1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/mutex.h> 88 #include <sys/proc.h> 89 #include <sys/racct.h> 90 #include <sys/resourcevar.h> 91 #include <sys/rwlock.h> 92 #include <sys/sysctl.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #include <vm/vm.h> 100 #include <vm/vm_param.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pageout.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_extern.h> 109 #include <vm/vm_reserv.h> 110 111 #define PFBAK 4 112 #define PFFOR 4 113 114 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 115 #define VM_FAULT_READ_MAX (1 + VM_FAULT_READ_AHEAD_MAX) 116 117 #define VM_FAULT_DONTNEED_MIN 1048576 118 119 struct faultstate { 120 vm_page_t m; 121 vm_object_t object; 122 vm_pindex_t pindex; 123 vm_page_t first_m; 124 vm_object_t first_object; 125 vm_pindex_t first_pindex; 126 vm_map_t map; 127 vm_map_entry_t entry; 128 int map_generation; 129 bool lookup_still_valid; 130 struct vnode *vp; 131 }; 132 133 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 134 int ahead); 135 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 136 int backward, int forward, bool obj_locked); 137 138 static inline void 139 release_page(struct faultstate *fs) 140 { 141 142 vm_page_xunbusy(fs->m); 143 vm_page_lock(fs->m); 144 vm_page_deactivate(fs->m); 145 vm_page_unlock(fs->m); 146 fs->m = NULL; 147 } 148 149 static inline void 150 unlock_map(struct faultstate *fs) 151 { 152 153 if (fs->lookup_still_valid) { 154 vm_map_lookup_done(fs->map, fs->entry); 155 fs->lookup_still_valid = false; 156 } 157 } 158 159 static void 160 unlock_vp(struct faultstate *fs) 161 { 162 163 if (fs->vp != NULL) { 164 vput(fs->vp); 165 fs->vp = NULL; 166 } 167 } 168 169 static void 170 unlock_and_deallocate(struct faultstate *fs) 171 { 172 173 vm_object_pip_wakeup(fs->object); 174 VM_OBJECT_WUNLOCK(fs->object); 175 if (fs->object != fs->first_object) { 176 VM_OBJECT_WLOCK(fs->first_object); 177 vm_page_lock(fs->first_m); 178 vm_page_free(fs->first_m); 179 vm_page_unlock(fs->first_m); 180 vm_object_pip_wakeup(fs->first_object); 181 VM_OBJECT_WUNLOCK(fs->first_object); 182 fs->first_m = NULL; 183 } 184 vm_object_deallocate(fs->first_object); 185 unlock_map(fs); 186 unlock_vp(fs); 187 } 188 189 static void 190 vm_fault_dirty(vm_map_entry_t entry, vm_page_t m, vm_prot_t prot, 191 vm_prot_t fault_type, int fault_flags, bool set_wd) 192 { 193 bool need_dirty; 194 195 if (((prot & VM_PROT_WRITE) == 0 && 196 (fault_flags & VM_FAULT_DIRTY) == 0) || 197 (m->oflags & VPO_UNMANAGED) != 0) 198 return; 199 200 VM_OBJECT_ASSERT_LOCKED(m->object); 201 202 need_dirty = ((fault_type & VM_PROT_WRITE) != 0 && 203 (fault_flags & VM_FAULT_WIRE) == 0) || 204 (fault_flags & VM_FAULT_DIRTY) != 0; 205 206 if (set_wd) 207 vm_object_set_writeable_dirty(m->object); 208 else 209 /* 210 * If two callers of vm_fault_dirty() with set_wd == 211 * FALSE, one for the map entry with MAP_ENTRY_NOSYNC 212 * flag set, other with flag clear, race, it is 213 * possible for the no-NOSYNC thread to see m->dirty 214 * != 0 and not clear VPO_NOSYNC. Take vm_page lock 215 * around manipulation of VPO_NOSYNC and 216 * vm_page_dirty() call, to avoid the race and keep 217 * m->oflags consistent. 218 */ 219 vm_page_lock(m); 220 221 /* 222 * If this is a NOSYNC mmap we do not want to set VPO_NOSYNC 223 * if the page is already dirty to prevent data written with 224 * the expectation of being synced from not being synced. 225 * Likewise if this entry does not request NOSYNC then make 226 * sure the page isn't marked NOSYNC. Applications sharing 227 * data should use the same flags to avoid ping ponging. 228 */ 229 if ((entry->eflags & MAP_ENTRY_NOSYNC) != 0) { 230 if (m->dirty == 0) { 231 m->oflags |= VPO_NOSYNC; 232 } 233 } else { 234 m->oflags &= ~VPO_NOSYNC; 235 } 236 237 /* 238 * If the fault is a write, we know that this page is being 239 * written NOW so dirty it explicitly to save on 240 * pmap_is_modified() calls later. 241 * 242 * Also, since the page is now dirty, we can possibly tell 243 * the pager to release any swap backing the page. Calling 244 * the pager requires a write lock on the object. 245 */ 246 if (need_dirty) 247 vm_page_dirty(m); 248 if (!set_wd) 249 vm_page_unlock(m); 250 else if (need_dirty) 251 vm_pager_page_unswapped(m); 252 } 253 254 static void 255 vm_fault_fill_hold(vm_page_t *m_hold, vm_page_t m) 256 { 257 258 if (m_hold != NULL) { 259 *m_hold = m; 260 vm_page_lock(m); 261 vm_page_wire(m); 262 vm_page_unlock(m); 263 } 264 } 265 266 /* 267 * Unlocks fs.first_object and fs.map on success. 268 */ 269 static int 270 vm_fault_soft_fast(struct faultstate *fs, vm_offset_t vaddr, vm_prot_t prot, 271 int fault_type, int fault_flags, boolean_t wired, vm_page_t *m_hold) 272 { 273 vm_page_t m, m_map; 274 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 275 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 276 VM_NRESERVLEVEL > 0 277 vm_page_t m_super; 278 int flags; 279 #endif 280 int psind, rv; 281 282 MPASS(fs->vp == NULL); 283 m = vm_page_lookup(fs->first_object, fs->first_pindex); 284 /* A busy page can be mapped for read|execute access. */ 285 if (m == NULL || ((prot & VM_PROT_WRITE) != 0 && 286 vm_page_busied(m)) || m->valid != VM_PAGE_BITS_ALL) 287 return (KERN_FAILURE); 288 m_map = m; 289 psind = 0; 290 #if (defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 291 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv)) && \ 292 VM_NRESERVLEVEL > 0 293 if ((m->flags & PG_FICTITIOUS) == 0 && 294 (m_super = vm_reserv_to_superpage(m)) != NULL && 295 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 296 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 297 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 298 (pagesizes[m_super->psind] - 1)) && !wired && 299 pmap_ps_enabled(fs->map->pmap)) { 300 flags = PS_ALL_VALID; 301 if ((prot & VM_PROT_WRITE) != 0) { 302 /* 303 * Create a superpage mapping allowing write access 304 * only if none of the constituent pages are busy and 305 * all of them are already dirty (except possibly for 306 * the page that was faulted on). 