xref: /freebsd/sys/vm/uma_int.h (revision e9b1dc32c9bd2ebae5f9e140bfa0e0321bc366b5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  *
31  */
32 
33 #include <sys/_bitset.h>
34 #include <sys/_task.h>
35 
36 /*
37  * This file includes definitions, structures, prototypes, and inlines that
38  * should not be used outside of the actual implementation of UMA.
39  */
40 
41 /*
42  * The brief summary;  Zones describe unique allocation types.  Zones are
43  * organized into per-CPU caches which are filled by buckets.  Buckets are
44  * organized according to memory domains.  Buckets are filled from kegs which
45  * are also organized according to memory domains.  Kegs describe a unique
46  * allocation type, backend memory provider, and layout.  Kegs are associated
47  * with one or more zones and zones reference one or more kegs.  Kegs provide
48  * slabs which are virtually contiguous collections of pages.  Each slab is
49  * broken down int one or more items that will satisfy an individual allocation.
50  *
51  * Allocation is satisfied in the following order:
52  * 1) Per-CPU cache
53  * 2) Per-domain cache of buckets
54  * 3) Slab from any of N kegs
55  * 4) Backend page provider
56  *
57  * More detail on individual objects is contained below:
58  *
59  * Kegs contain lists of slabs which are stored in either the full bin, empty
60  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
61  * the user supplied value for size, which is adjusted for alignment purposes
62  * and rsize is the result of that.  The Keg also stores information for
63  * managing a hash of page addresses that maps pages to uma_slab_t structures
64  * for pages that don't have embedded uma_slab_t's.
65  *
66  * Keg slab lists are organized by memory domain to support NUMA allocation
67  * policies.  By default allocations are spread across domains to reduce the
68  * potential for hotspots.  Special keg creation flags may be specified to
69  * prefer location allocation.  However there is no strict enforcement as frees
70  * may happen on any CPU and these are returned to the CPU-local cache
71  * regardless of the originating domain.
72  *
73  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
74  * be allocated off the page from a special slab zone.  The free list within a
75  * slab is managed with a bitmask.  For item sizes that would yield more than
76  * 10% memory waste we potentially allocate a separate uma_slab_t if this will
77  * improve the number of items per slab that will fit.
78  *
79  * The only really gross cases, with regards to memory waste, are for those
80  * items that are just over half the page size.   You can get nearly 50% waste,
81  * so you fall back to the memory footprint of the power of two allocator. I
82  * have looked at memory allocation sizes on many of the machines available to
83  * me, and there does not seem to be an abundance of allocations at this range
84  * so at this time it may not make sense to optimize for it.  This can, of
85  * course, be solved with dynamic slab sizes.
86  *
87  * Kegs may serve multiple Zones but by far most of the time they only serve
88  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
89  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
90  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
91  * pair, as well as with its own set of small per-CPU caches, layered above
92  * the Zone's general Bucket cache.
93  *
94  * The PCPU caches are protected by critical sections, and may be accessed
95  * safely only from their associated CPU, while the Zones backed by the same
96  * Keg all share a common Keg lock (to coalesce contention on the backing
97  * slabs).  The backing Keg typically only serves one Zone but in the case of
98  * multiple Zones, one of the Zones is considered the Master Zone and all
99  * Zone-related stats from the Keg are done in the Master Zone.  For an
100  * example of a Multi-Zone setup, refer to the Mbuf allocation code.
101  */
102 
103 /*
104  *	This is the representation for normal (Non OFFPAGE slab)
105  *
106  *	i == item
107  *	s == slab pointer
108  *
109  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
110  *	___________________________________________________________
111  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
112  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
113  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
114  *     |___________________________________________________________|
115  *
116  *
117  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
118  *
119  *	___________________________________________________________
120  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
121  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
122  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
123  *     |___________________________________________________________|
124  *       ___________    ^
125  *	|slab header|   |
126  *	|___________|---*
127  *
128  */
129 
130 #ifndef VM_UMA_INT_H
131 #define VM_UMA_INT_H
132 
133 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
134 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
135 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
136 
137 /* Max waste percentage before going to off page slab management */
138 #define UMA_MAX_WASTE	10
139 
140 /*
141  * Size of memory in a not offpage slab available for actual items.
