1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 #include "opt_ktrace.h" 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/lock.h> 82 #include <sys/mman.h> 83 #include <sys/mutex.h> 84 #include <sys/pctrie.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/refcount.h> 88 #include <sys/resourcevar.h> 89 #include <sys/rwlock.h> 90 #include <sys/signalvar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysent.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #include <vm/vm.h> 100 #include <vm/vm_param.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pageout.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_radix.h> 109 #include <vm/vm_extern.h> 110 #include <vm/vm_reserv.h> 111 112 #define PFBAK 4 113 #define PFFOR 4 114 115 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 116 117 #define VM_FAULT_DONTNEED_MIN 1048576 118 119 struct faultstate { 120 /* Fault parameters. */ 121 vm_offset_t vaddr; 122 vm_page_t *m_hold; 123 vm_prot_t fault_type; 124 vm_prot_t prot; 125 int fault_flags; 126 boolean_t wired; 127 128 /* Control state. */ 129 struct timeval oom_start_time; 130 bool oom_started; 131 int nera; 132 bool can_read_lock; 133 134 /* Page reference for cow. */ 135 vm_page_t m_cow; 136 137 /* Current object. */ 138 vm_object_t object; 139 vm_pindex_t pindex; 140 vm_page_t m; 141 142 /* Top-level map object. */ 143 vm_object_t first_object; 144 vm_pindex_t first_pindex; 145 vm_page_t first_m; 146 147 /* Map state. */ 148 vm_map_t map; 149 vm_map_entry_t entry; 150 int map_generation; 151 bool lookup_still_valid; 152 153 /* Vnode if locked. */ 154 struct vnode *vp; 155 }; 156 157 /* 158 * Return codes for internal fault routines. 159 */ 160 enum fault_status { 161 FAULT_SUCCESS = 10000, /* Return success to user. */ 162 FAULT_FAILURE, /* Return failure to user. */ 163 FAULT_CONTINUE, /* Continue faulting. */ 164 FAULT_RESTART, /* Restart fault. */ 165 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 166 FAULT_HARD, /* Performed I/O. */ 167 FAULT_SOFT, /* Found valid page. */ 168 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 169 }; 170 171 enum fault_next_status { 172 FAULT_NEXT_GOTOBJ = 1, 173 FAULT_NEXT_NOOBJ, 174 FAULT_NEXT_RESTART, 175 }; 176 177 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 178 int ahead); 179 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 180 int backward, int forward, bool obj_locked); 181 182 static int vm_pfault_oom_attempts = 3; 183 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 184 &vm_pfault_oom_attempts, 0, 185 "Number of page allocation attempts in page fault handler before it " 186 "triggers OOM handling"); 187 188 static int vm_pfault_oom_wait = 10; 189 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 190 &vm_pfault_oom_wait, 0, 191 "Number of seconds to wait for free pages before retrying " 192 "the page fault handler"); 193 194 static inline void 195 vm_fault_page_release(vm_page_t *mp) 196 { 197 vm_page_t m; 198 199 m = *mp; 200 if (m != NULL) { 201 /* 202 * We are likely to loop around again and attempt to busy 203 * this page. Deactivating it leaves it available for 204 * pageout while optimizing fault restarts. 205 */ 206 vm_page_deactivate(m); 207 vm_page_xunbusy(m); 208 *mp = NULL; 209 } 210 } 211 212 static inline void 213 vm_fault_page_free(vm_page_t *mp) 214 { 215 vm_page_t m; 216 217 m = *mp; 218 if (m != NULL) { 219 VM_OBJECT_ASSERT_WLOCKED(m->object); 220 if (!vm_page_wired(m)) 221 vm_page_free(m); 222 else 223 vm_page_xunbusy(m); 224 *mp = NULL; 225 } 226 } 227 228 /* 229 * Return true if a vm_pager_get_pages() call is needed in order to check 230 * whether the pager might have a particular page, false if it can be determined 231 * immediately that the pager can not have a copy. For swap objects, this can 232 * be checked quickly. 233 */ 234 static inline bool 235 vm_fault_object_needs_getpages(vm_object_t object) 236 { 237 VM_OBJECT_ASSERT_LOCKED(object); 238 239 return ((object->flags & OBJ_SWAP) == 0 || 240 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 241 } 242 243 static inline void 244 vm_fault_unlock_map(struct faultstate *fs) 245 { 246 247 if (fs->lookup_still_valid) { 248 vm_map_lookup_done(fs->map, fs->entry); 249 fs->lookup_still_valid = false; 250 } 251 } 252 253 static void 254 vm_fault_unlock_vp(struct faultstate *fs) 255 { 256 257 if (fs->vp != NULL) { 258 vput(fs->vp); 259 fs->vp = NULL; 260 } 261 } 262 263 static void 264 vm_fault_deallocate(struct faultstate *fs) 265 { 266 267 vm_fault_page_release(&fs->m_cow); 268 vm_fault_page_release(&fs->m); 269 vm_object_pip_wakeup(fs->object); 270 if (fs->object != fs->first_object) { 271 VM_OBJECT_WLOCK(fs->first_object); 272 vm_fault_page_free(&fs->first_m); 273 VM_OBJECT_WUNLOCK(fs->first_object); 274 vm_object_pip_wakeup(fs->first_object); 275 } 276 vm_object_deallocate(fs->first_object); 277 vm_fault_unlock_map(fs); 278 vm_fault_unlock_vp(fs); 279 } 280 281 static void 282 vm_fault_unlock_and_deallocate(struct faultstate *fs) 283 { 284 285 VM_OBJECT_UNLOCK(fs->object); 286 vm_fault_deallocate(fs); 287 } 288 289 static void 290 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 291 { 292 bool need_dirty; 293 294 if (((fs->prot & VM_PROT_WRITE) == 0 && 295 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 296 (m->oflags & VPO_UNMANAGED) != 0) 297 return; 298 299 VM_PAGE_OBJECT_BUSY_ASSERT(m); 300 301 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 302 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 303 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 304 305 vm_object_set_writeable_dirty(m->object); 306 307 /* 308 * If the fault is a write, we know that this page is being 309 * written NOW so dirty it explicitly to save on 310 * pmap_is_modified() calls later. 311 * 312 * Also, since the page is now dirty, we can possibly tell 313 * the pager to release any swap backing the page. 314 */ 315 if (need_dirty && vm_page_set_dirty(m) == 0) { 316 /* 317 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 318 * if the page is already dirty to prevent data written with 319 * the expectation of being synced from not being synced. 320 * Likewise if this entry does not request NOSYNC then make 321 * sure the page isn't marked NOSYNC. Applications sharing 322 * data should use the same flags to avoid ping ponging. 323 */ 324 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 325 vm_page_aflag_set(m, PGA_NOSYNC); 326 else 327 vm_page_aflag_clear(m, PGA_NOSYNC); 328 } 329 330 } 331 332 /* 333 * Unlocks fs.first_object and fs.map on success. 334 */ 335 static enum fault_status 336 vm_fault_soft_fast(struct faultstate *fs) 337 { 338 vm_page_t m, m_map; 339 #if VM_NRESERVLEVEL > 0 340 vm_page_t m_super; 341 int flags; 342 #endif 343 int psind; 344 vm_offset_t vaddr; 345 346 MPASS(fs->vp == NULL); 347 348 /* 349 * If we fail, vast majority of the time it is because the page is not 350 * there to begin with. Opportunistically perform the lookup and 351 * subsequent checks without the object lock, revalidate later. 352 * 353 * Note: a busy page can be mapped for read|execute access. 354 */ 355 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 356 if (m == NULL || !vm_page_all_valid(m) || 357 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 358 VM_OBJECT_WLOCK(fs->first_object); 359 return (FAULT_FAILURE); 360 } 361 362 vaddr = fs->vaddr; 363 364 VM_OBJECT_RLOCK(fs->first_object); 365 366 /* 367 * Now that we stabilized the state, revalidate the page is in the shape 368 * we encountered above. 369 */ 370 371 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 372 goto fail; 373 374 vm_object_busy(fs->first_object); 375 376 if (!vm_page_all_valid(m) || 377 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 378 goto fail_busy; 379 380 m_map = m; 381 psind = 0; 382 #if VM_NRESERVLEVEL > 0 383 if ((m->flags & PG_FICTITIOUS) == 0 && 384 (m_super = vm_reserv_to_superpage(m)) != NULL) { 385 psind = m_super->psind; 386 KASSERT(psind > 0, 387 ("psind %d of m_super %p < 1", psind, m_super)); 388 flags = PS_ALL_VALID; 389 if ((fs->prot & VM_PROT_WRITE) != 0) { 390 /* 391 * Create a superpage mapping allowing write access 392 * only if none of the constituent pages are busy and 393 * all of them are already dirty (except possibly for 394 * the page that was faulted on). 