xref: /freebsd/sys/vm/uma_int.h (revision e796cc77c586c2955b2f3940dbf4991b31e8d289)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
5  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice unmodified, this list of conditions, and the following
13  *    disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  *
31  */
32 
33 #include <sys/_bitset.h>
34 #include <sys/_task.h>
35 
36 /*
37  * This file includes definitions, structures, prototypes, and inlines that
38  * should not be used outside of the actual implementation of UMA.
39  */
40 
41 /*
42  * The brief summary;  Zones describe unique allocation types.  Zones are
43  * organized into per-CPU caches which are filled by buckets.  Buckets are
44  * organized according to memory domains.  Buckets are filled from kegs which
45  * are also organized according to memory domains.  Kegs describe a unique
46  * allocation type, backend memory provider, and layout.  Kegs are associated
47  * with one or more zones and zones reference one or more kegs.  Kegs provide
48  * slabs which are virtually contiguous collections of pages.  Each slab is
49  * broken down int one or more items that will satisfy an individual allocation.
50  *
51  * Allocation is satisfied in the following order:
52  * 1) Per-CPU cache
53  * 2) Per-domain cache of buckets
54  * 3) Slab from any of N kegs
55  * 4) Backend page provider
56  *
57  * More detail on individual objects is contained below:
58  *
59  * Kegs contain lists of slabs which are stored in either the full bin, empty
60  * bin, or partially allocated bin, to reduce fragmentation.  They also contain
61  * the user supplied value for size, which is adjusted for alignment purposes
62  * and rsize is the result of that.  The Keg also stores information for
63  * managing a hash of page addresses that maps pages to uma_slab_t structures
64  * for pages that don't have embedded uma_slab_t's.
65  *
66  * Keg slab lists are organized by memory domain to support NUMA allocation
67  * policies.  By default allocations are spread across domains to reduce the
68  * potential for hotspots.  Special keg creation flags may be specified to
69  * prefer location allocation.  However there is no strict enforcement as frees
70  * may happen on any CPU and these are returned to the CPU-local cache
71  * regardless of the originating domain.
72  *
73  * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
74  * be allocated off the page from a special slab zone.  The free list within a
75  * slab is managed with a bitmask.  For item sizes that would yield more than
76  * 10% memory waste we potentially allocate a separate uma_slab_t if this will
77  * improve the number of items per slab that will fit.
78  *
79  * The only really gross cases, with regards to memory waste, are for those
80  * items that are just over half the page size.   You can get nearly 50% waste,
81  * so you fall back to the memory footprint of the power of two allocator. I
82  * have looked at memory allocation sizes on many of the machines available to
83  * me, and there does not seem to be an abundance of allocations at this range
84  * so at this time it may not make sense to optimize for it.  This can, of
85  * course, be solved with dynamic slab sizes.
86  *
87  * Kegs may serve multiple Zones but by far most of the time they only serve
88  * one.  When a Zone is created, a Keg is allocated and setup for it.  While
89  * the backing Keg stores slabs, the Zone caches Buckets of items allocated
90  * from the slabs.  Each Zone is equipped with an init/fini and ctor/dtor
91  * pair, as well as with its own set of small per-CPU caches, layered above
92  * the Zone's general Bucket cache.
93  *
94  * The PCPU caches are protected by critical sections, and may be accessed
95  * safely only from their associated CPU, while the Zones backed by the same
96  * Keg all share a common Keg lock (to coalesce contention on the backing
97  * slabs).  The backing Keg typically only serves one Zone but in the case of
98  * multiple Zones, one of the Zones is considered the Master Zone and all
99  * Zone-related stats from the Keg are done in the Master Zone.  For an
100  * example of a Multi-Zone setup, refer to the Mbuf allocation code.
101  */
102 
103 /*
104  *	This is the representation for normal (Non OFFPAGE slab)
105  *
106  *	i == item
107  *	s == slab pointer
108  *
109  *	<----------------  Page (UMA_SLAB_SIZE) ------------------>
110  *	___________________________________________________________
111  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   ___________ |
112  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
113  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
114  *     |___________________________________________________________|
115  *
116  *
117  *	This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
118  *
119  *	___________________________________________________________
120  *     | _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _  _   |
121  *     ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i|  |
122  *     ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_|  |
123  *     |___________________________________________________________|
124  *       ___________    ^
125  *	|slab header|   |
126  *	|___________|---*
127  *
128  */
129 
130 #ifndef VM_UMA_INT_H
131 #define VM_UMA_INT_H
132 
133 #define UMA_SLAB_SIZE	PAGE_SIZE	/* How big are our slabs? */
134 #define UMA_SLAB_MASK	(PAGE_SIZE - 1)	/* Mask to get back to the page */
135 #define UMA_SLAB_SHIFT	PAGE_SHIFT	/* Number of bits PAGE_MASK */
136 
137 /* Max waste percentage before going to off page slab management */
138 #define UMA_MAX_WASTE	10
139 
140 /*
141  * Size of memory in a not offpage slab available for actual items.
