1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include "opt_ktrace.h" 75 #include "opt_vm.h" 76 77 #include <sys/systm.h> 78 #include <sys/kernel.h> 79 #include <sys/lock.h> 80 #include <sys/mman.h> 81 #include <sys/mutex.h> 82 #include <sys/pctrie.h> 83 #include <sys/proc.h> 84 #include <sys/racct.h> 85 #include <sys/refcount.h> 86 #include <sys/resourcevar.h> 87 #include <sys/rwlock.h> 88 #include <sys/signalvar.h> 89 #include <sys/sysctl.h> 90 #include <sys/sysent.h> 91 #include <sys/vmmeter.h> 92 #include <sys/vnode.h> 93 #ifdef KTRACE 94 #include <sys/ktrace.h> 95 #endif 96 97 #include <vm/vm.h> 98 #include <vm/vm_param.h> 99 #include <vm/pmap.h> 100 #include <vm/vm_map.h> 101 #include <vm/vm_object.h> 102 #include <vm/vm_page.h> 103 #include <vm/vm_pageout.h> 104 #include <vm/vm_kern.h> 105 #include <vm/vm_pager.h> 106 #include <vm/vm_radix.h> 107 #include <vm/vm_extern.h> 108 #include <vm/vm_reserv.h> 109 110 #define PFBAK 4 111 #define PFFOR 4 112 113 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 114 115 #define VM_FAULT_DONTNEED_MIN 1048576 116 117 struct faultstate { 118 /* Fault parameters. */ 119 vm_offset_t vaddr; 120 vm_page_t *m_hold; 121 vm_prot_t fault_type; 122 vm_prot_t prot; 123 int fault_flags; 124 boolean_t wired; 125 126 /* Control state. */ 127 struct timeval oom_start_time; 128 bool oom_started; 129 int nera; 130 bool can_read_lock; 131 132 /* Page reference for cow. */ 133 vm_page_t m_cow; 134 135 /* Current object. */ 136 vm_object_t object; 137 vm_pindex_t pindex; 138 vm_page_t m; 139 140 /* Top-level map object. */ 141 vm_object_t first_object; 142 vm_pindex_t first_pindex; 143 vm_page_t first_m; 144 145 /* Map state. */ 146 vm_map_t map; 147 vm_map_entry_t entry; 148 int map_generation; 149 bool lookup_still_valid; 150 151 /* Vnode if locked. */ 152 struct vnode *vp; 153 }; 154 155 /* 156 * Return codes for internal fault routines. 157 */ 158 enum fault_status { 159 FAULT_SUCCESS = 10000, /* Return success to user. */ 160 FAULT_FAILURE, /* Return failure to user. */ 161 FAULT_CONTINUE, /* Continue faulting. */ 162 FAULT_RESTART, /* Restart fault. */ 163 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 164 FAULT_HARD, /* Performed I/O. */ 165 FAULT_SOFT, /* Found valid page. */ 166 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 167 }; 168 169 enum fault_next_status { 170 FAULT_NEXT_GOTOBJ = 1, 171 FAULT_NEXT_NOOBJ, 172 FAULT_NEXT_RESTART, 173 }; 174 175 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 176 int ahead); 177 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 178 int backward, int forward, bool obj_locked); 179 180 static int vm_pfault_oom_attempts = 3; 181 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 182 &vm_pfault_oom_attempts, 0, 183 "Number of page allocation attempts in page fault handler before it " 184 "triggers OOM handling"); 185 186 static int vm_pfault_oom_wait = 10; 187 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 188 &vm_pfault_oom_wait, 0, 189 "Number of seconds to wait for free pages before retrying " 190 "the page fault handler"); 191 192 static inline void 193 vm_fault_page_release(vm_page_t *mp) 194 { 195 vm_page_t m; 196 197 m = *mp; 198 if (m != NULL) { 199 /* 200 * We are likely to loop around again and attempt to busy 201 * this page. Deactivating it leaves it available for 202 * pageout while optimizing fault restarts. 203 */ 204 vm_page_deactivate(m); 205 if (vm_page_xbusied(m)) 206 vm_page_xunbusy(m); 207 else 208 vm_page_sunbusy(m); 209 *mp = NULL; 210 } 211 } 212 213 static inline void 214 vm_fault_page_free(vm_page_t *mp) 215 { 216 vm_page_t m; 217 218 m = *mp; 219 if (m != NULL) { 220 VM_OBJECT_ASSERT_WLOCKED(m->object); 221 if (!vm_page_wired(m)) 222 vm_page_free(m); 223 else 224 vm_page_xunbusy(m); 225 *mp = NULL; 226 } 227 } 228 229 /* 230 * Return true if a vm_pager_get_pages() call is needed in order to check 231 * whether the pager might have a particular page, false if it can be determined 232 * immediately that the pager can not have a copy. For swap objects, this can 233 * be checked quickly. 234 */ 235 static inline bool 236 vm_fault_object_needs_getpages(vm_object_t object) 237 { 238 VM_OBJECT_ASSERT_LOCKED(object); 239 240 return ((object->flags & OBJ_SWAP) == 0 || 241 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 242 } 243 244 static inline void 245 vm_fault_unlock_map(struct faultstate *fs) 246 { 247 248 if (fs->lookup_still_valid) { 249 vm_map_lookup_done(fs->map, fs->entry); 250 fs->lookup_still_valid = false; 251 } 252 } 253 254 static void 255 vm_fault_unlock_vp(struct faultstate *fs) 256 { 257 258 if (fs->vp != NULL) { 259 vput(fs->vp); 260 fs->vp = NULL; 261 } 262 } 263 264 static bool 265 vm_fault_might_be_cow(struct faultstate *fs) 266 { 267 return (fs->object != fs->first_object); 268 } 269 270 static void 271 vm_fault_deallocate(struct faultstate *fs) 272 { 273 274 vm_fault_page_release(&fs->m_cow); 275 vm_fault_page_release(&fs->m); 276 vm_object_pip_wakeup(fs->object); 277 if (vm_fault_might_be_cow(fs)) { 278 VM_OBJECT_WLOCK(fs->first_object); 279 vm_fault_page_free(&fs->first_m); 280 VM_OBJECT_WUNLOCK(fs->first_object); 281 vm_object_pip_wakeup(fs->first_object); 282 } 283 vm_object_deallocate(fs->first_object); 284 vm_fault_unlock_map(fs); 285 vm_fault_unlock_vp(fs); 286 } 287 288 static void 289 vm_fault_unlock_and_deallocate(struct faultstate *fs) 290 { 291 292 VM_OBJECT_UNLOCK(fs->object); 293 vm_fault_deallocate(fs); 294 } 295 296 static void 297 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 298 { 299 bool need_dirty; 300 301 if (((fs->prot & VM_PROT_WRITE) == 0 && 302 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 303 (m->oflags & VPO_UNMANAGED) != 0) 304 return; 305 306 VM_PAGE_OBJECT_BUSY_ASSERT(m); 307 308 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 309 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 310 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 311 312 vm_object_set_writeable_dirty(m->object); 313 314 /* 315 * If the fault is a write, we know that this page is being 316 * written NOW so dirty it explicitly to save on 317 * pmap_is_modified() calls later. 318 * 319 * Also, since the page is now dirty, we can possibly tell 320 * the pager to release any swap backing the page. 321 */ 322 if (need_dirty && vm_page_set_dirty(m) == 0) { 323 /* 324 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 325 * if the page is already dirty to prevent data written with 326 * the expectation of being synced from not being synced. 327 * Likewise if this entry does not request NOSYNC then make 328 * sure the page isn't marked NOSYNC. Applications sharing 329 * data should use the same flags to avoid ping ponging. 330 */ 331 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 332 vm_page_aflag_set(m, PGA_NOSYNC); 333 else 334 vm_page_aflag_clear(m, PGA_NOSYNC); 335 } 336 337 } 338 339 static bool 340 vm_fault_is_read(const struct faultstate *fs) 341 { 342 return ((fs->prot & VM_PROT_WRITE) == 0 && 343 (fs->fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) == 0); 344 } 345 346 /* 347 * Unlocks fs.first_object and fs.map on success. 348 */ 349 static enum fault_status 350 vm_fault_soft_fast(struct faultstate *fs) 351 { 352 vm_page_t m, m_map; 353 #if VM_NRESERVLEVEL > 0 354 vm_page_t m_super; 355 int flags; 356 #endif 357 int psind; 358 vm_offset_t vaddr; 359 360 MPASS(fs->vp == NULL); 361 362 /* 363 * If we fail, vast majority of the time it is because the page is not 364 * there to begin with. Opportunistically perform the lookup and 365 * subsequent checks without the object lock, revalidate later. 366 * 367 * Note: a busy page can be mapped for read|execute access. 368 */ 369 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 370 if (m == NULL || !vm_page_all_valid(m) || 371 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 372 VM_OBJECT_WLOCK(fs->first_object); 373 return (FAULT_FAILURE); 374 } 375 376 vaddr = fs->vaddr; 377 378 VM_OBJECT_RLOCK(fs->first_object); 379 380 /* 381 * Now that we stabilized the state, revalidate the page is in the shape 382 * we encountered above. 383 */ 384 385 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 386 goto fail; 387 388 vm_object_busy(fs->first_object); 389 390 if (!vm_page_all_valid(m) || 391 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 392 goto fail_busy; 393 394 m_map = m; 395 psind = 0; 396 #if VM_NRESERVLEVEL > 0 397 if ((m->flags & PG_FICTITIOUS) == 0 && 398 (m_super = vm_reserv_to_superpage(m)) != NULL) { 399 psind = m_super->psind; 400 KASSERT(psind > 0, 401 ("psind %d of m_super %p < 1", psind, m_super)); 402 flags = PS_ALL_VALID; 403 if ((fs->prot & VM_PROT_WRITE) != 0) { 404 /* 405 * Create a superpage mapping allowing write access 406 * only if none of the constituent pages are busy and 407 * all of them are already dirty (except possibly for 408 * the page that was faulted on). 