395 */ 396 flags |= PS_NONE_BUSY; 397 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 398 flags |= PS_ALL_DIRTY; 399 } 400 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start || 401 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end || 402 (vaddr & (pagesizes[psind] - 1)) != 403 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) || 404 !vm_page_ps_test(m_super, psind, flags, m) || 405 !pmap_ps_enabled(fs->map->pmap)) { 406 psind--; 407 if (psind == 0) 408 break; 409 m_super += rounddown2(m - m_super, 410 atop(pagesizes[psind])); 411 KASSERT(m_super->psind >= psind, 412 ("psind %d of m_super %p < %d", m_super->psind, 413 m_super, psind)); 414 } 415 if (psind > 0) { 416 m_map = m_super; 417 vaddr = rounddown2(vaddr, pagesizes[psind]); 418 /* Preset the modified bit for dirty superpages. */ 419 if ((flags & PS_ALL_DIRTY) != 0) 420 fs->fault_type |= VM_PROT_WRITE; 421 } 422 } 423 #endif 424 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 425 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 426 KERN_SUCCESS) 427 goto fail_busy; 428 if (fs->m_hold != NULL) { 429 (*fs->m_hold) = m; 430 vm_page_wire(m); 431 } 432 if (psind == 0 && !fs->wired) 433 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 434 VM_OBJECT_RUNLOCK(fs->first_object); 435 vm_fault_dirty(fs, m); 436 vm_object_unbusy(fs->first_object); 437 vm_map_lookup_done(fs->map, fs->entry); 438 curthread->td_ru.ru_minflt++; 439 return (FAULT_SUCCESS); 440 fail_busy: 441 vm_object_unbusy(fs->first_object); 442 fail: 443 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 444 VM_OBJECT_RUNLOCK(fs->first_object); 445 VM_OBJECT_WLOCK(fs->first_object); 446 } 447 return (FAULT_FAILURE); 448 } 449 450 static void 451 vm_fault_restore_map_lock(struct faultstate *fs) 452 { 453 454 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 455 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 456 457 if (!vm_map_trylock_read(fs->map)) { 458 VM_OBJECT_WUNLOCK(fs->first_object); 459 vm_map_lock_read(fs->map); 460 VM_OBJECT_WLOCK(fs->first_object); 461 } 462 fs->lookup_still_valid = true; 463 } 464 465 static void 466 vm_fault_populate_check_page(vm_page_t m) 467 { 468 469 /* 470 * Check each page to ensure that the pager is obeying the 471 * interface: the page must be installed in the object, fully 472 * valid, and exclusively busied. 473 */ 474 MPASS(m != NULL); 475 MPASS(vm_page_all_valid(m)); 476 MPASS(vm_page_xbusied(m)); 477 } 478 479 static void 480 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 481 vm_pindex_t last) 482 { 483 struct pctrie_iter pages; 484 vm_page_t m; 485 486 VM_OBJECT_ASSERT_WLOCKED(object); 487 MPASS(first <= last); 488 vm_page_iter_limit_init(&pages, object, last + 1); 489 VM_RADIX_FORALL_FROM(m, &pages, first) { 490 vm_fault_populate_check_page(m); 491 vm_page_deactivate(m); 492 vm_page_xunbusy(m); 493 } 494 KASSERT(pages.index == last, ("%s: pindex mismatch", __func__)); 495 } 496 497 static enum fault_status 498 vm_fault_populate(struct faultstate *fs) 499 { 500 vm_offset_t vaddr; 501 vm_page_t m; 502 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 503 int bdry_idx, i, npages, psind, rv; 504 enum fault_status res; 505 506 MPASS(fs->object == fs->first_object); 507 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 508 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 509 MPASS(fs->first_object->backing_object == NULL); 510 MPASS(fs->lookup_still_valid); 511 512 pager_first = OFF_TO_IDX(fs->entry->offset); 513 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 514 vm_fault_unlock_map(fs); 515 vm_fault_unlock_vp(fs); 516 517 res = FAULT_SUCCESS; 518 519 /* 520 * Call the pager (driver) populate() method. 521 * 522 * There is no guarantee that the method will be called again 523 * if the current fault is for read, and a future fault is 524 * for write. Report the entry's maximum allowed protection 525 * to the driver. 526 */ 527 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 528 fs->fault_type, fs->entry->max_protection, &pager_first, 529 &pager_last); 530 531 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 532 if (rv == VM_PAGER_BAD) { 533 /* 534 * VM_PAGER_BAD is the backdoor for a pager to request 535 * normal fault handling. 536 */ 537 vm_fault_restore_map_lock(fs); 538 if (fs->map->timestamp != fs->map_generation) 539 return (FAULT_RESTART); 540 return (FAULT_CONTINUE); 541 } 542 if (rv != VM_PAGER_OK) 543 return (FAULT_FAILURE); /* AKA SIGSEGV */ 544 545 /* Ensure that the driver is obeying the interface. */ 546 MPASS(pager_first <= pager_last); 547 MPASS(fs->first_pindex <= pager_last); 548 MPASS(fs->first_pindex >= pager_first); 549 MPASS(pager_last < fs->first_object->size); 550 551 vm_fault_restore_map_lock(fs); 552 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 553 if (fs->map->timestamp != fs->map_generation) { 554 if (bdry_idx == 0) { 555 vm_fault_populate_cleanup(fs->first_object, pager_first, 556 pager_last); 557 } else { 558 m = vm_page_lookup(fs->first_object, pager_first); 559 if (m != fs->m) 560 vm_page_xunbusy(m); 561 } 562 return (FAULT_RESTART); 563 } 564 565 /* 566 * The map is unchanged after our last unlock. Process the fault. 567 * 568 * First, the special case of largepage mappings, where 569 * populate only busies the first page in superpage run. 570 */ 571 if (bdry_idx != 0) { 572 KASSERT(PMAP_HAS_LARGEPAGES, 573 ("missing pmap support for large pages")); 574 m = vm_page_lookup(fs->first_object, pager_first); 575 vm_fault_populate_check_page(m); 576 VM_OBJECT_WUNLOCK(fs->first_object); 577 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 578 fs->entry->offset; 579 /* assert alignment for entry */ 580 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 581 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 582 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 583 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 584 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 585 ("unaligned superpage m %p %#jx", m, 586 (uintmax_t)VM_PAGE_TO_PHYS(m))); 587 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 588 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 589 PMAP_ENTER_LARGEPAGE, bdry_idx); 590 VM_OBJECT_WLOCK(fs->first_object); 591 vm_page_xunbusy(m); 592 if (rv != KERN_SUCCESS) { 593 res = FAULT_FAILURE; 594 goto out; 595 } 596 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 597 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 598 vm_page_wire(m + i); 599 } 600 if (fs->m_hold != NULL) { 601 *fs->m_hold = m + (fs->first_pindex - pager_first); 602 vm_page_wire(*fs->m_hold); 603 } 604 goto out; 605 } 606 607 /* 608 * The range [pager_first, pager_last] that is given to the 609 * pager is only a hint. The pager may populate any range 610 * within the object that includes the requested page index. 611 * In case the pager expanded the range, clip it to fit into 612 * the map entry. 613 */ 614 map_first = OFF_TO_IDX(fs->entry->offset); 615 if (map_first > pager_first) { 616 vm_fault_populate_cleanup(fs->first_object, pager_first, 617 map_first - 1); 618 pager_first = map_first; 619 } 620 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 621 if (map_last < pager_last) { 622 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 623 pager_last); 624 pager_last = map_last; 625 } 626 for (pidx = pager_first; pidx <= pager_last; pidx += npages) { 627 m = vm_page_lookup(fs->first_object, pidx); 628 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 629 KASSERT(m != NULL && m->pindex == pidx, 630 ("%s: pindex mismatch", __func__)); 631 psind = m->psind; 632 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 633 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 634 !pmap_ps_enabled(fs->map->pmap))) 635 psind--; 636 637 npages = atop(pagesizes[psind]); 638 for (i = 0; i < npages; i++) { 639 vm_fault_populate_check_page(&m[i]); 640 vm_fault_dirty(fs, &m[i]); 641 } 642 VM_OBJECT_WUNLOCK(fs->first_object); 643 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 644 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 645 646 /* 647 * pmap_enter() may fail for a superpage mapping if additional 648 * protection policies prevent the full mapping. 649 * For example, this will happen on amd64 if the entire 650 * address range does not share the same userspace protection 651 * key. Revert to single-page mappings if this happens. 652 */ 653 MPASS(rv == KERN_SUCCESS || 654 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 655 if (__predict_false(psind > 0 && 656 rv == KERN_PROTECTION_FAILURE)) { 657 MPASS(!fs->wired); 658 for (i = 0; i < npages; i++) { 659 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 660 &m[i], fs->prot, fs->fault_type, 0); 661 MPASS(rv == KERN_SUCCESS); 662 } 663 } 664 665 VM_OBJECT_WLOCK(fs->first_object); 666 for (i = 0; i < npages; i++) { 667 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 668 m[i].pindex == fs->first_pindex) 669 vm_page_wire(&m[i]); 670 else 671 vm_page_activate(&m[i]); 672 if (fs->m_hold != NULL && 673 m[i].pindex == fs->first_pindex) { 674 (*fs->m_hold) = &m[i]; 675 vm_page_wire(&m[i]); 676 } 677 vm_page_xunbusy(&m[i]); 678 } 679 } 680 out: 681 curthread->td_ru.ru_majflt++; 682 return (res); 683 } 684 685 static int prot_fault_translation; 686 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 687 &prot_fault_translation, 0, 688 "Control signal to deliver on protection fault"); 689 690 /* compat definition to keep common code for signal translation */ 691 #define UCODE_PAGEFLT 12 692 #ifdef T_PAGEFLT 693 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 694 #endif 695 696 /* 697 * vm_fault_trap: 698 * 699 * Handle a page fault occurring at the given address, 700 * requiring the given permissions, in the map specified. 