xref: /freebsd/sys/vm/vm_fault.c (revision 11afcc8f9f96d657b8e6f7547c02c1957331fc96)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $Id: vm_fault.c,v 1.85 1998/07/22 09:38:04 dg Exp $
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_prot.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96 
97 static int vm_fault_additional_pages __P((vm_page_t, int,
98 					  int, vm_page_t *, int *));
99 
100 #define VM_FAULT_READ_AHEAD 8
101 #define VM_FAULT_READ_BEHIND 7
102 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
103 
104 struct faultstate {
105 	vm_page_t m;
106 	vm_object_t object;
107 	vm_pindex_t pindex;
108 	vm_page_t first_m;
109 	vm_object_t	first_object;
110 	vm_pindex_t first_pindex;
111 	vm_map_t map;
112 	vm_map_entry_t entry;
113 	int lookup_still_valid;
114 	struct vnode *vp;
115 };
116 
117 static void
118 release_page(struct faultstate *fs)
119 {
120 	PAGE_WAKEUP(fs->m);
121 	vm_page_deactivate(fs->m);
122 	fs->m = NULL;
123 }
124 
125 static void
126 unlock_map(struct faultstate *fs)
127 {
128 	if (fs->lookup_still_valid) {
129 		vm_map_lookup_done(fs->map, fs->entry);
130 		fs->lookup_still_valid = FALSE;
131 	}
132 }
133 
134 static void
135 _unlock_things(struct faultstate *fs, int dealloc)
136 {
137 	vm_object_pip_wakeup(fs->object);
138 	if (fs->object != fs->first_object) {
139 		vm_page_free(fs->first_m);
140 		vm_object_pip_wakeup(fs->first_object);
141 		fs->first_m = NULL;
142 	}
143 	if (dealloc) {
144 		vm_object_deallocate(fs->first_object);
145 	}
146 	unlock_map(fs);
147 	if (fs->vp != NULL) {
148 		vput(fs->vp);
149 		fs->vp = NULL;
150 	}
151 }
152 
153 #define unlock_things(fs) _unlock_things(fs, 0)
154 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
155 
156 /*
157  *	vm_fault:
158  *
159  *	Handle a page fault occuring at the given address,
160  *	requiring the given permissions, in the map specified.
161  *	If successful, the page is inserted into the
162  *	associated physical map.
163  *
164  *	NOTE: the given address should be truncated to the
165  *	proper page address.
166  *
167  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
168  *	a standard error specifying why the fault is fatal is returned.
169  *
170  *
171  *	The map in question must be referenced, and remains so.
172  *	Caller may hold no locks.
173  */
174 int
175 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
176 {
177 	vm_prot_t prot;
178 	int result;
179 	boolean_t wired;
180 	int map_generation;
181 	vm_page_t old_m;
182 	vm_object_t next_object;
183 	vm_page_t marray[VM_FAULT_READ];
184 	int hardfault;
185 	int faultcount;
186 	struct proc *p = curproc;	/* XXX */
187 	struct faultstate fs;
188 
189 	cnt.v_vm_faults++;	/* needs lock XXX */
190 	hardfault = 0;
191 
192 RetryFault:;
193 	fs.map = map;
194 
195 	/*
196 	 * Find the backing store object and offset into it to begin the
197 	 * search.
198 	 */
199 	if ((result = vm_map_lookup(&fs.map, vaddr,
200 		fault_type, &fs.entry, &fs.first_object,
201 		&fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
202 		if ((result != KERN_PROTECTION_FAILURE) ||
203 			((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
204 			return result;
205 		}
206 
207 		/*
208    		 * If we are user-wiring a r/w segment, and it is COW, then
209    		 * we need to do the COW operation.  Note that we don't COW
210    		 * currently RO sections now, because it is NOT desirable
211    		 * to COW .text.  We simply keep .text from ever being COW'ed
212    		 * and take the heat that one cannot debug wired .text sections.
213    		 */
214 		result = vm_map_lookup(&fs.map, vaddr,
215 			VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
216 			&fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
217 		if (result != KERN_SUCCESS) {
218 			return result;
219 		}
220 
221 		/*
222 		 * If we don't COW now, on a user wire, the user will never
223 		 * be able to write to the mapping.  If we don't make this
224 		 * restriction, the bookkeeping would be nearly impossible.
