1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 * 31 */ 32 33 #include <sys/counter.h> 34 #include <sys/_bitset.h> 35 #include <sys/_domainset.h> 36 #include <sys/_task.h> 37 38 /* 39 * This file includes definitions, structures, prototypes, and inlines that 40 * should not be used outside of the actual implementation of UMA. 41 */ 42 43 /* 44 * The brief summary; Zones describe unique allocation types. Zones are 45 * organized into per-CPU caches which are filled by buckets. Buckets are 46 * organized according to memory domains. Buckets are filled from kegs which 47 * are also organized according to memory domains. Kegs describe a unique 48 * allocation type, backend memory provider, and layout. Kegs are associated 49 * with one or more zones and zones reference one or more kegs. Kegs provide 50 * slabs which are virtually contiguous collections of pages. Each slab is 51 * broken down int one or more items that will satisfy an individual allocation. 52 * 53 * Allocation is satisfied in the following order: 54 * 1) Per-CPU cache 55 * 2) Per-domain cache of buckets 56 * 3) Slab from any of N kegs 57 * 4) Backend page provider 58 * 59 * More detail on individual objects is contained below: 60 * 61 * Kegs contain lists of slabs which are stored in either the full bin, empty 62 * bin, or partially allocated bin, to reduce fragmentation. They also contain 63 * the user supplied value for size, which is adjusted for alignment purposes 64 * and rsize is the result of that. The Keg also stores information for 65 * managing a hash of page addresses that maps pages to uma_slab_t structures 66 * for pages that don't have embedded uma_slab_t's. 67 * 68 * Keg slab lists are organized by memory domain to support NUMA allocation 69 * policies. By default allocations are spread across domains to reduce the 70 * potential for hotspots. Special keg creation flags may be specified to 71 * prefer location allocation. However there is no strict enforcement as frees 72 * may happen on any CPU and these are returned to the CPU-local cache 73 * regardless of the originating domain. 74 * 75 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may 76 * be allocated off the page from a special slab zone. The free list within a 77 * slab is managed with a bitmask. For item sizes that would yield more than 78 * 10% memory waste we potentially allocate a separate uma_slab_t if this will 79 * improve the number of items per slab that will fit. 80 * 81 * The only really gross cases, with regards to memory waste, are for those 82 * items that are just over half the page size. You can get nearly 50% waste, 83 * so you fall back to the memory footprint of the power of two allocator. I 84 * have looked at memory allocation sizes on many of the machines available to 85 * me, and there does not seem to be an abundance of allocations at this range 86 * so at this time it may not make sense to optimize for it. This can, of 87 * course, be solved with dynamic slab sizes. 88 * 89 * Kegs may serve multiple Zones but by far most of the time they only serve 90 * one. When a Zone is created, a Keg is allocated and setup for it. While 91 * the backing Keg stores slabs, the Zone caches Buckets of items allocated 92 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor 93 * pair, as well as with its own set of small per-CPU caches, layered above 94 * the Zone's general Bucket cache. 95 * 96 * The PCPU caches are protected by critical sections, and may be accessed 97 * safely only from their associated CPU, while the Zones backed by the same 98 * Keg all share a common Keg lock (to coalesce contention on the backing 99 * slabs). The backing Keg typically only serves one Zone but in the case of 100 * multiple Zones, one of the Zones is considered the Master Zone and all 101 * Zone-related stats from the Keg are done in the Master Zone. For an 102 * example of a Multi-Zone setup, refer to the Mbuf allocation code. 103 */ 104 105 /* 106 * This is the representation for normal (Non OFFPAGE slab) 107 * 108 * i == item 109 * s == slab pointer 110 * 111 * <---------------- Page (UMA_SLAB_SIZE) ------------------> 112 * ___________________________________________________________ 113 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | 114 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| 115 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| 116 * |___________________________________________________________| 117 * 118 * 119 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. 