701 * If successful, the page is inserted into the 702 * associated physical map. 703 * 704 * NOTE: the given address should be truncated to the 705 * proper page address. 706 * 707 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 708 * a standard error specifying why the fault is fatal is returned. 709 * 710 * The map in question must be referenced, and remains so. 711 * Caller may hold no locks. 712 */ 713 int 714 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 715 int fault_flags, int *signo, int *ucode) 716 { 717 int result; 718 719 MPASS(signo == NULL || ucode != NULL); 720 #ifdef KTRACE 721 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 722 ktrfault(vaddr, fault_type); 723 #endif 724 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 725 NULL); 726 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 727 result == KERN_INVALID_ADDRESS || 728 result == KERN_RESOURCE_SHORTAGE || 729 result == KERN_PROTECTION_FAILURE || 730 result == KERN_OUT_OF_BOUNDS, 731 ("Unexpected Mach error %d from vm_fault()", result)); 732 #ifdef KTRACE 733 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 734 ktrfaultend(result); 735 #endif 736 if (result != KERN_SUCCESS && signo != NULL) { 737 switch (result) { 738 case KERN_FAILURE: 739 case KERN_INVALID_ADDRESS: 740 *signo = SIGSEGV; 741 *ucode = SEGV_MAPERR; 742 break; 743 case KERN_RESOURCE_SHORTAGE: 744 *signo = SIGBUS; 745 *ucode = BUS_OOMERR; 746 break; 747 case KERN_OUT_OF_BOUNDS: 748 *signo = SIGBUS; 749 *ucode = BUS_OBJERR; 750 break; 751 case KERN_PROTECTION_FAILURE: 752 if (prot_fault_translation == 0) { 753 /* 754 * Autodetect. This check also covers 755 * the images without the ABI-tag ELF 756 * note. 757 */ 758 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 759 curproc->p_osrel >= P_OSREL_SIGSEGV) { 760 *signo = SIGSEGV; 761 *ucode = SEGV_ACCERR; 762 } else { 763 *signo = SIGBUS; 764 *ucode = UCODE_PAGEFLT; 765 } 766 } else if (prot_fault_translation == 1) { 767 /* Always compat mode. */ 768 *signo = SIGBUS; 769 *ucode = UCODE_PAGEFLT; 770 } else { 771 /* Always SIGSEGV mode. */ 772 *signo = SIGSEGV; 773 *ucode = SEGV_ACCERR; 774 } 775 break; 776 default: 777 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 778 result)); 779 break; 780 } 781 } 782 return (result); 783 } 784 785 static bool 786 vm_fault_object_ensure_wlocked(struct faultstate *fs) 787 { 788 if (fs->object == fs->first_object) 789 VM_OBJECT_ASSERT_WLOCKED(fs->object); 790 791 if (!fs->can_read_lock) { 792 VM_OBJECT_ASSERT_WLOCKED(fs->object); 793 return (true); 794 } 795 796 if (VM_OBJECT_WOWNED(fs->object)) 797 return (true); 798 799 if (VM_OBJECT_TRYUPGRADE(fs->object)) 800 return (true); 801 802 return (false); 803 } 804 805 static enum fault_status 806 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 807 { 808 struct vnode *vp; 809 int error, locked; 810 811 if (fs->object->type != OBJT_VNODE) 812 return (FAULT_CONTINUE); 813 vp = fs->object->handle; 814 if (vp == fs->vp) { 815 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 816 return (FAULT_CONTINUE); 817 } 818 819 /* 820 * Perform an unlock in case the desired vnode changed while 821 * the map was unlocked during a retry. 822 */ 823 vm_fault_unlock_vp(fs); 824 825 locked = VOP_ISLOCKED(vp); 826 if (locked != LK_EXCLUSIVE) 827 locked = LK_SHARED; 828 829 /* 830 * We must not sleep acquiring the vnode lock while we have 831 * the page exclusive busied or the object's 832 * paging-in-progress count incremented. Otherwise, we could 833 * deadlock. 834 */ 835 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 836 if (error == 0) { 837 fs->vp = vp; 838 return (FAULT_CONTINUE); 839 } 840 841 vhold(vp); 842 if (objlocked) 843 vm_fault_unlock_and_deallocate(fs); 844 else 845 vm_fault_deallocate(fs); 846 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 847 vdrop(vp); 848 fs->vp = vp; 849 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 850 return (FAULT_RESTART); 851 } 852 853 /* 854 * Calculate the desired readahead. Handle drop-behind. 855 * 856 * Returns the number of readahead blocks to pass to the pager. 857 */ 858 static int 859 vm_fault_readahead(struct faultstate *fs) 860 { 861 int era, nera; 862 u_char behavior; 863 864 KASSERT(fs->lookup_still_valid, ("map unlocked")); 865 era = fs->entry->read_ahead; 866 behavior = vm_map_entry_behavior(fs->entry); 867 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 868 nera = 0; 869 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 870 nera = VM_FAULT_READ_AHEAD_MAX; 871 if (fs->vaddr == fs->entry->next_read) 872 vm_fault_dontneed(fs, fs->vaddr, nera); 873 } else if (fs->vaddr == fs->entry->next_read) { 874 /* 875 * This is a sequential fault. Arithmetically 876 * increase the requested number of pages in 877 * the read-ahead window. The requested 878 * number of pages is "# of sequential faults 879 * x (read ahead min + 1) + read ahead min" 880 */ 881 nera = VM_FAULT_READ_AHEAD_MIN; 882 if (era > 0) { 883 nera += era + 1; 884 if (nera > VM_FAULT_READ_AHEAD_MAX) 885 nera = VM_FAULT_READ_AHEAD_MAX; 886 } 887 if (era == VM_FAULT_READ_AHEAD_MAX) 888 vm_fault_dontneed(fs, fs->vaddr, nera); 889 } else { 890 /* 891 * This is a non-sequential fault. 892 */ 893 nera = 0; 894 } 895 if (era != nera) { 896 /* 897 * A read lock on the map suffices to update 898 * the read ahead count safely. 899 */ 900 fs->entry->read_ahead = nera; 901 } 902 903 return (nera); 904 } 905 906 static int 907 vm_fault_lookup(struct faultstate *fs) 908 { 909 int result; 910 911 KASSERT(!fs->lookup_still_valid, 912 ("vm_fault_lookup: Map already locked.")); 913 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 914 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 915 &fs->first_pindex, &fs->prot, &fs->wired); 916 if (result != KERN_SUCCESS) { 917 vm_fault_unlock_vp(fs); 918 return (result); 919 } 920 921 fs->map_generation = fs->map->timestamp; 922 923 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 924 panic("%s: fault on nofault entry, addr: %#lx", 925 __func__, (u_long)fs->vaddr); 926 } 927 928 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 929 fs->entry->wiring_thread != curthread) { 930 vm_map_unlock_read(fs->map); 931 vm_map_lock(fs->map); 932 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 933 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 934 vm_fault_unlock_vp(fs); 935 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 936 vm_map_unlock_and_wait(fs->map, 0); 937 } else 938 vm_map_unlock(fs->map); 939 return (KERN_RESOURCE_SHORTAGE); 940 } 941 942 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 943 944 if (fs->wired) 945 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 946 else 947 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 948 ("!fs->wired && VM_FAULT_WIRE")); 949 fs->lookup_still_valid = true; 950 951 return (KERN_SUCCESS); 952 } 953 954 static int 955 vm_fault_relookup(struct faultstate *fs) 956 { 957 vm_object_t retry_object; 958 vm_pindex_t retry_pindex; 959 vm_prot_t retry_prot; 960 int result; 961 962 if (!vm_map_trylock_read(fs->map)) 963 return (KERN_RESTART); 964 965 fs->lookup_still_valid = true; 966 if (fs->map->timestamp == fs->map_generation) 967 return (KERN_SUCCESS); 968 969 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 970 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 971 &fs->wired); 972 if (result != KERN_SUCCESS) { 973 /* 974 * If retry of map lookup would have blocked then 975 * retry fault from start. 