225 		 */
226 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
227 			fs.entry->max_protection &= ~VM_PROT_WRITE;
228 	}
229 
230 	map_generation = fs.map->timestamp;
231 
232 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
233 		panic("vm_fault: fault on nofault entry, addr: %lx",
234 		    (u_long)vaddr);
235 	}
236 
237 	/*
238 	 * Make a reference to this object to prevent its disposal while we
239 	 * are messing with it.  Once we have the reference, the map is free
240 	 * to be diddled.  Since objects reference their shadows (and copies),
241 	 * they will stay around as well.
242 	 */
243 	vm_object_reference(fs.first_object);
244 	vm_object_pip_add(fs.first_object, 1);
245 
246 	fs.vp = vnode_pager_lock(fs.first_object);
247 	if ((fault_type & VM_PROT_WRITE) &&
248 		(fs.first_object->type == OBJT_VNODE)) {
249 		vm_freeze_copyopts(fs.first_object,
250 			fs.first_pindex, fs.first_pindex + 1);
251 	}
252 
253 	fs.lookup_still_valid = TRUE;
254 
255 	if (wired)
256 		fault_type = prot;
257 
258 	fs.first_m = NULL;
259 
260 	/*
261 	 * Search for the page at object/offset.
262 	 */
263 
264 	fs.object = fs.first_object;
265 	fs.pindex = fs.first_pindex;
266 
267 	/*
268 	 * See whether this page is resident
269 	 */
270 	while (TRUE) {
271 
272 		if (fs.object->flags & OBJ_DEAD) {
273 			unlock_and_deallocate(&fs);
274 			return (KERN_PROTECTION_FAILURE);
275 		}
276 
277 		fs.m = vm_page_lookup(fs.object, fs.pindex);
278 		if (fs.m != NULL) {
279 			int queue;
280 			/*
281 			 * If the page is being brought in, wait for it and
282 			 * then retry.
283 			 */
284 			if ((fs.m->flags & PG_BUSY) ||
285 				(fs.m->busy &&
286 				 (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
287 				int s;
288 
289 				unlock_things(&fs);
290 				s = splvm();
291 				if ((fs.m->flags & PG_BUSY) ||
292 					(fs.m->busy &&
293 					 (fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
294 					fs.m->flags |= PG_WANTED | PG_REFERENCED;
295 					cnt.v_intrans++;
296 					tsleep(fs.m, PSWP, "vmpfw", 0);
297 				}
298 				splx(s);
299 				vm_object_deallocate(fs.first_object);
300 				goto RetryFault;
301 			}
302 
303 			queue = fs.m->queue;
304 			vm_page_unqueue_nowakeup(fs.m);
305 
306 			/*
307 			 * Mark page busy for other processes, and the pagedaemon.
308 			 */
309 			if (((queue - fs.m->pc) == PQ_CACHE) &&
310 			    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
311 				vm_page_activate(fs.m);
312 				unlock_and_deallocate(&fs);
313 				VM_WAIT;
314 				goto RetryFault;
315 			}
316 
317 			fs.m->flags |= PG_BUSY;
318 			if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
319 				fs.m->object != kernel_object && fs.m->object != kmem_object) {
320 				goto readrest;
321 			}
322 
323 			break;
324 		}
325 		if (((fs.object->type != OBJT_DEFAULT) &&
326 				(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
327 		    || (fs.object == fs.first_object)) {
328 
329 			if (fs.pindex >= fs.object->size) {
330 				unlock_and_deallocate(&fs);
331 				return (KERN_PROTECTION_FAILURE);
332 			}
333 
334 			/*
335 			 * Allocate a new page for this object/offset pair.