307 */ 308 flags |= PS_NONE_BUSY; 309 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 310 flags |= PS_ALL_DIRTY; 311 } 312 if (vm_page_ps_test(m_super, flags, m)) { 313 m_map = m_super; 314 psind = m_super->psind; 315 vaddr = rounddown2(vaddr, pagesizes[psind]); 316 /* Preset the modified bit for dirty superpages. */ 317 if ((flags & PS_ALL_DIRTY) != 0) 318 fault_type |= VM_PROT_WRITE; 319 } 320 } 321 #endif 322 rv = pmap_enter(fs->map->pmap, vaddr, m_map, prot, fault_type | 323 PMAP_ENTER_NOSLEEP | (wired ? PMAP_ENTER_WIRED : 0), psind); 324 if (rv != KERN_SUCCESS) 325 return (rv); 326 vm_fault_fill_hold(m_hold, m); 327 vm_fault_dirty(fs->entry, m, prot, fault_type, fault_flags, false); 328 if (psind == 0 && !wired) 329 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 330 VM_OBJECT_RUNLOCK(fs->first_object); 331 vm_map_lookup_done(fs->map, fs->entry); 332 curthread->td_ru.ru_minflt++; 333 return (KERN_SUCCESS); 334 } 335 336 static void 337 vm_fault_restore_map_lock(struct faultstate *fs) 338 { 339 340 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 341 MPASS(fs->first_object->paging_in_progress > 0); 342 343 if (!vm_map_trylock_read(fs->map)) { 344 VM_OBJECT_WUNLOCK(fs->first_object); 345 vm_map_lock_read(fs->map); 346 VM_OBJECT_WLOCK(fs->first_object); 347 } 348 fs->lookup_still_valid = true; 349 } 350 351 static void 352 vm_fault_populate_check_page(vm_page_t m) 353 { 354 355 /* 356 * Check each page to ensure that the pager is obeying the 357 * interface: the page must be installed in the object, fully 358 * valid, and exclusively busied. 359 */ 360 MPASS(m != NULL); 361 MPASS(m->valid == VM_PAGE_BITS_ALL); 362 MPASS(vm_page_xbusied(m)); 363 } 364 365 static void 366 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 367 vm_pindex_t last) 368 { 369 vm_page_t m; 370 vm_pindex_t pidx; 371 372 VM_OBJECT_ASSERT_WLOCKED(object); 373 MPASS(first <= last); 374 for (pidx = first, m = vm_page_lookup(object, pidx); 375 pidx <= last; pidx++, m = vm_page_next(m)) { 376 vm_fault_populate_check_page(m); 377 vm_page_lock(m); 378 vm_page_deactivate(m); 379 vm_page_unlock(m); 380 vm_page_xunbusy(m); 381 } 382 } 383 384 static int 385 vm_fault_populate(struct faultstate *fs, vm_prot_t prot, int fault_type, 386 int fault_flags, boolean_t wired, vm_page_t *m_hold) 387 { 388 struct mtx *m_mtx; 389 vm_offset_t vaddr; 390 vm_page_t m; 391 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 392 int i, npages, psind, rv; 393 394 MPASS(fs->object == fs->first_object); 395 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 396 MPASS(fs->first_object->paging_in_progress > 0); 397 MPASS(fs->first_object->backing_object == NULL); 398 MPASS(fs->lookup_still_valid); 399 400 pager_first = OFF_TO_IDX(fs->entry->offset); 401 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 402 unlock_map(fs); 403 unlock_vp(fs); 404 405 /* 406 * Call the pager (driver) populate() method. 407 * 408 * There is no guarantee that the method will be called again 409 * if the current fault is for read, and a future fault is 410 * for write. Report the entry's maximum allowed protection 411 * to the driver. 412 */ 413 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 414 fault_type, fs->entry->max_protection, &pager_first, &pager_last); 415 416 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 417 if (rv == VM_PAGER_BAD) { 418 /* 419 * VM_PAGER_BAD is the backdoor for a pager to request 420 * normal fault handling. 421 */ 422 vm_fault_restore_map_lock(fs); 423 if (fs->map->timestamp != fs->map_generation) 424 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 425 return (KERN_NOT_RECEIVER); 426 } 427 if (rv != VM_PAGER_OK) 428 return (KERN_FAILURE); /* AKA SIGSEGV */ 429 430 /* Ensure that the driver is obeying the interface. */ 431 MPASS(pager_first <= pager_last); 432 MPASS(fs->first_pindex <= pager_last); 433 MPASS(fs->first_pindex >= pager_first); 434 MPASS(pager_last < fs->first_object->size); 435 436 vm_fault_restore_map_lock(fs); 437 if (fs->map->timestamp != fs->map_generation) { 438 vm_fault_populate_cleanup(fs->first_object, pager_first, 439 pager_last); 440 return (KERN_RESOURCE_SHORTAGE); /* RetryFault */ 441 } 442 443 /* 444 * The map is unchanged after our last unlock. Process the fault. 445 * 446 * The range [pager_first, pager_last] that is given to the 447 * pager is only a hint. The pager may populate any range 448 * within the object that includes the requested page index. 449 * In case the pager expanded the range, clip it to fit into 450 * the map entry. 451 */ 452 map_first = OFF_TO_IDX(fs->entry->offset); 453 if (map_first > pager_first) { 454 vm_fault_populate_cleanup(fs->first_object, pager_first, 455 map_first - 1); 456 pager_first = map_first; 457 } 458 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 459 if (map_last < pager_last) { 460 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 461 pager_last); 462 pager_last = map_last; 463 } 464 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 465 pidx <= pager_last; 466 pidx += npages, m = vm_page_next(&m[npages - 1])) { 467 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 468 #if defined(__aarch64__) || defined(__amd64__) || (defined(__arm__) && \ 469 __ARM_ARCH >= 6) || defined(__i386__) || defined(__riscv) 470 psind = m->psind; 471 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 472 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 473 !pmap_ps_enabled(fs->map->pmap) || wired)) 474 psind = 0; 475 #else 476 psind = 0; 477 #endif 478 npages = atop(pagesizes[psind]); 479 for (i = 0; i < npages; i++) { 480 vm_fault_populate_check_page(&m[i]); 481 vm_fault_dirty(fs->entry, &m[i], prot, fault_type, 482 fault_flags, true); 483 } 484 VM_OBJECT_WUNLOCK(fs->first_object); 485 rv = pmap_enter(fs->map->pmap, vaddr, m, prot, fault_type | 486 (wired ? PMAP_ENTER_WIRED : 0), psind); 487 #if defined(__amd64__) 488 if (psind > 0 && rv == KERN_FAILURE) { 489 for (i = 0; i < npages; i++) { 490 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 491 &m[i], prot, fault_type | 492 (wired ? PMAP_ENTER_WIRED : 0), 0); 493 MPASS(rv == KERN_SUCCESS); 494 } 495 } 496 #else 497 MPASS(rv == KERN_SUCCESS); 498 #endif 499 VM_OBJECT_WLOCK(fs->first_object); 500 m_mtx = NULL; 501 for (i = 0; i < npages; i++) { 502 vm_page_change_lock(&m[i], &m_mtx); 503 if ((fault_flags & VM_FAULT_WIRE) != 0) 504 vm_page_wire(&m[i]); 505 else 506 vm_page_activate(&m[i]); 507 if (m_hold != NULL && m[i].pindex == fs->first_pindex) { 508 *m_hold = &m[i]; 509 vm_page_wire(&m[i]); 510 } 511 vm_page_xunbusy_maybelocked(&m[i]); 512 } 513 if (m_mtx != NULL) 514 mtx_unlock(m_mtx); 515 } 516 curthread->td_ru.ru_majflt++; 517 return (KERN_SUCCESS); 518 } 519 520 /* 521 * vm_fault: 522 * 523 * Handle a page fault occurring at the given address, 524 * requiring the given permissions, in the map specified. 525 * If successful, the page is inserted into the 526 * associated physical map. 527 * 528 * NOTE: the given address should be truncated to the 529 * proper page address. 530 * 531 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 532 * a standard error specifying why the fault is fatal is returned. 533 * 534 * The map in question must be referenced, and remains so. 535 * Caller may hold no locks. 