xref: /freebsd/sys/vm/uma_int.h (revision fe2494903422ba3b924eba82cb63a6a9188fad7a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  *
31  */
32 
33 #include <sys/_bitset.h>
34 #include <sys/_domainset.h>
35 #include <sys/_task.h>
36 
37 /*
38  * This file includes definitions, structures, prototypes, and inlines that
39  * should not be used outside of the actual implementation of UMA.
40  */
41 
42 /*
43  * The brief summary;  Zones describe unique allocation types.  Zones are
44  * organized into per-CPU caches which are filled by buckets.  Buckets are
45  * organized according to memory domains.  Buckets are filled from kegs which
46  * are also organized according to memory domains.  Kegs describe a unique
47  * allocation type, backend memory provider, and layout.  Kegs are associated
48  * with one or more zones and zones reference one or more kegs.  Kegs provide
49  * slabs which are virtually contiguous collections of pages.  Each slab is
50  * broken down int one or more items that will satisfy an individual allocation.
51  *
52  * Allocation is satisfied in the following order:
53  * 1) Per-CPU cache
54  * 2) Per-domain cache of buckets
55  * 3) Slab from any of N kegs
56  * 4) Backend page provider
57  *
58  * More detail on individual objects is contained below:
59  *
60  * Kegs contain lists of slabs which are stored in either the full bin, empty
61  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
62  * the user supplied value for size, which is adjusted for alignment purposes
63  * and rsize is the result of that.  The Keg also stores information for
64  * managing a hash of page addresses that maps pages to uma_slab_t structures
65  * for pages that don't have embedded uma_slab_t's.
66  *
67  * Keg slab lists are organized by memory domain to support NUMA allocation
68  * policies.  By default allocations are spread across domains to reduce the
69  * potential for hotspots.  Special keg creation flags may be specified to
70  * prefer location allocation.  However there is no strict enforcement as frees
71  * may happen on any CPU and these are returned to the CPU-local cache
72  * regardless of the originating domain.
73  *
74  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
75  * be allocated off the page from a special slab zone.  The free list within a
76  * slab is managed with a bitmask.  For item sizes that would yield more than
77  * 10% memory waste we potentially allocate a separate uma_slab_t if this will
78  * improve the number of items per slab that will fit.
79  *
80  * The only really gross cases, with regards to memory waste, are for those
81  * items that are just over half the page size.   You can get nearly 50% waste,
82  * so you fall back to the memory footprint of the power of two allocator. I
83  * have looked at memory allocation sizes on many of the machines available to
84  * me, and there does not seem to be an abundance of allocations at this range
85  * so at this time it may not make sense to optimize for it.  This can, of
86  * course, be solved with dynamic slab sizes.
87  *
88  * Kegs may serve multiple Zones but by far most of the time they only serve
89  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
90  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
91  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
92  * pair, as well as with its own set of small per-CPU caches, layered above
93  * the Zone's general Bucket cache.
94  *
95  * The PCPU caches are protected by critical sections, and may be accessed
96  * safely only from their associated CPU, while the Zones backed by the same
97  * Keg all share a common Keg lock (to coalesce contention on the backing
98  * slabs).  The backing Keg typically only serves one Zone but in the case of
99  * multiple Zones, one of the Zones is considered the Master Zone and all
100  * Zone-related stats from the Keg are done in the Master Zone.  For an
101  * example of a Multi-Zone setup, refer to the Mbuf allocation code.
102  */
103 
104 /*
105  *	This is the representation for normal (Non OFFPAGE slab)
106  *
107  *	i == item
108  *	s == slab pointer
109  *
110  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
111  *	___________________________________________________________
112  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
113  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
114  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
115  *     |___________________________________________________________|
116  *
117  *
118  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
119  *
120  *	___________________________________________________________
121  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
122  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
123  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
124  *     |___________________________________________________________|
125  *       ___________    ^
126  *	|slab header|   |
127  *	|___________|---*
128  *
129  */
130 
131 #ifndef VM_UMA_INT_H
132 #define VM_UMA_INT_H
133 
134 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
135 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
136 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
137 
138 /* Max waste percentage before going to off page slab management */
139 #define UMA_MAX_WASTE	10
140 
141 /*
142  * Size of memory in a not offpage slab available for actual items.