142  */
143 #define	UMA_SLAB_SPACE	(UMA_SLAB_SIZE - sizeof(struct uma_slab))
144 
145 /*
146  * I doubt there will be many cases where this is exceeded. This is the initial
147  * size of the hash table for uma_slabs that are managed off page. This hash
148  * does expand by powers of two.  Currently it doesn't get smaller.
149  */
150 #define UMA_HASH_SIZE_INIT	32
151 
152 /*
153  * I should investigate other hashing algorithms.  This should yield a low
154  * number of collisions if the pages are relatively contiguous.
155  */
156 
157 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
158 
159 #define UMA_HASH_INSERT(h, s, mem)					\
160 		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
161 		    (mem))], (s), us_hlink)
162 #define UMA_HASH_REMOVE(h, s, mem)					\
163 		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
164 		    (mem))], (s), uma_slab, us_hlink)
165 
166 /* Hash table for freed address -> slab translation */
167 
168 SLIST_HEAD(slabhead, uma_slab);
169 
170 struct uma_hash {
171 	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
172 	int		uh_hashsize;	/* Current size of the hash table */
173 	int		uh_hashmask;	/* Mask used during hashing */
174 };
175 
176 /*
177  * align field or structure to cache line
178  */
179 #if defined(__amd64__) || defined(__powerpc64__)
180 #define UMA_ALIGN	__aligned(128)
181 #else
182 #define UMA_ALIGN
183 #endif
184 
185 /*
186  * Structures for per cpu queues.
187  */
188 
189 struct uma_bucket {
190 	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
191 	int16_t	ub_cnt;				/* Count of items in bucket. */
192 	int16_t	ub_entries;			/* Max items. */
193 	void	*ub_bucket[];			/* actual allocation storage */
194 };
195 
196 typedef struct uma_bucket * uma_bucket_t;
197 
198 struct uma_cache {
199 	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
200 	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
201 	uint64_t	uc_allocs;	/* Count of allocations */
202 	uint64_t	uc_frees;	/* Count of frees */
203 } UMA_ALIGN;
204 
205 typedef struct uma_cache * uma_cache_t;
206 
207 /*
208  * Per-domain memory list.  Embedded in the kegs.
209  */
210 struct uma_domain {
211 	LIST_HEAD(,uma_slab)	ud_part_slab;	/* partially allocated slabs */
212 	LIST_HEAD(,uma_slab)	ud_free_slab;	/* empty slab list */
213 	LIST_HEAD(,uma_slab)	ud_full_slab;	/* full slabs */
214 };
215 
216 typedef struct uma_domain * uma_domain_t;
217 
218 /*
219  * Keg management structure
220  *
221  * TODO: Optimize for cache line size
222  *
223  */
224 struct uma_keg {
225 	struct mtx	uk_lock;	/* Lock for the keg */
226 	struct uma_hash	uk_hash;
227 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
228 
229 	uint32_t	uk_cursor;	/* Domain alloc cursor. */
230 	uint32_t	uk_align;	/* Alignment mask */
231 	uint32_t	uk_pages;	/* Total page count */
232 	uint32_t	uk_free;	/* Count of items free in slabs */
233 	uint32_t	uk_reserve;	/* Number of reserved items. */
234 	uint32_t	uk_size;	/* Requested size of each item */
235 	uint32_t	uk_rsize;	/* Real size of each item */
236 	uint32_t	uk_maxpages;	/* Maximum number of pages to alloc */
237 
238 	uma_init	uk_init;	/* Keg's init routine */
239 	uma_fini	uk_fini;	/* Keg's fini routine */
240 	uma_alloc	uk_allocf;	/* Allocation function */
241 	uma_free	uk_freef;	/* Free routine */
242 
243 	u_long		uk_offset;	/* Next free offset from base KVA */
244 	vm_offset_t	uk_kva;		/* Zone base KVA */
245 	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
246 
247 	uint32_t	uk_pgoff;	/* Offset to uma_slab struct */
248 	uint16_t	uk_ppera;	/* pages per allocation from backend */
249 	uint16_t	uk_ipers;	/* Items per slab */
250 	uint32_t	uk_flags;	/* Internal flags */
251 
252 	/* Least used fields go to the last cache line. */
253 	const char	*uk_name;		/* Name of creating zone. */
254 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
255 
256 	/* Must be last, variable sized. */
257 	struct uma_domain	uk_domain[];	/* Keg's slab lists. */
258 };
259 typedef struct uma_keg	* uma_keg_t;
260 
261 /*
262  * Free bits per-slab.
