1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 */ 30 31 #include <sys/counter.h> 32 #include <sys/_bitset.h> 33 #include <sys/_domainset.h> 34 #include <sys/_task.h> 35 36 /* 37 * This file includes definitions, structures, prototypes, and inlines that 38 * should not be used outside of the actual implementation of UMA. 39 */ 40 41 /* 42 * The brief summary; Zones describe unique allocation types. Zones are 43 * organized into per-CPU caches which are filled by buckets. Buckets are 44 * organized according to memory domains. Buckets are filled from kegs which 45 * are also organized according to memory domains. Kegs describe a unique 46 * allocation type, backend memory provider, and layout. Kegs are associated 47 * with one or more zones and zones reference one or more kegs. Kegs provide 48 * slabs which are virtually contiguous collections of pages. Each slab is 49 * broken down int one or more items that will satisfy an individual allocation. 50 * 51 * Allocation is satisfied in the following order: 52 * 1) Per-CPU cache 53 * 2) Per-domain cache of buckets 54 * 3) Slab from any of N kegs 55 * 4) Backend page provider 56 * 57 * More detail on individual objects is contained below: 58 * 59 * Kegs contain lists of slabs which are stored in either the full bin, empty 60 * bin, or partially allocated bin, to reduce fragmentation. They also contain 61 * the user supplied value for size, which is adjusted for alignment purposes 62 * and rsize is the result of that. The Keg also stores information for 63 * managing a hash of page addresses that maps pages to uma_slab_t structures 64 * for pages that don't have embedded uma_slab_t's. 65 * 66 * Keg slab lists are organized by memory domain to support NUMA allocation 67 * policies. By default allocations are spread across domains to reduce the 68 * potential for hotspots. Special keg creation flags may be specified to 69 * prefer location allocation. However there is no strict enforcement as frees 70 * may happen on any CPU and these are returned to the CPU-local cache 71 * regardless of the originating domain. 72 * 73 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may 74 * be allocated off the page from a special slab zone. The free list within a 75 * slab is managed with a bitmask. For item sizes that would yield more than 76 * 10% memory waste we potentially allocate a separate uma_slab_t if this will 77 * improve the number of items per slab that will fit. 78 * 79 * The only really gross cases, with regards to memory waste, are for those 80 * items that are just over half the page size. You can get nearly 50% waste, 81 * so you fall back to the memory footprint of the power of two allocator. I 82 * have looked at memory allocation sizes on many of the machines available to 83 * me, and there does not seem to be an abundance of allocations at this range 84 * so at this time it may not make sense to optimize for it. This can, of 85 * course, be solved with dynamic slab sizes. 86 * 87 * Kegs may serve multiple Zones but by far most of the time they only serve 88 * one. When a Zone is created, a Keg is allocated and setup for it. While 89 * the backing Keg stores slabs, the Zone caches Buckets of items allocated 90 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor 91 * pair, as well as with its own set of small per-CPU caches, layered above 92 * the Zone's general Bucket cache. 