142  */
143 #define	UMA_SLAB_SPACE	(UMA_SLAB_SIZE - sizeof(struct uma_slab))
144 
145 /*
146  * I doubt there will be many cases where this is exceeded. This is the initial
147  * size of the hash table for uma_slabs that are managed off page. This hash
148  * does expand by powers of two.  Currently it doesn't get smaller.
149  */
150 #define UMA_HASH_SIZE_INIT	32
151 
152 /*
153  * I should investigate other hashing algorithms.  This should yield a low
154  * number of collisions if the pages are relatively contiguous.
155  */
156 
157 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
158 
159 #define UMA_HASH_INSERT(h, s, mem)					\
160 		SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h),	\
161 		    (mem))], (s), us_hlink)
162 #define UMA_HASH_REMOVE(h, s, mem)					\
163 		SLIST_REMOVE(&(h)->uh_slab_hash[UMA_HASH((h),		\
164 		    (mem))], (s), uma_slab, us_hlink)
165 
166 /* Hash table for freed address -> slab translation */
167 
168 SLIST_HEAD(slabhead, uma_slab);
169 
170 struct uma_hash {
171 	struct slabhead	*uh_slab_hash;	/* Hash table for slabs */
172 	int		uh_hashsize;	/* Current size of the hash table */
173 	int		uh_hashmask;	/* Mask used during hashing */
174 };
175 
176 /*
177  * align field or structure to cache line
178  */
179 #if defined(__amd64__)
180 #define UMA_ALIGN	__aligned(CACHE_LINE_SIZE)
181 #else
182 #define UMA_ALIGN
183 #endif
184 
185 /*
186  * Structures for per cpu queues.
187  */
188 
189 struct uma_bucket {
190 	LIST_ENTRY(uma_bucket)	ub_link;	/* Link into the zone */
191 	int16_t	ub_cnt;				/* Count of free items. */
192 	int16_t	ub_entries;			/* Max items. */
193 	void	*ub_bucket[];			/* actual allocation storage */
194 };
195 
196 typedef struct uma_bucket * uma_bucket_t;
197 
198 struct uma_cache {
199 	uma_bucket_t	uc_freebucket;	/* Bucket we're freeing to */
200 	uma_bucket_t	uc_allocbucket;	/* Bucket to allocate from */
201 	uint64_t	uc_allocs;	/* Count of allocations */
202 	uint64_t	uc_frees;	/* Count of frees */
203 } UMA_ALIGN;
204 
205 typedef struct uma_cache * uma_cache_t;
206 
207 /*
208  * Per-domain memory list.  Embedded in the kegs.
209  */
210 struct uma_domain {
211 	LIST_HEAD(,uma_slab)	ud_part_slab;	/* partially allocated slabs */
212 	LIST_HEAD(,uma_slab)	ud_free_slab;	/* empty slab list */
213 	LIST_HEAD(,uma_slab)	ud_full_slab;	/* full slabs */
214 };
215 
216 typedef struct uma_domain * uma_domain_t;
217 
218 /*
219  * Keg management structure
220  *
221  * TODO: Optimize for cache line size
222  *
223  */
224 struct uma_keg {
225 	struct mtx_padalign	uk_lock;	/* Lock for the keg */
226 	struct uma_hash	uk_hash;
227 
228 	LIST_HEAD(,uma_zone)	uk_zones;	/* Keg's zones */
229 
230 	uint32_t	uk_cursor;	/* Domain alloc cursor. */
231 	uint32_t	uk_align;	/* Alignment mask */
232 	uint32_t	uk_pages;	/* Total page count */
233 	uint32_t	uk_free;	/* Count of items free in slabs */
234 	uint32_t	uk_reserve;	/* Number of reserved items. */
235 	uint32_t	uk_size;	/* Requested size of each item */
236 	uint32_t	uk_rsize;	/* Real size of each item */
237 	uint32_t	uk_maxpages;	/* Maximum number of pages to alloc */
238 
239 	uma_init	uk_init;	/* Keg's init routine */
240 	uma_fini	uk_fini;	/* Keg's fini routine */
241 	uma_alloc	uk_allocf;	/* Allocation function */
242 	uma_free	uk_freef;	/* Free routine */
243 
244 	u_long		uk_offset;	/* Next free offset from base KVA */
245 	vm_offset_t	uk_kva;		/* Zone base KVA */
246 	uma_zone_t	uk_slabzone;	/* Slab zone backing us, if OFFPAGE */
247 
248 	uint32_t	uk_pgoff;	/* Offset to uma_slab struct */
249 	uint16_t	uk_ppera;	/* pages per allocation from backend */
250 	uint16_t	uk_ipers;	/* Items per slab */
251 	uint32_t	uk_flags;	/* Internal flags */
252 
253 	/* Least used fields go to the last cache line. */
254 	const char	*uk_name;		/* Name of creating zone. */
255 	LIST_ENTRY(uma_keg)	uk_link;	/* List of all kegs */
256 
257 	/* Must be last, variable sized. */
258 	struct uma_domain	uk_domain[];	/* Keg's slab lists. */
259 };
260 typedef struct uma_keg	* uma_keg_t;
261 
262 /*
263  * Free bits per-slab.