409 */ 410 flags |= PS_NONE_BUSY; 411 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 412 flags |= PS_ALL_DIRTY; 413 } 414 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start || 415 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end || 416 (vaddr & (pagesizes[psind] - 1)) != 417 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) || 418 !vm_page_ps_test(m_super, psind, flags, m) || 419 !pmap_ps_enabled(fs->map->pmap)) { 420 psind--; 421 if (psind == 0) 422 break; 423 m_super += rounddown2(m - m_super, 424 atop(pagesizes[psind])); 425 KASSERT(m_super->psind >= psind, 426 ("psind %d of m_super %p < %d", m_super->psind, 427 m_super, psind)); 428 } 429 if (psind > 0) { 430 m_map = m_super; 431 vaddr = rounddown2(vaddr, pagesizes[psind]); 432 /* Preset the modified bit for dirty superpages. */ 433 if ((flags & PS_ALL_DIRTY) != 0) 434 fs->fault_type |= VM_PROT_WRITE; 435 } 436 } 437 #endif 438 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 439 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 440 KERN_SUCCESS) 441 goto fail_busy; 442 if (fs->m_hold != NULL) { 443 (*fs->m_hold) = m; 444 vm_page_wire(m); 445 } 446 if (psind == 0 && !fs->wired) 447 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 448 VM_OBJECT_RUNLOCK(fs->first_object); 449 vm_fault_dirty(fs, m); 450 vm_object_unbusy(fs->first_object); 451 vm_map_lookup_done(fs->map, fs->entry); 452 curthread->td_ru.ru_minflt++; 453 return (FAULT_SUCCESS); 454 fail_busy: 455 vm_object_unbusy(fs->first_object); 456 fail: 457 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 458 VM_OBJECT_RUNLOCK(fs->first_object); 459 VM_OBJECT_WLOCK(fs->first_object); 460 } 461 return (FAULT_FAILURE); 462 } 463 464 static void 465 vm_fault_restore_map_lock(struct faultstate *fs) 466 { 467 468 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 469 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 470 471 if (!vm_map_trylock_read(fs->map)) { 472 VM_OBJECT_WUNLOCK(fs->first_object); 473 vm_map_lock_read(fs->map); 474 VM_OBJECT_WLOCK(fs->first_object); 475 } 476 fs->lookup_still_valid = true; 477 } 478 479 static void 480 vm_fault_populate_check_page(vm_page_t m) 481 { 482 483 /* 484 * Check each page to ensure that the pager is obeying the 485 * interface: the page must be installed in the object, fully 486 * valid, and exclusively busied. 487 */ 488 MPASS(m != NULL); 489 MPASS(vm_page_all_valid(m)); 490 MPASS(vm_page_xbusied(m)); 491 } 492 493 static void 494 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 495 vm_pindex_t last) 496 { 497 struct pctrie_iter pages; 498 vm_page_t m; 499 500 VM_OBJECT_ASSERT_WLOCKED(object); 501 MPASS(first <= last); 502 vm_page_iter_limit_init(&pages, object, last + 1); 503 VM_RADIX_FORALL_FROM(m, &pages, first) { 504 vm_fault_populate_check_page(m); 505 vm_page_deactivate(m); 506 vm_page_xunbusy(m); 507 } 508 KASSERT(pages.index == last, ("%s: pindex mismatch", __func__)); 509 } 510 511 static enum fault_status 512 vm_fault_populate(struct faultstate *fs) 513 { 514 vm_offset_t vaddr; 515 vm_page_t m; 516 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 517 int bdry_idx, i, npages, psind, rv; 518 enum fault_status res; 519 520 MPASS(fs->object == fs->first_object); 521 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 522 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 523 MPASS(fs->first_object->backing_object == NULL); 524 MPASS(fs->lookup_still_valid); 525 526 pager_first = OFF_TO_IDX(fs->entry->offset); 527 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 528 vm_fault_unlock_map(fs); 529 vm_fault_unlock_vp(fs); 530 531 res = FAULT_SUCCESS; 532 533 /* 534 * Call the pager (driver) populate() method. 535 * 536 * There is no guarantee that the method will be called again 537 * if the current fault is for read, and a future fault is 538 * for write. Report the entry's maximum allowed protection 539 * to the driver. 540 */ 541 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 542 fs->fault_type, fs->entry->max_protection, &pager_first, 543 &pager_last); 544 545 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 546 if (rv == VM_PAGER_BAD) { 547 /* 548 * VM_PAGER_BAD is the backdoor for a pager to request 549 * normal fault handling. 550 */ 551 vm_fault_restore_map_lock(fs); 552 if (fs->map->timestamp != fs->map_generation) 553 return (FAULT_RESTART); 554 return (FAULT_CONTINUE); 555 } 556 if (rv != VM_PAGER_OK) 557 return (FAULT_FAILURE); /* AKA SIGSEGV */ 558 559 /* Ensure that the driver is obeying the interface. */ 560 MPASS(pager_first <= pager_last); 561 MPASS(fs->first_pindex <= pager_last); 562 MPASS(fs->first_pindex >= pager_first); 563 MPASS(pager_last < fs->first_object->size); 564 565 vm_fault_restore_map_lock(fs); 566 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 567 if (fs->map->timestamp != fs->map_generation) { 568 if (bdry_idx == 0) { 569 vm_fault_populate_cleanup(fs->first_object, pager_first, 570 pager_last); 571 } else { 572 m = vm_page_lookup(fs->first_object, pager_first); 573 if (m != fs->m) 574 vm_page_xunbusy(m); 575 } 576 return (FAULT_RESTART); 577 } 578 579 /* 580 * The map is unchanged after our last unlock. Process the fault. 581 * 582 * First, the special case of largepage mappings, where 583 * populate only busies the first page in superpage run. 584 */ 585 if (bdry_idx != 0) { 586 KASSERT(PMAP_HAS_LARGEPAGES, 587 ("missing pmap support for large pages")); 588 m = vm_page_lookup(fs->first_object, pager_first); 589 vm_fault_populate_check_page(m); 590 VM_OBJECT_WUNLOCK(fs->first_object); 591 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 592 fs->entry->offset; 593 /* assert alignment for entry */ 594 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 595 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 596 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 597 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 598 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 599 ("unaligned superpage m %p %#jx", m, 600 (uintmax_t)VM_PAGE_TO_PHYS(m))); 601 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 602 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 603 PMAP_ENTER_LARGEPAGE, bdry_idx); 604 VM_OBJECT_WLOCK(fs->first_object); 605 vm_page_xunbusy(m); 606 if (rv != KERN_SUCCESS) { 607 res = FAULT_FAILURE; 608 goto out; 609 } 610 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 611 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 612 vm_page_wire(m + i); 613 } 614 if (fs->m_hold != NULL) { 615 *fs->m_hold = m + (fs->first_pindex - pager_first); 616 vm_page_wire(*fs->m_hold); 617 } 618 goto out; 619 } 620 621 /* 622 * The range [pager_first, pager_last] that is given to the 623 * pager is only a hint. The pager may populate any range 624 * within the object that includes the requested page index. 625 * In case the pager expanded the range, clip it to fit into 626 * the map entry. 627 */ 628 map_first = OFF_TO_IDX(fs->entry->offset); 629 if (map_first > pager_first) { 630 vm_fault_populate_cleanup(fs->first_object, pager_first, 631 map_first - 1); 632 pager_first = map_first; 633 } 634 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 635 if (map_last < pager_last) { 636 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 637 pager_last); 638 pager_last = map_last; 639 } 640 for (pidx = pager_first; pidx <= pager_last; pidx += npages) { 641 m = vm_page_lookup(fs->first_object, pidx); 642 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 643 KASSERT(m != NULL && m->pindex == pidx, 644 ("%s: pindex mismatch", __func__)); 645 psind = m->psind; 646 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 647 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 648 !pmap_ps_enabled(fs->map->pmap))) 649 psind--; 650 651 npages = atop(pagesizes[psind]); 652 for (i = 0; i < npages; i++) { 653 vm_fault_populate_check_page(&m[i]); 654 vm_fault_dirty(fs, &m[i]); 655 } 656 VM_OBJECT_WUNLOCK(fs->first_object); 657 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 658 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 659 660 /* 661 * pmap_enter() may fail for a superpage mapping if additional 662 * protection policies prevent the full mapping. 663 * For example, this will happen on amd64 if the entire 664 * address range does not share the same userspace protection 665 * key. Revert to single-page mappings if this happens. 666 */ 667 MPASS(rv == KERN_SUCCESS || 668 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 669 if (__predict_false(psind > 0 && 670 rv == KERN_PROTECTION_FAILURE)) { 671 MPASS(!fs->wired); 672 for (i = 0; i < npages; i++) { 673 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 674 &m[i], fs->prot, fs->fault_type, 0); 675 MPASS(rv == KERN_SUCCESS); 676 } 677 } 678 679 VM_OBJECT_WLOCK(fs->first_object); 680 for (i = 0; i < npages; i++) { 681 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 682 m[i].pindex == fs->first_pindex) 683 vm_page_wire(&m[i]); 684 else 685 vm_page_activate(&m[i]); 686 if (fs->m_hold != NULL && 687 m[i].pindex == fs->first_pindex) { 688 (*fs->m_hold) = &m[i]; 689 vm_page_wire(&m[i]); 690 } 691 vm_page_xunbusy(&m[i]); 692 } 693 } 694 out: 695 curthread->td_ru.ru_majflt++; 696 return (res); 697 } 698 699 static int prot_fault_translation; 700 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 701 &prot_fault_translation, 0, 702 "Control signal to deliver on protection fault"); 703 704 /* compat definition to keep common code for signal translation */ 705 #define UCODE_PAGEFLT 12 706 #ifdef T_PAGEFLT 707 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 708 #endif 709 710 /* 711 * vm_fault_trap: 712 * 713 * Handle a page fault occurring at the given address, 714 * requiring the given permissions, in the map specified. 