93 * 94 * The PCPU caches are protected by critical sections, and may be accessed 95 * safely only from their associated CPU, while the Zones backed by the same 96 * Keg all share a common Keg lock (to coalesce contention on the backing 97 * slabs). The backing Keg typically only serves one Zone but in the case of 98 * multiple Zones, one of the Zones is considered the Primary Zone and all 99 * Zone-related stats from the Keg are done in the Primary Zone. For an 100 * example of a Multi-Zone setup, refer to the Mbuf allocation code. 101 */ 102 103 /* 104 * This is the representation for normal (Non OFFPAGE slab) 105 * 106 * i == item 107 * s == slab pointer 108 * 109 * <---------------- Page (UMA_SLAB_SIZE) ------------------> 110 * ___________________________________________________________ 111 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | 112 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| 113 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| 114 * |___________________________________________________________| 115 * 116 * 117 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. 118 * 119 * ___________________________________________________________ 120 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 121 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | 122 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | 123 * |___________________________________________________________| 124 * ___________ ^ 125 * |slab header| | 126 * |___________|---* 127 * 128 */ 129 130 #ifndef VM_UMA_INT_H 131 #define VM_UMA_INT_H 132 133 #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ 134 #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ 135 #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ 136 137 /* Max waste percentage before going to off page slab management */ 138 #define UMA_MAX_WASTE 10 139 140 /* Max size of a CACHESPREAD slab. */ 141 #define UMA_CACHESPREAD_MAX_SIZE (128 * 1024) 142 143 /* 144 * These flags must not overlap with the UMA_ZONE flags specified in uma.h. 145 */ 146 #define UMA_ZFLAG_OFFPAGE 0x00200000 /* 147 * Force the slab structure 148 * allocation off of the real 149 * memory. 150 */ 151 #define UMA_ZFLAG_HASH 0x00400000 /* 152 * Use a hash table instead of 153 * caching information in the 154 * vm_page. 155 */ 156 #define UMA_ZFLAG_VTOSLAB 0x00800000 /* 157 * Zone uses vtoslab for 158 * lookup. 159 */ 160 #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */ 161 #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */ 162 #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */ 163 #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */ 164 #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */ 165 #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */ 166 167 #define UMA_ZFLAG_INHERIT \ 168 (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \ 169 UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL) 170 171 #define PRINT_UMA_ZFLAGS "\20" \ 172 "\37TRASH" \ 173 "\36INTERNAL" \ 174 "\35BUCKET" \ 175 "\33CACHE" \ 176 "\32LIMIT" \ 177 "\31CTORDTOR" \ 178 "\30VTOSLAB" \ 179 "\27HASH" \ 180 "\26OFFPAGE" \ 181 "\23SMR" \ 182 "\22ROUNDROBIN" \ 183 "\21FIRSTTOUCH" \ 184 "\20PCPU" \ 185 "\17NODUMP" \ 186 "\16CACHESPREAD" \ 187 "\14MAXBUCKET" \ 188 "\13NOBUCKET" \ 189 "\12SECONDARY" \ 190 "\11NOTPAGE" \ 191 "\10VM" \ 192 "\7MTXCLASS" \ 193 "\6NOFREE" \ 194 "\5MALLOC" \ 195 "\4NOTOUCH" \ 196 "\3CONTIG" \ 197 "\2ZINIT" 198 199 /* 200 * Hash table for freed address -> slab translation. 201 * 202 * Only zones with memory not touchable by the allocator use the 203 * hash table. Otherwise slabs are found with vtoslab(). 204 */ 205 #define UMA_HASH_SIZE_INIT 32 206 207 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask) 208 209 #define UMA_HASH_INSERT(h, s, mem) \ 210 LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ 211 (mem))], slab_tohashslab(s), uhs_hlink) 212 213 #define UMA_HASH_REMOVE(h, s) \ 214 LIST_REMOVE(slab_tohashslab(s), uhs_hlink) 215 216 LIST_HEAD(slabhashhead, uma_hash_slab); 217 218 struct uma_hash { 219 struct slabhashhead *uh_slab_hash; /* Hash table for slabs */ 220 u_int uh_hashsize; /* Current size of the hash table */ 221 u_int uh_hashmask; /* Mask used during hashing */ 222 }; 223 224 /* 225 * Align field or structure to cache 'sector' in intel terminology. This 226 * is more efficient with adjacent line prefetch. 