536 */ 537 int 538 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 539 int fault_flags) 540 { 541 struct thread *td; 542 int result; 543 544 td = curthread; 545 if ((td->td_pflags & TDP_NOFAULTING) != 0) 546 return (KERN_PROTECTION_FAILURE); 547 #ifdef KTRACE 548 if (map != kernel_map && KTRPOINT(td, KTR_FAULT)) 549 ktrfault(vaddr, fault_type); 550 #endif 551 result = vm_fault_hold(map, trunc_page(vaddr), fault_type, fault_flags, 552 NULL); 553 #ifdef KTRACE 554 if (map != kernel_map && KTRPOINT(td, KTR_FAULTEND)) 555 ktrfaultend(result); 556 #endif 557 return (result); 558 } 559 560 int 561 vm_fault_hold(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 562 int fault_flags, vm_page_t *m_hold) 563 { 564 struct faultstate fs; 565 struct vnode *vp; 566 struct domainset *dset; 567 struct mtx *mtx; 568 vm_object_t next_object, retry_object; 569 vm_offset_t e_end, e_start; 570 vm_pindex_t retry_pindex; 571 vm_prot_t prot, retry_prot; 572 int ahead, alloc_req, behind, cluster_offset, error, era, faultcount; 573 int locked, nera, result, rv; 574 u_char behavior; 575 boolean_t wired; /* Passed by reference. */ 576 bool dead, hardfault, is_first_object_locked; 577 578 VM_CNT_INC(v_vm_faults); 579 fs.vp = NULL; 580 faultcount = 0; 581 nera = -1; 582 hardfault = false; 583 584 RetryFault:; 585 586 /* 587 * Find the backing store object and offset into it to begin the 588 * search. 589 */ 590 fs.map = map; 591 result = vm_map_lookup(&fs.map, vaddr, fault_type | 592 VM_PROT_FAULT_LOOKUP, &fs.entry, &fs.first_object, 593 &fs.first_pindex, &prot, &wired); 594 if (result != KERN_SUCCESS) { 595 unlock_vp(&fs); 596 return (result); 597 } 598 599 fs.map_generation = fs.map->timestamp; 600 601 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 602 panic("%s: fault on nofault entry, addr: %#lx", 603 __func__, (u_long)vaddr); 604 } 605 606 if (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION && 607 fs.entry->wiring_thread != curthread) { 608 vm_map_unlock_read(fs.map); 609 vm_map_lock(fs.map); 610 if (vm_map_lookup_entry(fs.map, vaddr, &fs.entry) && 611 (fs.entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 612 unlock_vp(&fs); 613 fs.entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 614 vm_map_unlock_and_wait(fs.map, 0); 615 } else 616 vm_map_unlock(fs.map); 617 goto RetryFault; 618 } 619 620 MPASS((fs.entry->eflags & MAP_ENTRY_GUARD) == 0); 621 622 if (wired) 623 fault_type = prot | (fault_type & VM_PROT_COPY); 624 else 625 KASSERT((fault_flags & VM_FAULT_WIRE) == 0, 626 ("!wired && VM_FAULT_WIRE")); 627 628 /* 629 * Try to avoid lock contention on the top-level object through 630 * special-case handling of some types of page faults, specifically, 631 * those that are both (1) mapping an existing page from the top- 632 * level object and (2) not having to mark that object as containing 633 * dirty pages. Under these conditions, a read lock on the top-level 634 * object suffices, allowing multiple page faults of a similar type to 635 * run in parallel on the same top-level object. 636 */ 637 if (fs.vp == NULL /* avoid locked vnode leak */ && 638 (fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0 && 639 /* avoid calling vm_object_set_writeable_dirty() */ 640 ((prot & VM_PROT_WRITE) == 0 || 641 (fs.first_object->type != OBJT_VNODE && 642 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 643 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0)) { 644 VM_OBJECT_RLOCK(fs.first_object); 645 if ((prot & VM_PROT_WRITE) == 0 || 646 (fs.first_object->type != OBJT_VNODE && 647 (fs.first_object->flags & OBJ_TMPFS_NODE) == 0) || 648 (fs.first_object->flags & OBJ_MIGHTBEDIRTY) != 0) { 649 rv = vm_fault_soft_fast(&fs, vaddr, prot, fault_type, 650 fault_flags, wired, m_hold); 651 if (rv == KERN_SUCCESS) 652 return (rv); 653 } 654 if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) { 655 VM_OBJECT_RUNLOCK(fs.first_object); 656 VM_OBJECT_WLOCK(fs.first_object); 657 } 658 } else { 659 VM_OBJECT_WLOCK(fs.first_object); 660 } 661 662 /* 663 * Make a reference to this object to prevent its disposal while we 664 * are messing with it. Once we have the reference, the map is free 665 * to be diddled. Since objects reference their shadows (and copies), 666 * they will stay around as well. 667 * 668 * Bump the paging-in-progress count to prevent size changes (e.g. 669 * truncation operations) during I/O. 670 */ 671 vm_object_reference_locked(fs.first_object); 672 vm_object_pip_add(fs.first_object, 1); 673 674 fs.lookup_still_valid = true; 675 676 fs.first_m = NULL; 677 678 /* 679 * Search for the page at object/offset. 680 */ 681 fs.object = fs.first_object; 682 fs.pindex = fs.first_pindex; 683 while (TRUE) { 684 /* 685 * If the object is marked for imminent termination, 686 * we retry here, since the collapse pass has raced 687 * with us. Otherwise, if we see terminally dead 688 * object, return fail. 689 */ 690 if ((fs.object->flags & OBJ_DEAD) != 0) { 691 dead = fs.object->type == OBJT_DEAD; 692 unlock_and_deallocate(&fs); 693 if (dead) 694 return (KERN_PROTECTION_FAILURE); 695 pause("vmf_de", 1); 696 goto RetryFault; 697 } 698 699 /* 700 * See if page is resident 701 */ 702 fs.m = vm_page_lookup(fs.object, fs.pindex); 703 if (fs.m != NULL) { 704 /* 705 * Wait/Retry if the page is busy. We have to do this 706 * if the page is either exclusive or shared busy 707 * because the vm_pager may be using read busy for 708 * pageouts (and even pageins if it is the vnode 709 * pager), and we could end up trying to pagein and 710 * pageout the same page simultaneously. 711 * 712 * We can theoretically allow the busy case on a read 713 * fault if the page is marked valid, but since such 714 * pages are typically already pmap'd, putting that 715 * special case in might be more effort then it is 716 * worth. We cannot under any circumstances mess 717 * around with a shared busied page except, perhaps, 718 * to pmap it. 719 */ 720 if (vm_page_busied(fs.m)) { 721 /* 722 * Reference the page before unlocking and 723 * sleeping so that the page daemon is less 724 * likely to reclaim it. 725 */ 726 vm_page_aflag_set(fs.m, PGA_REFERENCED); 727 if (fs.object != fs.first_object) { 728 if (!VM_OBJECT_TRYWLOCK( 729 fs.first_object)) { 730 VM_OBJECT_WUNLOCK(fs.object); 731 VM_OBJECT_WLOCK(fs.first_object); 732 VM_OBJECT_WLOCK(fs.object); 733 } 734 vm_page_lock(fs.first_m); 735 vm_page_free(fs.first_m); 736 vm_page_unlock(fs.first_m); 737 vm_object_pip_wakeup(fs.first_object); 738 VM_OBJECT_WUNLOCK(fs.first_object); 739 fs.first_m = NULL; 740 } 741 unlock_map(&fs); 742 if (fs.m == vm_page_lookup(fs.object, 743 fs.pindex)) { 744 vm_page_sleep_if_busy(fs.m, "vmpfw"); 745 } 746 vm_object_pip_wakeup(fs.object); 747 VM_OBJECT_WUNLOCK(fs.object); 748 VM_CNT_INC(v_intrans); 749 vm_object_deallocate(fs.first_object); 750 goto RetryFault; 751 } 752 753 /* 754 * Mark page busy for other processes, and the 755 * pagedaemon. If it still isn't completely valid 756 * (readable), jump to readrest, else break-out ( we 757 * found the page ). 