715 * If successful, the page is inserted into the 716 * associated physical map. 717 * 718 * NOTE: the given address should be truncated to the 719 * proper page address. 720 * 721 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 722 * a standard error specifying why the fault is fatal is returned. 723 * 724 * The map in question must be referenced, and remains so. 725 * Caller may hold no locks. 726 */ 727 int 728 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 729 int fault_flags, int *signo, int *ucode) 730 { 731 int result; 732 733 MPASS(signo == NULL || ucode != NULL); 734 #ifdef KTRACE 735 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 736 ktrfault(vaddr, fault_type); 737 #endif 738 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 739 NULL); 740 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 741 result == KERN_INVALID_ADDRESS || 742 result == KERN_RESOURCE_SHORTAGE || 743 result == KERN_PROTECTION_FAILURE || 744 result == KERN_OUT_OF_BOUNDS, 745 ("Unexpected Mach error %d from vm_fault()", result)); 746 #ifdef KTRACE 747 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 748 ktrfaultend(result); 749 #endif 750 if (result != KERN_SUCCESS && signo != NULL) { 751 switch (result) { 752 case KERN_FAILURE: 753 case KERN_INVALID_ADDRESS: 754 *signo = SIGSEGV; 755 *ucode = SEGV_MAPERR; 756 break; 757 case KERN_RESOURCE_SHORTAGE: 758 *signo = SIGBUS; 759 *ucode = BUS_OOMERR; 760 break; 761 case KERN_OUT_OF_BOUNDS: 762 *signo = SIGBUS; 763 *ucode = BUS_OBJERR; 764 break; 765 case KERN_PROTECTION_FAILURE: 766 if (prot_fault_translation == 0) { 767 /* 768 * Autodetect. This check also covers 769 * the images without the ABI-tag ELF 770 * note. 771 */ 772 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 773 curproc->p_osrel >= P_OSREL_SIGSEGV) { 774 *signo = SIGSEGV; 775 *ucode = SEGV_ACCERR; 776 } else { 777 *signo = SIGBUS; 778 *ucode = UCODE_PAGEFLT; 779 } 780 } else if (prot_fault_translation == 1) { 781 /* Always compat mode. */ 782 *signo = SIGBUS; 783 *ucode = UCODE_PAGEFLT; 784 } else { 785 /* Always SIGSEGV mode. */ 786 *signo = SIGSEGV; 787 *ucode = SEGV_ACCERR; 788 } 789 break; 790 default: 791 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 792 result)); 793 break; 794 } 795 } 796 return (result); 797 } 798 799 static bool 800 vm_fault_object_ensure_wlocked(struct faultstate *fs) 801 { 802 if (fs->object == fs->first_object) 803 VM_OBJECT_ASSERT_WLOCKED(fs->object); 804 805 if (!fs->can_read_lock) { 806 VM_OBJECT_ASSERT_WLOCKED(fs->object); 807 return (true); 808 } 809 810 if (VM_OBJECT_WOWNED(fs->object)) 811 return (true); 812 813 if (VM_OBJECT_TRYUPGRADE(fs->object)) 814 return (true); 815 816 return (false); 817 } 818 819 static enum fault_status 820 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 821 { 822 struct vnode *vp; 823 int error, locked; 824 825 if (fs->object->type != OBJT_VNODE) 826 return (FAULT_CONTINUE); 827 vp = fs->object->handle; 828 if (vp == fs->vp) { 829 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 830 return (FAULT_CONTINUE); 831 } 832 833 /* 834 * Perform an unlock in case the desired vnode changed while 835 * the map was unlocked during a retry. 836 */ 837 vm_fault_unlock_vp(fs); 838 839 locked = VOP_ISLOCKED(vp); 840 if (locked != LK_EXCLUSIVE) 841 locked = LK_SHARED; 842 843 /* 844 * We must not sleep acquiring the vnode lock while we have 845 * the page exclusive busied or the object's 846 * paging-in-progress count incremented. Otherwise, we could 847 * deadlock. 848 */ 849 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 850 if (error == 0) { 851 fs->vp = vp; 852 return (FAULT_CONTINUE); 853 } 854 855 vhold(vp); 856 if (objlocked) 857 vm_fault_unlock_and_deallocate(fs); 858 else 859 vm_fault_deallocate(fs); 860 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 861 vdrop(vp); 862 fs->vp = vp; 863 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 864 return (FAULT_RESTART); 865 } 866 867 /* 868 * Calculate the desired readahead. Handle drop-behind. 869 * 870 * Returns the number of readahead blocks to pass to the pager. 871 */ 872 static int 873 vm_fault_readahead(struct faultstate *fs) 874 { 875 int era, nera; 876 u_char behavior; 877 878 KASSERT(fs->lookup_still_valid, ("map unlocked")); 879 era = fs->entry->read_ahead; 880 behavior = vm_map_entry_behavior(fs->entry); 881 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 882 nera = 0; 883 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 884 nera = VM_FAULT_READ_AHEAD_MAX; 885 if (fs->vaddr == fs->entry->next_read) 886 vm_fault_dontneed(fs, fs->vaddr, nera); 887 } else if (fs->vaddr == fs->entry->next_read) { 888 /* 889 * This is a sequential fault. Arithmetically 890 * increase the requested number of pages in 891 * the read-ahead window. The requested 892 * number of pages is "# of sequential faults 893 * x (read ahead min + 1) + read ahead min" 894 */ 895 nera = VM_FAULT_READ_AHEAD_MIN; 896 if (era > 0) { 897 nera += era + 1; 898 if (nera > VM_FAULT_READ_AHEAD_MAX) 899 nera = VM_FAULT_READ_AHEAD_MAX; 900 } 901 if (era == VM_FAULT_READ_AHEAD_MAX) 902 vm_fault_dontneed(fs, fs->vaddr, nera); 903 } else { 904 /* 905 * This is a non-sequential fault. 906 */ 907 nera = 0; 908 } 909 if (era != nera) { 910 /* 911 * A read lock on the map suffices to update 912 * the read ahead count safely. 913 */ 914 fs->entry->read_ahead = nera; 915 } 916 917 return (nera); 918 } 919 920 static int 921 vm_fault_lookup(struct faultstate *fs) 922 { 923 int result; 924 925 KASSERT(!fs->lookup_still_valid, 926 ("vm_fault_lookup: Map already locked.")); 927 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 928 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 929 &fs->first_pindex, &fs->prot, &fs->wired); 930 if (result != KERN_SUCCESS) { 931 vm_fault_unlock_vp(fs); 932 return (result); 933 } 934 935 fs->map_generation = fs->map->timestamp; 936 937 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 938 panic("%s: fault on nofault entry, addr: %#lx", 939 __func__, (u_long)fs->vaddr); 940 } 941 942 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 943 fs->entry->wiring_thread != curthread) { 944 vm_map_unlock_read(fs->map); 945 vm_map_lock(fs->map); 946 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 947 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 948 vm_fault_unlock_vp(fs); 949 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 950 vm_map_unlock_and_wait(fs->map, 0); 951 } else 952 vm_map_unlock(fs->map); 953 return (KERN_RESOURCE_SHORTAGE); 954 } 955 956 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 957 958 if (fs->wired) 959 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 960 else 961 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 962 ("!fs->wired && VM_FAULT_WIRE")); 963 fs->lookup_still_valid = true; 964 965 return (KERN_SUCCESS); 966 } 967 968 static int 969 vm_fault_relookup(struct faultstate *fs) 970 { 971 vm_object_t retry_object; 972 vm_pindex_t retry_pindex; 973 vm_prot_t retry_prot; 974 int result; 975 976 if (!vm_map_trylock_read(fs->map)) 977 return (KERN_RESTART); 978 979 fs->lookup_still_valid = true; 980 if (fs->map->timestamp == fs->map_generation) 981 return (KERN_SUCCESS); 982 983 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 984 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 985 &fs->wired); 986 if (result != KERN_SUCCESS) { 987 /* 988 * If retry of map lookup would have blocked then 989 * retry fault from start. 990 */ 991 if (result == KERN_FAILURE) 992 return (KERN_RESTART); 993 return (result); 994 } 995 if (retry_object != fs->first_object || 996 retry_pindex != fs->first_pindex) 997 return (KERN_RESTART); 998 999 /* 1000 * Check whether the protection has changed or the object has 1001 * been copied while we left the map unlocked. Changing from 1002 * read to write permission is OK - we leave the page 1003 * write-protected, and catch the write fault. Changing from 1004 * write to read permission means that we can't mark the page 1005 * write-enabled after all. 1006 */ 1007 fs->prot &= retry_prot; 1008 fs->fault_type &= retry_prot; 1009 if (fs->prot == 0) 1010 return (KERN_RESTART); 1011 1012 /* Reassert because wired may have changed. */ 1013 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 1014 ("!wired && VM_FAULT_WIRE")); 1015 1016 return (KERN_SUCCESS); 1017 } 1018 1019 static bool 1020 vm_fault_can_cow_rename(struct faultstate *fs) 1021 { 1022 return ( 1023 /* Only one shadow object and no other refs. */ 1024 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1025 /* No other ways to look the object up. */ 1026 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0); 1027 } 1028 1029 static void 1030 vm_fault_cow(struct faultstate *fs) 1031 { 1032 bool is_first_object_locked, rename_cow; 1033 1034 KASSERT(vm_fault_might_be_cow(fs), 1035 ("source and target COW objects are identical")); 1036 1037 /* 1038 * This allows pages to be virtually copied from a backing_object 1039 * into the first_object, where the backing object has no other 1040 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1041 * we just move the page from the backing object to the first 1042 * object. Note that we must mark the page dirty in the first 1043 * object so that it will go out to swap when needed. 