976 */ 977 if (result == KERN_FAILURE) 978 return (KERN_RESTART); 979 return (result); 980 } 981 if (retry_object != fs->first_object || 982 retry_pindex != fs->first_pindex) 983 return (KERN_RESTART); 984 985 /* 986 * Check whether the protection has changed or the object has 987 * been copied while we left the map unlocked. Changing from 988 * read to write permission is OK - we leave the page 989 * write-protected, and catch the write fault. Changing from 990 * write to read permission means that we can't mark the page 991 * write-enabled after all. 992 */ 993 fs->prot &= retry_prot; 994 fs->fault_type &= retry_prot; 995 if (fs->prot == 0) 996 return (KERN_RESTART); 997 998 /* Reassert because wired may have changed. */ 999 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 1000 ("!wired && VM_FAULT_WIRE")); 1001 1002 return (KERN_SUCCESS); 1003 } 1004 1005 static void 1006 vm_fault_cow(struct faultstate *fs) 1007 { 1008 bool is_first_object_locked; 1009 1010 KASSERT(fs->object != fs->first_object, 1011 ("source and target COW objects are identical")); 1012 1013 /* 1014 * This allows pages to be virtually copied from a backing_object 1015 * into the first_object, where the backing object has no other 1016 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1017 * we just move the page from the backing object to the first 1018 * object. Note that we must mark the page dirty in the first 1019 * object so that it will go out to swap when needed. 1020 */ 1021 is_first_object_locked = false; 1022 if ( 1023 /* 1024 * Only one shadow object and no other refs. 1025 */ 1026 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1027 /* 1028 * No other ways to look the object up 1029 */ 1030 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 && 1031 /* 1032 * We don't chase down the shadow chain and we can acquire locks. 1033 */ 1034 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) && 1035 fs->object == fs->first_object->backing_object && 1036 VM_OBJECT_TRYWLOCK(fs->object)) { 1037 /* 1038 * Remove but keep xbusy for replace. fs->m is moved into 1039 * fs->first_object and left busy while fs->first_m is 1040 * conditionally freed. 1041 */ 1042 vm_page_remove_xbusy(fs->m); 1043 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1044 fs->first_m); 1045 vm_page_dirty(fs->m); 1046 #if VM_NRESERVLEVEL > 0 1047 /* 1048 * Rename the reservation. 1049 */ 1050 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1051 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1052 #endif 1053 VM_OBJECT_WUNLOCK(fs->object); 1054 VM_OBJECT_WUNLOCK(fs->first_object); 1055 fs->first_m = fs->m; 1056 fs->m = NULL; 1057 VM_CNT_INC(v_cow_optim); 1058 } else { 1059 if (is_first_object_locked) 1060 VM_OBJECT_WUNLOCK(fs->first_object); 1061 /* 1062 * Oh, well, lets copy it. 1063 */ 1064 pmap_copy_page(fs->m, fs->first_m); 1065 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1066 vm_page_wire(fs->first_m); 1067 vm_page_unwire(fs->m, PQ_INACTIVE); 1068 } 1069 /* 1070 * Save the COW page to be released after pmap_enter is 1071 * complete. The new copy will be marked valid when we're ready 1072 * to map it. 1073 */ 1074 fs->m_cow = fs->m; 1075 fs->m = NULL; 1076 1077 /* 1078 * Typically, the shadow object is either private to this 1079 * address space (OBJ_ONEMAPPING) or its pages are read only. 1080 * In the highly unusual case where the pages of a shadow object 1081 * are read/write shared between this and other address spaces, 1082 * we need to ensure that any pmap-level mappings to the 1083 * original, copy-on-write page from the backing object are 1084 * removed from those other address spaces. 1085 * 1086 * The flag check is racy, but this is tolerable: if 1087 * OBJ_ONEMAPPING is cleared after the check, the busy state 1088 * ensures that new mappings of m_cow can't be created. 1089 * pmap_enter() will replace an existing mapping in the current 1090 * address space. If OBJ_ONEMAPPING is set after the check, 1091 * removing mappings will at worse trigger some unnecessary page 1092 * faults. 1093 */ 1094 vm_page_assert_xbusied(fs->m_cow); 1095 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1096 pmap_remove_all(fs->m_cow); 1097 } 1098 1099 vm_object_pip_wakeup(fs->object); 1100 1101 /* 1102 * Only use the new page below... 1103 */ 1104 fs->object = fs->first_object; 1105 fs->pindex = fs->first_pindex; 1106 fs->m = fs->first_m; 1107 VM_CNT_INC(v_cow_faults); 1108 curthread->td_cow++; 1109 } 1110 1111 static enum fault_next_status 1112 vm_fault_next(struct faultstate *fs) 1113 { 1114 vm_object_t next_object; 1115 1116 if (fs->object == fs->first_object || !fs->can_read_lock) 1117 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1118 else 1119 VM_OBJECT_ASSERT_LOCKED(fs->object); 1120 1121 /* 1122 * The requested page does not exist at this object/ 1123 * offset. Remove the invalid page from the object, 1124 * waking up anyone waiting for it, and continue on to 1125 * the next object. However, if this is the top-level 1126 * object, we must leave the busy page in place to 1127 * prevent another process from rushing past us, and 1128 * inserting the page in that object at the same time 1129 * that we are. 1130 */ 1131 if (fs->object == fs->first_object) { 1132 fs->first_m = fs->m; 1133 fs->m = NULL; 1134 } else if (fs->m != NULL) { 1135 if (!vm_fault_object_ensure_wlocked(fs)) { 1136 fs->can_read_lock = false; 1137 vm_fault_unlock_and_deallocate(fs); 1138 return (FAULT_NEXT_RESTART); 1139 } 1140 vm_fault_page_free(&fs->m); 1141 } 1142 1143 /* 1144 * Move on to the next object. Lock the next object before 1145 * unlocking the current one. 1146 */ 1147 next_object = fs->object->backing_object; 1148 if (next_object == NULL) 1149 return (FAULT_NEXT_NOOBJ); 1150 MPASS(fs->first_m != NULL); 1151 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1152 if (fs->can_read_lock) 1153 VM_OBJECT_RLOCK(next_object); 1154 else 1155 VM_OBJECT_WLOCK(next_object); 1156 vm_object_pip_add(next_object, 1); 1157 if (fs->object != fs->first_object) 1158 vm_object_pip_wakeup(fs->object); 1159 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1160 VM_OBJECT_UNLOCK(fs->object); 1161 fs->object = next_object; 1162 1163 return (FAULT_NEXT_GOTOBJ); 1164 } 1165 1166 static void 1167 vm_fault_zerofill(struct faultstate *fs) 1168 { 1169 1170 /* 1171 * If there's no object left, fill the page in the top 1172 * object with zeros. 1173 */ 1174 if (fs->object != fs->first_object) { 1175 vm_object_pip_wakeup(fs->object); 1176 fs->object = fs->first_object; 1177 fs->pindex = fs->first_pindex; 1178 } 1179 MPASS(fs->first_m != NULL); 1180 MPASS(fs->m == NULL); 1181 fs->m = fs->first_m; 1182 fs->first_m = NULL; 1183 1184 /* 1185 * Zero the page if necessary and mark it valid. 1186 */ 1187 if ((fs->m->flags & PG_ZERO) == 0) { 1188 pmap_zero_page(fs->m); 1189 } else { 1190 VM_CNT_INC(v_ozfod); 1191 } 1192 VM_CNT_INC(v_zfod); 1193 vm_page_valid(fs->m); 1194 } 1195 1196 /* 1197 * Initiate page fault after timeout. Returns true if caller should 1198 * do vm_waitpfault() after the call. 1199 */ 1200 static bool 1201 vm_fault_allocate_oom(struct faultstate *fs) 1202 { 1203 struct timeval now; 1204 1205 vm_fault_unlock_and_deallocate(fs); 1206 if (vm_pfault_oom_attempts < 0) 1207 return (true); 1208 if (!fs->oom_started) { 1209 fs->oom_started = true; 1210 getmicrotime(&fs->oom_start_time); 1211 return (true); 1212 } 1213 1214 getmicrotime(&now); 1215 timevalsub(&now, &fs->oom_start_time); 1216 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1217 return (true); 1218 1219 if (bootverbose) 1220 printf( 1221 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1222 curproc->p_pid, curproc->p_comm); 1223 vm_pageout_oom(VM_OOM_MEM_PF); 1224 fs->oom_started = false; 1225 return (false); 1226 } 1227 1228 /* 1229 * Allocate a page directly or via the object populate method. 1230 */ 1231 static enum fault_status 1232 vm_fault_allocate(struct faultstate *fs, struct pctrie_iter *pages) 1233 { 1234 struct domainset *dset; 1235 enum fault_status res; 1236 1237 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1238 res = vm_fault_lock_vnode(fs, true); 1239 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1240 if (res == FAULT_RESTART) 1241 return (res); 1242 } 1243 1244 if (fs->pindex >= fs->object->size) { 1245 vm_fault_unlock_and_deallocate(fs); 1246 return (FAULT_OUT_OF_BOUNDS); 1247 } 1248 1249 if (fs->object == fs->first_object && 1250 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1251 fs->first_object->shadow_count == 0) { 1252 res = vm_fault_populate(fs); 1253 switch (res) { 1254 case FAULT_SUCCESS: 1255 case FAULT_FAILURE: 1256 case FAULT_RESTART: 1257 vm_fault_unlock_and_deallocate(fs); 1258 return (res); 1259 case FAULT_CONTINUE: 1260 pctrie_iter_reset(pages); 1261 /* 1262 * Pager's populate() method 1263 * returned VM_PAGER_BAD. 1264 */ 1265 break; 1266 default: 1267 panic("inconsistent return codes"); 1268 } 1269 } 1270 1271 /* 1272 * Allocate a new page for this object/offset pair. 1273 * 1274 * If the process has a fatal signal pending, prioritize the allocation 1275 * with the expectation that the process will exit shortly and free some 1276 * pages. In particular, the signal may have been posted by the page 1277 * daemon in an attempt to resolve an out-of-memory condition. 