336 			 */
337 			fs.m = vm_page_alloc(fs.object, fs.pindex,
338 				(fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
339 
340 			if (fs.m == NULL) {
341 				unlock_and_deallocate(&fs);
342 				VM_WAIT;
343 				goto RetryFault;
344 			}
345 		}
346 
347 readrest:
348 		if (fs.object->type != OBJT_DEFAULT &&
349 			(((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired)) {
350 			int rv;
351 			int reqpage;
352 			int ahead, behind;
353 
354 			if (fs.first_object->behavior == OBJ_RANDOM) {
355 				ahead = 0;
356 				behind = 0;
357 			} else {
358 				behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
359 				if (behind > VM_FAULT_READ_BEHIND)
360 					behind = VM_FAULT_READ_BEHIND;
361 
362 				ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
363 				if (ahead > VM_FAULT_READ_AHEAD)
364 					ahead = VM_FAULT_READ_AHEAD;
365 			}
366 
367 			if ((fs.first_object->type != OBJT_DEVICE) &&
368 				(fs.first_object->behavior == OBJ_SEQUENTIAL)) {
369 				vm_pindex_t firstpindex, tmppindex;
370 				if (fs.first_pindex <
371 					2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1))
372 					firstpindex = 0;
373 				else
374 					firstpindex = fs.first_pindex -
375 						2*(VM_FAULT_READ_BEHIND + VM_FAULT_READ_AHEAD + 1);
376 
377 				for(tmppindex = fs.first_pindex - 1;
378 					tmppindex >= firstpindex;
379 					--tmppindex) {
380 					vm_page_t mt;
381 					mt = vm_page_lookup( fs.first_object, tmppindex);
382 					if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
383 						break;
384 					if (mt->busy ||
385 						(mt->flags & (PG_BUSY | PG_FICTITIOUS)) ||
386 						mt->hold_count ||
387 						mt->wire_count)
388 						continue;
389 					if (mt->dirty == 0)
390 						vm_page_test_dirty(mt);
391 					if (mt->dirty) {
392 						vm_page_protect(mt, VM_PROT_NONE);
393 						vm_page_deactivate(mt);
394 					} else {
395 						vm_page_cache(mt);
396 					}
397 				}
398 
399 				ahead += behind;
400 				behind = 0;
401 			}
402 
403 			/*
404 			 * now we find out if any other pages should be paged
405 			 * in at this time this routine checks to see if the
406 			 * pages surrounding this fault reside in the same
407 			 * object as the page for this fault.  If they do,
408 			 * then they are faulted in also into the object.  The
409 			 * array "marray" returned contains an array of
410 			 * vm_page_t structs where one of them is the
411 			 * vm_page_t passed to the routine.  The reqpage
412 			 * return value is the index into the marray for the
413 			 * vm_page_t passed to the routine.
414 			 */
415 			faultcount = vm_fault_additional_pages(
416 			    fs.m, behind, ahead, marray, &reqpage);
417 
418 			/*
419 			 * Call the pager to retrieve the data, if any, after
420 			 * releasing the lock on the map.
421 			 */
422 			unlock_map(&fs);
423 
424 			rv = faultcount ?
425 			    vm_pager_get_pages(fs.object, marray, faultcount,
426 				reqpage) : VM_PAGER_FAIL;
427 
428 			if (rv == VM_PAGER_OK) {
429 				/*
430 				 * Found the page. Leave it busy while we play
431 				 * with it.
432 				 */
433 
434 				/*
435 				 * Relookup in case pager changed page. Pager
436 				 * is responsible for disposition of old page
437 				 * if moved.
438 				 */
439 				fs.m = vm_page_lookup(fs.object, fs.pindex);
440 				if(!fs.m) {
441 					unlock_and_deallocate(&fs);
442 					goto RetryFault;
443 				}
444 
445 				hardfault++;
446 				break;
447 			}
448 			/*
449 			 * Remove the bogus page (which does not exist at this
450 			 * object/offset); before doing so, we must get back
451 			 * our object lock to preserve our invariant.
452 			 *
453 			 * Also wake up any other process that may want to bring
454 			 * in this page.
455 			 *
456 			 * If this is the top-level object, we must leave the
457 			 * busy page to prevent another process from rushing
458 			 * past us, and inserting the page in that object at
459 			 * the same time that we are.
