 616 */ 617 vm_page_copy(fs.m, fs.first_m); 618 } 619 620 if (fs.m) { 621 /* 622 * We no longer need the old page or object. 623 */ 624 release_page(&fs); 625 } 626 627 vm_object_pip_wakeup(fs.object); 628 /* 629 * Only use the new page below... 630 */ 631 632 cnt.v_cow_faults++; 633 fs.m = fs.first_m; 634 fs.object = fs.first_object; 635 fs.pindex = fs.first_pindex; 636 637 } else { 638 prot &= ~VM_PROT_WRITE; 639 } 640 } 641 642 /* 643 * We must verify that the maps have not changed since our last 644 * lookup. 645 */ 646 647 if (!fs.lookup_still_valid && 648 (fs.map->timestamp != map_generation)) { 649 vm_object_t retry_object; 650 vm_pindex_t retry_pindex; 651 vm_prot_t retry_prot; 652 653 /* 654 * Since map entries may be pageable, make sure we can take a 655 * page fault on them. 656 */ 657 658 /* 659 * To avoid trying to write_lock the map while another process 660 * has it read_locked (in vm_map_pageable), we do not try for 661 * write permission. If the page is still writable, we will 662 * get write permission. If it is not, or has been marked 663 * needs_copy, we enter the mapping without write permission, 664 * and will merely take another fault. 665 */ 666 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE, 667 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 668 map_generation = fs.map->timestamp; 669 670 /* 671 * If we don't need the page any longer, put it on the active 672 * list (the easiest thing to do here). If no one needs it, 673 * pageout will grab it eventually. 674 */ 675 676 if (result != KERN_SUCCESS) { 677 release_page(&fs); 678 unlock_and_deallocate(&fs); 679 return (result); 680 } 681 fs.lookup_still_valid = TRUE; 682 683 if ((retry_object != fs.first_object) || 684 (retry_pindex != fs.first_pindex)) { 685 release_page(&fs); 686 unlock_and_deallocate(&fs); 687 goto RetryFault; 688 } 689 /* 690 * Check whether the protection has changed or the object has 691 * been copied while we left the map unlocked. Changing from 692 * read to write permission is OK - we leave the page 693 * write-protected, and catch the write fault. Changing from 694 * write to read permission means that we can't mark the page 695 * write-enabled after all. 696 */ 697 prot &= retry_prot; 698 } 699 700 /* 701 * Put this page into the physical map. We had to do the unlock above 702 * because pmap_enter may cause other faults. We don't put the page 703 * back on the active queue until later so that the page-out daemon 704 * won't find us (yet). 705 */ 706 707 if (prot & VM_PROT_WRITE) { 708 fs.m->flags |= PG_WRITEABLE; 709 fs.m->object->flags |= OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY; 710 /* 711 * If the fault is a write, we know that this page is being 712 * written NOW. This will save on the pmap_is_modified() calls 713 * later. 714 */ 715 if (fault_flags & VM_FAULT_DIRTY) { 716 fs.m->dirty = VM_PAGE_BITS_ALL; 717 } 718 } 719 720 unlock_things(&fs); 721 fs.m->valid = VM_PAGE_BITS_ALL; 722 fs.m->flags &= ~PG_ZERO; 723 724 pmap_enter(fs.map->pmap, vaddr, VM_PAGE_TO_PHYS(fs.m), prot, wired); 725 if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) { 726 pmap_prefault(fs.map->pmap, vaddr, fs.entry); 727 } 728 729 fs.m->flags |= PG_MAPPED|PG_REFERENCED; 730 if (fault_flags & VM_FAULT_HOLD) 731 vm_page_hold(fs.m); 732 733 /* 734 * If the page is not wired down, then put it where the pageout daemon 735 * can find it. 736 */ 737 if (fault_flags & VM_FAULT_WIRE_MASK) { 738 if (wired) 739 vm_page_wire(fs.m); 740 else 741 vm_page_unwire(fs.m); 742 } else { 743 vm_page_activate(fs.m); 744 } 745 746 if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) { 747 if (hardfault) { 748 curproc->p_stats->p_ru.ru_majflt++; 749 } else { 750 curproc->p_stats->p_ru.ru_minflt++; 751 } 752 } 753 754 /* 755 * Unlock everything, and return 756 */ 757 758 PAGE_WAKEUP(fs.m); 759 vm_object_deallocate(fs.first_object); 760 761 return (KERN_SUCCESS); 762 763 } 764 765 /* 766 * vm_fault_wire: 767 * 768 * Wire down a range of virtual addresses in a map. 769 */ 770 int 771 vm_fault_wire(map, start, end) 772 vm_map_t map; 773 