1278 * 1279 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1280 * might be not observed here, and allocation fails, causing a restart 1281 * and new reading of the p_flag. 1282 */ 1283 dset = fs->object->domain.dr_policy; 1284 if (dset == NULL) 1285 dset = curthread->td_domain.dr_policy; 1286 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1287 #if VM_NRESERVLEVEL > 0 1288 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1289 #endif 1290 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1291 vm_fault_unlock_and_deallocate(fs); 1292 return (FAULT_FAILURE); 1293 } 1294 fs->m = vm_page_alloc_iter(fs->object, fs->pindex, 1295 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0, pages); 1296 } 1297 if (fs->m == NULL) { 1298 if (vm_fault_allocate_oom(fs)) 1299 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1300 return (FAULT_RESTART); 1301 } 1302 fs->oom_started = false; 1303 1304 return (FAULT_CONTINUE); 1305 } 1306 1307 /* 1308 * Call the pager to retrieve the page if there is a chance 1309 * that the pager has it, and potentially retrieve additional 1310 * pages at the same time. 1311 */ 1312 static enum fault_status 1313 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1314 { 1315 vm_offset_t e_end, e_start; 1316 int ahead, behind, cluster_offset, rv; 1317 enum fault_status status; 1318 u_char behavior; 1319 1320 /* 1321 * Prepare for unlocking the map. Save the map 1322 * entry's start and end addresses, which are used to 1323 * optimize the size of the pager operation below. 1324 * Even if the map entry's addresses change after 1325 * unlocking the map, using the saved addresses is 1326 * safe. 1327 */ 1328 e_start = fs->entry->start; 1329 e_end = fs->entry->end; 1330 behavior = vm_map_entry_behavior(fs->entry); 1331 1332 /* 1333 * If the pager for the current object might have 1334 * the page, then determine the number of additional 1335 * pages to read and potentially reprioritize 1336 * previously read pages for earlier reclamation. 1337 * These operations should only be performed once per 1338 * page fault. Even if the current pager doesn't 1339 * have the page, the number of additional pages to 1340 * read will apply to subsequent objects in the 1341 * shadow chain. 1342 */ 1343 if (fs->nera == -1 && !P_KILLED(curproc)) 1344 fs->nera = vm_fault_readahead(fs); 1345 1346 /* 1347 * Release the map lock before locking the vnode or 1348 * sleeping in the pager. (If the current object has 1349 * a shadow, then an earlier iteration of this loop 1350 * may have already unlocked the map.) 1351 */ 1352 vm_fault_unlock_map(fs); 1353 1354 status = vm_fault_lock_vnode(fs, false); 1355 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1356 if (status == FAULT_RESTART) 1357 return (status); 1358 KASSERT(fs->vp == NULL || !vm_map_is_system(fs->map), 1359 ("vm_fault: vnode-backed object mapped by system map")); 1360 1361 /* 1362 * Page in the requested page and hint the pager, 1363 * that it may bring up surrounding pages. 1364 */ 1365 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1366 P_KILLED(curproc)) { 1367 behind = 0; 1368 ahead = 0; 1369 } else { 1370 /* Is this a sequential fault? */ 1371 if (fs->nera > 0) { 1372 behind = 0; 1373 ahead = fs->nera; 1374 } else { 1375 /* 1376 * Request a cluster of pages that is 1377 * aligned to a VM_FAULT_READ_DEFAULT 1378 * page offset boundary within the 1379 * object. Alignment to a page offset 1380 * boundary is more likely to coincide 1381 * with the underlying file system 1382 * block than alignment to a virtual 1383 * address boundary. 1384 */ 1385 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1386 behind = ulmin(cluster_offset, 1387 atop(fs->vaddr - e_start)); 1388 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1389 } 1390 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1391 } 1392 *behindp = behind; 1393 *aheadp = ahead; 1394 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1395 if (rv == VM_PAGER_OK) 1396 return (FAULT_HARD); 1397 if (rv == VM_PAGER_ERROR) 1398 printf("vm_fault: pager read error, pid %d (%s)\n", 1399 curproc->p_pid, curproc->p_comm); 1400 /* 1401 * If an I/O error occurred or the requested page was 1402 * outside the range of the pager, clean up and return 1403 * an error. 1404 */ 1405 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1406 VM_OBJECT_WLOCK(fs->object); 1407 vm_fault_page_free(&fs->m); 1408 vm_fault_unlock_and_deallocate(fs); 1409 return (FAULT_OUT_OF_BOUNDS); 1410 } 1411 KASSERT(rv == VM_PAGER_FAIL, 1412 ("%s: unexpected pager error %d", __func__, rv)); 1413 return (FAULT_CONTINUE); 1414 } 1415 1416 /* 1417 * Wait/Retry if the page is busy. We have to do this if the page is 1418 * either exclusive or shared busy because the vm_pager may be using 1419 * read busy for pageouts (and even pageins if it is the vnode pager), 1420 * and we could end up trying to pagein and pageout the same page 1421 * simultaneously. 1422 * 1423 * We can theoretically allow the busy case on a read fault if the page 1424 * is marked valid, but since such pages are typically already pmap'd, 1425 * putting that special case in might be more effort then it is worth. 1426 * We cannot under any circumstances mess around with a shared busied 1427 * page except, perhaps, to pmap it. 1428 */ 1429 static void 1430 vm_fault_busy_sleep(struct faultstate *fs) 1431 { 1432 /* 1433 * Reference the page before unlocking and 1434 * sleeping so that the page daemon is less 1435 * likely to reclaim it. 1436 */ 1437 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1438 if (fs->object != fs->first_object) { 1439 vm_fault_page_release(&fs->first_m); 1440 vm_object_pip_wakeup(fs->first_object); 1441 } 1442 vm_object_pip_wakeup(fs->object); 1443 vm_fault_unlock_map(fs); 1444 if (!vm_page_busy_sleep(fs->m, "vmpfw", 0)) 1445 VM_OBJECT_UNLOCK(fs->object); 1446 VM_CNT_INC(v_intrans); 1447 vm_object_deallocate(fs->first_object); 1448 } 1449 1450 /* 1451 * Handle page lookup, populate, allocate, page-in for the current 1452 * object. 1453 * 1454 * The object is locked on entry and will remain locked with a return 1455 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1456 * Otherwise, the object will be unlocked upon return. 1457 */ 1458 static enum fault_status 1459 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1460 { 1461 struct pctrie_iter pages; 1462 enum fault_status res; 1463 bool dead; 1464 1465 if (fs->object == fs->first_object || !fs->can_read_lock) 1466 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1467 else 1468 VM_OBJECT_ASSERT_LOCKED(fs->object); 1469 1470 /* 1471 * If the object is marked for imminent termination, we retry 1472 * here, since the collapse pass has raced with us. Otherwise, 1473 * if we see terminally dead object, return fail. 1474 */ 1475 if ((fs->object->flags & OBJ_DEAD) != 0) { 1476 dead = fs->object->type == OBJT_DEAD; 1477 vm_fault_unlock_and_deallocate(fs); 1478 if (dead) 1479 return (FAULT_PROTECTION_FAILURE); 1480 pause("vmf_de", 1); 1481 return (FAULT_RESTART); 1482 } 1483 1484 /* 1485 * See if the page is resident. 1486 */ 1487 vm_page_iter_init(&pages, fs->object); 1488 fs->m = vm_radix_iter_lookup(&pages, fs->pindex); 1489 if (fs->m != NULL) { 1490 if (!vm_page_tryxbusy(fs->m)) { 1491 vm_fault_busy_sleep(fs); 1492 return (FAULT_RESTART); 1493 } 1494 1495 /* 1496 * The page is marked busy for other processes and the 1497 * pagedaemon. If it is still completely valid we are 1498 * done. 1499 */ 1500 if (vm_page_all_valid(fs->m)) { 1501 VM_OBJECT_UNLOCK(fs->object); 1502 return (FAULT_SOFT); 1503 } 1504 } 1505 1506 /* 1507 * Page is not resident. If the pager might contain the page 1508 * or this is the beginning of the search, allocate a new 1509 * page. 1510 */ 1511 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1512 fs->object == fs->first_object)) { 1513 if (!vm_fault_object_ensure_wlocked(fs)) { 1514 fs->can_read_lock = false; 1515 vm_fault_unlock_and_deallocate(fs); 1516 return (FAULT_RESTART); 1517 } 1518 res = vm_fault_allocate(fs, &pages); 1519 if (res != FAULT_CONTINUE) 1520 return (res); 1521 } 1522 1523 /* 1524 * Check to see if the pager can possibly satisfy this fault. 1525 * If not, skip to the next object without dropping the lock to 1526 * preserve atomicity of shadow faults. 1527 */ 1528 if (vm_fault_object_needs_getpages(fs->object)) { 1529 /* 1530 * At this point, we have either allocated a new page 1531 * or found an existing page that is only partially 1532 * valid. 1533 * 1534 * We hold a reference on the current object and the 1535 * page is exclusive busied. The exclusive busy 1536 * prevents simultaneous faults and collapses while 1537 * the object lock is dropped. 