227 */ 228 #if defined(__amd64__) || defined(__powerpc64__) 229 #define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2) 230 #else 231 #define UMA_SUPER_ALIGN CACHE_LINE_SIZE 232 #endif 233 234 #define UMA_ALIGN __aligned(UMA_SUPER_ALIGN) 235 236 /* 237 * The uma_bucket structure is used to queue and manage buckets divorced 238 * from per-cpu caches. They are loaded into uma_cache_bucket structures 239 * for use. 240 */ 241 struct uma_bucket { 242 STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */ 243 int16_t ub_cnt; /* Count of items in bucket. */ 244 int16_t ub_entries; /* Max items. */ 245 smr_seq_t ub_seq; /* SMR sequence number. */ 246 void *ub_bucket[]; /* actual allocation storage */ 247 }; 248 249 typedef struct uma_bucket * uma_bucket_t; 250 251 /* 252 * The uma_cache_bucket structure is statically allocated on each per-cpu 253 * cache. Its use reduces branches and cache misses in the fast path. 254 */ 255 struct uma_cache_bucket { 256 uma_bucket_t ucb_bucket; 257 int16_t ucb_cnt; 258 int16_t ucb_entries; 259 uint32_t ucb_spare; 260 }; 261 262 typedef struct uma_cache_bucket * uma_cache_bucket_t; 263 264 /* 265 * The uma_cache structure is allocated for each cpu for every zone 266 * type. This optimizes synchronization out of the allocator fast path. 267 */ 268 struct uma_cache { 269 struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */ 270 struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */ 271 struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */ 272 uint64_t uc_allocs; /* Count of allocations */ 273 uint64_t uc_frees; /* Count of frees */ 274 } UMA_ALIGN; 275 276 typedef struct uma_cache * uma_cache_t; 277 278 LIST_HEAD(slabhead, uma_slab); 279 280 /* 281 * The cache structure pads perfectly into 64 bytes so we use spare 282 * bits from the embedded cache buckets to store information from the zone 283 * and keep all fast-path allocations accessing a single per-cpu line. 284 */ 285 static inline void 286 cache_set_uz_flags(uma_cache_t cache, uint32_t flags) 287 { 288 289 cache->uc_freebucket.ucb_spare = flags; 290 } 291 292 static inline void 293 cache_set_uz_size(uma_cache_t cache, uint32_t size) 294 { 295 296 cache->uc_allocbucket.ucb_spare = size; 297 } 298 299 static inline uint32_t 300 cache_uz_flags(uma_cache_t cache) 301 { 302 303 return (cache->uc_freebucket.ucb_spare); 304 } 305 306 static inline uint32_t 307 cache_uz_size(uma_cache_t cache) 308 { 309 310 return (cache->uc_allocbucket.ucb_spare); 311 } 312 313 /* 314 * Per-domain slab lists. Embedded in the kegs. 315 */ 316 struct uma_domain { 317 struct mtx_padalign ud_lock; /* Lock for the domain lists. */ 318 struct slabhead ud_part_slab; /* partially allocated slabs */ 319 struct slabhead ud_free_slab; /* completely unallocated slabs */ 320 struct slabhead ud_full_slab; /* fully allocated slabs */ 321 uint32_t ud_pages; /* Total page count */ 322 uint32_t ud_free_items; /* Count of items free in all slabs */ 323 uint32_t ud_free_slabs; /* Count of free slabs */ 324 } __aligned(CACHE_LINE_SIZE); 325 326 typedef struct uma_domain * uma_domain_t; 327 328 /* 329 * Keg management structure 330 * 331 * TODO: Optimize for cache line size 332 * 333 */ 334 struct uma_keg { 335 struct uma_hash uk_hash; 336 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ 337 338 struct domainset_ref uk_dr; /* Domain selection policy. */ 339 uint32_t uk_align; /* Alignment mask */ 340 uint32_t uk_reserve; /* Number of reserved items. */ 341 uint32_t uk_size; /* Requested size of each item */ 342 uint32_t uk_rsize; /* Real size of each item */ 343 344 uma_init uk_init; /* Keg's init routine */ 345 uma_fini uk_fini; /* Keg's