758 */ 759 vm_page_xbusy(fs.m); 760 if (fs.m->valid != VM_PAGE_BITS_ALL) 761 goto readrest; 762 break; /* break to PAGE HAS BEEN FOUND */ 763 } 764 KASSERT(fs.m == NULL, ("fs.m should be NULL, not %p", fs.m)); 765 766 /* 767 * Page is not resident. If the pager might contain the page 768 * or this is the beginning of the search, allocate a new 769 * page. (Default objects are zero-fill, so there is no real 770 * pager for them.) 771 */ 772 if (fs.object->type != OBJT_DEFAULT || 773 fs.object == fs.first_object) { 774 if (fs.pindex >= fs.object->size) { 775 unlock_and_deallocate(&fs); 776 return (KERN_PROTECTION_FAILURE); 777 } 778 779 if (fs.object == fs.first_object && 780 (fs.first_object->flags & OBJ_POPULATE) != 0 && 781 fs.first_object->shadow_count == 0) { 782 rv = vm_fault_populate(&fs, prot, fault_type, 783 fault_flags, wired, m_hold); 784 switch (rv) { 785 case KERN_SUCCESS: 786 case KERN_FAILURE: 787 unlock_and_deallocate(&fs); 788 return (rv); 789 case KERN_RESOURCE_SHORTAGE: 790 unlock_and_deallocate(&fs); 791 goto RetryFault; 792 case KERN_NOT_RECEIVER: 793 /* 794 * Pager's populate() method 795 * returned VM_PAGER_BAD. 796 */ 797 break; 798 default: 799 panic("inconsistent return codes"); 800 } 801 } 802 803 /* 804 * Allocate a new page for this object/offset pair. 805 * 806 * Unlocked read of the p_flag is harmless. At 807 * worst, the P_KILLED might be not observed 808 * there, and allocation can fail, causing 809 * restart and new reading of the p_flag. 810 */ 811 dset = fs.object->domain.dr_policy; 812 if (dset == NULL) 813 dset = curthread->td_domain.dr_policy; 814 if (!vm_page_count_severe_set(&dset->ds_mask) || 815 P_KILLED(curproc)) { 816 #if VM_NRESERVLEVEL > 0 817 vm_object_color(fs.object, atop(vaddr) - 818 fs.pindex); 819 #endif 820 alloc_req = P_KILLED(curproc) ? 821 VM_ALLOC_SYSTEM : VM_ALLOC_NORMAL; 822 if (fs.object->type != OBJT_VNODE && 823 fs.object->backing_object == NULL) 824 alloc_req |= VM_ALLOC_ZERO; 825 fs.m = vm_page_alloc(fs.object, fs.pindex, 826 alloc_req); 827 } 828 if (fs.m == NULL) { 829 unlock_and_deallocate(&fs); 830 vm_waitpfault(dset); 831 goto RetryFault; 832 } 833 } 834 835 readrest: 836 /* 837 * At this point, we have either allocated a new page or found 838 * an existing page that is only partially valid. 839 * 840 * We hold a reference on the current object and the page is 841 * exclusive busied. 842 */ 843 844 /* 845 * If the pager for the current object might have the page, 846 * then determine the number of additional pages to read and 847 * potentially reprioritize previously read pages for earlier 848 * reclamation. These operations should only be performed 849 * once per page fault. Even if the current pager doesn't 850 * have the page, the number of additional pages to read will 851 * apply to subsequent objects in the shadow chain. 852 */ 853 if (fs.object->type != OBJT_DEFAULT && nera == -1 && 854 !P_KILLED(curproc)) { 855 KASSERT(fs.lookup_still_valid, ("map unlocked")); 856 era = fs.entry->read_ahead; 857 behavior = vm_map_entry_behavior(fs.entry); 858 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 859 nera = 0; 860 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 861 nera = VM_FAULT_READ_AHEAD_MAX; 862 if (vaddr == fs.entry->next_read) 863 vm_fault_dontneed(&fs, vaddr, nera); 864 } else if (vaddr == fs.entry->next_read) { 865 /* 866 * This is a sequential fault. Arithmetically 867 * increase the requested number of pages in 868 * the read-ahead window. The requested 869 * number of pages is "# of sequential faults 870 * x (read ahead min + 1) + read ahead min" 871 */ 872 nera = VM_FAULT_READ_AHEAD_MIN; 873 if (era > 0) { 874 nera += era + 1; 875 if (nera > VM_FAULT_READ_AHEAD_MAX) 876 nera = VM_FAULT_READ_AHEAD_MAX; 877 } 878 if (era == VM_FAULT_READ_AHEAD_MAX) 879 vm_fault_dontneed(&fs, vaddr, nera); 880 } else { 881 /* 882 * This is a non-sequential fault. 883 */ 884 nera = 0; 885 } 886 if (era != nera) { 887 /* 888 * A read lock on the map suffices to update 889 * the read ahead count safely. 890 */ 891 fs.entry->read_ahead = nera; 892 } 893 894 /* 895 * Prepare for unlocking the map. Save the map 896 * entry's start and end addresses, which are used to 897 * optimize the size of the pager operation below. 898 * Even if the map entry's addresses change after 899 * unlocking the map, using the saved addresses is 900 * safe. 901 */ 902 e_start = fs.entry->start; 903 e_end = fs.entry->end; 904 } 905 906 /* 907 * Call the pager to retrieve the page if there is a chance 908 * that the pager has it, and potentially retrieve additional 909 * pages at the same time. 910 */ 911 if (fs.object->type != OBJT_DEFAULT) { 912 /* 913 * Release the map lock before locking the vnode or 914 * sleeping in the pager. (If the current object has 915 * a shadow, then an earlier iteration of this loop 916 * may have already unlocked the map.) 917 */ 918 unlock_map(&fs); 919 920 if (fs.object->type == OBJT_VNODE && 921 (vp = fs.object->handle) != fs.vp) { 922 /* 923 * Perform an unlock in case the desired vnode 924 * changed while the map was unlocked during a 925 * retry. 926 */ 927 unlock_vp(&fs); 928 929 locked = VOP_ISLOCKED(vp); 930 if (locked != LK_EXCLUSIVE) 931 locked = LK_SHARED; 932 933 /* 934 * We must not sleep acquiring the vnode lock 935 * while we have the page exclusive busied or 936 * the object's paging-in-progress count 937 * incremented. Otherwise, we could deadlock. 938 */ 939 error = vget(vp, locked | LK_CANRECURSE | 940 LK_NOWAIT, curthread); 941 if (error != 0) { 942 vhold(vp); 943 release_page(&fs); 944 unlock_and_deallocate(&fs); 945 error = vget(vp, locked | LK_RETRY | 946 LK_CANRECURSE, curthread); 947 vdrop(vp); 948 fs.vp = vp; 949 KASSERT(error == 0, 950 ("vm_fault: vget failed")); 951 goto RetryFault; 952 } 953 fs.vp = vp; 954 } 955 KASSERT(fs.vp == NULL || !fs.map->system_map, 956 ("vm_fault: vnode-backed object mapped by system map")); 957 958 /* 959 * Page in the requested page and hint the pager, 960 * that it may bring up surrounding pages. 961 */ 962 if (nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 963 P_KILLED(curproc)) { 964 behind = 0; 965 ahead = 0; 966 } else { 967 /* Is this a sequential fault? */ 968 if (nera > 0) { 969 behind = 0; 970 ahead = nera; 971 } else { 972 /* 973 * Request a cluster of pages that is 974 * aligned to a VM_FAULT_READ_DEFAULT 975 * page offset boundary within the 976 * object. Alignment to a page offset 977 * boundary is more likely to coincide 978 * with the underlying file system 979 * block than alignment to a virtual 980 * address boundary. 