vm_offset_t start, end; 774 { 775 776 register vm_offset_t va; 777 register pmap_t pmap; 778 int rv; 779 780 pmap = vm_map_pmap(map); 781 782 /* 783 * Inform the physical mapping system that the range of addresses may 784 * not fault, so that page tables and such can be locked down as well. 785 */ 786 787 pmap_pageable(pmap, start, end, FALSE); 788 789 /* 790 * We simulate a fault to get the page and enter it in the physical 791 * map. 792 */ 793 794 for (va = start; va < end; va += PAGE_SIZE) { 795 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 796 VM_FAULT_CHANGE_WIRING); 797 if (rv) { 798 if (va != start) 799 vm_fault_unwire(map, start, va); 800 return (rv); 801 } 802 } 803 return (KERN_SUCCESS); 804 } 805 806 /* 807 * vm_fault_user_wire: 808 * 809 * Wire down a range of virtual addresses in a map. This 810 * is for user mode though, so we only ask for read access 811 * on currently read only sections. 812 */ 813 int 814 vm_fault_user_wire(map, start, end) 815 vm_map_t map; 816 vm_offset_t start, end; 817 { 818 819 register vm_offset_t va; 820 register pmap_t pmap; 821 int rv; 822 823 pmap = vm_map_pmap(map); 824 825 /* 826 * Inform the physical mapping system that the range of addresses may 827 * not fault, so that page tables and such can be locked down as well. 828 */ 829 830 pmap_pageable(pmap, start, end, FALSE); 831 832 /* 833 * We simulate a fault to get the page and enter it in the physical 834 * map. 835 */ 836 for (va = start; va < end; va += PAGE_SIZE) { 837 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE); 838 if (rv) { 839 if (va != start) 840 vm_fault_unwire(map, start, va); 841 return (rv); 842 } 843 } 844 return (KERN_SUCCESS); 845 } 846 847 848 /* 849 * vm_fault_unwire: 850 * 851 * Unwire a range of virtual addresses in a map. 852 */ 853 void 854 vm_fault_unwire(map, start, end) 855 vm_map_t map; 856 vm_offset_t start, end; 857 { 858 859 register vm_offset_t va, pa; 860 register pmap_t pmap; 861 862 pmap = vm_map_pmap(map); 863 864 /* 865 * Since the pages are wired down, we must be able to get their 866 * mappings from the physical map system. 867 */ 868 869 for (va = start; va < end; va += PAGE_SIZE) { 870 pa = pmap_extract(pmap, va); 871 if (pa != (vm_offset_t) 0) { 872 pmap_change_wiring(pmap, va, FALSE); 873 vm_page_unwire(PHYS_TO_VM_PAGE(pa)); 874 } 875 } 876 877 /* 878 * Inform the physical mapping system that the range of addresses may 879 * fault, so that page tables and such may be unwired themselves. 880 */ 881 882 pmap_pageable(pmap, start, end, TRUE); 883 884 } 885 886 /* 887 * Routine: 888 * vm_fault_copy_entry 889 * Function: 890 * Copy all of the pages from a wired-down map entry to another. 891 * 892 * In/out conditions: 893 * The source and destination maps must be locked for write. 894 * The source map entry must be wired down (or be a sharing map 895 * entry corresponding to a main map entry that is wired down). 896 */ 897 898 void 899 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry) 900 vm_map_t dst_map; 901 vm_map_t src_map; 902 vm_map_entry_t dst_entry; 903 vm_map_entry_t src_entry; 904 { 905 vm_object_t dst_object; 906 vm_object_t src_object; 907 vm_ooffset_t dst_offset; 908 vm_ooffset_t src_offset; 909 vm_prot_t prot; 910 vm_offset_t vaddr; 911 vm_page_t dst_m; 912 vm_page_t src_m; 913 914 #ifdef lint 915 src_map++; 916 #endif /* lint */ 917 918 src_object = src_entry->object.vm_object; 919 src_offset = src_entry->offset; 920 921 /* 922 * Create the top-level object for the destination entry. (Doesn't 923 * actually shadow anything - we copy the pages directly.) 924 */ 925 dst_object = vm_object_allocate(OBJT_DEFAULT, 926 (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start)); 927 928 dst_entry->object.vm_object = dst_object; 929 dst_entry->offset = 0; 930 931 prot = dst_entry->max_protection; 932 933 /* 934 * Loop through all of the pages in the entry's range, copying each 935 * one from the source object (it should be there) to the destination 936 * object. 