fini routine */ 346 uma_alloc uk_allocf; /* Allocation function */ 347 uma_free uk_freef; /* Free routine */ 348 349 u_long uk_offset; /* Next free offset from base KVA */ 350 vm_offset_t uk_kva; /* Zone base KVA */ 351 352 uint32_t uk_pgoff; /* Offset to uma_slab struct */ 353 uint16_t uk_ppera; /* pages per allocation from backend */ 354 uint16_t uk_ipers; /* Items per slab */ 355 uint32_t uk_flags; /* Internal flags */ 356 357 /* Least used fields go to the last cache line. */ 358 const char *uk_name; /* Name of creating zone. */ 359 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ 360 361 /* Must be last, variable sized. */ 362 struct uma_domain uk_domain[]; /* Keg's slab lists. */ 363 }; 364 typedef struct uma_keg * uma_keg_t; 365 366 /* 367 * Free bits per-slab. 368 */ 369 #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT) 370 #define SLAB_MIN_SETSIZE _BITSET_BITS 371 BITSET_DEFINE(noslabbits, 0); 372 373 /* 374 * The slab structure manages a single contiguous allocation from backing 375 * store and subdivides it into individually allocatable items. 376 */ 377 struct uma_slab { 378 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */ 379 uint16_t us_freecount; /* How many are free? */ 380 uint8_t us_flags; /* Page flags see uma.h */ 381 uint8_t us_domain; /* Backing NUMA domain. */ 382 struct noslabbits us_free; /* Free bitmask, flexible. */ 383 }; 384 _Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free), 385 "us_free field must be last"); 386 _Static_assert(MAXMEMDOM < 255, 387 "us_domain field is not wide enough"); 388 389 typedef struct uma_slab * uma_slab_t; 390 391 /* 392 * Slab structure with a full sized bitset and hash link for both 393 * HASH and OFFPAGE zones. 394 */ 395 struct uma_hash_slab { 396 LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */ 397 uint8_t *uhs_data; /* First item */ 398 struct uma_slab uhs_slab; /* Must be last. */ 399 }; 400 401 typedef struct uma_hash_slab * uma_hash_slab_t; 402 403 static inline uma_hash_slab_t 404 slab_tohashslab(uma_slab_t slab) 405 { 406 407 return (__containerof(slab, struct uma_hash_slab, uhs_slab)); 408 } 409 410 static inline void * 411 slab_data(uma_slab_t slab, uma_keg_t keg) 412 { 413 414 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0) 415 return ((void *)((uintptr_t)slab - keg->uk_pgoff)); 416 else 417 return (slab_tohashslab(slab)->uhs_data); 418 } 419 420 static inline void * 421 slab_item(uma_slab_t slab, uma_keg_t keg, int index) 422 { 423 uintptr_t data; 424 425 data = (uintptr_t)slab_data(slab, keg); 426 return ((void *)(data + keg->uk_rsize * index)); 427 } 428 429 static inline int 430 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item) 431 { 432 uintptr_t data; 433 434 data = (uintptr_t)slab_data(slab, keg); 435 return (((uintptr_t)item - data) / keg->uk_rsize); 436 } 437 438 STAILQ_HEAD(uma_bucketlist, uma_bucket); 439 440 struct uma_zone_domain { 441 struct uma_bucketlist uzd_buckets; /* full buckets */ 442 uma_bucket_t uzd_cross; /* Fills from cross buckets. */ 443 long uzd_nitems; /* total item count */ 444 long uzd_imax; /* maximum item count this period */ 445 long uzd_imin; /* minimum item count this period */ 446 long uzd_bimin; /* Minimum item count this batch. */ 447 long uzd_wss; /* working set size estimate */ 448 long uzd_limin; /* Longtime minimum item count. */ 449 u_int uzd_timin; /* Time since uzd_limin == 0. */ 450 smr_seq_t uzd_seq; /* Lowest queued seq. */ 451 struct mtx uzd_lock; /* Lock for the domain */ 452 } __aligned(CACHE_LINE_SIZE); 453 454 typedef struct uma_zone_domain * uma_zone_domain_t; 455 456 /* 457 * Zone structure - per memory type. 458 */ 459 struct uma_zone { 460 /* Offset 0, used in alloc/free fast/medium fast path and const. */ 461 uint32_t uz_flags; /* Flags inherited from kegs */ 462 uint32_t