981 */ 982 cluster_offset = fs.pindex % 983 VM_FAULT_READ_DEFAULT; 984 behind = ulmin(cluster_offset, 985 atop(vaddr - e_start)); 986 ahead = VM_FAULT_READ_DEFAULT - 1 - 987 cluster_offset; 988 } 989 ahead = ulmin(ahead, atop(e_end - vaddr) - 1); 990 } 991 rv = vm_pager_get_pages(fs.object, &fs.m, 1, 992 &behind, &ahead); 993 if (rv == VM_PAGER_OK) { 994 faultcount = behind + 1 + ahead; 995 hardfault = true; 996 break; /* break to PAGE HAS BEEN FOUND */ 997 } 998 if (rv == VM_PAGER_ERROR) 999 printf("vm_fault: pager read error, pid %d (%s)\n", 1000 curproc->p_pid, curproc->p_comm); 1001 1002 /* 1003 * If an I/O error occurred or the requested page was 1004 * outside the range of the pager, clean up and return 1005 * an error. 1006 */ 1007 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1008 vm_page_lock(fs.m); 1009 if (!vm_page_wired(fs.m)) 1010 vm_page_free(fs.m); 1011 else 1012 vm_page_xunbusy_maybelocked(fs.m); 1013 vm_page_unlock(fs.m); 1014 fs.m = NULL; 1015 unlock_and_deallocate(&fs); 1016 return (rv == VM_PAGER_ERROR ? KERN_FAILURE : 1017 KERN_PROTECTION_FAILURE); 1018 } 1019 1020 /* 1021 * The requested page does not exist at this object/ 1022 * offset. Remove the invalid page from the object, 1023 * waking up anyone waiting for it, and continue on to 1024 * the next object. However, if this is the top-level 1025 * object, we must leave the busy page in place to 1026 * prevent another process from rushing past us, and 1027 * inserting the page in that object at the same time 1028 * that we are. 1029 */ 1030 if (fs.object != fs.first_object) { 1031 vm_page_lock(fs.m); 1032 if (!vm_page_wired(fs.m)) 1033 vm_page_free(fs.m); 1034 else 1035 vm_page_xunbusy_maybelocked(fs.m); 1036 vm_page_unlock(fs.m); 1037 fs.m = NULL; 1038 } 1039 } 1040 1041 /* 1042 * We get here if the object has default pager (or unwiring) 1043 * or the pager doesn't have the page. 1044 */ 1045 if (fs.object == fs.first_object) 1046 fs.first_m = fs.m; 1047 1048 /* 1049 * Move on to the next object. Lock the next object before 1050 * unlocking the current one. 1051 */ 1052 next_object = fs.object->backing_object; 1053 if (next_object == NULL) { 1054 /* 1055 * If there's no object left, fill the page in the top 1056 * object with zeros. 1057 */ 1058 if (fs.object != fs.first_object) { 1059 vm_object_pip_wakeup(fs.object); 1060 VM_OBJECT_WUNLOCK(fs.object); 1061 1062 fs.object = fs.first_object; 1063 fs.pindex = fs.first_pindex; 1064 fs.m = fs.first_m; 1065 VM_OBJECT_WLOCK(fs.object); 1066 } 1067 fs.first_m = NULL; 1068 1069 /* 1070 * Zero the page if necessary and mark it valid. 1071 */ 1072 if ((fs.m->flags & PG_ZERO) == 0) { 1073 pmap_zero_page(fs.m); 1074 } else { 1075 VM_CNT_INC(v_ozfod); 1076 } 1077 VM_CNT_INC(v_zfod); 1078 fs.m->valid = VM_PAGE_BITS_ALL; 1079 /* Don't try to prefault neighboring pages. */ 1080 faultcount = 1; 1081 break; /* break to PAGE HAS BEEN FOUND */ 1082 } else { 1083 KASSERT(fs.object != next_object, 1084 ("object loop %p", next_object)); 1085 VM_OBJECT_WLOCK(next_object); 1086 vm_object_pip_add(next_object, 1); 1087 if (fs.object != fs.first_object) 1088 vm_object_pip_wakeup(fs.object); 1089 fs.pindex += 1090 OFF_TO_IDX(fs.object->backing_object_offset); 1091 VM_OBJECT_WUNLOCK(fs.object); 1092 fs.object = next_object; 1093 } 1094 } 1095 1096 vm_page_assert_xbusied(fs.m); 1097 1098 /* 1099 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1100 * is held.] 1101 */ 1102 1103 /* 1104 * If the page is being written, but isn't already owned by the 1105 * top-level object, we have to copy it into a new page owned by the 1106 * top-level object. 1107 */ 1108 if (fs.object != fs.first_object) { 1109 /* 1110 * We only really need to copy if we want to write it. 1111 */ 1112 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1113 /* 1114 * This allows pages to be virtually copied from a 1115 * backing_object into the first_object, where the 1116 * backing object has no other refs to it, and cannot 1117 * gain any more refs. Instead of a bcopy, we just 1118 * move the page from the backing object to the 1119 * first object. Note that we must mark the page 1120 * dirty in the first object so that it will go out 1121 * to swap when needed. 1122 */ 1123 is_first_object_locked = false; 1124 if ( 1125 /* 1126 * Only one shadow object 1127 */ 1128 (fs.object->shadow_count == 1) && 1129 /* 1130 * No COW refs, except us 1131 */ 1132 (fs.object->ref_count == 1) && 1133 /* 1134 * No one else can look this object up 1135 */ 1136 (fs.object->handle == NULL) && 1137 /* 1138 * No other ways to look the object up 1139 */ 1140 ((fs.object->type == OBJT_DEFAULT) || 1141 (fs.object->type == OBJT_SWAP)) && 1142 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs.first_object)) && 1143 /* 1144 * We don't chase down the shadow chain 1145 */ 1146 fs.object == fs.first_object->backing_object) { 1147 /* 1148 * Keep the page wired to ensure that it is not 1149 * freed by another thread, such as the page 1150 * daemon, while it is disassociated from an 1151 * object. 1152 */ 1153 mtx = NULL; 1154 vm_page_change_lock(fs.m, &mtx); 1155 vm_page_wire(fs.m); 1156 (void)vm_page_remove(fs.m); 1157 vm_page_change_lock(fs.first_m, &mtx); 1158 vm_page_replace_checked(fs.m, fs.first_object, 1159 fs.first_pindex, fs.first_m); 1160 vm_page_free(fs.first_m); 1161 vm_page_change_lock(fs.m, &mtx); 1162 vm_page_unwire(fs.m, PQ_ACTIVE); 1163 mtx_unlock(mtx); 1164 vm_page_dirty(fs.m); 1165 #if VM_NRESERVLEVEL > 0 1166 /* 1167 * Rename the reservation. 1168 */ 1169 vm_reserv_rename(fs.m, fs.first_object, 1170 fs.object, OFF_TO_IDX( 1171 fs.first_object->backing_object_offset)); 1172 #endif 1173 /* 1174 * Removing the page from the backing object 1175 * unbusied it. 1176 */ 1177 vm_page_xbusy(fs.m); 1178 fs.first_m = fs.m; 1179 fs.m = NULL; 1180 VM_CNT_INC(v_cow_optim); 1181 } else { 1182 /* 1183 * Oh, well, lets copy it. 1184 */ 1185 pmap_copy_page(fs.m, fs.first_m); 1186 fs.first_m->valid = VM_PAGE_BITS_ALL; 1187 if (wired && (fault_flags & 1188 VM_FAULT_WIRE) == 0) { 1189 vm_page_lock(fs.first_m); 1190 vm_page_wire(fs.first_m); 1191 vm_page_unlock(fs.first_m); 1192 1193 vm_page_lock(fs.m); 1194 vm_page_unwire(fs.m, PQ_INACTIVE); 1195 vm_page_unlock(fs.m); 1196 } 1197 /* 1198 * We no longer need the old page or object. 1199 */ 1200 release_page(&fs); 1201 } 1202 /* 1203 * fs.object != fs.first_object due to above 1204 * conditional 1205 */ 1206 vm_object_pip_wakeup(fs.object); 1207 VM_OBJECT_WUNLOCK(fs.object); 1208 1209 /* 1210 * We only try to prefault read-only mappings to the 1211 * neighboring pages when this copy-on-write fault is 1212 * a hard fault. In other cases, trying to prefault 1213 * is typically wasted effort. 1214 */ 1215 if (faultcount == 0) 1216 faultcount = 1; 1217 1218 /* 1219 * Only use the new page below... 1220 */ 1221 fs.object = fs.first_object; 1222 fs.pindex = fs.first_pindex; 1223 fs.m = fs.first_m; 1224 if (!is_first_object_locked) 1225 VM_OBJECT_WLOCK(fs.object); 1226 VM_CNT_INC(v_cow_faults); 1227 curthread->td_cow++; 1228 } else { 1229 prot &= ~VM_PROT_WRITE; 1230 } 1231 } 1232 1233 /* 1234 * We must verify that the maps have not changed since our last 1235 * lookup. 