937 */ 938 for (vaddr = dst_entry->start, dst_offset = 0; 939 vaddr < dst_entry->end; 940 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 941 942 /* 943 * Allocate a page in the destination object 944 */ 945 do { 946 dst_m = vm_page_alloc(dst_object, 947 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 948 if (dst_m == NULL) { 949 VM_WAIT; 950 } 951 } while (dst_m == NULL); 952 953 /* 954 * Find the page in the source object, and copy it in. 955 * (Because the source is wired down, the page will be in 956 * memory.) 957 */ 958 src_m = vm_page_lookup(src_object, 959 OFF_TO_IDX(dst_offset + src_offset)); 960 if (src_m == NULL) 961 panic("vm_fault_copy_wired: page missing"); 962 963 vm_page_copy(src_m, dst_m); 964 965 /* 966 * Enter it in the pmap... 967 */ 968 969 dst_m->flags &= ~PG_ZERO; 970 pmap_enter(dst_map->pmap, vaddr, VM_PAGE_TO_PHYS(dst_m), 971 prot, FALSE); 972 dst_m->flags |= PG_WRITEABLE|PG_MAPPED; 973 974 /* 975 * Mark it no longer busy, and put it on the active list. 976 */ 977 vm_page_activate(dst_m); 978 PAGE_WAKEUP(dst_m); 979 } 980 } 981 982 983 /* 984 * This routine checks around the requested page for other pages that 985 * might be able to be faulted in. This routine brackets the viable 986 * pages for the pages to be paged in. 987 * 988 * Inputs: 989 * m, rbehind, rahead 990 * 991 * Outputs: 992 * marray (array of vm_page_t), reqpage (index of requested page) 993 * 994 * Return value: 995 * number of pages in marray 996 */ 997 static int 998 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage) 999 vm_page_t m; 1000 int rbehind; 1001 int rahead; 1002 vm_page_t *marray; 1003 int *reqpage; 1004 { 1005 int i,j; 1006 vm_object_t object; 1007 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1008 vm_page_t rtm; 1009 int cbehind, cahead; 1010 1011 object = m->object; 1012 pindex = m->pindex; 1013 1014 /* 1015 * we don't fault-ahead for device pager 1016 */ 1017 if (object->type == OBJT_DEVICE) { 1018 *reqpage = 0; 1019 marray[0] = m; 1020 return 1; 1021 } 1022 1023 /* 1024 * if the requested page is not available, then give up now 1025 */ 1026 1027 if (!vm_pager_has_page(object, 1028 OFF_TO_IDX(object->paging_offset) + pindex, &cbehind, &cahead)) { 1029 return 0; 1030 } 1031 1032 if ((cbehind == 0) && (cahead == 0)) { 1033 *reqpage = 0; 1034 marray[0] = m; 1035 return 1; 1036 } 1037 1038 if (rahead > cahead) { 1039 rahead = cahead; 1040 } 1041 1042 if (rbehind > cbehind) { 1043 rbehind = cbehind; 1044 } 1045 1046 /* 1047 * try to do any readahead that we might have free pages for. 1048 */ 1049 if ((rahead + rbehind) > 1050 ((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) { 1051 pagedaemon_wakeup(); 1052 marray[0] = m; 1053 *reqpage = 0; 1054 return 1; 1055 } 1056 1057 /* 1058 * scan backward for the read behind pages -- in memory 1059 */ 1060 if (pindex > 0) { 1061 if (rbehind > pindex) { 1062 rbehind = pindex; 1063 startpindex = 0; 1064 } else { 1065 startpindex = pindex - rbehind; 1066 } 1067 1068 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) { 1069 if (vm_page_lookup( object, tpindex)) { 1070 startpindex = tpindex + 1; 1071 break; 1072 } 1073 if (tpindex == 0) 1074 break; 1075 } 1076 1077 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) { 1078 1079 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1080 if (rtm == NULL) { 1081 for (j = 0; j < i; j++) { 1082 vm_page_free(marray[j]); 1083 } 1084 marray[0] = m; 1085 *reqpage = 0; 1086 return 1; 1087 } 1088 1089 marray[i] = rtm; 1090 } 1091 } else { 1092 startpindex = 0; 1093 i = 0; 1094 } 1095 1096 marray[i] = m; 1097 /* page offset of the required page */ 1098 *reqpage = i; 1099 1100 tpindex = pindex + 1; 1101 i++; 1102 1103 /* 1104 * scan forward for the read ahead pages 1105 */ 1106 endpindex = tpindex + rahead; 1107 if (endpindex > object->size) 1108 endpindex = object->size; 1109 1110 for( ; tpindex < endpindex; i++, tpindex++) { 1111 1112 if (vm_page_lookup(object, tpindex)) { 1113 break; 1114 } 1115 1116 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL); 1117 if (rtm == NULL) { 1118 break; 1119 } 1120 1121 marray[i] = rtm; 1122 } 1123 1124 /* return number of bytes of pages */ 1125 return i; 1126 } 1127