1538 */ 1539 VM_OBJECT_UNLOCK(fs->object); 1540 res = vm_fault_getpages(fs, behindp, aheadp); 1541 if (res == FAULT_CONTINUE) 1542 VM_OBJECT_WLOCK(fs->object); 1543 } else { 1544 res = FAULT_CONTINUE; 1545 } 1546 return (res); 1547 } 1548 1549 int 1550 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1551 int fault_flags, vm_page_t *m_hold) 1552 { 1553 struct pctrie_iter pages; 1554 struct faultstate fs; 1555 int ahead, behind, faultcount, rv; 1556 enum fault_status res; 1557 enum fault_next_status res_next; 1558 bool hardfault; 1559 1560 VM_CNT_INC(v_vm_faults); 1561 1562 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1563 return (KERN_PROTECTION_FAILURE); 1564 1565 fs.vp = NULL; 1566 fs.vaddr = vaddr; 1567 fs.m_hold = m_hold; 1568 fs.fault_flags = fault_flags; 1569 fs.map = map; 1570 fs.lookup_still_valid = false; 1571 fs.oom_started = false; 1572 fs.nera = -1; 1573 fs.can_read_lock = true; 1574 faultcount = 0; 1575 hardfault = false; 1576 1577 RetryFault: 1578 fs.fault_type = fault_type; 1579 1580 /* 1581 * Find the backing store object and offset into it to begin the 1582 * search. 1583 */ 1584 rv = vm_fault_lookup(&fs); 1585 if (rv != KERN_SUCCESS) { 1586 if (rv == KERN_RESOURCE_SHORTAGE) 1587 goto RetryFault; 1588 return (rv); 1589 } 1590 1591 /* 1592 * Try to avoid lock contention on the top-level object through 1593 * special-case handling of some types of page faults, specifically, 1594 * those that are mapping an existing page from the top-level object. 1595 * Under this condition, a read lock on the object suffices, allowing 1596 * multiple page faults of a similar type to run in parallel. 1597 */ 1598 if (fs.vp == NULL /* avoid locked vnode leak */ && 1599 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1600 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1601 res = vm_fault_soft_fast(&fs); 1602 if (res == FAULT_SUCCESS) { 1603 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1604 return (KERN_SUCCESS); 1605 } 1606 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1607 } else { 1608 vm_page_iter_init(&pages, fs.first_object); 1609 VM_OBJECT_WLOCK(fs.first_object); 1610 } 1611 1612 /* 1613 * Make a reference to this object to prevent its disposal while we 1614 * are messing with it. Once we have the reference, the map is free 1615 * to be diddled. Since objects reference their shadows (and copies), 1616 * they will stay around as well. 1617 * 1618 * Bump the paging-in-progress count to prevent size changes (e.g. 1619 * truncation operations) during I/O. 1620 */ 1621 vm_object_reference_locked(fs.first_object); 1622 vm_object_pip_add(fs.first_object, 1); 1623 1624 fs.m_cow = fs.m = fs.first_m = NULL; 1625 1626 /* 1627 * Search for the page at object/offset. 1628 */ 1629 fs.object = fs.first_object; 1630 fs.pindex = fs.first_pindex; 1631 1632 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1633 res = vm_fault_allocate(&fs, &pages); 1634 switch (res) { 1635 case FAULT_RESTART: 1636 goto RetryFault; 1637 case FAULT_SUCCESS: 1638 return (KERN_SUCCESS); 1639 case FAULT_FAILURE: 1640 return (KERN_FAILURE); 1641 case FAULT_OUT_OF_BOUNDS: 1642 return (KERN_OUT_OF_BOUNDS); 1643 case FAULT_CONTINUE: 1644 break; 1645 default: 1646 panic("vm_fault: Unhandled status %d", res); 1647 } 1648 } 1649 1650 while (TRUE) { 1651 KASSERT(fs.m == NULL, 1652 ("page still set %p at loop start", fs.m)); 1653 1654 res = vm_fault_object(&fs, &behind, &ahead); 1655 switch (res) { 1656 case FAULT_SOFT: 1657 goto found; 1658 case FAULT_HARD: 1659 faultcount = behind + 1 + ahead; 1660 hardfault = true; 1661 goto found; 1662 case FAULT_RESTART: 1663 goto RetryFault; 1664 case FAULT_SUCCESS: 1665 return (KERN_SUCCESS); 1666 case FAULT_FAILURE: 1667 return (KERN_FAILURE); 1668 case FAULT_OUT_OF_BOUNDS: 1669 return (KERN_OUT_OF_BOUNDS); 1670 case FAULT_PROTECTION_FAILURE: 1671 return (KERN_PROTECTION_FAILURE); 1672 case FAULT_CONTINUE: 1673 break; 1674 default: 1675 panic("vm_fault: Unhandled status %d", res); 1676 } 1677 1678 /* 1679 * The page was not found in the current object. Try to 1680 * traverse into a backing object or zero fill if none is 1681 * found. 1682 */ 1683 res_next = vm_fault_next(&fs); 1684 if (res_next == FAULT_NEXT_RESTART) 1685 goto RetryFault; 1686 else if (res_next == FAULT_NEXT_GOTOBJ) 1687 continue; 1688 MPASS(res_next == FAULT_NEXT_NOOBJ); 1689 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1690 if (fs.first_object == fs.object) 1691 vm_fault_page_free(&fs.first_m); 1692 vm_fault_unlock_and_deallocate(&fs); 1693 return (KERN_OUT_OF_BOUNDS); 1694 } 1695 VM_OBJECT_UNLOCK(fs.object); 1696 vm_fault_zerofill(&fs); 1697 /* Don't try to prefault neighboring pages. */ 1698 faultcount = 1; 1699 break; 1700 } 1701 1702 found: 1703 /* 1704 * A valid page has been found and exclusively busied. The 1705 * object lock must no longer be held. 1706 */ 1707 vm_page_assert_xbusied(fs.m); 1708 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1709 1710 /* 1711 * If the page is being written, but isn't already owned by the 1712 * top-level object, we have to copy it into a new page owned by the 1713 * top-level object. 1714 */ 1715 if (fs.object != fs.first_object) { 1716 /* 1717 * We only really need to copy if we want to write it. 1718 */ 1719 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1720 vm_fault_cow(&fs); 1721 /* 1722 * We only try to prefault read-only mappings to the 1723 * neighboring pages when this copy-on-write fault is 1724 * a hard fault. In other cases, trying to prefault 1725 * is typically wasted effort. 1726 */ 1727 if (faultcount == 0) 1728 faultcount = 1; 1729 1730 } else { 1731 fs.prot &= ~VM_PROT_WRITE; 1732 } 1733 } 1734 1735 /* 1736 * We must verify that the maps have not changed since our last 1737 * lookup. 1738 */ 1739 if (!fs.lookup_still_valid) { 1740 rv = vm_fault_relookup(&fs); 1741 if (rv != KERN_SUCCESS) { 1742 vm_fault_deallocate(&fs); 1743 if (rv == KERN_RESTART) 1744 goto RetryFault; 1745 return (rv); 1746 } 1747 } 1748 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1749 1750 /* 1751 * If the page was filled by a pager, save the virtual address that 1752 * should be faulted on next under a sequential access pattern to the 1753 * map entry. A read lock on the map suffices to update this address 1754 * safely. 1755 */ 1756 if (hardfault) 1757 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1758 1759 /* 1760 * If the page to be mapped was copied from a backing object, we defer 1761 * marking it valid until here, where the fault handler is guaranteed to 1762 * succeed. Otherwise we can end up with a shadowed, mapped page in the 1763 * backing object, which violates an invariant of vm_object_collapse() 1764 * that shadowed pages are not mapped. 1765 */ 1766 if (fs.m_cow != NULL) { 1767 KASSERT(vm_page_none_valid(fs.m), 1768 ("vm_fault: page %p is already valid", fs.m_cow)); 1769 vm_page_valid(fs.m); 1770 } 1771 1772 /* 1773 * Page must be completely valid or it is not fit to 1774 * map into user space. vm_pager_get_pages() ensures this. 1775 */ 1776 vm_page_assert_xbusied(fs.m); 1777 KASSERT(vm_page_all_valid(fs.m), 1778 ("vm_fault: page %p partially invalid", fs.m)); 1779 1780 vm_fault_dirty(&fs, fs.m); 1781 1782 /* 1783 * Put this page into the physical map. We had to do the unlock above 1784 * because pmap_enter() may sleep. We don't put the page 1785 * back on the active queue until later so that the pageout daemon 1786 * won't find it (yet). 1787 */ 1788 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1789 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1790 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1791 fs.wired == 0) 1792 vm_fault_prefault(&fs, vaddr, 1793 faultcount > 0 ? behind : PFBAK, 1794 faultcount > 0 ? ahead : PFFOR, false); 1795 1796 /* 1797 * If the page is not wired down, then put it where the pageout daemon 1798 * can find it. 1799 */ 1800 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1801 vm_page_wire(fs.m); 1802 else 1803 vm_page_activate(fs.m); 1804 if (fs.m_hold != NULL) { 1805 (*fs.m_hold) = fs.m; 1806 vm_page_wire(fs.m); 1807 } 1808 vm_page_xunbusy(fs.m); 1809 fs.m = NULL; 1810 1811 /* 1812 * Unlock everything, and return 1813 */ 1814 vm_fault_deallocate(&fs); 1815 if (hardfault) { 1816 VM_CNT_INC(v_io_faults); 1817 curthread->td_ru.ru_majflt++; 1818 #ifdef RACCT 1819 if (racct_enable && fs.object->type == OBJT_VNODE) { 1820 PROC_LOCK(curproc); 1821 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1822 racct_add_force(curproc, RACCT_WRITEBPS, 1823 PAGE_SIZE + behind * PAGE_SIZE); 1824 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1825 } else { 1826 racct_add_force(curproc, RACCT_READBPS, 1827 PAGE_SIZE + ahead * PAGE_SIZE); 1828 racct_add_force(curproc, RACCT_READIOPS, 1); 1829 } 1830 PROC_UNLOCK(curproc); 1831 } 1832 #endif 1833 } else 1834 curthread->td_ru.ru_minflt++; 1835 1836 return (KERN_SUCCESS); 1837 } 1838 1839 /* 1840 * Speed up the reclamation of pages that precede the faulting pindex within 1841 * the first object of the shadow chain. Essentially, perform the equivalent 1842 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1843 * the faulting pindex by the cluster size when the pages read by vm_fault() 1844 * cross a cluster-size boundary. The cluster size is the greater of the 1845 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1846 * 1847 * When "fs->first_object" is a shadow object, the pages in the backing object 1848 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1849 * function must only be concerned with pages in the first object. 