460 			 */
461 
462 			if (rv == VM_PAGER_ERROR)
463 				printf("vm_fault: pager read error, pid %d (%s)\n",
464 				    curproc->p_pid, curproc->p_comm);
465 			/*
466 			 * Data outside the range of the pager or an I/O error
467 			 */
468 			/*
469 			 * XXX - the check for kernel_map is a kludge to work
470 			 * around having the machine panic on a kernel space
471 			 * fault w/ I/O error.
472 			 */
473 			if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
474 				(rv == VM_PAGER_BAD)) {
475 				vm_page_free(fs.m);
476 				fs.m = NULL;
477 				unlock_and_deallocate(&fs);
478 				return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
479 			}
480 			if (fs.object != fs.first_object) {
481 				vm_page_free(fs.m);
482 				fs.m = NULL;
483 				/*
484 				 * XXX - we cannot just fall out at this
485 				 * point, m has been freed and is invalid!
486 				 */
487 			}
488 		}
489 		/*
490 		 * We get here if the object has default pager (or unwiring) or the
491 		 * pager doesn't have the page.
492 		 */
493 		if (fs.object == fs.first_object)
494 			fs.first_m = fs.m;
495 
496 		/*
497 		 * Move on to the next object.  Lock the next object before
498 		 * unlocking the current one.
499 		 */
500 
501 		fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
502 		next_object = fs.object->backing_object;
503 		if (next_object == NULL) {
504 			/*
505 			 * If there's no object left, fill the page in the top
506 			 * object with zeros.
507 			 */
508 			if (fs.object != fs.first_object) {
509 				vm_object_pip_wakeup(fs.object);
510 
511 				fs.object = fs.first_object;
512 				fs.pindex = fs.first_pindex;
513 				fs.m = fs.first_m;
514 			}
515 			fs.first_m = NULL;
516 
517 			if ((fs.m->flags & PG_ZERO) == 0) {
518 				vm_page_zero_fill(fs.m);
519 				cnt.v_ozfod++;
520 			}
521 			cnt.v_zfod++;
522 			break;
523 		} else {
524 			if (fs.object != fs.first_object) {
525 				vm_object_pip_wakeup(fs.object);
526 			}
527 			fs.object = next_object;
528 			vm_object_pip_add(fs.object, 1);
529 		}
530 	}
531 
532 #if defined(DIAGNOSTIC)
533 	if ((fs.m->flags & PG_BUSY) == 0)
534 		panic("vm_fault: not busy after main loop");
535 #endif
536 
537 	/*
538 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
539 	 * is held.]
540 	 */
541 
542 	old_m = fs.m;	/* save page that would be copied */
543 
544 	/*
545 	 * If the page is being written, but isn't already owned by the
546 	 * top-level object, we have to copy it into a new page owned by the
547 	 * top-level object.
548 	 */
549 
550 	if (fs.object != fs.first_object) {
551 		/*
552 		 * We only really need to copy if we want to write it.
553 		 */
554 
555 		if (fault_type & VM_PROT_WRITE) {
556 
557 			/*
558 			 * This allows pages to be virtually copied from a backing_object
559 			 * into the first_object, where the backing object has no other
560 			 * refs to it, and cannot gain any more refs.  Instead of a
561 			 * bcopy, we just move the page from the backing object to the
562 			 * first object.  Note that we must mark the page dirty in the
563 			 * first object so that it will go out to swap when needed.