uz_size; /* Size inherited from kegs */ 463 uma_ctor uz_ctor; /* Constructor for each allocation */ 464 uma_dtor uz_dtor; /* Destructor */ 465 smr_t uz_smr; /* Safe memory reclaim context. */ 466 uint64_t uz_max_items; /* Maximum number of items to alloc */ 467 uint64_t uz_bucket_max; /* Maximum bucket cache size */ 468 uint16_t uz_bucket_size; /* Number of items in full bucket */ 469 uint16_t uz_bucket_size_max; /* Maximum number of bucket items */ 470 uint32_t uz_sleepers; /* Threads sleeping on limit */ 471 counter_u64_t uz_xdomain; /* Total number of cross-domain frees */ 472 473 /* Offset 64, used in bucket replenish. */ 474 uma_keg_t uz_keg; /* This zone's keg if !CACHE */ 475 uma_import uz_import; /* Import new memory to cache. */ 476 uma_release uz_release; /* Release memory from cache. */ 477 void *uz_arg; /* Import/release argument. */ 478 uma_init uz_init; /* Initializer for each item */ 479 uma_fini uz_fini; /* Finalizer for each item. */ 480 volatile uint64_t uz_items; /* Total items count & sleepers */ 481 uint64_t uz_sleeps; /* Total number of alloc sleeps */ 482 483 /* Offset 128 Rare stats, misc read-only. */ 484 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ 485 counter_u64_t uz_allocs; /* Total number of allocations */ 486 counter_u64_t uz_frees; /* Total number of frees */ 487 counter_u64_t uz_fails; /* Total number of alloc failures */ 488 const char *uz_name; /* Text name of the zone */ 489 char *uz_ctlname; /* sysctl safe name string. */ 490 int uz_namecnt; /* duplicate name count. */ 491 uint16_t uz_bucket_size_min; /* Min number of items in bucket */ 492 uint16_t uz_reclaimers; /* pending reclaim operations. */ 493 494 /* Offset 192, rare read-only. */ 495 struct sysctl_oid *uz_oid; /* sysctl oid pointer. */ 496 const char *uz_warning; /* Warning to print on failure */ 497 struct timeval uz_ratecheck; /* Warnings rate-limiting */ 498 struct task uz_maxaction; /* Task to run when at limit */ 499 500 /* Offset 256. */ 501 struct mtx uz_cross_lock; /* Cross domain free lock */ 502 503 /* 504 * This HAS to be the last item because we adjust the zone size 505 * based on NCPU and then allocate the space for the zones. 506 */ 507 struct uma_cache uz_cpu[]; /* Per cpu caches */ 508 509 /* domains follow here. */ 510 }; 511 512 /* 513 * Macros for interpreting the uz_items field. 20 bits of sleeper count 514 * and 44 bit of item count. 515 */ 516 #define UZ_ITEMS_SLEEPER_SHIFT 44LL 517 #define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1) 518 #define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1) 519 #define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK) 520 #define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT) 521 #define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT) 522 523 #define ZONE_ASSERT_COLD(z) \ 524 KASSERT(uma_zone_get_allocs((z)) == 0, \ 525 ("zone %s initialization after use.", (z)->uz_name)) 526 527 /* Domains are contiguous after the last CPU */ 528 #define ZDOM_GET(z, n) \ 529 (&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n]) 530 531 #undef UMA_ALIGN 532 533 #ifdef _KERNEL 534 /* Internal prototypes */ 535 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data); 536 537 /* Lock Macros */ 538 539 #define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock 540 #define KEG_LOCK_INIT(k, d, lc) \ 541 do { \ 542 if ((lc)) \ 543 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \ 544 (k)->uk_name, MTX_DEF | MTX_DUPOK); \ 545 else \ 546 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \ 547 "UMA zone", MTX_DEF | MTX_DUPOK); \ 548 } while (0) 549 550 #define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d)) 551 #define KEG_LOCK(k, d) \ 552 ({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); }) 553 #define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d)) 