143  */
144 #define	UMA_SLAB_SPACE	(UMA_SLAB_SIZE - sizeof(struct uma_slab))
145 
146 /*
147  * I doubt there will be many cases where this is exceeded. This is the initial
148  * size of the hash table for uma_slabs that are managed off page. This hash
149  * does expand by powers of two.  Currently it doesn't get smaller.
150  */
151 #define UMA_HASH_SIZE_INIT	32
152 
153 /*
154  * I should investigate other hashing algorithms.  This should yield a low
155  * number of collisions if the pages are relatively contiguous.
156  */
157 
158 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
159 
160 #define UMA_HASH_INSERT(h, s, mem)					\
161 		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
162 		    (mem))], (s), us_hlink)
163 #define UMA_HASH_REMOVE(h, s, mem)					\
164 		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
165 		    (mem))], (s), uma_slab, us_hlink)
166 
167 /* Hash table for freed address -> slab translation */
168 
169 SLIST_HEAD(slabhead, uma_slab);
170 
171 struct uma_hash {
172 	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
173 	int		uh_hashsize;	/* Current size of the hash table */
174 	int		uh_hashmask;	/* Mask used during hashing */
175 };
176 
177 /*
178  * align field or structure to cache line
179  */
180 #if defined(__amd64__) || defined(__powerpc64__)
181 #define UMA_ALIGN	__aligned(128)
182 #else
183 #define UMA_ALIGN
184 #endif
185 
186 /*
187  * Structures for per cpu queues.
188  */
189 
190 struct uma_bucket {
191 	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
192 	int16_t	ub_cnt;				/* Count of items in bucket. */
193 	int16_t	ub_entries;			/* Max items. */
194 	void	*ub_bucket[];			/* actual allocation storage */
195 };
196 
197 typedef struct uma_bucket * uma_bucket_t;
198 
199 struct uma_cache {
200 	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
201 	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
202 	uint64_t	uc_allocs;	/* Count of allocations */
203 	uint64_t	uc_frees;	/* Count of frees */
204 } UMA_ALIGN;
205 
206 typedef struct uma_cache * uma_cache_t;
207 
208 /*
209  * Per-domain memory list.  Embedded in the kegs.
210  */
211 struct uma_domain {
212 	LIST_HEAD(,uma_slab)	ud_part_slab;	/* partially allocated slabs */
213 	LIST_HEAD(,uma_slab)	ud_free_slab;	/* empty slab list */
214 	LIST_HEAD(,uma_slab)	ud_full_slab;	/* full slabs */
215 };
216 
217 typedef struct uma_domain * uma_domain_t;
218 
219 /*
220  * Keg management structure
221  *
222  * TODO: Optimize for cache line size
223  *
224  */
225 struct uma_keg {
226 	struct mtx	uk_lock;	/* Lock for the keg */
227 	struct uma_hash	uk_hash;
228 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
229 
230 	struct domainset_ref uk_dr;	/* Domain selection policy. */
231 	uint32_t	uk_align;	/* Alignment mask */
232 	uint32_t	uk_pages;	/* Total page count */
233 	uint32_t	uk_free;	/* Count of items free in slabs */
234 	uint32_t	uk_reserve;	/* Number of reserved items. */
235 	uint32_t	uk_size;	/* Requested size of each item */
236 	uint32_t	uk_rsize;	/* Real size of each item */
237 	uint32_t	uk_maxpages;	/* Maximum number of pages to alloc */
238 
239 	uma_init	uk_init;	/* Keg's init routine */
240 	uma_fini	uk_fini;	/* Keg's fini routine */
241 	uma_alloc	uk_allocf;	/* Allocation function */
242 	uma_free	uk_freef;	/* Free routine */
243 
244 	u_long		uk_offset;	/* Next free offset from base KVA */
245 	vm_offset_t	uk_kva;		/* Zone base KVA */
246 	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
247 
248 	uint32_t	uk_pgoff;	/* Offset to uma_slab struct */
249 	uint16_t	uk_ppera;	/* pages per allocation from backend */
250 	uint16_t	uk_ipers;	/* Items per slab */
251 	uint32_t	uk_flags;	/* Internal flags */
252 
253 	/* Least used fields go to the last cache line. */
254 	const char	*uk_name;		/* Name of creating zone. */
255 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
256 
257 	/* Must be last, variable sized. */
258 	struct uma_domain	uk_domain[];	/* Keg's slab lists. */
259 };
260 typedef struct uma_keg	* uma_keg_t;
261 
262 /*
263  * Free bits per-slab.