1044 */ 1045 is_first_object_locked = false; 1046 rename_cow = false; 1047 1048 if (vm_fault_can_cow_rename(fs) && vm_page_xbusied(fs->m)) { 1049 /* 1050 * Check that we don't chase down the shadow chain and 1051 * we can acquire locks. Recheck the conditions for 1052 * rename after the shadow chain is stable after the 1053 * object locking. 1054 */ 1055 is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object); 1056 if (is_first_object_locked && 1057 fs->object == fs->first_object->backing_object) { 1058 if (VM_OBJECT_TRYWLOCK(fs->object)) { 1059 rename_cow = vm_fault_can_cow_rename(fs); 1060 if (!rename_cow) 1061 VM_OBJECT_WUNLOCK(fs->object); 1062 } 1063 } 1064 } 1065 1066 if (rename_cow) { 1067 vm_page_assert_xbusied(fs->m); 1068 1069 /* 1070 * Remove but keep xbusy for replace. fs->m is moved into 1071 * fs->first_object and left busy while fs->first_m is 1072 * conditionally freed. 1073 */ 1074 vm_page_remove_xbusy(fs->m); 1075 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1076 fs->first_m); 1077 vm_page_dirty(fs->m); 1078 #if VM_NRESERVLEVEL > 0 1079 /* 1080 * Rename the reservation. 1081 */ 1082 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1083 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1084 #endif 1085 VM_OBJECT_WUNLOCK(fs->object); 1086 VM_OBJECT_WUNLOCK(fs->first_object); 1087 fs->first_m = fs->m; 1088 fs->m = NULL; 1089 VM_CNT_INC(v_cow_optim); 1090 } else { 1091 if (is_first_object_locked) 1092 VM_OBJECT_WUNLOCK(fs->first_object); 1093 /* 1094 * Oh, well, lets copy it. 1095 */ 1096 pmap_copy_page(fs->m, fs->first_m); 1097 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1098 vm_page_wire(fs->first_m); 1099 vm_page_unwire(fs->m, PQ_INACTIVE); 1100 } 1101 /* 1102 * Save the COW page to be released after pmap_enter is 1103 * complete. The new copy will be marked valid when we're ready 1104 * to map it. 1105 */ 1106 fs->m_cow = fs->m; 1107 fs->m = NULL; 1108 1109 /* 1110 * Typically, the shadow object is either private to this 1111 * address space (OBJ_ONEMAPPING) or its pages are read only. 1112 * In the highly unusual case where the pages of a shadow object 1113 * are read/write shared between this and other address spaces, 1114 * we need to ensure that any pmap-level mappings to the 1115 * original, copy-on-write page from the backing object are 1116 * removed from those other address spaces. 1117 * 1118 * The flag check is racy, but this is tolerable: if 1119 * OBJ_ONEMAPPING is cleared after the check, the busy state 1120 * ensures that new mappings of m_cow can't be created. 1121 * pmap_enter() will replace an existing mapping in the current 1122 * address space. If OBJ_ONEMAPPING is set after the check, 1123 * removing mappings will at worse trigger some unnecessary page 1124 * faults. 1125 * 1126 * In the fs->m shared busy case, the xbusy state of 1127 * fs->first_m prevents new mappings of fs->m from 1128 * being created because a parallel fault on this 1129 * shadow chain should wait for xbusy on fs->first_m. 1130 */ 1131 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1132 pmap_remove_all(fs->m_cow); 1133 } 1134 1135 vm_object_pip_wakeup(fs->object); 1136 1137 /* 1138 * Only use the new page below... 1139 */ 1140 fs->object = fs->first_object; 1141 fs->pindex = fs->first_pindex; 1142 fs->m = fs->first_m; 1143 VM_CNT_INC(v_cow_faults); 1144 curthread->td_cow++; 1145 } 1146 1147 static enum fault_next_status 1148 vm_fault_next(struct faultstate *fs) 1149 { 1150 vm_object_t next_object; 1151 1152 if (fs->object == fs->first_object || !fs->can_read_lock) 1153 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1154 else 1155 VM_OBJECT_ASSERT_LOCKED(fs->object); 1156 1157 /* 1158 * The requested page does not exist at this object/ 1159 * offset. Remove the invalid page from the object, 1160 * waking up anyone waiting for it, and continue on to 1161 * the next object. However, if this is the top-level 1162 * object, we must leave the busy page in place to 1163 * prevent another process from rushing past us, and 1164 * inserting the page in that object at the same time 1165 * that we are. 1166 */ 1167 if (fs->object == fs->first_object) { 1168 fs->first_m = fs->m; 1169 fs->m = NULL; 1170 } else if (fs->m != NULL) { 1171 if (!vm_fault_object_ensure_wlocked(fs)) { 1172 fs->can_read_lock = false; 1173 vm_fault_unlock_and_deallocate(fs); 1174 return (FAULT_NEXT_RESTART); 1175 } 1176 vm_fault_page_free(&fs->m); 1177 } 1178 1179 /* 1180 * Move on to the next object. Lock the next object before 1181 * unlocking the current one. 1182 */ 1183 next_object = fs->object->backing_object; 1184 if (next_object == NULL) 1185 return (FAULT_NEXT_NOOBJ); 1186 MPASS(fs->first_m != NULL); 1187 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1188 if (fs->can_read_lock) 1189 VM_OBJECT_RLOCK(next_object); 1190 else 1191 VM_OBJECT_WLOCK(next_object); 1192 vm_object_pip_add(next_object, 1); 1193 if (fs->object != fs->first_object) 1194 vm_object_pip_wakeup(fs->object); 1195 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1196 VM_OBJECT_UNLOCK(fs->object); 1197 fs->object = next_object; 1198 1199 return (FAULT_NEXT_GOTOBJ); 1200 } 1201 1202 static void 1203 vm_fault_zerofill(struct faultstate *fs) 1204 { 1205 1206 /* 1207 * If there's no object left, fill the page in the top 1208 * object with zeros. 1209 */ 1210 if (vm_fault_might_be_cow(fs)) { 1211 vm_object_pip_wakeup(fs->object); 1212 fs->object = fs->first_object; 1213 fs->pindex = fs->first_pindex; 1214 } 1215 MPASS(fs->first_m != NULL); 1216 MPASS(fs->m == NULL); 1217 fs->m = fs->first_m; 1218 fs->first_m = NULL; 1219 1220 /* 1221 * Zero the page if necessary and mark it valid. 1222 */ 1223 if ((fs->m->flags & PG_ZERO) == 0) { 1224 pmap_zero_page(fs->m); 1225 } else { 1226 VM_CNT_INC(v_ozfod); 1227 } 1228 VM_CNT_INC(v_zfod); 1229 vm_page_valid(fs->m); 1230 } 1231 1232 /* 1233 * Initiate page fault after timeout. Returns true if caller should 1234 * do vm_waitpfault() after the call. 1235 */ 1236 static bool 1237 vm_fault_allocate_oom(struct faultstate *fs) 1238 { 1239 struct timeval now; 1240 1241 vm_fault_unlock_and_deallocate(fs); 1242 if (vm_pfault_oom_attempts < 0) 1243 return (true); 1244 if (!fs->oom_started) { 1245 fs->oom_started = true; 1246 getmicrotime(&fs->oom_start_time); 1247 return (true); 1248 } 1249 1250 getmicrotime(&now); 1251 timevalsub(&now, &fs->oom_start_time); 1252 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1253 return (true); 1254 1255 if (bootverbose) 1256 printf( 1257 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1258 curproc->p_pid, curproc->p_comm); 1259 vm_pageout_oom(VM_OOM_MEM_PF); 1260 fs->oom_started = false; 1261 return (false); 1262 } 1263 1264 /* 1265 * Allocate a page directly or via the object populate method. 1266 */ 1267 static enum fault_status 1268 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages) 1269 { 1270 struct domainset *dset; 1271 enum fault_status res; 1272 1273 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1274 res = vm_fault_lock_vnode(fs, true); 1275 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1276 if (res == FAULT_RESTART) 1277 return (res); 1278 } 1279 1280 if (fs->pindex >= fs->object->size) { 1281 vm_fault_unlock_and_deallocate(fs); 1282 return (FAULT_OUT_OF_BOUNDS); 1283 } 1284 1285 if (fs->object == fs->first_object && 1286 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1287 fs->first_object->shadow_count == 0) { 1288 res = vm_fault_populate(fs); 1289 switch (res) { 1290 case FAULT_SUCCESS: 1291 case FAULT_FAILURE: 1292 case FAULT_RESTART: 1293 vm_fault_unlock_and_deallocate(fs); 1294 return (res); 1295 case FAULT_CONTINUE: 1296 pctrie_iter_reset(pages); 1297 /* 1298 * Pager's populate() method 1299 * returned VM_PAGER_BAD. 1300 */ 1301 break; 1302 default: 1303 panic("inconsistent return codes"); 1304 } 1305 } 1306 1307 /* 1308 * Allocate a new page for this object/offset pair. 1309 * 1310 * If the process has a fatal signal pending, prioritize the allocation 1311 * with the expectation that the process will exit shortly and free some 1312 * pages. In particular, the signal may have been posted by the page 1313 * daemon in an attempt to resolve an out-of-memory condition. 