1236 */ 1237 if (!fs.lookup_still_valid) { 1238 if (!vm_map_trylock_read(fs.map)) { 1239 release_page(&fs); 1240 unlock_and_deallocate(&fs); 1241 goto RetryFault; 1242 } 1243 fs.lookup_still_valid = true; 1244 if (fs.map->timestamp != fs.map_generation) { 1245 result = vm_map_lookup_locked(&fs.map, vaddr, fault_type, 1246 &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired); 1247 1248 /* 1249 * If we don't need the page any longer, put it on the inactive 1250 * list (the easiest thing to do here). If no one needs it, 1251 * pageout will grab it eventually. 1252 */ 1253 if (result != KERN_SUCCESS) { 1254 release_page(&fs); 1255 unlock_and_deallocate(&fs); 1256 1257 /* 1258 * If retry of map lookup would have blocked then 1259 * retry fault from start. 1260 */ 1261 if (result == KERN_FAILURE) 1262 goto RetryFault; 1263 return (result); 1264 } 1265 if ((retry_object != fs.first_object) || 1266 (retry_pindex != fs.first_pindex)) { 1267 release_page(&fs); 1268 unlock_and_deallocate(&fs); 1269 goto RetryFault; 1270 } 1271 1272 /* 1273 * Check whether the protection has changed or the object has 1274 * been copied while we left the map unlocked. Changing from 1275 * read to write permission is OK - we leave the page 1276 * write-protected, and catch the write fault. Changing from 1277 * write to read permission means that we can't mark the page 1278 * write-enabled after all. 1279 */ 1280 prot &= retry_prot; 1281 fault_type &= retry_prot; 1282 if (prot == 0) { 1283 release_page(&fs); 1284 unlock_and_deallocate(&fs); 1285 goto RetryFault; 1286 } 1287 1288 /* Reassert because wired may have changed. */ 1289 KASSERT(wired || (fault_flags & VM_FAULT_WIRE) == 0, 1290 ("!wired && VM_FAULT_WIRE")); 1291 } 1292 } 1293 1294 /* 1295 * If the page was filled by a pager, save the virtual address that 1296 * should be faulted on next under a sequential access pattern to the 1297 * map entry. A read lock on the map suffices to update this address 1298 * safely. 1299 */ 1300 if (hardfault) 1301 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1302 1303 vm_fault_dirty(fs.entry, fs.m, prot, fault_type, fault_flags, true); 1304 vm_page_assert_xbusied(fs.m); 1305 1306 /* 1307 * Page must be completely valid or it is not fit to 1308 * map into user space. vm_pager_get_pages() ensures this. 1309 */ 1310 KASSERT(fs.m->valid == VM_PAGE_BITS_ALL, 1311 ("vm_fault: page %p partially invalid", fs.m)); 1312 VM_OBJECT_WUNLOCK(fs.object); 1313 1314 /* 1315 * Put this page into the physical map. We had to do the unlock above 1316 * because pmap_enter() may sleep. We don't put the page 1317 * back on the active queue until later so that the pageout daemon 1318 * won't find it (yet). 1319 */ 1320 pmap_enter(fs.map->pmap, vaddr, fs.m, prot, 1321 fault_type | (wired ? PMAP_ENTER_WIRED : 0), 0); 1322 if (faultcount != 1 && (fault_flags & VM_FAULT_WIRE) == 0 && 1323 wired == 0) 1324 vm_fault_prefault(&fs, vaddr, 1325 faultcount > 0 ? behind : PFBAK, 1326 faultcount > 0 ? ahead : PFFOR, false); 1327 VM_OBJECT_WLOCK(fs.object); 1328 vm_page_lock(fs.m); 1329 1330 /* 1331 * If the page is not wired down, then put it where the pageout daemon 1332 * can find it. 1333 */ 1334 if ((fault_flags & VM_FAULT_WIRE) != 0) 1335 vm_page_wire(fs.m); 1336 else 1337 vm_page_activate(fs.m); 1338 if (m_hold != NULL) { 1339 *m_hold = fs.m; 1340 vm_page_wire(fs.m); 1341 } 1342 vm_page_unlock(fs.m); 1343 vm_page_xunbusy(fs.m); 1344 1345 /* 1346 * Unlock everything, and return 1347 */ 1348 unlock_and_deallocate(&fs); 1349 if (hardfault) { 1350 VM_CNT_INC(v_io_faults); 1351 curthread->td_ru.ru_majflt++; 1352 #ifdef RACCT 1353 if (racct_enable && fs.object->type == OBJT_VNODE) { 1354 PROC_LOCK(curproc); 1355 if ((fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1356 racct_add_force(curproc, RACCT_WRITEBPS, 1357 PAGE_SIZE + behind * PAGE_SIZE); 1358 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1359 } else { 1360 racct_add_force(curproc, RACCT_READBPS, 1361 PAGE_SIZE + ahead * PAGE_SIZE); 1362 racct_add_force(curproc, RACCT_READIOPS, 1); 1363 } 1364 PROC_UNLOCK(curproc); 1365 } 1366 #endif 1367 } else 1368 curthread->td_ru.ru_minflt++; 1369 1370 return (KERN_SUCCESS); 1371 } 1372 1373 /* 1374 * Speed up the reclamation of pages that precede the faulting pindex within 1375 * the first object of the shadow chain. Essentially, perform the equivalent 1376 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1377 * the faulting pindex by the cluster size when the pages read by vm_fault() 1378 * cross a cluster-size boundary. The cluster size is the greater of the 1379 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1380 * 1381 * When "fs->first_object" is a shadow object, the pages in the backing object 1382 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1383 * function must only be concerned with pages in the first object. 1384 */ 1385 static void 1386 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1387 { 1388 vm_map_entry_t entry; 1389 vm_object_t first_object, object; 1390 vm_offset_t end, start; 1391 vm_page_t m, m_next; 1392 vm_pindex_t pend, pstart; 1393 vm_size_t size; 1394 1395 object = fs->object; 1396 VM_OBJECT_ASSERT_WLOCKED(object); 1397 first_object = fs->first_object; 1398 if (first_object != object) { 1399 if (!VM_OBJECT_TRYWLOCK(first_object)) { 1400 VM_OBJECT_WUNLOCK(object); 1401 VM_OBJECT_WLOCK(first_object); 1402 VM_OBJECT_WLOCK(object); 1403 } 1404 } 1405 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1406 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1407 size = VM_FAULT_DONTNEED_MIN; 1408 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1409 size = pagesizes[1]; 1410 end = rounddown2(vaddr, size); 1411 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1412 (entry = fs->entry)->start < end) { 1413 if (end - entry->start < size) 1414 start = entry->start; 1415 else 1416 start = end - size; 1417 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1418 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1419 entry->start); 1420 m_next = vm_page_find_least(first_object, pstart); 1421 pend = OFF_TO_IDX(entry->offset) + atop(end - 1422 entry->start); 1423 while ((m = m_next) != NULL && m->pindex < pend) { 1424 m_next = TAILQ_NEXT(m, listq); 1425 if (m->valid != VM_PAGE_BITS_ALL || 1426 vm_page_busied(m)) 1427 continue; 1428 1429 /* 1430 * Don't clear PGA_REFERENCED, since it would 1431 * likely represent a reference by a different 1432 * process. 1433 * 1434 * Typically, at this point, prefetched pages 1435 * are still in the inactive queue. Only 1436 * pages that triggered page faults are in the 1437 * active queue. 