264  */
265 #define	SLAB_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
266 BITSET_DEFINE(slabbits, SLAB_SETSIZE);
267 
268 /*
269  * The slab structure manages a single contiguous allocation from backing
270  * store and subdivides it into individually allocatable items.
271  */
272 struct uma_slab {
273 	uma_keg_t	us_keg;			/* Keg we live in */
274 	union {
275 		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
276 		unsigned long	_us_size;	/* Size of allocation */
277 	} us_type;
278 	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
279 	uint8_t		*us_data;		/* First item */
280 	struct slabbits	us_free;		/* Free bitmask. */
281 #ifdef INVARIANTS
282 	struct slabbits	us_debugfree;		/* Debug bitmask. */
283 #endif
284 	uint16_t	us_freecount;		/* How many are free? */
285 	uint8_t		us_flags;		/* Page flags see uma.h */
286 	uint8_t		us_domain;		/* Backing NUMA domain. */
287 };
288 
289 #define	us_link	us_type._us_link
290 #define	us_size	us_type._us_size
291 
292 #if MAXMEMDOM >= 255
293 #error "Slab domain type insufficient"
294 #endif
295 
296 typedef struct uma_slab * uma_slab_t;
297 typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int, int);
298 
299 struct uma_klink {
300 	LIST_ENTRY(uma_klink)	kl_link;
301 	uma_keg_t		kl_keg;
302 };
303 typedef struct uma_klink *uma_klink_t;
304 
305 struct uma_zone_domain {
306 	LIST_HEAD(,uma_bucket)	uzd_buckets;	/* full buckets */
307 };
308 
309 typedef struct uma_zone_domain * uma_zone_domain_t;
310 
311 /*
312  * Zone management structure
313  *
314  * TODO: Optimize for cache line size
315  *
316  */
317 struct uma_zone {
318 	/* Offset 0, used in alloc/free fast/medium fast path and const. */
319 	struct mtx	*uz_lockptr;
320 	const char	*uz_name;	/* Text name of the zone */
321 	struct uma_zone_domain	*uz_domain;	/* per-domain buckets */
322 	uint32_t	uz_flags;	/* Flags inherited from kegs */
323 	uint32_t	uz_size;	/* Size inherited from kegs */
324 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
325 	uma_dtor	uz_dtor;	/* Destructor */
326 	uma_init	uz_init;	/* Initializer for each item */
327 	uma_fini	uz_fini;	/* Finalizer for each item. */
328 
329 	/* Offset 64, used in bucket replenish. */
330 	uma_import	uz_import;	/* Import new memory to cache. */
331 	uma_release	uz_release;	/* Release memory from cache. */
332 	void		*uz_arg;	/* Import/release argument. */
333 	uma_slaballoc	uz_slab;	/* Allocate a slab from the backend. */
334 	uint16_t	uz_count;	/* Amount of items in full bucket */
335 	uint16_t	uz_count_min;	/* Minimal amount of items there */
336 	/* 32bit pad on 64bit. */
337 	LIST_ENTRY(uma_zone)	uz_link;	/* List of all zones in keg */
338 	LIST_HEAD(,uma_klink)	uz_kegs;	/* List of kegs. */
339 
340 	/* Offset 128 Rare. */
341 	/*
342 	 * The lock is placed here to avoid adjacent line prefetcher
343 	 * in fast paths and to take up space near infrequently accessed
344 	 * members to reduce alignment overhead.
345 	 */
346 	struct mtx	uz_lock;	/* Lock for the zone */
347 	struct uma_klink	uz_klink;	/* klink for first keg. */
348 	/* The next two fields are used to print a rate-limited warnings. */
349 	const char	*uz_warning;	/* Warning to print on failure */
350 	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
351 	struct task	uz_maxaction;	/* Task to run when at limit */
352 
353 	/* 16 bytes of pad. */
354 
355 	/* Offset 256, atomic stats. */
356 	volatile u_long	uz_allocs UMA_ALIGN; /* Total number of allocations */
357 	volatile u_long	uz_fails;	/* Total number of alloc failures */
358 	volatile u_long	uz_frees;	/* Total number of frees */
359 	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
360 
361 	/*
362 	 * This HAS to be the last item because we adjust the zone size
363 	 * based on NCPU and then allocate the space for the zones.