564 			 */
565 			if (map_generation == fs.map->timestamp &&
566 				/*
567 				 * Only one shadow object
568 				 */
569 				(fs.object->shadow_count == 1) &&
570 				/*
571 				 * No COW refs, except us
572 				 */
573 				(fs.object->ref_count == 1) &&
574 				/*
575 				 * Noone else can look this object up
576 				 */
577 				(fs.object->handle == NULL) &&
578 				/*
579 				 * No other ways to look the object up
580 				 */
581 				((fs.object->type == OBJT_DEFAULT) ||
582 				 (fs.object->type == OBJT_SWAP)) &&
583 				/*
584 				 * We don't chase down the shadow chain
585 				 */
586 				(fs.object == fs.first_object->backing_object) &&
587 
588 				/*
589 				 * grab the lock if we need to
590 				 */
591 				(fs.lookup_still_valid ||
592 						(((fs.entry->eflags & MAP_ENTRY_IS_A_MAP) == 0) &&
593 						 lockmgr(&fs.map->lock,
594 							LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curproc) == 0))) {
595 
596 				fs.lookup_still_valid = 1;
597 				/*
598 				 * get rid of the unnecessary page
599 				 */
600 				vm_page_protect(fs.first_m, VM_PROT_NONE);
601 				vm_page_free(fs.first_m);
602 				fs.first_m = NULL;
603 
604 				/*
605 				 * grab the page and put it into the process'es object
606 				 */
607 				vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
608 				fs.first_m = fs.m;
609 				fs.first_m->dirty = VM_PAGE_BITS_ALL;
610 				fs.first_m->flags |= PG_BUSY;
611 				fs.m = NULL;
612 				cnt.v_cow_optim++;
613 			} else {
614 				/*
615 				 * Oh, well, lets copy it.
616 				 */
617 				vm_page_copy(fs.m, fs.first_m);
618 			}
619 
620 			if (fs.m) {
621 				/*
622 				 * We no longer need the old page or object.
623 				 */
624 				release_page(&fs);
625 			}
626 
627 			vm_object_pip_wakeup(fs.object);
628 			/*
629 			 * Only use the new page below...
630 			 */
631 
632 			cnt.v_cow_faults++;
633 			fs.m = fs.first_m;
634 			fs.object = fs.first_object;
635 			fs.pindex = fs.first_pindex;
636 
637 		} else {
638 			prot &= ~VM_PROT_WRITE;
639 		}
640 	}
641 
642 	/*
643 	 * We must verify that the maps have not changed since our last
644 	 * lookup.
645 	 */
646 
647 	if (!fs.lookup_still_valid &&
648 		(fs.map->timestamp != map_generation)) {
649 		vm_object_t retry_object;
650 		vm_pindex_t retry_pindex;
651 		vm_prot_t retry_prot;
652 
653 		/*
654 		 * Since map entries may be pageable, make sure we can take a
655 		 * page fault on them.
656 		 */
657 
658 		/*
659 		 * To avoid trying to write_lock the map while another process
660 		 * has it read_locked (in vm_map_pageable), we do not try for
661 		 * write permission.  If the page is still writable, we will
662 		 * get write permission.  If it is not, or has been marked
663 		 * needs_copy, we enter the mapping without write permission,
664 		 * and will merely take another fault.
665 		 */
666 		result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
667 		    &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
668 		map_generation = fs.map->timestamp;
669 
670 		/*
671 		 * If we don't need the page any longer, put it on the active
672 		 * list (the easiest thing to do here).  If no one needs it,
673 		 * pageout will grab it eventually.
674 		 */
675 
676 		if (result != KERN_SUCCESS) {
677 			release_page(&fs);
678 			unlock_and_deallocate(&fs);
679 			return (result);
680 		}
681 		fs.lookup_still_valid = TRUE;
682 
683 		if ((retry_object != fs.first_object) ||
684 		    (retry_pindex != fs.first_pindex)) {
685 			release_page(&fs);
686 			unlock_and_deallocate(&fs);
687 			goto RetryFault;
688 		}
689 		/*
690 		 * Check whether the protection has changed or the object has
691 		 * been copied while we left the map unlocked. Changing from
692 		 * read to write permission is OK - we leave the page
693 		 * write-protected, and catch the write fault. Changing from
694 		 * write to read permission means that we can't mark the page
695 		 * write-enabled after all.
696 		 */
697 		prot &= retry_prot;
698 	}
699 
700 	/*
701 	 * Put this page into the physical map. We had to do the unlock above
702 	 * because pmap_enter may cause other faults.   We don't put the page
703 	 * back on the active queue until later so that the page-out daemon
704 	 * won't find us (yet).
705 	 */
706 
707 	if (prot & VM_PROT_WRITE) {
708 		fs.m->flags |= PG_WRITEABLE;
709 		fs.m->object->flags |= OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY;
710 		/*
711 		 * If the fault is a write, we know that this page is being
712 		 * written NOW. This will save on the pmap_is_modified() calls
713 		 * later.