1314 * 1315 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1316 * might be not observed here, and allocation fails, causing a restart 1317 * and new reading of the p_flag. 1318 */ 1319 dset = fs->object->domain.dr_policy; 1320 if (dset == NULL) 1321 dset = curthread->td_domain.dr_policy; 1322 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1323 #if VM_NRESERVLEVEL > 0 1324 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1325 #endif 1326 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1327 vm_fault_unlock_and_deallocate(fs); 1328 return (FAULT_FAILURE); 1329 } 1330 fs->m = vm_page_alloc_iter(fs->object, fs->pindex, 1331 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages); 1332 } 1333 if (fs->m == NULL) { 1334 if (vm_fault_allocate_oom(fs)) 1335 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1336 return (FAULT_RESTART); 1337 } 1338 fs->oom_started = false; 1339 1340 return (FAULT_CONTINUE); 1341 } 1342 1343 /* 1344 * Call the pager to retrieve the page if there is a chance 1345 * that the pager has it, and potentially retrieve additional 1346 * pages at the same time. 1347 */ 1348 static enum fault_status 1349 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1350 { 1351 vm_offset_t e_end, e_start; 1352 int ahead, behind, cluster_offset, rv; 1353 enum fault_status status; 1354 u_char behavior; 1355 1356 /* 1357 * Prepare for unlocking the map. Save the map 1358 * entry's start and end addresses, which are used to 1359 * optimize the size of the pager operation below. 1360 * Even if the map entry's addresses change after 1361 * unlocking the map, using the saved addresses is 1362 * safe. 1363 */ 1364 e_start = fs->entry->start; 1365 e_end = fs->entry->end; 1366 behavior = vm_map_entry_behavior(fs->entry); 1367 1368 /* 1369 * If the pager for the current object might have 1370 * the page, then determine the number of additional 1371 * pages to read and potentially reprioritize 1372 * previously read pages for earlier reclamation. 1373 * These operations should only be performed once per 1374 * page fault. Even if the current pager doesn't 1375 * have the page, the number of additional pages to 1376 * read will apply to subsequent objects in the 1377 * shadow chain. 1378 */ 1379 if (fs->nera == -1 && !P_KILLED(curproc)) 1380 fs->nera = vm_fault_readahead(fs); 1381 1382 /* 1383 * Release the map lock before locking the vnode or 1384 * sleeping in the pager. (If the current object has 1385 * a shadow, then an earlier iteration of this loop 1386 * may have already unlocked the map.) 1387 */ 1388 vm_fault_unlock_map(fs); 1389 1390 status = vm_fault_lock_vnode(fs, false); 1391 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1392 if (status == FAULT_RESTART) 1393 return (status); 1394 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map), 1395 ("vm_fault: vnode-backed object mapped by system map")); 1396 1397 /* 1398 * Page in the requested page and hint the pager, 1399 * that it may bring up surrounding pages. 1400 */ 1401 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1402 P_KILLED(curproc)) { 1403 behind = 0; 1404 ahead = 0; 1405 } else { 1406 /* Is this a sequential fault? */ 1407 if (fs->nera > 0) { 1408 behind = 0; 1409 ahead = fs->nera; 1410 } else { 1411 /* 1412 * Request a cluster of pages that is 1413 * aligned to a VM_FAULT_READ_DEFAULT 1414 * page offset boundary within the 1415 * object. Alignment to a page offset 1416 * boundary is more likely to coincide 1417 * with the underlying file system 1418 * block than alignment to a virtual 1419 * address boundary. 1420 */ 1421 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1422 behind = ulmin(cluster_offset, 1423 atop(fs->vaddr - e_start)); 1424 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1425 } 1426 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1427 } 1428 *behindp = behind; 1429 *aheadp = ahead; 1430 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1431 if (rv == VM_PAGER_OK) 1432 return (FAULT_HARD); 1433 if (rv == VM_PAGER_ERROR) 1434 printf("vm_fault: pager read error, pid %d (%s)\n", 1435 curproc->p_pid, curproc->p_comm); 1436 /* 1437 * If an I/O error occurred or the requested page was 1438 * outside the range of the pager, clean up and return 1439 * an error. 1440 */ 1441 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1442 VM_OBJECT_WLOCK(fs->object); 1443 vm_fault_page_free(&fs->m); 1444 vm_fault_unlock_and_deallocate(fs); 1445 return (FAULT_OUT_OF_BOUNDS); 1446 } 1447 KASSERT(rv == VM_PAGER_FAIL, 1448 ("%s: unexpected pager error %d", __func__, rv)); 1449 return (FAULT_CONTINUE); 1450 } 1451 1452 /* 1453 * Wait/Retry if the page is busy. We have to do this if the page is 1454 * either exclusive or shared busy because the vm_pager may be using 1455 * read busy for pageouts (and even pageins if it is the vnode pager), 1456 * and we could end up trying to pagein and pageout the same page 1457 * simultaneously. 1458 * 1459 * We allow the busy case on a read fault if the page is valid. We 1460 * cannot under any circumstances mess around with a shared busied 1461 * page except, perhaps, to pmap it. This is controlled by the 1462 * VM_ALLOC_SBUSY bit in the allocflags argument. 1463 */ 1464 static void 1465 vm_fault_busy_sleep(struct faultstate *fs, int allocflags) 1466 { 1467 /* 1468 * Reference the page before unlocking and 1469 * sleeping so that the page daemon is less 1470 * likely to reclaim it. 1471 */ 1472 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1473 if (vm_fault_might_be_cow(fs)) { 1474 vm_fault_page_release(&fs->first_m); 1475 vm_object_pip_wakeup(fs->first_object); 1476 } 1477 vm_object_pip_wakeup(fs->object); 1478 vm_fault_unlock_map(fs); 1479 if (!vm_page_busy_sleep(fs->m, "vmpfw", allocflags)) 1480 VM_OBJECT_UNLOCK(fs->object); 1481 VM_CNT_INC(v_intrans); 1482 vm_object_deallocate(fs->first_object); 1483 } 1484 1485 /* 1486 * Handle page lookup, populate, allocate, page-in for the current 1487 * object. 1488 * 1489 * The object is locked on entry and will remain locked with a return 1490 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1491 * Otherwise, the object will be unlocked upon return. 1492 */ 1493 static enum fault_status 1494 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1495 { 1496 struct pctrie_iter pages; 1497 enum fault_status res; 1498 bool dead; 1499 1500 if (fs->object == fs->first_object || !fs->can_read_lock) 1501 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1502 else 1503 VM_OBJECT_ASSERT_LOCKED(fs->object); 1504 1505 /* 1506 * If the object is marked for imminent termination, we retry 1507 * here, since the collapse pass has raced with us. Otherwise, 1508 * if we see terminally dead object, return fail. 1509 */ 1510 if ((fs->object->flags & OBJ_DEAD) != 0) { 1511 dead = fs->object->type == OBJT_DEAD; 1512 vm_fault_unlock_and_deallocate(fs); 1513 if (dead) 1514 return (FAULT_PROTECTION_FAILURE); 1515 pause("vmf_de", 1); 1516 return (FAULT_RESTART); 1517 } 1518 1519 /* 1520 * See if the page is resident. 1521 */ 1522 vm_page_iter_init(&pages, fs->object); 1523 fs->m = vm_radix_iter_lookup(&pages, fs->pindex); 1524 if (fs->m != NULL) { 1525 /* 1526 * If the found page is valid, will be either shadowed 1527 * or mapped read-only, and will not be renamed for 1528 * COW, then busy it in shared mode. This allows 1529 * other faults needing this page to proceed in 1530 * parallel. 1531 * 1532 * Unlocked check for validity, rechecked after busy 1533 * is obtained. 1534 */ 1535 if (vm_page_all_valid(fs->m) && 1536 /* 1537 * No write permissions for the new fs->m mapping, 1538 * or the first object has only one mapping, so 1539 * other writeable COW mappings of fs->m cannot 1540 * appear under us. 1541 */ 1542 (vm_fault_is_read(fs) || vm_fault_might_be_cow(fs)) && 1543 /* 1544 * fs->m cannot be renamed from object to 1545 * first_object. These conditions will be 1546 * re-checked with proper synchronization in 1547 * vm_fault_cow(). 1548 */ 1549 (!vm_fault_can_cow_rename(fs) || 1550 fs->object != fs->first_object->backing_object)) { 1551 if (!vm_page_trysbusy(fs->m)) { 1552 vm_fault_busy_sleep(fs, VM_ALLOC_SBUSY); 1553 return (FAULT_RESTART); 1554 } 1555 1556 /* 1557 * Now make sure that racily checked 1558 * conditions are still valid. 1559 */ 1560 if (__predict_true(vm_page_all_valid(fs->m) && 1561 (vm_fault_is_read(fs) || 1562 vm_fault_might_be_cow(fs)))) { 1563 VM_OBJECT_UNLOCK(fs->object); 1564 return (FAULT_SOFT); 1565 } 1566 1567 vm_page_sunbusy(fs->m); 1568 } 1569 1570 if (!vm_page_tryxbusy(fs->m)) { 1571 vm_fault_busy_sleep(fs, 0); 1572 return (FAULT_RESTART); 1573 } 1574 1575 /* 1576 * The page is marked busy for other processes and the 1577 * pagedaemon. If it is still completely valid we are 1578 * done. 1579 */ 1580 if (vm_page_all_valid(fs->m)) { 1581 VM_OBJECT_UNLOCK(fs->object); 1582 return (FAULT_SOFT); 1583 } 1584 } 1585 1586 /* 1587 * Page is not resident. If the pager might contain the page 1588 * or this is the beginning of the search, allocate a new 1589 * page. 1590 */ 1591 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1592 fs->object == fs->first_object)) { 1593 if (!vm_fault_object_ensure_wlocked(fs)) { 1594 fs->can_read_lock = false; 1595 vm_fault_unlock_and_deallocate(fs); 1596 return (FAULT_RESTART); 1597 } 1598 res = vm_fault_allocate(fs, &pages); 1599 if (res != FAULT_CONTINUE) 1600 return (res); 1601 } 1602 1603 /* 1604 * Check to see if the pager can possibly satisfy this fault. 