263  */
264 #define	SLAB_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
265 BITSET_DEFINE(slabbits, SLAB_SETSIZE);
266 
267 /*
268  * The slab structure manages a single contiguous allocation from backing
269  * store and subdivides it into individually allocatable items.
270  */
271 struct uma_slab {
272 	uma_keg_t	us_keg;			/* Keg we live in */
273 	union {
274 		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
275 		unsigned long	_us_size;	/* Size of allocation */
276 	} us_type;
277 	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
278 	uint8_t		*us_data;		/* First item */
279 	struct slabbits	us_free;		/* Free bitmask. */
280 #ifdef INVARIANTS
281 	struct slabbits	us_debugfree;		/* Debug bitmask. */
282 #endif
283 	uint16_t	us_freecount;		/* How many are free? */
284 	uint8_t		us_flags;		/* Page flags see uma.h */
285 	uint8_t		us_domain;		/* Backing NUMA domain. */
286 };
287 
288 #define	us_link	us_type._us_link
289 #define	us_size	us_type._us_size
290 
291 #if MAXMEMDOM >= 255
292 #error "Slab domain type insufficient"
293 #endif
294 
295 typedef struct uma_slab * uma_slab_t;
296 typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int, int);
297 
298 struct uma_klink {
299 	LIST_ENTRY(uma_klink)	kl_link;
300 	uma_keg_t		kl_keg;
301 };
302 typedef struct uma_klink *uma_klink_t;
303 
304 struct uma_zone_domain {
305 	LIST_HEAD(,uma_bucket)	uzd_buckets;	/* full buckets */
306 };
307 
308 typedef struct uma_zone_domain * uma_zone_domain_t;
309 
310 /*
311  * Zone management structure
312  *
313  * TODO: Optimize for cache line size
314  *
315  */
316 struct uma_zone {
317 	/* Offset 0, used in alloc/free fast/medium fast path and const. */
318 	struct mtx	*uz_lockptr;
319 	const char	*uz_name;	/* Text name of the zone */
320 	struct uma_zone_domain	*uz_domain;	/* per-domain buckets */
321 	uint32_t	uz_flags;	/* Flags inherited from kegs */
322 	uint32_t	uz_size;	/* Size inherited from kegs */
323 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
324 	uma_dtor	uz_dtor;	/* Destructor */
325 	uma_init	uz_init;	/* Initializer for each item */
326 	uma_fini	uz_fini;	/* Finalizer for each item. */
327 
328 	/* Offset 64, used in bucket replenish. */
329 	uma_import	uz_import;	/* Import new memory to cache. */
330 	uma_release	uz_release;	/* Release memory from cache. */
331 	void		*uz_arg;	/* Import/release argument. */
332 	uma_slaballoc	uz_slab;	/* Allocate a slab from the backend. */
333 	uint16_t	uz_count;	/* Amount of items in full bucket */
334 	uint16_t	uz_count_min;	/* Minimal amount of items there */
335 	/* 32bit pad on 64bit. */
336 	LIST_ENTRY(uma_zone)	uz_link;	/* List of all zones in keg */
337 	LIST_HEAD(,uma_klink)	uz_kegs;	/* List of kegs. */
338 
339 	/* Offset 128 Rare. */
340 	/*
341 	 * The lock is placed here to avoid adjacent line prefetcher
342 	 * in fast paths and to take up space near infrequently accessed
343 	 * members to reduce alignment overhead.
344 	 */
345 	struct mtx	uz_lock;	/* Lock for the zone */
346 	struct uma_klink	uz_klink;	/* klink for first keg. */
347 	/* The next two fields are used to print a rate-limited warnings. */
348 	const char	*uz_warning;	/* Warning to print on failure */
349 	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
350 	struct task	uz_maxaction;	/* Task to run when at limit */
351 
352 	/* 16 bytes of pad. */
353 
354 	/* Offset 256, atomic stats. */
355 	volatile u_long	uz_allocs UMA_ALIGN; /* Total number of allocations */
356 	volatile u_long	uz_fails;	/* Total number of alloc failures */
357 	volatile u_long	uz_frees;	/* Total number of frees */
358 	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
359 
360 	/*
361 	 * This HAS to be the last item because we adjust the zone size
362 	 * based on NCPU and then allocate the space for the zones.