554 #define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED) 555 556 #define KEG_GET(zone, keg) do { \ 557 (keg) = (zone)->uz_keg; \ 558 KASSERT((void *)(keg) != NULL, \ 559 ("%s: Invalid zone %p type", __func__, (zone))); \ 560 } while (0) 561 562 #define KEG_ASSERT_COLD(k) \ 563 KASSERT(uma_keg_get_allocs((k)) == 0, \ 564 ("keg %s initialization after use.", (k)->uk_name)) 565 566 #define ZDOM_LOCK_INIT(z, zdom, lc) \ 567 do { \ 568 if ((lc)) \ 569 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \ 570 (z)->uz_name, MTX_DEF | MTX_DUPOK); \ 571 else \ 572 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \ 573 "UMA zone", MTX_DEF | MTX_DUPOK); \ 574 } while (0) 575 #define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock) 576 #define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED) 577 578 #define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock) 579 #define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL) 580 #define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock) 581 582 #define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0)) 583 #define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0)) 584 #define ZONE_LOCKPTR(z) (&ZDOM_GET((z), 0)->uzd_lock) 585 586 #define ZONE_CROSS_LOCK_INIT(z) \ 587 mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF) 588 #define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock) 589 #define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock) 590 #define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock) 591 592 /* 593 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup 594 * the slab structure. 595 * 596 * Arguments: 597 * hash The hash table to search. 598 * data The base page of the item. 599 * 600 * Returns: 601 * A pointer to a slab if successful, else NULL. 602 */ 603 static __inline uma_slab_t 604 hash_sfind(struct uma_hash *hash, uint8_t *data) 605 { 606 uma_hash_slab_t slab; 607 u_int hval; 608 609 hval = UMA_HASH(hash, data); 610 611 LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) { 612 if ((uint8_t *)slab->uhs_data == data) 613 return (&slab->uhs_slab); 614 } 615 return (NULL); 616 } 617 618 static __inline uma_slab_t 619 vtoslab(vm_offset_t va) 620 { 621 vm_page_t p; 622 623 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 624 return (p->plinks.uma.slab); 625 } 626 627 static __inline void 628 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab) 629 { 630 vm_page_t p; 631 632 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 633 *slab = p->plinks.uma.slab; 634 *zone = p->plinks.uma.zone; 635 } 636 637 static __inline void 638 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab) 639 { 640 vm_page_t p; 641 642 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 643 p->plinks.uma.slab = slab; 644 p->plinks.uma.zone = zone; 645 } 646 647 extern unsigned long uma_kmem_limit; 648 extern unsigned long uma_kmem_total; 649 650 /* Adjust bytes under management by UMA. */ 651 static inline void 652 uma_total_dec(unsigned long size) 653 { 654 655 atomic_subtract_long(&uma_kmem_total, size); 656 } 657 658 static inline void 659 uma_total_inc(unsigned long size) 660 { 661 662 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 663 uma_reclaim_wakeup(); 664 } 665 666 /* 667 * The following two functions may be defined by architecture specific code 668 * if they can provide more efficient allocation functions. This is useful 669 * for using direct mapped addresses. 670 */ 671 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, 672 uint8_t *pflag, int wait); 673 void uma_small_free(void *mem, vm_size_t size, uint8_t flags); 674 675 /* Set a global soft limit on UMA managed memory. */ 676 void uma_set_limit(unsigned long limit); 677 678 #endif /* _KERNEL */ 679 680 #endif /* VM_UMA_INT_H */ 681