120 * 121 * ___________________________________________________________ 122 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 123 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | 124 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | 125 * |___________________________________________________________| 126 * ___________ ^ 127 * |slab header| | 128 * |___________|---* 129 * 130 */ 131 132 #ifndef VM_UMA_INT_H 133 #define VM_UMA_INT_H 134 135 #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ 136 #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ 137 #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ 138 139 /* Max waste percentage before going to off page slab management */ 140 #define UMA_MAX_WASTE 10 141 142 143 /* 144 * Hash table for freed address -> slab translation. 145 * 146 * Only zones with memory not touchable by the allocator use the 147 * hash table. Otherwise slabs are found with vtoslab(). 148 */ 149 #define UMA_HASH_SIZE_INIT 32 150 151 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask) 152 153 #define UMA_HASH_INSERT(h, s, mem) \ 154 LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ 155 (mem))], (uma_hash_slab_t)(s), uhs_hlink) 156 157 #define UMA_HASH_REMOVE(h, s) \ 158 LIST_REMOVE((uma_hash_slab_t)(s), uhs_hlink) 159 160 LIST_HEAD(slabhashhead, uma_hash_slab); 161 162 struct uma_hash { 163 struct slabhashhead *uh_slab_hash; /* Hash table for slabs */ 164 u_int uh_hashsize; /* Current size of the hash table */ 165 u_int uh_hashmask; /* Mask used during hashing */ 166 }; 167 168 /* 169 * align field or structure to cache line 170 */ 171 #if defined(__amd64__) || defined(__powerpc64__) 172 #define UMA_ALIGN __aligned(128) 173 #else 174 #define UMA_ALIGN __aligned(CACHE_LINE_SIZE) 175 #endif 176 177 /* 178 * The uma_bucket structure is used to queue and manage buckets divorced 179 * from per-cpu caches. They are loaded into uma_cache_bucket structures 180 * for use. 181 */ 182 struct uma_bucket { 183 TAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */ 184 int16_t ub_cnt; /* Count of items in bucket. */ 185 int16_t ub_entries; /* Max items. */ 186 void *ub_bucket[]; /* actual allocation storage */ 187 }; 188 189 typedef struct uma_bucket * uma_bucket_t; 190 191 /* 192 * The uma_cache_bucket structure is statically allocated on each per-cpu 193 * cache. Its use reduces branches and cache misses in the fast path. 194 */ 195 struct uma_cache_bucket { 196 uma_bucket_t ucb_bucket; 197 int16_t ucb_cnt; 198 int16_t ucb_entries; 199 uint32_t ucb_spare; 200 }; 201 202 typedef struct uma_cache_bucket * uma_cache_bucket_t; 203 204 /* 205 * The uma_cache structure is allocated for each cpu for every zone 206 * type. This optimizes synchronization out of the allocator fast path. 207 */ 208 struct uma_cache { 209 struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */ 210 struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */ 211 struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */ 212 uint64_t uc_allocs; /* Count of allocations */ 213 uint64_t uc_frees; /* Count of frees */ 214 } UMA_ALIGN; 215 216 typedef struct uma_cache * uma_cache_t; 217 218 LIST_HEAD(slabhead, uma_slab); 219 220 /* 221 * The cache structure pads perfectly into 64 bytes so we use spare 222 * bits from the embedded cache buckets to store information from the zone 223 * and keep all fast-path allocations accessing a single per-cpu line. 224 */ 225 static inline void 226 cache_set_uz_flags(uma_cache_t cache, uint32_t flags) 227 { 228 229 cache->uc_freebucket.ucb_spare = flags; 230 } 231 232 static inline void 233 cache_set_uz_size(uma_cache_t cache, uint32_t size) 234 { 235 236 cache->uc_allocbucket.ucb_spare = size; 237 } 238 239 static inline uint32_t 240 cache_uz_flags(uma_cache_t cache) 241 { 242 243 return (cache->uc_freebucket.ucb_spare); 244 } 245 246 static inline uint32_t 247 cache_uz_size(uma_cache_t cache) 248 { 249 250 return (cache->uc_allocbucket.ucb_spare); 251 } 252 253 /* 254 * Per-domain slab lists. Embedded in the kegs. 255 */ 256 struct uma_domain { 257 struct slabhead ud_part_slab; /* partially allocated slabs */ 258 struct slabhead ud_free_slab; /* completely unallocated slabs */ 259 struct slabhead ud_full_slab; /* fully allocated slabs */ 260 }; 261 262 typedef struct uma_domain * uma_domain_t; 263 264 /* 265 * Keg management structure 266 * 267 * TODO: Optimize for cache line size 268 * 269 */ 270 struct uma_keg { 271 struct mtx uk_lock; /* Lock for the keg must be first. 