264  */
265 #define	SLAB_SETSIZE	(PAGE_SIZE / UMA_SMALLEST_UNIT)
266 BITSET_DEFINE(slabbits, SLAB_SETSIZE);
267 
268 /*
269  * The slab structure manages a single contiguous allocation from backing
270  * store and subdivides it into individually allocatable items.
271  */
272 struct uma_slab {
273 	uma_keg_t	us_keg;			/* Keg we live in */
274 	union {
275 		LIST_ENTRY(uma_slab)	_us_link;	/* slabs in zone */
276 		unsigned long	_us_size;	/* Size of allocation */
277 	} us_type;
278 	SLIST_ENTRY(uma_slab)	us_hlink;	/* Link for hash table */
279 	uint8_t		*us_data;		/* First item */
280 	struct slabbits	us_free;		/* Free bitmask. */
281 #ifdef INVARIANTS
282 	struct slabbits	us_debugfree;		/* Debug bitmask. */
283 #endif
284 	uint16_t	us_freecount;		/* How many are free? */
285 	uint8_t		us_flags;		/* Page flags see uma.h */
286 	uint8_t		us_domain;		/* Backing NUMA domain. */
287 };
288 
289 #define	us_link	us_type._us_link
290 #define	us_size	us_type._us_size
291 
292 #if MAXMEMDOM >= 255
293 #error "Slab domain type insufficient"
294 #endif
295 
296 typedef struct uma_slab * uma_slab_t;
297 typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int, int);
298 
299 struct uma_klink {
300 	LIST_ENTRY(uma_klink)	kl_link;
301 	uma_keg_t		kl_keg;
302 };
303 typedef struct uma_klink *uma_klink_t;
304 
305 struct uma_zone_domain {
306 	LIST_HEAD(,uma_bucket)	uzd_buckets;	/* full buckets */
307 };
308 
309 typedef struct uma_zone_domain * uma_zone_domain_t;
310 
311 /*
312  * Zone management structure
313  *
314  * TODO: Optimize for cache line size
315  *
316  */
317 struct uma_zone {
318 	struct mtx_padalign	uz_lock;	/* Lock for the zone */
319 	struct mtx_padalign	*uz_lockptr;
320 	const char		*uz_name;	/* Text name of the zone */
321 
322 	LIST_ENTRY(uma_zone)	uz_link;	/* List of all zones in keg */
323 	struct uma_zone_domain	*uz_domain;	/* per-domain buckets */
324 
325 	LIST_HEAD(,uma_klink)	uz_kegs;	/* List of kegs. */
326 	struct uma_klink	uz_klink;	/* klink for first keg. */
327 
328 	uma_slaballoc	uz_slab;	/* Allocate a slab from the backend. */
329 	uma_ctor	uz_ctor;	/* Constructor for each allocation */
330 	uma_dtor	uz_dtor;	/* Destructor */
331 	uma_init	uz_init;	/* Initializer for each item */
332 	uma_fini	uz_fini;	/* Finalizer for each item. */
333 	uma_import	uz_import;	/* Import new memory to cache. */
334 	uma_release	uz_release;	/* Release memory from cache. */
335 	void		*uz_arg;	/* Import/release argument. */
336 
337 	uint32_t	uz_flags;	/* Flags inherited from kegs */
338 	uint32_t	uz_size;	/* Size inherited from kegs */
339 
340 	volatile u_long	uz_allocs UMA_ALIGN; /* Total number of allocations */
341 	volatile u_long	uz_fails;	/* Total number of alloc failures */
342 	volatile u_long	uz_frees;	/* Total number of frees */
343 	uint64_t	uz_sleeps;	/* Total number of alloc sleeps */
344 	uint16_t	uz_count;	/* Amount of items in full bucket */
345 	uint16_t	uz_count_min;	/* Minimal amount of items there */
346 
347 	/* The next two fields are used to print a rate-limited warnings. */
348 	const char	*uz_warning;	/* Warning to print on failure */
349 	struct timeval	uz_ratecheck;	/* Warnings rate-limiting */
350 
351 	struct task	uz_maxaction;	/* Task to run when at limit */
352 
353 	/*
354 	 * This HAS to be the last item because we adjust the zone size
355 	 * based on NCPU and then allocate the space for the zones.