1605 * If not, skip to the next object without dropping the lock to 1606 * preserve atomicity of shadow faults. 1607 */ 1608 if (vm_fault_object_needs_getpages(fs->object)) { 1609 /* 1610 * At this point, we have either allocated a new page 1611 * or found an existing page that is only partially 1612 * valid. 1613 * 1614 * We hold a reference on the current object and the 1615 * page is exclusive busied. The exclusive busy 1616 * prevents simultaneous faults and collapses while 1617 * the object lock is dropped. 1618 */ 1619 VM_OBJECT_UNLOCK(fs->object); 1620 res = vm_fault_getpages(fs, behindp, aheadp); 1621 if (res == FAULT_CONTINUE) 1622 VM_OBJECT_WLOCK(fs->object); 1623 } else { 1624 res = FAULT_CONTINUE; 1625 } 1626 return (res); 1627 } 1628 1629 int 1630 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1631 int fault_flags, vm_page_t *m_hold) 1632 { 1633 struct pctrie_iter pages; 1634 struct faultstate fs; 1635 int ahead, behind, faultcount, rv; 1636 enum fault_status res; 1637 enum fault_next_status res_next; 1638 bool hardfault; 1639 1640 VM_CNT_INC(v_vm_faults); 1641 1642 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1643 return (KERN_PROTECTION_FAILURE); 1644 1645 fs.vp = NULL; 1646 fs.vaddr = vaddr; 1647 fs.m_hold = m_hold; 1648 fs.fault_flags = fault_flags; 1649 fs.map = map; 1650 fs.lookup_still_valid = false; 1651 fs.oom_started = false; 1652 fs.nera = -1; 1653 fs.can_read_lock = true; 1654 faultcount = 0; 1655 hardfault = false; 1656 1657 RetryFault: 1658 fs.fault_type = fault_type; 1659 1660 /* 1661 * Find the backing store object and offset into it to begin the 1662 * search. 1663 */ 1664 rv = vm_fault_lookup(&fs); 1665 if (rv != KERN_SUCCESS) { 1666 if (rv == KERN_RESOURCE_SHORTAGE) 1667 goto RetryFault; 1668 return (rv); 1669 } 1670 1671 /* 1672 * Try to avoid lock contention on the top-level object through 1673 * special-case handling of some types of page faults, specifically, 1674 * those that are mapping an existing page from the top-level object. 1675 * Under this condition, a read lock on the object suffices, allowing 1676 * multiple page faults of a similar type to run in parallel. 1677 */ 1678 if (fs.vp == NULL /* avoid locked vnode leak */ && 1679 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1680 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1681 res = vm_fault_soft_fast(&fs); 1682 if (res == FAULT_SUCCESS) { 1683 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1684 return (KERN_SUCCESS); 1685 } 1686 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1687 } else { 1688 vm_page_iter_init(&pages, fs.first_object); 1689 VM_OBJECT_WLOCK(fs.first_object); 1690 } 1691 1692 /* 1693 * Make a reference to this object to prevent its disposal while we 1694 * are messing with it. Once we have the reference, the map is free 1695 * to be diddled. Since objects reference their shadows (and copies), 1696 * they will stay around as well. 1697 * 1698 * Bump the paging-in-progress count to prevent size changes (e.g. 1699 * truncation operations) during I/O. 1700 */ 1701 vm_object_reference_locked(fs.first_object); 1702 vm_object_pip_add(fs.first_object, 1); 1703 1704 fs.m_cow = fs.m = fs.first_m = NULL; 1705 1706 /* 1707 * Search for the page at object/offset. 1708 */ 1709 fs.object = fs.first_object; 1710 fs.pindex = fs.first_pindex; 1711 1712 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1713 res = vm_fault_allocate(&fs, &pages); 1714 switch (res) { 1715 case FAULT_RESTART: 1716 goto RetryFault; 1717 case FAULT_SUCCESS: 1718 return (KERN_SUCCESS); 1719 case FAULT_FAILURE: 1720 return (KERN_FAILURE); 1721 case FAULT_OUT_OF_BOUNDS: 1722 return (KERN_OUT_OF_BOUNDS); 1723 case FAULT_CONTINUE: 1724 break; 1725 default: 1726 panic("vm_fault: Unhandled status %d", res); 1727 } 1728 } 1729 1730 while (TRUE) { 1731 KASSERT(fs.m == NULL, 1732 ("page still set %p at loop start", fs.m)); 1733 1734 res = vm_fault_object(&fs, &behind, &ahead); 1735 switch (res) { 1736 case FAULT_SOFT: 1737 goto found; 1738 case FAULT_HARD: 1739 faultcount = behind + 1 + ahead; 1740 hardfault = true; 1741 goto found; 1742 case FAULT_RESTART: 1743 goto RetryFault; 1744 case FAULT_SUCCESS: 1745 return (KERN_SUCCESS); 1746 case FAULT_FAILURE: 1747 return (KERN_FAILURE); 1748 case FAULT_OUT_OF_BOUNDS: 1749 return (KERN_OUT_OF_BOUNDS); 1750 case FAULT_PROTECTION_FAILURE: 1751 return (KERN_PROTECTION_FAILURE); 1752 case FAULT_CONTINUE: 1753 break; 1754 default: 1755 panic("vm_fault: Unhandled status %d", res); 1756 } 1757 1758 /* 1759 * The page was not found in the current object. Try to 1760 * traverse into a backing object or zero fill if none is 1761 * found. 1762 */ 1763 res_next = vm_fault_next(&fs); 1764 if (res_next == FAULT_NEXT_RESTART) 1765 goto RetryFault; 1766 else if (res_next == FAULT_NEXT_GOTOBJ) 1767 continue; 1768 MPASS(res_next == FAULT_NEXT_NOOBJ); 1769 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1770 if (fs.first_object == fs.object) 1771 vm_fault_page_free(&fs.first_m); 1772 vm_fault_unlock_and_deallocate(&fs); 1773 return (KERN_OUT_OF_BOUNDS); 1774 } 1775 VM_OBJECT_UNLOCK(fs.object); 1776 vm_fault_zerofill(&fs); 1777 /* Don't try to prefault neighboring pages. */ 1778 faultcount = 1; 1779 break; 1780 } 1781 1782 found: 1783 /* 1784 * A valid page has been found and busied. The object lock 1785 * must no longer be held if the page was busied. 1786 * 1787 * Regardless of the busy state of fs.m, fs.first_m is always 1788 * exclusively busied after the first iteration of the loop 1789 * calling vm_fault_object(). This is an ordering point for 1790 * the parallel faults occuring in on the same page. 1791 */ 1792 vm_page_assert_busied(fs.m); 1793 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1794 1795 /* 1796 * If the page is being written, but isn't already owned by the 1797 * top-level object, we have to copy it into a new page owned by the 1798 * top-level object. 1799 */ 1800 if (vm_fault_might_be_cow(&fs)) { 1801 /* 1802 * We only really need to copy if we want to write it. 1803 */ 1804 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1805 vm_fault_cow(&fs); 1806 /* 1807 * We only try to prefault read-only mappings to the 1808 * neighboring pages when this copy-on-write fault is 1809 * a hard fault. In other cases, trying to prefault 1810 * is typically wasted effort. 1811 */ 1812 if (faultcount == 0) 1813 faultcount = 1; 1814 1815 } else { 1816 fs.prot &= ~VM_PROT_WRITE; 1817 } 1818 } 1819 1820 /* 1821 * We must verify that the maps have not changed since our last 1822 * lookup. 1823 */ 1824 if (!fs.lookup_still_valid) { 1825 rv = vm_fault_relookup(&fs); 1826 if (rv != KERN_SUCCESS) { 1827 vm_fault_deallocate(&fs); 1828 if (rv == KERN_RESTART) 1829 goto RetryFault; 1830 return (rv); 1831 } 1832 } 1833 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1834 1835 /* 1836 * If the page was filled by a pager, save the virtual address that 1837 * should be faulted on next under a sequential access pattern to the 1838 * map entry. A read lock on the map suffices to update this address 1839 * safely. 1840 */ 1841 if (hardfault) 1842 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1843 1844 /* 1845 * If the page to be mapped was copied from a backing object, we defer 1846 * marking it valid until here, where the fault handler is guaranteed to 1847 * succeed. Otherwise we can end up with a shadowed, mapped page in the 1848 * backing object, which violates an invariant of vm_object_collapse() 1849 * that shadowed pages are not mapped. 1850 */ 1851 if (fs.m_cow != NULL) { 1852 KASSERT(vm_page_none_valid(fs.m), 1853 ("vm_fault: page %p is already valid", fs.m_cow)); 1854 vm_page_valid(fs.m); 1855 } 1856 1857 /* 1858 * Page must be completely valid or it is not fit to 1859 * map into user space. vm_pager_get_pages() ensures this. 1860 */ 1861 vm_page_assert_busied(fs.m); 1862 KASSERT(vm_page_all_valid(fs.m), 1863 ("vm_fault: page %p partially invalid", fs.m)); 1864 1865 vm_fault_dirty(&fs, fs.m); 1866 1867 /* 1868 * Put this page into the physical map. We had to do the unlock above 1869 * because pmap_enter() may sleep. We don't put the page 1870 * back on the active queue until later so that the pageout daemon 1871 * won't find it (yet). 