272 * See shared uz_keg/uz_lockptr 273 * member of struct uma_zone. */ 274 struct uma_hash uk_hash; 275 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ 276 277 struct domainset_ref uk_dr; /* Domain selection policy. */ 278 uint32_t uk_align; /* Alignment mask */ 279 uint32_t uk_pages; /* Total page count */ 280 uint32_t uk_free; /* Count of items free in slabs */ 281 uint32_t uk_reserve; /* Number of reserved items. */ 282 uint32_t uk_size; /* Requested size of each item */ 283 uint32_t uk_rsize; /* Real size of each item */ 284 285 uma_init uk_init; /* Keg's init routine */ 286 uma_fini uk_fini; /* Keg's fini routine */ 287 uma_alloc uk_allocf; /* Allocation function */ 288 uma_free uk_freef; /* Free routine */ 289 290 u_long uk_offset; /* Next free offset from base KVA */ 291 vm_offset_t uk_kva; /* Zone base KVA */ 292 uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */ 293 294 uint32_t uk_pgoff; /* Offset to uma_slab struct */ 295 uint16_t uk_ppera; /* pages per allocation from backend */ 296 uint16_t uk_ipers; /* Items per slab */ 297 uint32_t uk_flags; /* Internal flags */ 298 299 /* Least used fields go to the last cache line. */ 300 const char *uk_name; /* Name of creating zone. */ 301 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ 302 303 /* Must be last, variable sized. */ 304 struct uma_domain uk_domain[]; /* Keg's slab lists. */ 305 }; 306 typedef struct uma_keg * uma_keg_t; 307 308 #ifdef _KERNEL 309 /* 310 * Free bits per-slab. 311 */ 312 #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT) 313 #define SLAB_MIN_SETSIZE _BITSET_BITS 314 BITSET_DEFINE(slabbits, SLAB_MAX_SETSIZE); 315 BITSET_DEFINE(noslabbits, 0); 316 317 /* 318 * The slab structure manages a single contiguous allocation from backing 319 * store and subdivides it into individually allocatable items. 320 */ 321 struct uma_slab { 322 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */ 323 uint16_t us_freecount; /* How many are free? */ 324 uint8_t us_flags; /* Page flags see uma.h */ 325 uint8_t us_domain; /* Backing NUMA domain. */ 326 struct noslabbits us_free; /* Free bitmask, flexible. */ 327 }; 328 _Static_assert(sizeof(struct uma_slab) == offsetof(struct uma_slab, us_free), 329 "us_free field must be last"); 330 #if MAXMEMDOM >= 255 331 #error "Slab domain type insufficient" 332 #endif 333 334 typedef struct uma_slab * uma_slab_t; 335 336 /* 337 * On INVARIANTS builds, the slab contains a second bitset of the same size, 338 * "dbg_bits", which is laid out immediately after us_free. 339 */ 340 #ifdef INVARIANTS 341 #define SLAB_BITSETS 2 342 #else 343 #define SLAB_BITSETS 1 344 #endif 345 346 /* These three functions are for embedded (!OFFPAGE) use only. */ 347 size_t slab_sizeof(int nitems); 348 size_t slab_space(int nitems); 349 int slab_ipers(size_t size, int align); 350 351 /* 352 * Slab structure with a full sized bitset and hash link for both 353 * HASH and OFFPAGE zones. 354 */ 355 struct uma_hash_slab { 356 struct uma_slab uhs_slab; /* Must be first. */ 357 struct slabbits uhs_bits1; /* Must be second. */ 358 #ifdef INVARIANTS 359 struct slabbits uhs_bits2; /* Must be third. */ 360 #endif 361 LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */ 362 uint8_t *uhs_data; /* First item */ 363 }; 364 365 typedef struct uma_hash_slab * uma_hash_slab_t; 366 367 static inline void * 368 slab_data(uma_slab_t slab, uma_keg_t keg) 369 { 370 371 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) 372 return ((void *)((uintptr_t)slab - keg->uk_pgoff)); 373 else 374 return (((uma_hash_slab_t)slab)->uhs_data); 375 } 376 377 static inline void * 378 slab_item(uma_slab_t slab, uma_keg_t keg, int index) 379 { 380 uintptr_t data; 381 382 data = (uintptr_t)slab_data(slab, keg); 383 return ((void *)(data + keg->uk_rsize * index)); 384 } 385 386 static inline int 387 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item) 388 { 389 uintptr_t data; 390 391 data = (uintptr_t)slab_data(slab, keg); 392 return (((uintptr_t)item - data) / keg->uk_rsize); 393 } 394 #endif /* _KERNEL */ 395 396 TAILQ_HEAD(uma_bucketlist, uma_bucket); 397 398 struct uma_zone_domain { 399 struct uma_bucketlist uzd_buckets; /* full buckets */ 400 long uzd_nitems; /* total item count */ 401 long uzd_imax; /* maximum item count this period */ 402 long uzd_imin; /* minimum item count this period */ 403 long uzd_wss; /* working set size estimate */ 404 }; 405 406 typedef struct uma_zone_domain * uma_zone_domain_t; 407 408 /* 409 * Zone management structure 410 * 411 * TODO: Optimize for cache line size 412 * 413 */ 414 struct uma_zone { 415 /* Offset 0, used in alloc/free fast/medium fast path and const. */ 416 union { 417 uma_keg_t uz_keg; /* This zone's keg */ 418 struct mtx *uz_lockptr; /* To keg or to self */ 419 }; 420 struct uma_zone_domain *uz_domain; /* per-domain buckets */ 421 uint32_t uz_flags; /* Flags inherited from kegs */ 422 uint32_t uz_size; /* Size inherited from kegs */ 423 uma_ctor uz_ctor; /* Constructor for each allocation */ 424 uma_dtor uz_dtor; /* Destructor */ 425 uint64_t uz_items; /* Total items count */ 426 uint64_t uz_max_items; /* Maximum number of items to alloc */ 427 uint32_t uz_sleepers; /* Number of sleepers on memory */ 428 uint16_t uz_bucket_size; /* Number of items in full bucket */ 429 uint16_t uz_bucket_size_max; /* Maximum number of bucket items */ 430 431 /* Offset 64, used in bucket replenish. */ 432 uma_import uz_import; /* Import new memory to cache. */ 433 uma_release uz_release; /* Release memory from cache. */ 434 void *uz_arg; /* Import/release argument. */ 435 uma_init uz_init; /* Initializer for each item */ 436 uma_fini uz_fini; /* Finalizer for each item. */ 437 void *uz_spare; 438 uint64_t uz_bkt_count; /* Items in bucket cache */ 439 uint64_t uz_bkt_max; /* Maximum bucket cache size */ 440 441 /* Offset 128 Rare. */ 442 /* 443 * The lock is placed here to avoid adjacent line prefetcher 444 * in fast paths and to take up space near infrequently accessed 445 * members to reduce alignment overhead. 446 */ 447 struct mtx uz_lock; /* Lock for the zone */ 448 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ 449 const char *uz_name; /* Text name of the zone */ 450 /* The next two fields are used to print a rate-limited warnings. */ 451 const char *uz_warning; /* Warning to print on failure */ 452 struct timeval uz_ratecheck; /* Warnings rate-limiting */ 453 struct task uz_maxaction; /* Task to run when at limit */ 454 uint16_t uz_bucket_size_min; /* Min number of items in bucket */ 455 456 /* Offset 256+, stats and misc. */ 457 counter_u64_t uz_allocs; /* Total number of allocations */ 458 counter_u64_t uz_frees; /* Total number of frees */ 459 counter_u64_t uz_fails; /* Total number of alloc failures */ 460 uint64_t uz_sleeps; /* Total number of alloc sleeps */ 461 uint64_t uz_xdomain; /* Total number of cross-domain frees */ 462 char *uz_ctlname; /* sysctl safe name string. */ 463 struct sysctl_oid *uz_oid; /* sysctl oid pointer. */ 464 int uz_namecnt; /* duplicate name count. */ 465 466 /* 467 * This HAS to be the last item because we adjust the zone size 468 * based on NCPU and then allocate the space for the zones. 469 */ 470 struct uma_cache uz_cpu[]; /* Per cpu caches */ 471 472 /* uz_domain follows here. */ 473 }; 474 475 /* 476 * These flags must not overlap with the UMA_ZONE flags specified in uma.h. 477 */ 478 #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */ 479 #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */ 480 #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */ 481 #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */ 482 #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */ 483 #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */ 484 #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */ 485 #define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */ 486 487 #define UMA_ZFLAG_INHERIT \ 488 (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET) 489 