356 	 */
357 	struct uma_cache	uz_cpu[]; /* Per cpu caches */
358 
359 	/* uz_domain follows here. */
360 };
361 
362 /*
363  * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
364  */
365 #define	UMA_ZFLAG_MULTI		0x04000000	/* Multiple kegs in the zone. */
366 #define	UMA_ZFLAG_DRAINING	0x08000000	/* Running zone_drain. */
367 #define	UMA_ZFLAG_BUCKET	0x10000000	/* Bucket zone. */
368 #define UMA_ZFLAG_INTERNAL	0x20000000	/* No offpage no PCPU. */
369 #define UMA_ZFLAG_FULL		0x40000000	/* Reached uz_maxpages */
370 #define UMA_ZFLAG_CACHEONLY	0x80000000	/* Don't ask VM for buckets. */
371 
372 #define	UMA_ZFLAG_INHERIT						\
373     (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
374 
375 static inline uma_keg_t
376 zone_first_keg(uma_zone_t zone)
377 {
378 	uma_klink_t klink;
379 
380 	klink = LIST_FIRST(&zone->uz_kegs);
381 	return (klink != NULL) ? klink->kl_keg : NULL;
382 }
383 
384 #undef UMA_ALIGN
385 
386 #ifdef _KERNEL
387 /* Internal prototypes */
388 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
389 void *uma_large_malloc(vm_size_t size, int wait);
390 void *uma_large_malloc_domain(vm_size_t size, int domain, int wait);
391 void uma_large_free(uma_slab_t slab);
392 
393 /* Lock Macros */
394 
395 #define	KEG_LOCK_INIT(k, lc)					\
396 	do {							\
397 		if ((lc))					\
398 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
399 			    (k)->uk_name, MTX_DEF | MTX_DUPOK);	\
400 		else						\
401 			mtx_init(&(k)->uk_lock, (k)->uk_name,	\
402 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
403 	} while (0)
404 
405 #define	KEG_LOCK_FINI(k)	mtx_destroy(&(k)->uk_lock)
406 #define	KEG_LOCK(k)	mtx_lock(&(k)->uk_lock)
407 #define	KEG_UNLOCK(k)	mtx_unlock(&(k)->uk_lock)
408 
409 #define	ZONE_LOCK_INIT(z, lc)					\
410 	do {							\
411 		if ((lc))					\
412 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
413 			    (z)->uz_name, MTX_DEF | MTX_DUPOK);	\
414 		else						\
415 			mtx_init(&(z)->uz_lock, (z)->uz_name,	\
416 			    "UMA zone", MTX_DEF | MTX_DUPOK);	\
417 	} while (0)
418 
419 #define	ZONE_LOCK(z)	mtx_lock((z)->uz_lockptr)
420 #define	ZONE_TRYLOCK(z)	mtx_trylock((z)->uz_lockptr)
421 #define	ZONE_UNLOCK(z)	mtx_unlock((z)->uz_lockptr)
422 #define	ZONE_LOCK_FINI(z)	mtx_destroy(&(z)->uz_lock)
423 
424 /*
425  * Find a slab within a hash table.  This is used for OFFPAGE zones to lookup
426  * the slab structure.
427  *
428  * Arguments:
429  *	hash  The hash table to search.
430  *	data  The base page of the item.
431  *
432  * Returns:
433  *	A pointer to a slab if successful, else NULL.
434  */
435 static __inline uma_slab_t
436 hash_sfind(struct uma_hash *hash, uint8_t *data)
437 {
438         uma_slab_t slab;
439         int hval;
440 
441         hval = UMA_HASH(hash, data);
442 
443         SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
444                 if ((uint8_t *)slab->us_data == data)
445                         return (slab);
446         }
447         return (NULL);
448 }
449 
450 static __inline uma_slab_t
451 vtoslab(vm_offset_t va)
452 {
453 	vm_page_t p;
454 
455 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
456 	return ((uma_slab_t)p->plinks.s.pv);
457 }
458 
459 static __inline void
460 vsetslab(vm_offset_t va, uma_slab_t slab)
461 {
462 	vm_page_t p;
463 
464 	p = PHYS_TO_VM_PAGE(pmap_kextract(va));
465 	p->plinks.s.pv = slab;
466 }
467 
468 /*
469  * The following two functions may be defined by architecture specific code
470  * if they can provide more efficient allocation functions.  This is useful
471  * for using direct mapped addresses.
472  */
473 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
474     uint8_t *pflag, int wait);
475 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
476 
477 /* Set a global soft limit on UMA managed memory. */
478 void uma_set_limit(unsigned long limit);
479 #endif /* _KERNEL */
480 
481 #endif /* VM_UMA_INT_H */
482