364 	 */
365 	struct uma_cache	uz_cpu[]; /* Per cpu caches */
366 
367 	/* uz_domain follows here. */
368 };
369 
370 /*
371  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
372  */
373 #define	UMA_ZFLAG_MULTI		0x04000000	/* Multiple kegs in the zone. */
374 #define	UMA_ZFLAG_DRAINING	0x08000000	/* Running zone_drain. */
375 #define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
376 #define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
377 #define UMA_ZFLAG_FULL		0x40000000	/* Reached uz_maxpages */
378 #define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
379 
380 #define	UMA_ZFLAG_INHERIT						\
381     (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
382 
383 static inline uma_keg_t
384 zone_first_keg(uma_zone_t zone)
385 {
386 	uma_klink_t klink;
387 
388 	klink = LIST_FIRST(&zone->uz_kegs);
389 	return (klink != NULL) ? klink->kl_keg : NULL;
390 }
391 
392 #undef UMA_ALIGN
393 
394 #ifdef _KERNEL
395 /* Internal prototypes */
396 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
397 void *uma_large_malloc(vm_size_t size, int wait);
398 void *uma_large_malloc_domain(vm_size_t size, int domain, int wait);
399 void uma_large_free(uma_slab_t slab);
400 
401 /* Lock Macros */
402 
403 #define	KEG_LOCK_INIT(k, lc)					\
404 	do {							\
405 		if ((lc))					\
406 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
407 			    (k)->uk_name, MTX_DEF | MTX_DUPOK);	\
408 		else						\
409 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
410 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
411 	} while (0)
412 
413 #define	KEG_LOCK_FINI(k)	mtx_destroy(&(k)->uk_lock)
414 #define	KEG_LOCK(k)	mtx_lock(&(k)->uk_lock)
415 #define	KEG_UNLOCK(k)	mtx_unlock(&(k)->uk_lock)
416 
417 #define	ZONE_LOCK_INIT(z, lc)					\
418 	do {							\
419 		if ((lc))					\
420 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
421 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
422 		else						\
423 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
424 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
425 	} while (0)
426 
427 #define	ZONE_LOCK(z)	mtx_lock((z)->uz_lockptr)
428 #define	ZONE_TRYLOCK(z)	mtx_trylock((z)->uz_lockptr)
429 #define	ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lockptr)
430 #define	ZONE_LOCK_FINI(z)	mtx_destroy(&(z)->uz_lock)
431 
432 /*
433  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
434  * the slab structure.
435  *
436  * Arguments:
437  *	hash  The hash table to search.
438  *	data  The base page of the item.
439  *
440  * Returns:
441  *	A pointer to a slab if successful, else NULL.
442  */
443 static __inline uma_slab_t
444 hash_sfind(struct uma_hash *hash, uint8_t *data)
445 {
446         uma_slab_t slab;
447         int hval;
448 
449         hval = UMA_HASH(hash, data);
450 
451         SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
452                 if ((uint8_t *)slab->us_data == data)
453                         return (slab);
454         }
455         return (NULL);
456 }
457 
458 static __inline uma_slab_t
459 vtoslab(vm_offset_t va)
460 {
461 	vm_page_t p;
462 
463 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
464 	return ((uma_slab_t)p->plinks.s.pv);
465 }
466 
467 static __inline void
468 vsetslab(vm_offset_t va, uma_slab_t slab)
469 {
470 	vm_page_t p;
471 
472 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
473 	p->plinks.s.pv = slab;
474 }
475 
476 /*
477  * The following two functions may be defined by architecture specific code
478  * if they can provide more efficient allocation functions.  This is useful
479  * for using direct mapped addresses.
480  */
481 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
482     uint8_t *pflag, int wait);
483 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
484 
485 /* Set a global soft limit on UMA managed memory. */
486 void uma_set_limit(unsigned long limit);
487 #endif /* _KERNEL */
488 
489 #endif /* VM_UMA_INT_H */
490