490 #define PRINT_UMA_ZFLAGS "\20" \ 491 "\40CACHEONLY" \ 492 "\37TRASH" \ 493 "\36INTERNAL" \ 494 "\35BUCKET" \ 495 "\34RECLAIMING" \ 496 "\33CACHE" \ 497 "\32LIMIT" \ 498 "\31CTORDTOR" \ 499 "\22MINBUCKET" \ 500 "\21NUMA" \ 501 "\20PCPU" \ 502 "\17NODUMP" \ 503 "\16VTOSLAB" \ 504 "\15CACHESPREAD" \ 505 "\14MAXBUCKET" \ 506 "\13NOBUCKET" \ 507 "\12SECONDARY" \ 508 "\11HASH" \ 509 "\10VM" \ 510 "\7MTXCLASS" \ 511 "\6NOFREE" \ 512 "\5MALLOC" \ 513 "\4OFFPAGE" \ 514 "\3STATIC" \ 515 "\2ZINIT" \ 516 "\1PAGEABLE" 517 518 #undef UMA_ALIGN 519 520 #ifdef _KERNEL 521 /* Internal prototypes */ 522 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data); 523 524 /* Lock Macros */ 525 526 #define KEG_LOCK_INIT(k, lc) \ 527 do { \ 528 if ((lc)) \ 529 mtx_init(&(k)->uk_lock, (k)->uk_name, \ 530 (k)->uk_name, MTX_DEF | MTX_DUPOK); \ 531 else \ 532 mtx_init(&(k)->uk_lock, (k)->uk_name, \ 533 "UMA zone", MTX_DEF | MTX_DUPOK); \ 534 } while (0) 535 536 #define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock) 537 #define KEG_LOCK(k) mtx_lock(&(k)->uk_lock) 538 #define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock) 539 #define KEG_LOCK_ASSERT(k) mtx_assert(&(k)->uk_lock, MA_OWNED) 540 541 #define KEG_GET(zone, keg) do { \ 542 (keg) = (zone)->uz_keg; \ 543 KASSERT((void *)(keg) != (void *)&(zone)->uz_lock, \ 544 ("%s: Invalid zone %p type", __func__, (zone))); \ 545 } while (0) 546 547 #define ZONE_LOCK_INIT(z, lc) \ 548 do { \ 549 if ((lc)) \ 550 mtx_init(&(z)->uz_lock, (z)->uz_name, \ 551 (z)->uz_name, MTX_DEF | MTX_DUPOK); \ 552 else \ 553 mtx_init(&(z)->uz_lock, (z)->uz_name, \ 554 "UMA zone", MTX_DEF | MTX_DUPOK); \ 555 } while (0) 556 557 #define ZONE_LOCK(z) mtx_lock((z)->uz_lockptr) 558 #define ZONE_TRYLOCK(z) mtx_trylock((z)->uz_lockptr) 559 #define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lockptr) 560 #define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock) 561 #define ZONE_LOCK_ASSERT(z) mtx_assert((z)->uz_lockptr, MA_OWNED) 562 563 /* 564 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup 565 * the slab structure. 566 * 567 * Arguments: 568 * hash The hash table to search. 569 * data The base page of the item. 570 * 571 * Returns: 572 * A pointer to a slab if successful, else NULL. 573 */ 574 static __inline uma_slab_t 575 hash_sfind(struct uma_hash *hash, uint8_t *data) 576 { 577 uma_hash_slab_t slab; 578 u_int hval; 579 580 hval = UMA_HASH(hash, data); 581 582 LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) { 583 if ((uint8_t *)slab->uhs_data == data) 584 return (&slab->uhs_slab); 585 } 586 return (NULL); 587 } 588 589 static __inline uma_slab_t 590 vtoslab(vm_offset_t va) 591 { 592 vm_page_t p; 593 594 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 595 return (p->plinks.uma.slab); 596 } 597 598 static __inline void 599 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab) 600 { 601 vm_page_t p; 602 603 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 604 *slab = p->plinks.uma.slab; 605 *zone = p->plinks.uma.zone; 606 } 607 608 static __inline void 609 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab) 610 { 611 vm_page_t p; 612 613 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 614 p->plinks.uma.slab = slab; 615 p->plinks.uma.zone = zone; 616 } 617 618 extern unsigned long uma_kmem_limit; 619 extern unsigned long uma_kmem_total; 620 621 /* Adjust bytes under management by UMA. */ 622 static inline void 623 uma_total_dec(unsigned long size) 624 { 625 626 atomic_subtract_long(&uma_kmem_total, size); 627 } 628 629 static inline void 630 uma_total_inc(unsigned long size) 631 { 632 633 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 634 uma_reclaim_wakeup(); 635 } 636 637 /* 638 * The following two functions may be defined by architecture specific code 639 * if they can provide more efficient allocation functions. This is useful 640 * for using direct mapped addresses. 641 */ 642 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, 643 uint8_t *pflag, int wait); 644 void uma_small_free(void *mem, vm_size_t size, uint8_t flags); 645 646 /* Set a global soft limit on UMA managed memory. */ 647 void uma_set_limit(unsigned long limit); 648 #endif /* _KERNEL */ 649 650 #endif /* VM_UMA_INT_H */ 651