1850 */ 1851 static void 1852 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1853 { 1854 struct pctrie_iter pages; 1855 vm_map_entry_t entry; 1856 vm_object_t first_object; 1857 vm_offset_t end, start; 1858 vm_page_t m; 1859 vm_size_t size; 1860 1861 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1862 first_object = fs->first_object; 1863 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1864 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1865 VM_OBJECT_RLOCK(first_object); 1866 size = VM_FAULT_DONTNEED_MIN; 1867 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1868 size = pagesizes[1]; 1869 end = rounddown2(vaddr, size); 1870 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1871 (entry = fs->entry)->start < end) { 1872 if (end - entry->start < size) 1873 start = entry->start; 1874 else 1875 start = end - size; 1876 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1877 vm_page_iter_limit_init(&pages, first_object, 1878 OFF_TO_IDX(entry->offset) + 1879 atop(end - entry->start)); 1880 VM_RADIX_FOREACH_FROM(m, &pages, 1881 OFF_TO_IDX(entry->offset) + 1882 atop(start - entry->start)) { 1883 if (!vm_page_all_valid(m) || 1884 vm_page_busied(m)) 1885 continue; 1886 1887 /* 1888 * Don't clear PGA_REFERENCED, since it would 1889 * likely represent a reference by a different 1890 * process. 1891 * 1892 * Typically, at this point, prefetched pages 1893 * are still in the inactive queue. Only 1894 * pages that triggered page faults are in the 1895 * active queue. The test for whether the page 1896 * is in the inactive queue is racy; in the 1897 * worst case we will requeue the page 1898 * unnecessarily. 1899 */ 1900 if (!vm_page_inactive(m)) 1901 vm_page_deactivate(m); 1902 } 1903 } 1904 VM_OBJECT_RUNLOCK(first_object); 1905 } 1906 } 1907 1908 /* 1909 * vm_fault_prefault provides a quick way of clustering 1910 * pagefaults into a processes address space. It is a "cousin" 1911 * of vm_map_pmap_enter, except it runs at page fault time instead 1912 * of mmap time. 1913 */ 1914 static void 1915 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1916 int backward, int forward, bool obj_locked) 1917 { 1918 pmap_t pmap; 1919 vm_map_entry_t entry; 1920 vm_object_t backing_object, lobject; 1921 vm_offset_t addr, starta; 1922 vm_pindex_t pindex; 1923 vm_page_t m; 1924 vm_prot_t prot; 1925 int i; 1926 1927 pmap = fs->map->pmap; 1928 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1929 return; 1930 1931 entry = fs->entry; 1932 1933 if (addra < backward * PAGE_SIZE) { 1934 starta = entry->start; 1935 } else { 1936 starta = addra - backward * PAGE_SIZE; 1937 if (starta < entry->start) 1938 starta = entry->start; 1939 } 1940 prot = entry->protection; 1941 1942 /* 1943 * If pmap_enter() has enabled write access on a nearby mapping, then 1944 * don't attempt promotion, because it will fail. 1945 */ 1946 if ((fs->prot & VM_PROT_WRITE) != 0) 1947 prot |= VM_PROT_NO_PROMOTE; 1948 1949 /* 1950 * Generate the sequence of virtual addresses that are candidates for 1951 * prefaulting in an outward spiral from the faulting virtual address, 1952 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1953 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1954 * If the candidate address doesn't have a backing physical page, then 1955 * the loop immediately terminates. 1956 */ 1957 for (i = 0; i < 2 * imax(backward, forward); i++) { 1958 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1959 PAGE_SIZE); 1960 if (addr > addra + forward * PAGE_SIZE) 1961 addr = 0; 1962 1963 if (addr < starta || addr >= entry->end) 1964 continue; 1965 1966 if (!pmap_is_prefaultable(pmap, addr)) 1967 continue; 1968 1969 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1970 lobject = entry->object.vm_object; 1971 if (!obj_locked) 1972 VM_OBJECT_RLOCK(lobject); 1973 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1974 !vm_fault_object_needs_getpages(lobject) && 1975 (backing_object = lobject->backing_object) != NULL) { 1976 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1977 0, ("vm_fault_prefault: unaligned object offset")); 1978 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1979 VM_OBJECT_RLOCK(backing_object); 1980 if (!obj_locked || lobject != entry->object.vm_object) 1981 VM_OBJECT_RUNLOCK(lobject); 1982 lobject = backing_object; 1983 } 1984 if (m == NULL) { 1985 if (!obj_locked || lobject != entry->object.vm_object) 1986 VM_OBJECT_RUNLOCK(lobject); 1987 break; 1988 } 1989 if (vm_page_all_valid(m) && 1990 (m->flags & PG_FICTITIOUS) == 0) 1991 pmap_enter_quick(pmap, addr, m, prot); 1992 if (!obj_locked || lobject != entry->object.vm_object) 1993 VM_OBJECT_RUNLOCK(lobject); 1994 } 1995 } 1996 1997 /* 1998 * Hold each of the physical pages that are mapped by the specified 1999 * range of virtual addresses, ["addr", "addr" + "len"), if those 2000 * mappings are valid and allow the specified types of access, "prot". 2001 * If all of the implied pages are successfully held, then the number 2002 * of held pages is assigned to *ppages_count, together with pointers 2003 * to those pages in the array "ma". The returned value is zero. 2004 * 2005 * However, if any of the pages cannot be held, an error is returned, 2006 * and no pages are held. 2007 * Error values: 2008 * ENOMEM - the range is not valid 2009 * EINVAL - the provided vm_page array is too small to hold all pages 2010 * EAGAIN - a page was not mapped, and the thread is in nofaulting mode 2011 * EFAULT - a page with requested permissions cannot be mapped 2012 * (more detailed result from vm_fault() is lost) 2013 */ 2014 int 2015 vm_fault_hold_pages_e(vm_map_t map, vm_offset_t addr, vm_size_t len, 2016 vm_prot_t prot, vm_page_t *ma, int max_count, int *ppages_count) 2017 { 2018 vm_offset_t end, va; 2019 vm_page_t *mp; 2020 int count, error; 2021 boolean_t pmap_failed; 2022 2023 if (len == 0) { 2024 *ppages_count = 0; 2025 return (0); 2026 } 2027 end = round_page(addr + len); 2028 addr = trunc_page(addr); 2029 2030 if (!vm_map_range_valid(map, addr, end)) 2031 return (ENOMEM); 2032 2033 if (atop(end - addr) > max_count) 2034 return (EINVAL); 2035 count = atop(end - addr); 2036 2037 /* 2038 * Most likely, the physical pages are resident in the pmap, so it is 2039 * faster to try pmap_extract_and_hold() first. 2040 */ 2041 pmap_failed = FALSE; 2042 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2043 *mp = pmap_extract_and_hold(map->pmap, va, prot); 2044 if (*mp == NULL) 2045 pmap_failed = TRUE; 2046 else if ((prot & VM_PROT_WRITE) != 0 && 2047 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2048 /* 2049 * Explicitly dirty the physical page. Otherwise, the 2050 * caller's changes may go unnoticed because they are 2051 * performed through an unmanaged mapping or by a DMA 2052 * operation. 2053 * 2054 * The object lock is not held here. 2055 * See vm_page_clear_dirty_mask(). 2056 */ 2057 vm_page_dirty(*mp); 2058 } 2059 } 2060 if (pmap_failed) { 2061 /* 2062 * One or more pages could not be held by the pmap. Either no 2063 * page was mapped at the specified virtual address or that 2064 * mapping had insufficient permissions. Attempt to fault in 2065 * and hold these pages. 2066 * 2067 * If vm_fault_disable_pagefaults() was called, 2068 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2069 * acquire MD VM locks, which means we must not call 2070 * vm_fault(). Some (out of tree) callers mark 2071 * too wide a code area with vm_fault_disable_pagefaults() 2072 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2073 * the proper behaviour explicitly. 2074 */ 2075 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2076 (curthread->td_pflags & TDP_NOFAULTING) != 0) { 2077 error = EAGAIN; 2078 goto fail; 2079 } 2080 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2081 if (*mp == NULL && vm_fault(map, va, prot, 2082 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) { 2083 error = EFAULT; 2084 goto fail; 2085 } 2086 } 2087 } 2088 *ppages_count = count; 2089 return (0); 2090 fail: 2091 for (mp = ma; mp < ma + count; mp++) 2092 if (*mp != NULL) 2093 vm_page_unwire(*mp, PQ_INACTIVE); 2094 return (error); 2095 } 2096 2097 /* 2098 * Hold each of the physical pages that are mapped by the specified range of 2099 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 2100 * and allow the specified types of access, "prot". If all of the implied 2101 * pages are successfully held, then the number of held pages is returned 2102 * together with pointers to those pages in the array "ma". However, if any 2103 * of the pages cannot be held, -1 is returned. 