1872 */ 1873 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1874 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1875 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1876 fs.wired == 0) 1877 vm_fault_prefault(&fs, vaddr, 1878 faultcount > 0 ? behind : PFBAK, 1879 faultcount > 0 ? ahead : PFFOR, false); 1880 1881 /* 1882 * If the page is not wired down, then put it where the pageout daemon 1883 * can find it. 1884 */ 1885 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1886 vm_page_wire(fs.m); 1887 else 1888 vm_page_activate(fs.m); 1889 if (fs.m_hold != NULL) { 1890 (*fs.m_hold) = fs.m; 1891 vm_page_wire(fs.m); 1892 } 1893 1894 KASSERT(fs.first_object == fs.object || vm_page_xbusied(fs.first_m), 1895 ("first_m must be xbusy")); 1896 if (vm_page_xbusied(fs.m)) 1897 vm_page_xunbusy(fs.m); 1898 else 1899 vm_page_sunbusy(fs.m); 1900 fs.m = NULL; 1901 1902 /* 1903 * Unlock everything, and return 1904 */ 1905 vm_fault_deallocate(&fs); 1906 if (hardfault) { 1907 VM_CNT_INC(v_io_faults); 1908 curthread->td_ru.ru_majflt++; 1909 #ifdef RACCT 1910 if (racct_enable && fs.object->type == OBJT_VNODE) { 1911 PROC_LOCK(curproc); 1912 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1913 racct_add_force(curproc, RACCT_WRITEBPS, 1914 PAGE_SIZE + behind * PAGE_SIZE); 1915 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1916 } else { 1917 racct_add_force(curproc, RACCT_READBPS, 1918 PAGE_SIZE + ahead * PAGE_SIZE); 1919 racct_add_force(curproc, RACCT_READIOPS, 1); 1920 } 1921 PROC_UNLOCK(curproc); 1922 } 1923 #endif 1924 } else 1925 curthread->td_ru.ru_minflt++; 1926 1927 return (KERN_SUCCESS); 1928 } 1929 1930 /* 1931 * Speed up the reclamation of pages that precede the faulting pindex within 1932 * the first object of the shadow chain. Essentially, perform the equivalent 1933 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1934 * the faulting pindex by the cluster size when the pages read by vm_fault() 1935 * cross a cluster-size boundary. The cluster size is the greater of the 1936 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1937 * 1938 * When "fs->first_object" is a shadow object, the pages in the backing object 1939 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1940 * function must only be concerned with pages in the first object. 1941 */ 1942 static void 1943 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1944 { 1945 struct pctrie_iter pages; 1946 vm_map_entry_t entry; 1947 vm_object_t first_object; 1948 vm_offset_t end, start; 1949 vm_page_t m; 1950 vm_size_t size; 1951 1952 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1953 first_object = fs->first_object; 1954 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1955 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1956 VM_OBJECT_RLOCK(first_object); 1957 size = VM_FAULT_DONTNEED_MIN; 1958 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1959 size = pagesizes[1]; 1960 end = rounddown2(vaddr, size); 1961 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1962 (entry = fs->entry)->start < end) { 1963 if (end - entry->start < size) 1964 start = entry->start; 1965 else 1966 start = end - size; 1967 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1968 vm_page_iter_limit_init(&pages, first_object, 1969 OFF_TO_IDX(entry->offset) + 1970 atop(end - entry->start)); 1971 VM_RADIX_FOREACH_FROM(m, &pages, 1972 OFF_TO_IDX(entry->offset) + 1973 atop(start - entry->start)) { 1974 if (!vm_page_all_valid(m) || 1975 vm_page_busied(m)) 1976 continue; 1977 1978 /* 1979 * Don't clear PGA_REFERENCED, since it would 1980 * likely represent a reference by a different 1981 * process. 1982 * 1983 * Typically, at this point, prefetched pages 1984 * are still in the inactive queue. Only 1985 * pages that triggered page faults are in the 1986 * active queue. The test for whether the page 1987 * is in the inactive queue is racy; in the 1988 * worst case we will requeue the page 1989 * unnecessarily. 1990 */ 1991 if (!vm_page_inactive(m)) 1992 vm_page_deactivate(m); 1993 } 1994 } 1995 VM_OBJECT_RUNLOCK(first_object); 1996 } 1997 } 1998 1999 /* 2000 * vm_fault_prefault provides a quick way of clustering 2001 * pagefaults into a processes address space. It is a "cousin" 2002 * of vm_map_pmap_enter, except it runs at page fault time instead 2003 * of mmap time. 2004 */ 2005 static void 2006 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 2007 int backward, int forward, bool obj_locked) 2008 { 2009 pmap_t pmap; 2010 vm_map_entry_t entry; 2011 vm_object_t backing_object, lobject; 2012 vm_offset_t addr, starta; 2013 vm_pindex_t pindex; 2014 vm_page_t m; 2015 vm_prot_t prot; 2016 int i; 2017 2018 pmap = fs->map->pmap; 2019 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 2020 return; 2021 2022 entry = fs->entry; 2023 2024 if (addra < backward * PAGE_SIZE) { 2025 starta = entry->start; 2026 } else { 2027 starta = addra - backward * PAGE_SIZE; 2028 if (starta < entry->start) 2029 starta = entry->start; 2030 } 2031 prot = entry->protection; 2032 2033 /* 2034 * If pmap_enter() has enabled write access on a nearby mapping, then 2035 * don't attempt promotion, because it will fail. 2036 */ 2037 if ((fs->prot & VM_PROT_WRITE) != 0) 2038 prot |= VM_PROT_NO_PROMOTE; 2039 2040 /* 2041 * Generate the sequence of virtual addresses that are candidates for 2042 * prefaulting in an outward spiral from the faulting virtual address, 2043 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 2044 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 2045 * If the candidate address doesn't have a backing physical page, then 2046 * the loop immediately terminates. 2047 */ 2048 for (i = 0; i < 2 * imax(backward, forward); i++) { 2049 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 2050 PAGE_SIZE); 2051 if (addr > addra + forward * PAGE_SIZE) 2052 addr = 0; 2053 2054 if (addr < starta || addr >= entry->end) 2055 continue; 2056 2057 if (!pmap_is_prefaultable(pmap, addr)) 2058 continue; 2059 2060 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2061 lobject = entry->object.vm_object; 2062 if (!obj_locked) 2063 VM_OBJECT_RLOCK(lobject); 2064 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 2065 !vm_fault_object_needs_getpages(lobject) && 2066 (backing_object = lobject->backing_object) != NULL) { 2067 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 2068 0, ("vm_fault_prefault: unaligned object offset")); 2069 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2070 VM_OBJECT_RLOCK(backing_object); 2071 if (!obj_locked || lobject != entry->object.vm_object) 2072 VM_OBJECT_RUNLOCK(lobject); 2073 lobject = backing_object; 2074 } 2075 if (m == NULL) { 2076 if (!obj_locked || lobject != entry->object.vm_object) 2077 VM_OBJECT_RUNLOCK(lobject); 2078 break; 2079 } 2080 if (vm_page_all_valid(m) && 2081 (m->flags & PG_FICTITIOUS) == 0) 2082 pmap_enter_quick(pmap, addr, m, prot); 2083 if (!obj_locked || lobject != entry->object.vm_object) 2084 VM_OBJECT_RUNLOCK(lobject); 2085 } 2086 } 2087 2088 /* 2089 * Hold each of the physical pages that are mapped by the specified 2090 * range of virtual addresses, ["addr", "addr" + "len"), if those 2091 * mappings are valid and allow the specified types of access, "prot". 2092 * If all of the implied pages are successfully held, then the number 2093 * of held pages is assigned to *ppages_count, together with pointers 2094 * to those pages in the array "ma". The returned value is zero. 2095 * 2096 * However, if any of the pages cannot be held, an error is returned, 2097 * and no pages are held. 2098 * Error values: 2099 * ENOMEM - the range is not valid 2100 * EINVAL - the provided vm_page array is too small to hold all pages 2101 * EAGAIN - a page was not mapped, and the thread is in nofaulting mode 2102 * EFAULT - a page with requested permissions cannot be mapped 2103 * (more detailed result from vm_fault() is lost) 2104 */ 2105 int 2106 vm_fault_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2107 vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count) 2108 { 2109 vm_offset_t end, va; 2110 vm_page_t *mp; 2111 int count, error; 2112 boolean_t pmap_failed; 2113 2114 if (len == 0) { 2115 *ppages_count = 0; 2116 return (0); 2117 } 2118 end = round_page(addr + len); 2119 addr = trunc_page(addr); 2120 2121 if (!vm_map_range_valid(map, addr, end)) 2122 return (ENOMEM); 2123 2124 if (atop(end - addr) > max_count) 2125 return (EINVAL); 2126 count = atop(end - addr); 2127 2128 /* 2129 * Most likely, the physical pages are resident in the pmap, so it is 2130 * faster to try pmap_extract_and_hold() first. 2131 */ 2132 pmap_failed = FALSE; 2133 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2134 *mp = pmap_extract_and_hold(map->pmap, va, prot); 2135 if (*mp == NULL) 2136 pmap_failed = TRUE; 2137 else if ((prot & VM_PROT_WRITE) != 0 && 2138 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2139 /* 2140 * Explicitly dirty the physical page. Otherwise, the 2141 * caller's changes may go unnoticed because they are 2142 * performed through an unmanaged mapping or by a DMA 2143 * operation. 2144 * 2145 * The object lock is not held here. 2146 * See vm_page_clear_dirty_mask(). 2147 */ 2148 vm_page_dirty(*mp); 2149 } 2150 } 2151 if (pmap_failed) { 2152 /* 2153 * One or more pages could not be held by the pmap. Either no 2154 * page was mapped at the specified virtual address or that 2155 * mapping had insufficient permissions. Attempt to fault in 2156 * and hold these pages. 2157 * 2158 * If vm_fault_disable_pagefaults() was called, 2159 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2160 * acquire MD VM locks, which means we must not call 2161 * vm_fault(). Some (out of tree) callers mark 2162 * too wide a code area with vm_fault_disable_pagefaults() 2163 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2164 * the proper behaviour explicitly. 