714 		 */
715 		if (fault_flags & VM_FAULT_DIRTY) {
716 			fs.m->dirty = VM_PAGE_BITS_ALL;
717 		}
718 	}
719 
720 	unlock_things(&fs);
721 	fs.m->valid = VM_PAGE_BITS_ALL;
722 	fs.m->flags &= ~PG_ZERO;
723 
724 	pmap_enter(fs.map->pmap, vaddr, VM_PAGE_TO_PHYS(fs.m), prot, wired);
725 	if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
726 		pmap_prefault(fs.map->pmap, vaddr, fs.entry);
727 	}
728 
729 	fs.m->flags |= PG_MAPPED|PG_REFERENCED;
730 	if (fault_flags & VM_FAULT_HOLD)
731 		vm_page_hold(fs.m);
732 
733 	/*
734 	 * If the page is not wired down, then put it where the pageout daemon
735 	 * can find it.
736 	 */
737 	if (fault_flags & VM_FAULT_WIRE_MASK) {
738 		if (wired)
739 			vm_page_wire(fs.m);
740 		else
741 			vm_page_unwire(fs.m);
742 	} else {
743 		vm_page_activate(fs.m);
744 	}
745 
746 	if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
747 		if (hardfault) {
748 			curproc->p_stats->p_ru.ru_majflt++;
749 		} else {
750 			curproc->p_stats->p_ru.ru_minflt++;
751 		}
752 	}
753 
754 	/*
755 	 * Unlock everything, and return
756 	 */
757 
758 	PAGE_WAKEUP(fs.m);
759 	vm_object_deallocate(fs.first_object);
760 
761 	return (KERN_SUCCESS);
762 
763 }
764 
765 /*
766  *	vm_fault_wire:
767  *
768  *	Wire down a range of virtual addresses in a map.
769  */
770 int
771 vm_fault_wire(map, start, end)
772 	vm_map_t map;
773 	vm_offset_t start, end;
774 {
775 
776 	register vm_offset_t va;
777 	register pmap_t pmap;
778 	int rv;
779 
780 	pmap = vm_map_pmap(map);
781 
782 	/*
783 	 * Inform the physical mapping system that the range of addresses may
784 	 * not fault, so that page tables and such can be locked down as well.
785 	 */
786 
787 	pmap_pageable(pmap, start, end, FALSE);
788 
789 	/*
790 	 * We simulate a fault to get the page and enter it in the physical
791 	 * map.
792 	 */
793 
794 	for (va = start; va < end; va += PAGE_SIZE) {
795 		rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
796 			VM_FAULT_CHANGE_WIRING);
797 		if (rv) {
798 			if (va != start)
799 				vm_fault_unwire(map, start, va);
800 			return (rv);
801 		}
802 	}
803 	return (KERN_SUCCESS);
804 }
805 
806 /*
807  *	vm_fault_user_wire:
808  *
809  *	Wire down a range of virtual addresses in a map.  This
810  *	is for user mode though, so we only ask for read access
811  *	on currently read only sections.
812  */
813 int
814 vm_fault_user_wire(map, start, end)
815 	vm_map_t map;
816 	vm_offset_t start, end;
817 {
818 
819 	register vm_offset_t va;
820 	register pmap_t pmap;
821 	int rv;
822 
823 	pmap = vm_map_pmap(map);
824 
825 	/*
826 	 * Inform the physical mapping system that the range of addresses may
827 	 * not fault, so that page tables and such can be locked down as well.
828 	 */
829 
830 	pmap_pageable(pmap, start, end, FALSE);
831 
832 	/*
833 	 * We simulate a fault to get the page and enter it in the physical
834 	 * map.
835 	 */
836 	for (va = start; va < end; va += PAGE_SIZE) {
837 		rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
838 		if (rv) {
839 			if (va != start)
840 				vm_fault_unwire(map, start, va);
841 			return (rv);
842 		}
843 	}
844 	return (KERN_SUCCESS);
845 }
846 
847 
848 /*
849  *	vm_fault_unwire:
850  *
851  *	Unwire a range of virtual addresses in a map.