363 	 */
364 	struct uma_cache	uz_cpu[]; /* Per cpu caches */
365 
366 	/* uz_domain follows here. */
367 };
368 
369 /*
370  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
371  */
372 #define	UMA_ZFLAG_MULTI		0x04000000	/* Multiple kegs in the zone. */
373 #define	UMA_ZFLAG_DRAINING	0x08000000	/* Running zone_drain. */
374 #define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
375 #define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
376 #define UMA_ZFLAG_FULL		0x40000000	/* Reached uz_maxpages */
377 #define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
378 
379 #define	UMA_ZFLAG_INHERIT						\
380     (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
381 
382 static inline uma_keg_t
383 zone_first_keg(uma_zone_t zone)
384 {
385 	uma_klink_t klink;
386 
387 	klink = LIST_FIRST(&zone->uz_kegs);
388 	return (klink != NULL) ? klink->kl_keg : NULL;
389 }
390 
391 #undef UMA_ALIGN
392 
393 #ifdef _KERNEL
394 /* Internal prototypes */
395 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
396 void *uma_large_malloc(vm_size_t size, int wait);
397 void *uma_large_malloc_domain(vm_size_t size, int domain, int wait);
398 void uma_large_free(uma_slab_t slab);
399 
400 /* Lock Macros */
401 
402 #define	KEG_LOCK_INIT(k, lc)					\
403 	do {							\
404 		if ((lc))					\
405 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
406 			    (k)->uk_name, MTX_DEF | MTX_DUPOK);	\
407 		else						\
408 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
409 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
410 	} while (0)
411 
412 #define	KEG_LOCK_FINI(k)	mtx_destroy(&(k)->uk_lock)
413 #define	KEG_LOCK(k)	mtx_lock(&(k)->uk_lock)
414 #define	KEG_UNLOCK(k)	mtx_unlock(&(k)->uk_lock)
415 
416 #define	ZONE_LOCK_INIT(z, lc)					\
417 	do {							\
418 		if ((lc))					\
419 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
420 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
421 		else						\
422 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
423 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
424 	} while (0)
425 
426 #define	ZONE_LOCK(z)	mtx_lock((z)->uz_lockptr)
427 #define	ZONE_TRYLOCK(z)	mtx_trylock((z)->uz_lockptr)
428 #define	ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lockptr)
429 #define	ZONE_LOCK_FINI(z)	mtx_destroy(&(z)->uz_lock)
430 
431 /*
432  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
433  * the slab structure.
434  *
435  * Arguments:
436  *	hash  The hash table to search.
437  *	data  The base page of the item.
438  *
439  * Returns:
440  *	A pointer to a slab if successful, else NULL.
441  */
442 static __inline uma_slab_t
443 hash_sfind(struct uma_hash *hash, uint8_t *data)
444 {
445         uma_slab_t slab;
446         int hval;
447 
448         hval = UMA_HASH(hash, data);
449 
450         SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
451                 if ((uint8_t *)slab->us_data == data)
452                         return (slab);
453         }
454         return (NULL);
455 }
456 
457 static __inline uma_slab_t
458 vtoslab(vm_offset_t va)
459 {
460 	vm_page_t p;
461 
462 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
463 	return ((uma_slab_t)p->plinks.s.pv);
464 }
465 
466 static __inline void
467 vsetslab(vm_offset_t va, uma_slab_t slab)
468 {
469 	vm_page_t p;
470 
471 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
472 	p->plinks.s.pv = slab;
473 }
474 
475 /*
476  * The following two functions may be defined by architecture specific code
477  * if they can provide more efficient allocation functions.  This is useful
478  * for using direct mapped addresses.
479  */
480 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
481     uint8_t *pflag, int wait);
482 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
483 
484 /* Set a global soft limit on UMA managed memory. */
485 void uma_set_limit(unsigned long limit);
486 #endif /* _KERNEL */
487 
488 #endif /* VM_UMA_INT_H */
489