1438 */ 1439 vm_page_lock(m); 1440 if (!vm_page_inactive(m)) 1441 vm_page_deactivate(m); 1442 vm_page_unlock(m); 1443 } 1444 } 1445 } 1446 if (first_object != object) 1447 VM_OBJECT_WUNLOCK(first_object); 1448 } 1449 1450 /* 1451 * vm_fault_prefault provides a quick way of clustering 1452 * pagefaults into a processes address space. It is a "cousin" 1453 * of vm_map_pmap_enter, except it runs at page fault time instead 1454 * of mmap time. 1455 */ 1456 static void 1457 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1458 int backward, int forward, bool obj_locked) 1459 { 1460 pmap_t pmap; 1461 vm_map_entry_t entry; 1462 vm_object_t backing_object, lobject; 1463 vm_offset_t addr, starta; 1464 vm_pindex_t pindex; 1465 vm_page_t m; 1466 int i; 1467 1468 pmap = fs->map->pmap; 1469 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1470 return; 1471 1472 entry = fs->entry; 1473 1474 if (addra < backward * PAGE_SIZE) { 1475 starta = entry->start; 1476 } else { 1477 starta = addra - backward * PAGE_SIZE; 1478 if (starta < entry->start) 1479 starta = entry->start; 1480 } 1481 1482 /* 1483 * Generate the sequence of virtual addresses that are candidates for 1484 * prefaulting in an outward spiral from the faulting virtual address, 1485 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1486 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1487 * If the candidate address doesn't have a backing physical page, then 1488 * the loop immediately terminates. 1489 */ 1490 for (i = 0; i < 2 * imax(backward, forward); i++) { 1491 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1492 PAGE_SIZE); 1493 if (addr > addra + forward * PAGE_SIZE) 1494 addr = 0; 1495 1496 if (addr < starta || addr >= entry->end) 1497 continue; 1498 1499 if (!pmap_is_prefaultable(pmap, addr)) 1500 continue; 1501 1502 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1503 lobject = entry->object.vm_object; 1504 if (!obj_locked) 1505 VM_OBJECT_RLOCK(lobject); 1506 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1507 lobject->type == OBJT_DEFAULT && 1508 (backing_object = lobject->backing_object) != NULL) { 1509 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1510 0, ("vm_fault_prefault: unaligned object offset")); 1511 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1512 VM_OBJECT_RLOCK(backing_object); 1513 if (!obj_locked || lobject != entry->object.vm_object) 1514 VM_OBJECT_RUNLOCK(lobject); 1515 lobject = backing_object; 1516 } 1517 if (m == NULL) { 1518 if (!obj_locked || lobject != entry->object.vm_object) 1519 VM_OBJECT_RUNLOCK(lobject); 1520 break; 1521 } 1522 if (m->valid == VM_PAGE_BITS_ALL && 1523 (m->flags & PG_FICTITIOUS) == 0) 1524 pmap_enter_quick(pmap, addr, m, entry->protection); 1525 if (!obj_locked || lobject != entry->object.vm_object) 1526 VM_OBJECT_RUNLOCK(lobject); 1527 } 1528 } 1529 1530 /* 1531 * Hold each of the physical pages that are mapped by the specified range of 1532 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1533 * and allow the specified types of access, "prot". If all of the implied 1534 * pages are successfully held, then the number of held pages is returned 1535 * together with pointers to those pages in the array "ma". However, if any 1536 * of the pages cannot be held, -1 is returned. 1537 */ 1538 int 1539 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1540 vm_prot_t prot, vm_page_t *ma, int max_count) 1541 { 1542 vm_offset_t end, va; 1543 vm_page_t *mp; 1544 int count; 1545 boolean_t pmap_failed; 1546 1547 if (len == 0) 1548 return (0); 1549 end = round_page(addr + len); 1550 addr = trunc_page(addr); 1551 1552 /* 1553 * Check for illegal addresses. 1554 */ 1555 if (addr < vm_map_min(map) || addr > end || end > vm_map_max(map)) 1556 return (-1); 1557 1558 if (atop(end - addr) > max_count) 1559 panic("vm_fault_quick_hold_pages: count > max_count"); 1560 count = atop(end - addr); 1561 1562 /* 1563 * Most likely, the physical pages are resident in the pmap, so it is 1564 * faster to try pmap_extract_and_hold() first. 1565 */ 1566 pmap_failed = FALSE; 1567 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1568 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1569 if (*mp == NULL) 1570 pmap_failed = TRUE; 1571 else if ((prot & VM_PROT_WRITE) != 0 && 1572 (*mp)->dirty != VM_PAGE_BITS_ALL) { 1573 /* 1574 * Explicitly dirty the physical page. Otherwise, the 1575 * caller's changes may go unnoticed because they are 1576 * performed through an unmanaged mapping or by a DMA 1577 * operation. 1578 * 1579 * The object lock is not held here. 1580 * See vm_page_clear_dirty_mask(). 1581 */ 1582 vm_page_dirty(*mp); 1583 } 1584 } 1585 if (pmap_failed) { 1586 /* 1587 * One or more pages could not be held by the pmap. Either no 1588 * page was mapped at the specified virtual address or that 1589 * mapping had insufficient permissions. Attempt to fault in 1590 * and hold these pages. 1591 * 1592 * If vm_fault_disable_pagefaults() was called, 1593 * i.e., TDP_NOFAULTING is set, we must not sleep nor 1594 * acquire MD VM locks, which means we must not call 1595 * vm_fault_hold(). Some (out of tree) callers mark 1596 * too wide a code area with vm_fault_disable_pagefaults() 1597 * already, use the VM_PROT_QUICK_NOFAULT flag to request 1598 * the proper behaviour explicitly. 1599 */ 1600 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 1601 (curthread->td_pflags & TDP_NOFAULTING) != 0) 1602 goto error; 1603 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 1604 if (*mp == NULL && vm_fault_hold(map, va, prot, 1605 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 1606 goto error; 1607 } 1608 return (count); 1609 error: 1610 for (mp = ma; mp < ma + count; mp++) 1611 if (*mp != NULL) { 1612 vm_page_lock(*mp); 1613 if (vm_page_unwire(*mp, PQ_INACTIVE) && 1614 (*mp)->object == NULL) 1615 vm_page_free(*mp); 1616 vm_page_unlock(*mp); 1617 } 1618 return (-1); 1619 } 1620 1621 /* 1622 * Routine: 1623 * vm_fault_copy_entry 1624 * Function: 1625 * Create new shadow object backing dst_entry with private copy of 1626 * all underlying pages. When src_entry is equal to dst_entry, 1627 * function implements COW for wired-down map entry. Otherwise, 1628 * it forks wired entry into dst_map. 1629 * 1630 * In/out conditions: 1631 * The source and destination maps must be locked for write. 1632 * The source map entry must be wired down (or be a sharing map 1633 * entry corresponding to a main map entry that is wired down). 