2165 */ 2166 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2167 (curthread->td_pflags & TDP_NOFAULTING) != 0) { 2168 error = EAGAIN; 2169 goto fail; 2170 } 2171 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2172 if (*mp == NULL && vm_fault(map, va, prot, 2173 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) { 2174 error = EFAULT; 2175 goto fail; 2176 } 2177 } 2178 } 2179 *ppages_count = count; 2180 return (0); 2181 fail: 2182 for (mp = ma; mp < ma + count; mp++) 2183 if (*mp != NULL) 2184 vm_page_unwire(*mp, PQ_INACTIVE); 2185 return (error); 2186 } 2187 2188 /* 2189 * Hold each of the physical pages that are mapped by the specified range of 2190 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 2191 * and allow the specified types of access, "prot". If all of the implied 2192 * pages are successfully held, then the number of held pages is returned 2193 * together with pointers to those pages in the array "ma". However, if any 2194 * of the pages cannot be held, -1 is returned. 2195 */ 2196 int 2197 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2198 vm_prot_t prot, vm_page_t *ma, int max_count) 2199 { 2200 int error, pages_count; 2201 2202 error = vm_fault_hold_pages(map, addr, len, prot, ma, 2203 max_count, &pages_count); 2204 if (error != 0) { 2205 if (error == EINVAL) 2206 panic("vm_fault_quick_hold_pages: count > max_count"); 2207 return (-1); 2208 } 2209 return (pages_count); 2210 } 2211 2212 /* 2213 * Routine: 2214 * vm_fault_copy_entry 2215 * Function: 2216 * Create new object backing dst_entry with private copy of all 2217 * underlying pages. When src_entry is equal to dst_entry, function 2218 * implements COW for wired-down map entry. Otherwise, it forks 2219 * wired entry into dst_map. 2220 * 2221 * In/out conditions: 2222 * The source and destination maps must be locked for write. 2223 * The source map entry must be wired down (or be a sharing map 2224 * entry corresponding to a main map entry that is wired down). 2225 */ 2226 void 2227 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2228 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2229 vm_ooffset_t *fork_charge) 2230 { 2231 struct pctrie_iter pages; 2232 vm_object_t backing_object, dst_object, object, src_object; 2233 vm_pindex_t dst_pindex, pindex, src_pindex; 2234 vm_prot_t access, prot; 2235 vm_offset_t vaddr; 2236 vm_page_t dst_m; 2237 vm_page_t src_m; 2238 bool upgrade; 2239 2240 upgrade = src_entry == dst_entry; 2241 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2242 ("vm_fault_copy_entry: vm_object not NULL")); 2243 2244 /* 2245 * If not an upgrade, then enter the mappings in the pmap as 2246 * read and/or execute accesses. Otherwise, enter them as 2247 * write accesses. 2248 * 2249 * A writeable large page mapping is only created if all of 2250 * the constituent small page mappings are modified. Marking 2251 * PTEs as modified on inception allows promotion to happen 2252 * without taking potentially large number of soft faults. 2253 */ 2254 access = prot = dst_entry->protection; 2255 if (!upgrade) 2256 access &= ~VM_PROT_WRITE; 2257 2258 src_object = src_entry->object.vm_object; 2259 src_pindex = OFF_TO_IDX(src_entry->offset); 2260 2261 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2262 dst_object = src_object; 2263 vm_object_reference(dst_object); 2264 } else { 2265 /* 2266 * Create the top-level object for the destination entry. 2267 * Doesn't actually shadow anything - we copy the pages 2268 * directly. 2269 */ 2270 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2271 dst_entry->start), NULL, NULL, 0); 2272 #if VM_NRESERVLEVEL > 0 2273 dst_object->flags |= OBJ_COLORED; 2274 dst_object->pg_color = atop(dst_entry->start); 2275 #endif 2276 dst_object->domain = src_object->domain; 2277 dst_object->charge = dst_entry->end - dst_entry->start; 2278 2279 dst_entry->object.vm_object = dst_object; 2280 dst_entry->offset = 0; 2281 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2282 } 2283 2284 VM_OBJECT_WLOCK(dst_object); 2285 if (fork_charge != NULL) { 2286 KASSERT(dst_entry->cred == NULL, 2287 ("vm_fault_copy_entry: leaked swp charge")); 2288 dst_object->cred = curthread->td_ucred; 2289 crhold(dst_object->cred); 2290 *fork_charge += dst_object->charge; 2291 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2292 dst_object->cred == NULL) { 2293 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2294 dst_entry)); 2295 dst_object->cred = dst_entry->cred; 2296 dst_entry->cred = NULL; 2297 } 2298 2299 /* 2300 * Loop through all of the virtual pages within the entry's 2301 * range, copying each page from the source object to the 2302 * destination object. Since the source is wired, those pages 2303 * must exist. In contrast, the destination is pageable. 2304 * Since the destination object doesn't share any backing storage 2305 * with the source object, all of its pages must be dirtied, 2306 * regardless of whether they can be written. 2307 */ 2308 vm_page_iter_init(&pages, dst_object); 2309 for (vaddr = dst_entry->start, dst_pindex = 0; 2310 vaddr < dst_entry->end; 2311 vaddr += PAGE_SIZE, dst_pindex++) { 2312 again: 2313 /* 2314 * Find the page in the source object, and copy it in. 2315 * Because the source is wired down, the page will be 2316 * in memory. 2317 */ 2318 if (src_object != dst_object) 2319 VM_OBJECT_RLOCK(src_object); 2320 object = src_object; 2321 pindex = src_pindex + dst_pindex; 2322 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2323 (backing_object = object->backing_object) != NULL) { 2324 /* 2325 * Unless the source mapping is read-only or 2326 * it is presently being upgraded from 2327 * read-only, the first object in the shadow 2328 * chain should provide all of the pages. In 2329 * other words, this loop body should never be 2330 * executed when the source mapping is already 2331 * read/write. 2332 */ 2333 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2334 upgrade, 2335 ("vm_fault_copy_entry: main object missing page")); 2336 2337 VM_OBJECT_RLOCK(backing_object); 2338 pindex += OFF_TO_IDX(object->backing_object_offset); 2339 if (object != dst_object) 2340 VM_OBJECT_RUNLOCK(object); 2341 object = backing_object; 2342 } 2343 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2344 2345 if (object != dst_object) { 2346 /* 2347 * Allocate a page in the destination object. 2348 */ 2349 pindex = (src_object == dst_object ? src_pindex : 0) + 2350 dst_pindex; 2351 dst_m = vm_page_alloc_iter(dst_object, pindex, 2352 VM_ALLOC_NORMAL, &pages); 2353 if (dst_m == NULL) { 2354 VM_OBJECT_WUNLOCK(dst_object); 2355 VM_OBJECT_RUNLOCK(object); 2356 vm_wait(dst_object); 2357 VM_OBJECT_WLOCK(dst_object); 2358 pctrie_iter_reset(&pages); 2359 goto again; 2360 } 2361 2362 /* 2363 * See the comment in vm_fault_cow(). 2364 */ 2365 if (src_object == dst_object && 2366 (object->flags & OBJ_ONEMAPPING) == 0) 2367 pmap_remove_all(src_m); 2368 pmap_copy_page(src_m, dst_m); 2369 2370 /* 2371 * The object lock does not guarantee that "src_m" will 2372 * transition from invalid to valid, but it does ensure 2373 * that "src_m" will not transition from valid to 2374 * invalid. 2375 */ 2376 dst_m->dirty = dst_m->valid = src_m->valid; 2377 VM_OBJECT_RUNLOCK(object); 2378 } else { 2379 dst_m = src_m; 2380 if (vm_page_busy_acquire( 2381 dst_m, VM_ALLOC_WAITFAIL) == 0) { 2382 pctrie_iter_reset(&pages); 2383 goto again; 2384 } 2385 if (dst_m->pindex >= dst_object->size) { 2386 /* 2387 * We are upgrading. Index can occur 2388 * out of bounds if the object type is 2389 * vnode and the file was truncated. 2390 */ 2391 vm_page_xunbusy(dst_m); 2392 break; 2393 } 2394 } 2395 2396 /* 2397 * Enter it in the pmap. If a wired, copy-on-write 2398 * mapping is being replaced by a write-enabled 2399 * mapping, then wire that new mapping. 2400 * 2401 * The page can be invalid if the user called 2402 * msync(MS_INVALIDATE) or truncated the backing vnode 2403 * or shared memory object. In this case, do not 2404 * insert it into pmap, but still do the copy so that 2405 * all copies of the wired map entry have similar 2406 * backing pages. 2407 */ 2408 if (vm_page_all_valid(dst_m)) { 2409 VM_OBJECT_WUNLOCK(dst_object); 2410 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2411 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2412 VM_OBJECT_WLOCK(dst_object); 2413 } 2414 2415 /* 2416 * Mark it no longer busy, and put it on the active list. 2417 */ 2418 if (upgrade) { 2419 if (src_m != dst_m) { 2420 vm_page_unwire(src_m, PQ_INACTIVE); 2421 vm_page_wire(dst_m); 2422 } else { 2423 KASSERT(vm_page_wired(dst_m), 2424 ("dst_m %p is not wired", dst_m)); 2425 } 2426 } else { 2427 vm_page_activate(dst_m); 2428 } 2429 vm_page_xunbusy(dst_m); 2430 } 2431 VM_OBJECT_WUNLOCK(dst_object); 2432 if (upgrade) { 2433 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2434 vm_object_deallocate(src_object); 2435 } 2436 } 2437 2438 /* 2439 * Block entry into the machine-independent layer's page fault handler by 2440 * the calling thread. Subsequent calls to vm_fault() by that thread will 2441 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2442 * spurious page faults. 2443 */ 2444 int 2445 vm_fault_disable_pagefaults(void) 2446 { 2447 2448 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2449 } 2450 2451 void 2452 vm_fault_enable_pagefaults(int save) 2453 { 2454 2455 curthread_pflags_restore(save); 2456 } 2457