2104 */ 2105 int 2106 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 2107 vm_prot_t prot, vm_page_t *ma, int max_count) 2108 { 2109 int error, pages_count; 2110 2111 error = vm_fault_hold_pages_e(map, addr, len, prot, ma, 2112 max_count, &pages_count); 2113 if (error != 0) { 2114 if (error == EINVAL) 2115 panic("vm_fault_quick_hold_pages: count > max_count"); 2116 return (-1); 2117 } 2118 return (pages_count); 2119 } 2120 2121 /* 2122 * Routine: 2123 * vm_fault_copy_entry 2124 * Function: 2125 * Create new object backing dst_entry with private copy of all 2126 * underlying pages. When src_entry is equal to dst_entry, function 2127 * implements COW for wired-down map entry. Otherwise, it forks 2128 * wired entry into dst_map. 2129 * 2130 * In/out conditions: 2131 * The source and destination maps must be locked for write. 2132 * The source map entry must be wired down (or be a sharing map 2133 * entry corresponding to a main map entry that is wired down). 2134 */ 2135 void 2136 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2137 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2138 vm_ooffset_t *fork_charge) 2139 { 2140 struct pctrie_iter pages; 2141 vm_object_t backing_object, dst_object, object, src_object; 2142 vm_pindex_t dst_pindex, pindex, src_pindex; 2143 vm_prot_t access, prot; 2144 vm_offset_t vaddr; 2145 vm_page_t dst_m; 2146 vm_page_t src_m; 2147 bool upgrade; 2148 2149 upgrade = src_entry == dst_entry; 2150 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2151 ("vm_fault_copy_entry: vm_object not NULL")); 2152 2153 /* 2154 * If not an upgrade, then enter the mappings in the pmap as 2155 * read and/or execute accesses. Otherwise, enter them as 2156 * write accesses. 2157 * 2158 * A writeable large page mapping is only created if all of 2159 * the constituent small page mappings are modified. Marking 2160 * PTEs as modified on inception allows promotion to happen 2161 * without taking potentially large number of soft faults. 2162 */ 2163 access = prot = dst_entry->protection; 2164 if (!upgrade) 2165 access &= ~VM_PROT_WRITE; 2166 2167 src_object = src_entry->object.vm_object; 2168 src_pindex = OFF_TO_IDX(src_entry->offset); 2169 2170 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2171 dst_object = src_object; 2172 vm_object_reference(dst_object); 2173 } else { 2174 /* 2175 * Create the top-level object for the destination entry. 2176 * Doesn't actually shadow anything - we copy the pages 2177 * directly. 2178 */ 2179 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2180 dst_entry->start), NULL, NULL, 0); 2181 #if VM_NRESERVLEVEL > 0 2182 dst_object->flags |= OBJ_COLORED; 2183 dst_object->pg_color = atop(dst_entry->start); 2184 #endif 2185 dst_object->domain = src_object->domain; 2186 dst_object->charge = dst_entry->end - dst_entry->start; 2187 2188 dst_entry->object.vm_object = dst_object; 2189 dst_entry->offset = 0; 2190 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2191 } 2192 2193 VM_OBJECT_WLOCK(dst_object); 2194 if (fork_charge != NULL) { 2195 KASSERT(dst_entry->cred == NULL, 2196 ("vm_fault_copy_entry: leaked swp charge")); 2197 dst_object->cred = curthread->td_ucred; 2198 crhold(dst_object->cred); 2199 *fork_charge += dst_object->charge; 2200 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2201 dst_object->cred == NULL) { 2202 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2203 dst_entry)); 2204 dst_object->cred = dst_entry->cred; 2205 dst_entry->cred = NULL; 2206 } 2207 2208 /* 2209 * Loop through all of the virtual pages within the entry's 2210 * range, copying each page from the source object to the 2211 * destination object. Since the source is wired, those pages 2212 * must exist. In contrast, the destination is pageable. 2213 * Since the destination object doesn't share any backing storage 2214 * with the source object, all of its pages must be dirtied, 2215 * regardless of whether they can be written. 2216 */ 2217 vm_page_iter_init(&pages, dst_object); 2218 for (vaddr = dst_entry->start, dst_pindex = 0; 2219 vaddr < dst_entry->end; 2220 vaddr += PAGE_SIZE, dst_pindex++) { 2221 again: 2222 /* 2223 * Find the page in the source object, and copy it in. 2224 * Because the source is wired down, the page will be 2225 * in memory. 2226 */ 2227 if (src_object != dst_object) 2228 VM_OBJECT_RLOCK(src_object); 2229 object = src_object; 2230 pindex = src_pindex + dst_pindex; 2231 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2232 (backing_object = object->backing_object) != NULL) { 2233 /* 2234 * Unless the source mapping is read-only or 2235 * it is presently being upgraded from 2236 * read-only, the first object in the shadow 2237 * chain should provide all of the pages. In 2238 * other words, this loop body should never be 2239 * executed when the source mapping is already 2240 * read/write. 2241 */ 2242 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2243 upgrade, 2244 ("vm_fault_copy_entry: main object missing page")); 2245 2246 VM_OBJECT_RLOCK(backing_object); 2247 pindex += OFF_TO_IDX(object->backing_object_offset); 2248 if (object != dst_object) 2249 VM_OBJECT_RUNLOCK(object); 2250 object = backing_object; 2251 } 2252 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2253 2254 if (object != dst_object) { 2255 /* 2256 * Allocate a page in the destination object. 2257 */ 2258 pindex = (src_object == dst_object ? src_pindex : 0) + 2259 dst_pindex; 2260 dst_m = vm_page_alloc_iter(dst_object, pindex, 2261 VM_ALLOC_NORMAL, &pages); 2262 if (dst_m == NULL) { 2263 VM_OBJECT_WUNLOCK(dst_object); 2264 VM_OBJECT_RUNLOCK(object); 2265 vm_wait(dst_object); 2266 VM_OBJECT_WLOCK(dst_object); 2267 pctrie_iter_reset(&pages); 2268 goto again; 2269 } 2270 2271 /* 2272 * See the comment in vm_fault_cow(). 2273 */ 2274 if (src_object == dst_object && 2275 (object->flags & OBJ_ONEMAPPING) == 0) 2276 pmap_remove_all(src_m); 2277 pmap_copy_page(src_m, dst_m); 2278 2279 /* 2280 * The object lock does not guarantee that "src_m" will 2281 * transition from invalid to valid, but it does ensure 2282 * that "src_m" will not transition from valid to 2283 * invalid. 2284 */ 2285 dst_m->dirty = dst_m->valid = src_m->valid; 2286 VM_OBJECT_RUNLOCK(object); 2287 } else { 2288 dst_m = src_m; 2289 if (vm_page_busy_acquire( 2290 dst_m, VM_ALLOC_WAITFAIL) == 0) { 2291 pctrie_iter_reset(&pages); 2292 goto again; 2293 } 2294 if (dst_m->pindex >= dst_object->size) { 2295 /* 2296 * We are upgrading. Index can occur 2297 * out of bounds if the object type is 2298 * vnode and the file was truncated. 2299 */ 2300 vm_page_xunbusy(dst_m); 2301 break; 2302 } 2303 } 2304 2305 /* 2306 * Enter it in the pmap. If a wired, copy-on-write 2307 * mapping is being replaced by a write-enabled 2308 * mapping, then wire that new mapping. 2309 * 2310 * The page can be invalid if the user called 2311 * msync(MS_INVALIDATE) or truncated the backing vnode 2312 * or shared memory object. In this case, do not 2313 * insert it into pmap, but still do the copy so that 2314 * all copies of the wired map entry have similar 2315 * backing pages. 2316 */ 2317 if (vm_page_all_valid(dst_m)) { 2318 VM_OBJECT_WUNLOCK(dst_object); 2319 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2320 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2321 VM_OBJECT_WLOCK(dst_object); 2322 } 2323 2324 /* 2325 * Mark it no longer busy, and put it on the active list. 2326 */ 2327 if (upgrade) { 2328 if (src_m != dst_m) { 2329 vm_page_unwire(src_m, PQ_INACTIVE); 2330 vm_page_wire(dst_m); 2331 } else { 2332 KASSERT(vm_page_wired(dst_m), 2333 ("dst_m %p is not wired", dst_m)); 2334 } 2335 } else { 2336 vm_page_activate(dst_m); 2337 } 2338 vm_page_xunbusy(dst_m); 2339 } 2340 VM_OBJECT_WUNLOCK(dst_object); 2341 if (upgrade) { 2342 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2343 vm_object_deallocate(src_object); 2344 } 2345 } 2346 2347 /* 2348 * Block entry into the machine-independent layer's page fault handler by 2349 * the calling thread. Subsequent calls to vm_fault() by that thread will 2350 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2351 * spurious page faults. 2352 */ 2353 int 2354 vm_fault_disable_pagefaults(void) 2355 { 2356 2357 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2358 } 2359 2360 void 2361 vm_fault_enable_pagefaults(int save) 2362 { 2363 2364 curthread_pflags_restore(save); 2365 } 2366