1634 */ 1635 void 1636 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1637 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 1638 vm_ooffset_t *fork_charge) 1639 { 1640 vm_object_t backing_object, dst_object, object, src_object; 1641 vm_pindex_t dst_pindex, pindex, src_pindex; 1642 vm_prot_t access, prot; 1643 vm_offset_t vaddr; 1644 vm_page_t dst_m; 1645 vm_page_t src_m; 1646 boolean_t upgrade; 1647 1648 #ifdef lint 1649 src_map++; 1650 #endif /* lint */ 1651 1652 upgrade = src_entry == dst_entry; 1653 access = prot = dst_entry->protection; 1654 1655 src_object = src_entry->object.vm_object; 1656 src_pindex = OFF_TO_IDX(src_entry->offset); 1657 1658 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1659 dst_object = src_object; 1660 vm_object_reference(dst_object); 1661 } else { 1662 /* 1663 * Create the top-level object for the destination entry. (Doesn't 1664 * actually shadow anything - we copy the pages directly.) 1665 */ 1666 dst_object = vm_object_allocate(OBJT_DEFAULT, 1667 atop(dst_entry->end - dst_entry->start)); 1668 #if VM_NRESERVLEVEL > 0 1669 dst_object->flags |= OBJ_COLORED; 1670 dst_object->pg_color = atop(dst_entry->start); 1671 #endif 1672 dst_object->domain = src_object->domain; 1673 dst_object->charge = dst_entry->end - dst_entry->start; 1674 } 1675 1676 VM_OBJECT_WLOCK(dst_object); 1677 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 1678 ("vm_fault_copy_entry: vm_object not NULL")); 1679 if (src_object != dst_object) { 1680 dst_entry->object.vm_object = dst_object; 1681 dst_entry->offset = 0; 1682 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 1683 } 1684 if (fork_charge != NULL) { 1685 KASSERT(dst_entry->cred == NULL, 1686 ("vm_fault_copy_entry: leaked swp charge")); 1687 dst_object->cred = curthread->td_ucred; 1688 crhold(dst_object->cred); 1689 *fork_charge += dst_object->charge; 1690 } else if ((dst_object->type == OBJT_DEFAULT || 1691 dst_object->type == OBJT_SWAP) && 1692 dst_object->cred == NULL) { 1693 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 1694 dst_entry)); 1695 dst_object->cred = dst_entry->cred; 1696 dst_entry->cred = NULL; 1697 } 1698 1699 /* 1700 * If not an upgrade, then enter the mappings in the pmap as 1701 * read and/or execute accesses. Otherwise, enter them as 1702 * write accesses. 1703 * 1704 * A writeable large page mapping is only created if all of 1705 * the constituent small page mappings are modified. Marking 1706 * PTEs as modified on inception allows promotion to happen 1707 * without taking potentially large number of soft faults. 1708 */ 1709 if (!upgrade) 1710 access &= ~VM_PROT_WRITE; 1711 1712 /* 1713 * Loop through all of the virtual pages within the entry's 1714 * range, copying each page from the source object to the 1715 * destination object. Since the source is wired, those pages 1716 * must exist. In contrast, the destination is pageable. 1717 * Since the destination object doesn't share any backing storage 1718 * with the source object, all of its pages must be dirtied, 1719 * regardless of whether they can be written. 1720 */ 1721 for (vaddr = dst_entry->start, dst_pindex = 0; 1722 vaddr < dst_entry->end; 1723 vaddr += PAGE_SIZE, dst_pindex++) { 1724 again: 1725 /* 1726 * Find the page in the source object, and copy it in. 1727 * Because the source is wired down, the page will be 1728 * in memory. 1729 */ 1730 if (src_object != dst_object) 1731 VM_OBJECT_RLOCK(src_object); 1732 object = src_object; 1733 pindex = src_pindex + dst_pindex; 1734 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 1735 (backing_object = object->backing_object) != NULL) { 1736 /* 1737 * Unless the source mapping is read-only or 1738 * it is presently being upgraded from 1739 * read-only, the first object in the shadow 1740 * chain should provide all of the pages. In 1741 * other words, this loop body should never be 1742 * executed when the source mapping is already 1743 * read/write. 1744 */ 1745 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 1746 upgrade, 1747 ("vm_fault_copy_entry: main object missing page")); 1748 1749 VM_OBJECT_RLOCK(backing_object); 1750 pindex += OFF_TO_IDX(object->backing_object_offset); 1751 if (object != dst_object) 1752 VM_OBJECT_RUNLOCK(object); 1753 object = backing_object; 1754 } 1755 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 1756 1757 if (object != dst_object) { 1758 /* 1759 * Allocate a page in the destination object. 1760 */ 1761 dst_m = vm_page_alloc(dst_object, (src_object == 1762 dst_object ? src_pindex : 0) + dst_pindex, 1763 VM_ALLOC_NORMAL); 1764 if (dst_m == NULL) { 1765 VM_OBJECT_WUNLOCK(dst_object); 1766 VM_OBJECT_RUNLOCK(object); 1767 vm_wait(dst_object); 1768 VM_OBJECT_WLOCK(dst_object); 1769 goto again; 1770 } 1771 pmap_copy_page(src_m, dst_m); 1772 VM_OBJECT_RUNLOCK(object); 1773 dst_m->dirty = dst_m->valid = src_m->valid; 1774 } else { 1775 dst_m = src_m; 1776 if (vm_page_sleep_if_busy(dst_m, "fltupg")) 1777 goto again; 1778 if (dst_m->pindex >= dst_object->size) 1779 /* 1780 * We are upgrading. Index can occur 1781 * out of bounds if the object type is 1782 * vnode and the file was truncated. 1783 */ 1784 break; 1785 vm_page_xbusy(dst_m); 1786 } 1787 VM_OBJECT_WUNLOCK(dst_object); 1788 1789 /* 1790 * Enter it in the pmap. If a wired, copy-on-write 1791 * mapping is being replaced by a write-enabled 1792 * mapping, then wire that new mapping. 1793 * 1794 * The page can be invalid if the user called 1795 * msync(MS_INVALIDATE) or truncated the backing vnode 1796 * or shared memory object. In this case, do not 1797 * insert it into pmap, but still do the copy so that 1798 * all copies of the wired map entry have similar 1799 * backing pages. 1800 */ 1801 if (dst_m->valid == VM_PAGE_BITS_ALL) { 1802 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 1803 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 1804 } 1805 1806 /* 1807 * Mark it no longer busy, and put it on the active list. 1808 */ 1809 VM_OBJECT_WLOCK(dst_object); 1810 1811 if (upgrade) { 1812 if (src_m != dst_m) { 1813 vm_page_lock(src_m); 1814 vm_page_unwire(src_m, PQ_INACTIVE); 1815 vm_page_unlock(src_m); 1816 vm_page_lock(dst_m); 1817 vm_page_wire(dst_m); 1818 vm_page_unlock(dst_m); 1819 } else { 1820 KASSERT(vm_page_wired(dst_m), 1821 ("dst_m %p is not wired", dst_m)); 1822 } 1823 } else { 1824 vm_page_lock(dst_m); 1825 vm_page_activate(dst_m); 1826 vm_page_unlock(dst_m); 1827 } 1828 vm_page_xunbusy(dst_m); 1829 } 1830 VM_OBJECT_WUNLOCK(dst_object); 1831 if (upgrade) { 1832 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 1833 vm_object_deallocate(src_object); 1834 } 1835 } 1836 1837 /* 1838 * Block entry into the machine-independent layer's page fault handler by 1839 * the calling thread. Subsequent calls to vm_fault() by that thread will 1840 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 1841 * spurious page faults. 1842 */ 1843 int 1844 vm_fault_disable_pagefaults(void) 1845 { 1846 1847 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 1848 } 1849 1850 void 1851 vm_fault_enable_pagefaults(int save) 1852 { 1853 1854 curthread_pflags_restore(save); 1855 } 1856