852  */
853 void
854 vm_fault_unwire(map, start, end)
855 	vm_map_t map;
856 	vm_offset_t start, end;
857 {
858 
859 	register vm_offset_t va, pa;
860 	register pmap_t pmap;
861 
862 	pmap = vm_map_pmap(map);
863 
864 	/*
865 	 * Since the pages are wired down, we must be able to get their
866 	 * mappings from the physical map system.
867 	 */
868 
869 	for (va = start; va < end; va += PAGE_SIZE) {
870 		pa = pmap_extract(pmap, va);
871 		if (pa != (vm_offset_t) 0) {
872 			pmap_change_wiring(pmap, va, FALSE);
873 			vm_page_unwire(PHYS_TO_VM_PAGE(pa));
874 		}
875 	}
876 
877 	/*
878 	 * Inform the physical mapping system that the range of addresses may
879 	 * fault, so that page tables and such may be unwired themselves.
880 	 */
881 
882 	pmap_pageable(pmap, start, end, TRUE);
883 
884 }
885 
886 /*
887  *	Routine:
888  *		vm_fault_copy_entry
889  *	Function:
890  *		Copy all of the pages from a wired-down map entry to another.
891  *
892  *	In/out conditions:
893  *		The source and destination maps must be locked for write.
894  *		The source map entry must be wired down (or be a sharing map
895  *		entry corresponding to a main map entry that is wired down).
896  */
897 
898 void
899 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
900 	vm_map_t dst_map;
901 	vm_map_t src_map;
902 	vm_map_entry_t dst_entry;
903 	vm_map_entry_t src_entry;
904 {
905 	vm_object_t dst_object;
906 	vm_object_t src_object;
907 	vm_ooffset_t dst_offset;
908 	vm_ooffset_t src_offset;
909 	vm_prot_t prot;
910 	vm_offset_t vaddr;
911 	vm_page_t dst_m;
912 	vm_page_t src_m;
913 
914 #ifdef	lint
915 	src_map++;
916 #endif	/* lint */
917 
918 	src_object = src_entry->object.vm_object;
919 	src_offset = src_entry->offset;
920 
921 	/*
922 	 * Create the top-level object for the destination entry. (Doesn't
923 	 * actually shadow anything - we copy the pages directly.)
924 	 */
925 	dst_object = vm_object_allocate(OBJT_DEFAULT,
926 	    (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
927 
928 	dst_entry->object.vm_object = dst_object;
929 	dst_entry->offset = 0;
930 
931 	prot = dst_entry->max_protection;
932 
933 	/*
934 	 * Loop through all of the pages in the entry's range, copying each
935 	 * one from the source object (it should be there) to the destination
936 	 * object.
937 	 */
938 	for (vaddr = dst_entry->start, dst_offset = 0;
939 	    vaddr < dst_entry->end;
940 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
941 
942 		/*
943 		 * Allocate a page in the destination object
944 		 */
945 		do {
946 			dst_m = vm_page_alloc(dst_object,
947 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
948 			if (dst_m == NULL) {
949 				VM_WAIT;
950 			}
951 		} while (dst_m == NULL);
952 
953 		/*
954 		 * Find the page in the source object, and copy it in.
955 		 * (Because the source is wired down, the page will be in
956 		 * memory.)
957 		 */
958 		src_m = vm_page_lookup(src_object,
959 			OFF_TO_IDX(dst_offset + src_offset));
960 		if (src_m == NULL)
961 			panic("vm_fault_copy_wired: page missing");
962 
963 		vm_page_copy(src_m, dst_m);
964 
965 		/*
966 		 * Enter it in the pmap...
967 		 */
968 
969 		dst_m->flags &= ~PG_ZERO;
970 		pmap_enter(dst_map->pmap, vaddr, VM_PAGE_TO_PHYS(dst_m),
971 		    prot, FALSE);
972 		dst_m->flags |= PG_WRITEABLE|PG_MAPPED;
973 
974 		/*
975 		 * Mark it no longer busy, and put it on the active list.
976 		 */
977 		vm_page_activate(dst_m);
978 		PAGE_WAKEUP(dst_m);
979 	}
980 }
981 
982 
983 /*
984  * This routine checks around the requested page for other pages that
985  * might be able to be faulted in.  This routine brackets the viable
986  * pages for the pages to be paged in.
987  *
988  * Inputs:
989  *	m, rbehind, rahead
990  *
991  * Outputs:
992  *  marray (array of vm_page_t), reqpage (index of requested page)
993  *
994  * Return value:
995  *  number of pages in marray
996  */
997 static int
998 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
999 	vm_page_t m;
1000 	int rbehind;
1001 	int rahead;
1002 	vm_page_t *marray;
1003 	int *reqpage;
1004 {
1005 	int i,j;
1006 	vm_object_t object;
1007 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1008 	vm_page_t rtm;
1009 	int cbehind, cahead;
1010 
1011 	object = m->object;
1012 	pindex = m->pindex;
1013 
1014 	/*
1015 	 * we don't fault-ahead for device pager
1016 	 */
1017 	if (object->type == OBJT_DEVICE) {
1018 		*reqpage = 0;
1019 		marray[0] = m;
1020 		return 1;
1021 	}
1022 
1023 	/*
1024 	 * if the requested page is not available, then give up now
1025 	 */
1026 
1027 	if (!vm_pager_has_page(object,
1028 		OFF_TO_IDX(object->paging_offset) + pindex, &cbehind, &cahead)) {
1029 		return 0;
1030 	}
1031 
1032 	if ((cbehind == 0) && (cahead == 0)) {
1033 		*reqpage = 0;
1034 		marray[0] = m;
1035 		return 1;
1036 	}
1037 
1038 	if (rahead > cahead) {
1039 		rahead = cahead;
1040 	}
1041 
1042 	if (rbehind > cbehind) {
1043 		rbehind = cbehind;
1044 	}
1045 
1046 	/*
1047 	 * try to do any readahead that we might have free pages for.
1048 	 */
1049 	if ((rahead + rbehind) >
1050 		((cnt.v_free_count + cnt.v_cache_count) - cnt.v_free_reserved)) {
1051 		pagedaemon_wakeup();
1052 		marray[0] = m;
1053 		*reqpage = 0;
1054 		return 1;
1055 	}
1056 
1057 	/*
1058 	 * scan backward for the read behind pages -- in memory
1059 	 */
1060 	if (pindex > 0) {
1061 		if (rbehind > pindex) {
1062 			rbehind = pindex;
1063 			startpindex = 0;
1064 		} else {
1065 			startpindex = pindex - rbehind;
1066 		}
1067 
1068 		for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1069 			if (vm_page_lookup( object, tpindex)) {
1070 				startpindex = tpindex + 1;
1071 				break;
1072 			}
1073 			if (tpindex == 0)
1074 				break;
1075 		}
1076 
1077 		for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1078 
1079 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1080 			if (rtm == NULL) {
1081 				for (j = 0; j < i; j++) {
1082 					vm_page_free(marray[j]);
1083 				}
1084 				marray[0] = m;
1085 				*reqpage = 0;
1086 				return 1;
1087 			}
1088 
1089 			marray[i] = rtm;
1090 		}
1091 	} else {
1092 		startpindex = 0;
1093 		i = 0;
1094 	}
1095 
1096 	marray[i] = m;
1097 	/* page offset of the required page */
1098 	*reqpage = i;
1099 
1100 	tpindex = pindex + 1;
1101 	i++;
1102 
1103 	/*
1104 	 * scan forward for the read ahead pages
1105 	 */
1106 	endpindex = tpindex + rahead;
1107 	if (endpindex > object->size)
1108 		endpindex = object->size;
1109 
1110 	for( ; tpindex < endpindex; i++, tpindex++) {
1111 
1112 		if (vm_page_lookup(object, tpindex)) {
1113 			break;
1114 		}
1115 
1116 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1117 		if (rtm == NULL) {
1118 			break;
1119 		}
1120 
1121 		marray[i] = rtm;
1122 	}
1123 
1124 	/* return number of bytes of pages */
1125 	return i;
1126 }
1127